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Abstract: Dynamic behaviors of composite railway sleepers and bearers in railway switches and
crossings are not well-known and have never been thoroughly investigated. In fact, the dynamic
properties of the full-scale composite sleepers and bearers are not available in practice. Importantly,
the deteriorated condition or even the failure of composite materials and components in the railway
system can affect the functional limitations or serviceability of the switches and crossings. Especially,
it is important to identify the dynamic modal parameters of Fiber-reinforced Foamed Urethane (FFU)
composite railway sleepers and bearers so that track engineers can adequately design and optimize
the structural components with their superior properties, for benchmarking with the conventional
sleepers and bearers. This paper is the world’s first to investigate the vibration characteristics of
full-scaled FFU composite beams in healthy and damaged conditions, using the impact hammer
excitation technique. This study also determines the dynamic elastic modulus of FFU composite
beams from experimental dynamic measurements. It is found that the first bending mode in a vertical
plane obviously is the first dominant mode of resonance under a free-free condition. The dynamic
modal parameters reduce when damages occur. In this study, finite-element modeling has been used
to establish a realistic dynamic model of the railway track incorporating FFU composite sleepers
and bearers. Then, numerical simulations and experimental campaigns have been performed to
enable new insights into the dynamic behaviors of composite sleepers and bearers. These insights
are fundamental to the performance benchmarking as well as the development of vibration-based
condition monitoring and inspection for predictive track maintenance.

Keywords: Fiber-reinforced Foamed Urethane (FFU); free vibration; impact hammer excitation
technique

1. Introduction

Railway sleepers and bearers are typically made of timber, concrete, steel, and other composite
materials. In traditional railway tracks, timber is normally used as railway sleepers and bearers. Due to
the diverse environmental concern of noble wood leading to the high deterioration rate of timber
sleepers, the need of using other materials has grown. Currently, the development and improvement
of railway structure, which is economically competitive for meeting the requirements of the industry,
is a key challenge for track engineers. One of the major concerns in the railway industry is the
replacement of deteriorated and damaged timber sleepers in existing railway tracks [1]. Recently,
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polymer and composite sleepers with mostly fiber materials have been developed [2] and designed
to mimic timber behavior [3,4]. This is conducted presently on a basis of a like-for-like replacement
in terms of equivalent static performances (i.e., similarities of static strength, modulus of elasticity,
stiffness, etc.). For example, a fiber composite system is composed of a lightweight polymer matrix
with strong fibers added into the matrix [2]. These fibers can well resist forces because of their extreme
strength and can be used only in the longitudinal and/or transverse direction. The static strength
and elastic modulus of composites are found to be equivalent to hard timber. Recently, practitioners
have strong concerns whether dynamic properties should rather be considered due to the fact that
railway tracks are generally exposed to dynamic loading conditions. It is also well-known that concrete
and steel are likely to have nearly no damping coefficient when compared to timber, which has an
outstanding damping coefficient [5–8]. In recent reviews [9,10], it has been found that steel bearers
behaved well in the short-term, but tended to have higher turnout settlements and severe ballast
breakage in the long-term. In contrast, concrete tends to be an extremely good counterpart to enhance
track and turnout stability in a longitudinal, vertical, and lateral direction [11,12]. However, concrete
is relatively much heavier than timber and it is impractical to use concrete bearers as timber barer
replacement. A major benefit of using polymer and composite sleepers and bearers is their flexibility,
which results in an extreme ability to withstand vibrations induced by dynamic forces in a railway
track system [13,14]. Moreover, polymer and composite sleepers and bearers are durable, simple to
make, are presently cost-attractive, and need low to nearly no maintenance. Therefore, their improved
lifecycle is useful for areas that are very difficult to maintain, for instance, turnouts (or referred to as
‘switches and crossings’), bridges, and tunnels. Another benefit is that the utilization of the polymer
and composite sleepers and bearers can handle the constant rise of concern throughout the existing
environment in the present industry, because of its durability and its nearly 100% recyclability [15].

Composite railway sleepers and bearers are one of the most attractive structural elements in a
railway infrastructure, acting as crosstie beams, which are placed under the rails to support track
loading [16]. Their key functions are not only to transfer and distribute dynamic train loads to
track substructure, but also to ensure safe rail gauge that permits the train to travel securely [17–19].
The vibration of Fiber-reinforced Foamed Urethane (FFU) composite sleepers and bearers in a railway
turnout system is a key factor causing failure of FFU composite sleepers and bearers and excessive
railway track maintenance costs. As such, the performance of Fiber-reinforced Foamed Urethane
(FFU) composite sleepers and bearers over the entire service life and their failure modes under
vibration cannot be fully identified to establish a design standard for these composite sleepers and
bearers. It is important to comprehend the dynamic modal parameters of the composite sleepers
and bearers to develop and design a realistic dynamic model of a railway track for predicting its
responses under vibration. The essential information of the dynamic parameters can be used for
dynamic performance benchmarking when a new material is manufactured for railway applications.
Furthermore, the information is critical in the development of a predictive vibration-based condition
assessment of the components. On this ground, it is necessary to monitor and inspect the vibration
behavior of FFU composite sleepers and bearers during operation in order to prioritize and plan effective
maintenance management. Note that the inspection of railway sleepers and bearers is currently carried
out by visual observation. Monitoring of dynamic properties can provide an alternative technique in
structural integrity assessment for track engineers.

It is noted that the use of common damage detection techniques (visual observation) is inefficient
to identify any component damage in real-time and they cannot perform to completely reduce track
possessions (i.e., track maintenance time). In many engineering applications, one of the reliable
inspection techniques widely used in modal analysis is based on an instrumented hammer impact
excitation. Modal analysis is a useful tool for comprehending the vibration characteristics of mechanical
structures. This tool converts the vibration waves of excitation and response identified on a complicated
structure into a range of predictive modal parameters [20]. One with the most perspectives of structural
dynamics is the modal domain, which provides modal parameters (such as natural frequencies,
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dynamic stiffness, and dynamic damping). A structure deforms or vibrates in particular shapes,
so-called ‘mode shapes’, when the structure is excited at its natural frequencies. It will move back
and forth in a complex combination, which includes all the mode shapes under common operation
conditions [20].

In a modal testing process, a Frequency Response Function (FRF) is a transfer function used for
impact hammer analysis in order to determine the resonant frequencies and mode shapes, as well
as damping of a vibrating structure [21]. During the design phase, the dynamic modal parameters
obtained from the FRF are an important factor to consider before manufacturing a real structure to
find and eliminate potential problems early [21]. In 2006, Kaewunruen and Remennikov carried out
an investigation into the modal analysis of pre-stressed concrete sleepers for evaluating dynamic
behaviors of the sleepers, using the impact hammer excitation technique at a particular frequency
series of 0–1600 Hz [21,22]. According to their study, the PROSIG modal analysis suite was used to
measure the frequency response functions (FRFs). They also used the STAR Modal analysis package to
determine the natural frequencies and corresponding modal shapes of each sleeper from the FRFs.
Obviously, the impact hammer excitation technique is one of the most attractive non-destructive force
excitation methods to identify dynamic modal parameters of a structure under vibration. These modal
parameters are helpful for the development of a realistic dynamic model of railway composite sleepers
and bearers capable of predicting its dynamic responses.

In terms of mechanical properties of a common material, two independent constants called
elastic modulus, E, and shear modulus, G, define the elastic properties for linearly elastic isotropic
solids. The design of engineered structures has been significantly concerned about these two elastic
properties. For the above reason, many experimental methods to identify E and G have been developed.
These methods consist of two sets, which are static and dynamic techniques. According to studies
in [23–25], the researchers were the first to determine the elastic properties of isotropic materials,
based on non-destructive vibration testing. They established the formulae to calculate dynamic E
and G from the natural frequencies in bending and twisting modes of cylinder and prisms, based on
the Timoshenko beam theory. In fact, the base of the ASTM criterion [26] test method to characterize
dynamic elastic properties was set by those researchers, using the impulse excitation technique [27].
To date, several researchers have investigated the estimation of the elastic properties of laminated
composites [28–33], timber materials [34,35], or concrete materials [36], which are non-isotropic and/or
inhomogeneous, using vibration-based approaches. It is important to note that the standard tests
for dynamic properties gain significant supports from scientific and engineering communities in
present days.

For railway applications, it is well-known that a common turnout induces high impact loads on
the structural members because of its blunt geometry and mechanical connections between closure
rails and switch rails. Therefore, the turnout system requires improved structural members, which use
an alternative material like the FFU material, having an identical timber-like behavior. For that reason,
the FFU material in switches and crossings offers its high-impact attenuation, high damping property,
high UV resistance, lightweight, and long-lifecycle. The static properties of FFU bearers are presented
in Table 1. However, neither of the dynamic properties of FFU bearers have been investigated before,
nor are available in open literature.

In this paper, the experimental and numerical dynamic parameters of FFU composite beams in
free-free conditions have been identified. The free-free condition is scientifically ideal for performance
benchmarking or comparison of test results. This condition excludes uncertainties that can affect the
test results, such as type of ballast, type of support, and type of fastening system. This condition is very
critical when the like-for-life performance of an individual component is being assessed. In this study,
two FFU composite beams have been tested using an impact hammer excitation technique over the
frequency range of interest: 0 to 2100 Hz. Frequency response functions (FRFs) have been measured
using the Modal Analysis Suite package to identify natural frequencies and the corresponding mode
shapes, as well as damping values for the full-scale beams. The experimental results provide the
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correlations between modal parameters and structural damage. Then, the experimental natural
frequencies are used to determine the dynamic elastic moduli of the beam in different bending
modes. Therefore, the vibration parameters of FFU composite beams are inevitably required for the
development of a realistic dynamic model of a railway track capable of predicting its responses to
impact loads stemmed from irregularities of the rail, wheel burns, and so on.

Table 1. Static properties of Fiber-reinforced Foamed Urethane (FFU) material.

Properties [37] Units

FFU Sleepers and Bearers [6]

New After 10
Years Used

After 15
Years Used

After 30
Years Used

Elastic Modulus GPa 8.10 8.04 8.79 8.41
Bending Strength GPa 0.142 0.125 0.131 0.116

Shear Strength MPa 10 9.5 9.6 7
Vertical Compressive Strength MPa 58 66 63 55

Density kg/m3 740 740 740 740
Service Life Years 50 40 35 20
Hardness MPa 28 25 17 -

2. Materials and Methods

In this study, a non-destructive testing method is considered in order to obtain comprehensive
insights into the dynamic structural behaviors of the FFU composite sleepers and bearers and the
relationship between the damage and the dynamic responses obtained from the method. The method
used in this investigation is the ‘modal testing and analysis’ to extract the dynamic Young’s modulus
of FFU composite beams under free vibrations from the experimental dynamic measurements.

2.1. Modal Equipment

Modal testing has been performed in conjunction with the mechanical load tests of all specimens
to determine modal parameters of the specimen at various states, given in Figure 1. DATS software
has been designed by PROSIG for modal analysis. The FFU composite beams have been tested using
an impact hammer excitation technique over the frequency range of interest: 0 to 2100 Hz. The data is
acquired using the PROSIG P8004 acquisition device for impact hammer modal testing. The modal
signals have been measured and recorded using a 2-channel data acquisition for accelerometer and
modal hammer connection. The FRFs, which are varied in different ways for healthy and damaged
conditions, are then processed using Modal Analysis Suite package to identify natural frequencies and
the corresponding mode shapes of the beam specimens.
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2.2. Experimental Overview

The two full-scale composite beam specimens have been prepared for load tests, as shown in
Figure 2a. The dimension of each beam is 160 mm deep × 260 mm wide × 3300 mm long, kindly
provided by an industry partner. The experimental investigations are conducted in accordance with EN
13230 (Test material, specifications, support conditions, loading procedures, and other requirements
needed for bending tests on railway track concrete sleepers). Note that EN 13230 has some limitations
in order to detect the failure mode of flexible composites. Especially, some experimental arrangements
are adapted to examine the structural damage and the failure mode of the full-scale FFU composite
beams [38–41]. In this study, modal tests have been conducted using an impact excitation technique in
a free-support condition (or ‘free-free condition’). The damage and failure are observed using three-point
bending tests following EN 13230, in order to investigate the damage and failure of the beams.
The modal parameters of FFU composite beams under different conditions are then investigated.
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Figure 2. (a) FFU 17-06 specimens and (b) rubber cushions.

2.2.1. Modal Testing

The dynamic modal parameters have been identified for both healthy and damaged conditions.
It should be noted that bending tests are conducted to trigger different levels of damage. Firstly,
both specimens are tested under healthy condition. This test requires laying two soft rubber cushions
shown in Figure 2b. These very soft cushions have been placed underneath each sample, so that
the free-free boundary conditions can be incited for the modal parameters of the sole specimens.
This free-free condition is imperative if the dynamic parameters of an individual component are
required in any like-for-like performance comparison.

Secondly, the experimental modal analysis has been performed to identify dynamic parameters of
the specimens under different severity states of damaged conditions. The equipment used for this test
is a Prosig-P800 impact hammer as given in Figure 3a. The 34 uniform locations have been marked
on the surface of each sample as the excitation locations of the impact hammer. The accelerometer
is fixed at one corner to record the acceleration, as shown in Figure 3b. According to the EN 13230
criterion [41], the dynamic responses up to 2100 Hz are recorded. In addition, these attributes are clearly
defined using a curve fitting method. Data modal analysis is a package that can create optimisation
algorithms and provide relevant frequency-dependent shapes to explain the data sets. This data can be
transformed into curve images; and mode shapes can be determined by the ‘animation drawing suite’.
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2.2.2. Three-Point Bending Tests

According to EN 13230-2 [41], the standard requires positive and negative three-point bending
tests for sleepers at the rail seat support. Only positive bending tests have been carried out due to the
symmetrical shape of the samples. This means that the samples have the same positive and negative
capacity. Also, the criterion requires articulated support and must be 100 mm wide, made of steel
with Brinell: HBW > 240. A static load is applied at the mid-span to cause positive 3-point bending
cracks and failure. Figure 4 shows the layout of the bending load process, also illustrates the excitation
locations of the impact hammer, which have been strategically installed to perform two modal tests
under different bending loads. Figure 5 demonstrates two pattern tests of the samples under different
bending load conditions. The investigations are sufficiently performed in order to comply with BS EN
13230-1 standard [41].
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Figure 5. Testing procedure of ultimate load test and repeated load test.

2.3. Determination of Dynamic Elastic Modulus

Dynamic elastic properties of a material can thus be calculated if the mass, geometry,
and mechanical resonant frequencies of the test sample can be measured. This means that the
dynamic Young’s modulus can be identified utilizing the resonant frequency in either the bending or
longitudinal mode of vibration, as given in Equation (1) [25,42], whilst the dynamic shear modulus,
also known as modulus of rigidity, can be found by employing twisting resonant vibrations [23,43].
In this section, we only focus on the determination of dynamic elastic modulus in free-free boundary
conditions (for future benchmarking purpose). This is because, based on the experimental results in
the following part, it can be found that the first bending mode in a vertical plane obviously dominates
the first resonant mode of vibration in free-free boundary conditions. By employing bending vibration
modes, slender beams based on the Euler–Bernoulli theory of bending vibrations can be applicable to
the test sample. The influences of rotational inertia and shear can be negligible generally. The equations
derived on these assumptions are sufficient for relatively slender beams of lower modes. Nevertheless,
this theory is likely to slightly overestimate the natural frequencies. According to Euler–Bernoulli’s
basic equations of flexure, the dynamic elastic modulus in bending of a beam can be assessed under
forced free or bending free vibrations. The dynamic elastic modulus in bending of a beam can be
expressed as Equation (1): (Edy

ρ

)
n
=

(
2πLF f ,n

)2

K4
nβ

, (1)

where Edy is dynamic elastic modulus (Pa), n is mode number, L is free length (m), ρ is stabilized
density (kg·m−3), F f ,n is frequency of nth mode (Hz), and Kn is a coefficient related to the beam’s
support condition and mode number (e.g., K1 is equal to 4.73 for a free-free end condition and 1.785 for
a fixed-free condition [44], as given in Table 2). Finally, β is the square value of gyration radius divided
by free length as provided in Equation (2):

β =

1
L

√
I
A

2

=
I

L2A
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Herein, β denotes the square value of gyration radius divided by free length, L. I is the moment
of inertia about the axis and A is the cross-section area. If no axis is specified, the centroidal axis
is assumed.

Table 2. Dimensionless coefficients for computing the frequencies of a FFU composite beam in
free-free conditions.

Mode No. 1 2 3 4 5 6

Kn
0

(Translation) 4.730 7.853 10.996 14.137 ≈
(2n−1)π

2

It is important to note that Equation (1) is a conceptual equation of vibration, which ignores the
influence of rotational deformation and shear load in a simulation. Nevertheless, for an application of
using this equation, it could be dominated by L/h ratios (i.e., more than 58 in a fixed-free end condition
or more than 20 in a free-free end condition) [45]. In this paper, the modeling of FFU composite
beam does not take into account shear deformation and rotational bending effects (as defined by the
Timoshenko theory), due to the ratio of L/h ≥ 20 (thin beam). Additionally, both previous equations
are limited to isotropic materials. It is noted that the FFU composite beam model was considered as an
isotropic material. In fact, this material would be considered to be anisotropic, but we measure its
dynamic responses only in the vertical direction. Thus, the material can be considered conceptually to
be isotropic. The following section presents the numerical investigations of a FFU composite beam
modeling using the dynamic parameters obtained from the experiments in order to determine the
dynamic elastic modulus of the beam.

2.4. A Finite-Element (FE) Model

A three-dimensional FFU composite beam model under free-free boundary conditions has been
developed to study its dynamic response and compare with the experimental results. The Strand7
software [46] is used to model this 3D simulation, which employs 60 Euler–Bernoulli beam elements
with 61 nodes, due to the model acting as a shallow beam. Figure 6 demonstrates the three-dimensional
finite element model of a FFU composite beam. The modification for the geometric and material
characteristics of these components has been based on the experimental data. The engineering
properties are presented in Table 3 [47,48].
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Figure 6. Finite element modeling of a FFU composite beam in free-free conditions.

Table 3. Geometric parameters employed in the dynamic simulation.

Parameter lists Values Units

Density 740 kg/m3

Length 3.3 m
Cross-section area 0.16 × 0.26 = 0.042 m2

3. Results

3.1. Experimental Results

The results of the vibration tests for FFU composite beams under an ultimate load test and
repeated load test for healthy and damaged conditions are presented in Tables 4 and 5 and Figures 7
and 8. The first five-mode shapes of vibration under ultimate and repeated load tests are shown in
Tables 4 and 5, respectively. For all beams, the first natural bending mode in a vertical plane obviously
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controlled the first resonant mode of vibration both under an ultimate load test and repeated load test.
In addition, the lowest frequency corresponds to the natural bending mode, the second frequency to
the lowest torsional mode, the third frequency to the second bending mode, the fourth frequency to the
second torsional mode, and the fifth mode to the third bending mode. Clearly, the internal dynamic
properties of FFU composite beams can be changed when damages occur.

Table 4 exhibits the results of natural frequencies and damping values of the FFU composite
beams under the ultimate load test. The differences between the natural frequencies of all mode
shapes in healthy and failed conditions are 16.5%, 11.4%, 15.1%, 22.46%, and 25.27%, respectively.
As shown in Figure 7, the frequencies of all five modes under failed conditions are lower than those
under healthy conditions. For damping values, the value of the first mode damping values under
failed conditions increased by 49%, compared with those under healthy conditions. There are several
transverse damages on the beam surface for the first time under failure conditions, and there are cracks
(30 mm in width). Nevertheless, the beam specimens remain the same and could completely recover
without any load. After measurement and unloading, the residual bending deformation level of the
material is only 2 mm.

Table 4. Frequencies, damping values, and mode shapes under ultimate load test for healthy and
failed conditions.

Healthy Condition Failed Condition Difference

Frequency (Hz) Damping (%) Frequency (Hz) Damping
(%)

Frequency
(Hz)

Damping
(%)

Mode 1
(1st bending)
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3.96 

 
 

56.92 

 
 
 
 
 

5.9 

 
 
 
 
 

11.31 

 
 
 
 
 

1.94 

Mode 2 
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Mode 2
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Figure 7. Frequencies against damping values over mode shapes under ultimate load test for healthy 291 
and failed conditions. 292 
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The dynamic behavior of the FFU composite beams under the repeated load test is demonstrated
in Tables 5 and 6 and Figure 8. In Table 5, it is clear that all modes have no obvious deviation before
the load reached 100 kN. Beyond this load to the ultimate load, the frequencies of all five modes tend
to reduce with percent variations of different mode shapes. The maximum difference of frequency is
found in the first mode, approximately 27%, compared with the frequency under healthy conditions.
Surprisingly, the frequencies of the fourth mode are unchanged under the different loading conditions.
A comparison of natural frequencies and damping values between healthy and damaged conditions in
all the five modes is presented in Table 6, which shows that there were maximum differences in natural
frequencies and damping values between the healthy condition and the ultimate loading condition
(170 kN). We note that the minimum difference in frequencies and damping values between the healthy
condition and the damaged condition could be found under a load of 67 kN.

However, the different frequencies of the other modes reduce dramatically, as shown in Figure 8.
In regards to damping values in Table 5, all the modes except the first and fifth mode are scant.
Obviously, the difference of damping values between under 100 kN and 167 kN loading in the first
mode is significantly high and increased two-fold from 3.94 to 8.24. In addition, the difference of
damping values between healthy conditions and 67 kN loading in the fifth mode is considerable,
which decreased by 36% from 2.39 to 1.53. It is clear that the dynamic modal parameters of FFU beams
decrease when damages appear. These beams could reduce with the damage severity.
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Table 5. Frequencies, damping values, and mode shapes under repeated load test for healthy and
damaged conditions.

Healthy 67 kN 100 kN 167 kN 170 kN (Failed)

Frequency (Hz)/Damping (%)

Mode 1 (1st bending)
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Table 6. Relative values of frequencies and damping to healthy condition.

Difference in Frequencies (Hz)/Damping (%)

No. Mode 67 kN 100 kN 167 kN 170 kN (Failed)

1 1.17/0.81 3.36/0.29 13.21/4.01 18.76/2.89
2 0.83/2.29 0.39/2.23 0.09/2.67 8.32/2.42
3 0.21/0.05 1.05/0.20 7.11/0.03 16.01/0.35
4 0.87/0.50 1.17/0.50 2.48/0.34 4.23/1.00
5 3.08/0.86 5.47/0.85 25.37/0.95 35.60/0.95

3.2. Numerical Results

Based on the frequencies experimentally obtained by the impact hammer excitation technique,
dynamic Young’s modulus, E, can be computed using Equation (1). As shown in Table 7, the big
difference of the Young’s modulus values is significant in the first bending mode and relatively small
when compared with the Young’s modulus for FFU composite sleepers, E = 8.1 GPa, according to the
reviews in [48,49].

In order to verify the model, the natural frequencies of a full-scale FFU beam in free-free conditions
are calibrated against the existing experiments. The values of a dynamic elastic modulus in different
bending modes obtained from Table 7 have been used in the finite element analysis. A comparison
between numerical and experimental investigations for frequencies and mode shapes are given in
Table 8, especially the experimental data based on the ultimate load test. The results are found to be in
a very good agreement in all the first five modes. The maximum difference of frequencies between the
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numerical and experimental data is less than 4% in the second twisting mode, because of the effects of
experimental disturbances in our laboratory. Additionally, there is a satisfied correlation between both
results for the shifts in natural frequencies under free vibration. It is important to note that the numerical
modal analysis of a FFU composite beam can only be achieved under free-free boundary conditions.
This free-free boundary condition is commonly used for performance benchmarking of an individual
component (i.e., like-for-like comparison), especially for railway sleepers and bearers, which are
safety-critical components [50]. In the near future, the situ investigation into modal parameters of
FFU composite beams can be further carried out in order to determine the effect of different boundary
conditions (e.g., type of ballast aggregate, or resultant effects of particle size distribution, tamping) on
vibration properties of the beams.

Table 7. Determination of dynamic Young’s modulus from dynamic measurements in free-free
end conditions.

Mode No. Experimental Frequency (Hz) Dynamic Young’s Modulus, E (GPa)

1 (bending) 68.23 15.34

2 (twisting) 85.78 -

3 (bending) 143.61 8.81

4 (twisting) 180.14 -

5 (bending) 247.96 6.83

Table 8. Natural frequencies of a conceptual FFU composite beam (Hz) in the free-free conditions.

Mode No. Mode Shape Numerical
(Hz)

Experimental
(Hz)

Difference
(%)

1
(First Bending)
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predictive and preventative maintenance to ensure railway safety. The results of the experimental and
numerical modal analysis for Fiber-reinforced Foamed Urethane composite beams in free-free boundary
conditions are indicated in this study. For the purpose of like-for-like performance benchmarking
for a particular component, the free-free boundary condition is considered to be more suitable since
the test results will not be affected by uncertainties stemmed from supports (e.g., dimension and
particle size distribution of ballast, tamping technique, ballast geological properties). Full-scaled
experiments have been performed to artificially create damage and failure in accordance with European
standards. Dynamic parameter tests have been conducted by using an impact hammer excitation
technique throughout the frequency range of interest: from 0 to 2100 Hz. According to experimental
results, it provides the correlations between modal parameters and structural damage. Furthermore,
the dynamic parameters obtained are later used to extract the dynamic elastic moduli. The results of
frequency parameters under free-free conditions are in a very good agreement between experimental
and numerical data with less than 4% discrepancy. Further research could be conducted to investigate
the vibration characteristics of Fiber-reinforced Foamed Urethane composite beams in situ conditions in
order to consider the influence of various ballast conditions on the natural frequencies, modal damping
values, and vibration mode shapes of FFU composite beams under the in-situ boundary conditions.
Some interesting novel findings from this research can be concluded as follows:

• The first bending mode in a vertical plane obviously dominates the first resonant mode of vibration
under a free-free condition;

• The dynamic modal parameters of full-scale FFU composite beams reduce when damages occur.
Thus, they decrease with damage severity;

• The highest dynamic Young’s modulus of FFU composite beams is found in the resonant frequency
of the first bending mode and also reduces when the second and third bending modes appear.
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