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Taylan Karaağaçlı 1,2 and H. Nevzat Özgüven 2,*
1 The Scientific and Technological Research Council of Turkey, Defense Industries Research and Development
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Abstract: In stepped-sine testing of strongly nonlinear structures with the classical force-control
strategy, corrective force perturbations of a standard controller used to capture the reference signal
in the proximity of turning points of frequency response curves may often lead to a premature
jump before reaching the actual resonance peak. Accordingly, a classical force-control approach is
not suitable to identify backbone curves of strongly nonlinear structures. This paper shows that
currently available commercial modal test equipment can accurately identify backbone curves of
strongly nonlinear structures by using Response-Controlled stepped-sine Testing (RCT) and the
Harmonic Force Surface (HFS) concept, both recently proposed by the authors. These methods can
be applied to systems where there are many nonlinearities at several different (and even unknown)
locations. However, these techniques are not applicable to systems where internal resonances occur.
In RCT, the displacement amplitude of the driving point, rather than the amplitude of the applied
force, is kept constant during the stepped-sine testing. Spectra of the harmonic excitation force
measured at several different displacement amplitude levels are used to build up a smooth HFS.
Isocurves of constant amplitude forcing on the HFS lead to constant-force frequency response curves
with accurately measured turning points and unstable branches (if there are any), which makes it
possible to identify backbone curves of strongly nonlinear structures experimentally. The validation
of the proposed approach is demonstrated with numerical and experimental case studies. A five
degree-of-freedom (DOF) lumped system with five cubic stiffness elements, which create strong
conservative nonlinearity, is used in the numerical example. Experimental case studies consist of a
cantilever beam and a control fin actuation mechanism of a real missile structure. The cantilever beam
is supported at its free-end by two metal strips constrained at both ends to create strong stiffening
nonlinearity. The control fin actuation mechanism exhibits very complex and strong nonlinearity due
to backlash and friction.

Keywords: nonlinear experimental modal analysis; backbone curve; nonlinear system identification;
response controlled stepped sine test; harmonic force surface; unstable branch

1. Introduction

By virtue of various advanced techniques developed in the field of linear experimental modal
analysis over the last 40 years, the modal survey of aerospace structures, specifically named as
ground vibration testing, was established as an industry standard in the new millennium. On the
other hand, the increasing competition in the industry to achieve higher performance in aircraft,
missiles, and satellites inevitably increased the frequency of occurrence of non-negligible structural
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nonlinearities in aerospace applications (e.g., References [1–3]), which led to a shift of emphasis towards
the development of nonlinear system identification techniques in structural dynamics [4,5].

The modal testing of linear structures is accomplished either by using broad band random testing
or by using classical force-controlled stepped-sine testing, where the force amplitude is kept constant.
Unfortunately, direct implementation of these conventional modal testing techniques to structures
that exhibit strong nonlinearity does not give satisfactory results. Random testing, which requires
taking many averages to increase the coherence of measured frequency response functions (FRFs),
is not suitable for nonlinear system identification because averages do their best to hide nonlinearity,
as stated in Reference [6]. On the other hand, constant-force sine testing often fails to capture turning
points and unstable branches of nonlinear frequency response curves. The constant-force test algorithm
available in commercial equipment can measure only the stable branches of the nonlinear frequency
responses, which requires running multiple sine tests in opposite sweep directions. In the case of
standard constant-force sine testing, the controller unavoidably jumps from one stable branch to
another, as shown in Figure 1a. Moreover, in some cases, a premature jump may occur, as shown in
Figure 1b. Early methods [7,8] attempted to identify amplitude-dependent nonlinear modal parameters
by developing curve fitting procedures applicable to measured constant-force FRFs based on the
single nonlinear mode theory [9]. However, their applications remained limited to simple benchmark
structures due to the computational burden in the case of complex structures and due to the missing
frequency response data caused by the jump phenomenon.
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Figure 1. Frequency response curves measured in constant-force stepped-sine testing compared to the
ones measured by RCT with HFS: (a) jump phenomenon; (b) premature jump.

Contrary to the early attempts based on phase separation testing mentioned above, most of the
techniques proposed in succeeding years were inspired by the phased resonance testing approach.
Two interesting approaches based on normal mode force appropriation and on the application of the
restoring force surface in modal space were proposed in References [10,11]. Experimental application
of the nonlinear resonant decay method proposed in Reference [11] to identify the backbone curve of a
single degree-of-freedom oscillator was demonstrated in Reference [12]. Alternatively, the phase lag
quadrature criterion was implemented in nonlinear structures in order to isolate a single nonlinear
normal mode (NNM) in Reference [13]. In this approach, the NNM appropriation is succeeded by
time-frequency analysis of the free-decay response data to determine the frequency-energy dependence
of the nonlinear mode of interest. However, an important drawback of this method is the manual
tuning of the phase lag between response and excitation, which introduces difficulty in the experiment
and requires longer experimentation time. The two recently proposed experimental continuation
techniques [14,15] eliminated this drawback by automating the tuning of the phase lag throughout the
complete backbone curve. The phase-locked-loop (PLL) control algorithm [14] is capable of tracing



Vibration 2020, 3 268

out backbone curves and also captures the unstable branches of frequency response curves, if there
are any. Similarly, the control-based continuation (CBC) approach [15] relies on phase-quadrature
condition to trace out the backbone curve. In CBC, unstable branches of constant-force frequency
response curves are obtained by processing S-curves measured at several fixed frequencies by varying
the response level. However, these two state-of-the-art techniques cannot utilize commercial modal
testing equipment, and although the determination of NNMs and corresponding modal frequencies is
straightforward, identification of nonlinear modal damping is still a considerable problem.

As an alternative to these experimental continuation techniques, a systematic approach called
Response-Controlled stepped-sine Testing (RCT) was proposed quite recently by the authors of this
paper, which constitutes the main step of a new experimental modal analysis method for nonlinear
systems [16]. The method can be applied to systems where there are many nonlinearities at several
different (and even unknown) locations. However, this technique is not applicable to systems with
internal resonances. In other words, the effects of sub- and super-harmonics are assumed to be
negligible. In the RCT strategy, the displacement amplitude of the test point (equivalently, the modal
amplitude) is kept constant during stepped-sine testing, which leads to quasi-linear FRFs even in the
case of strongly nonlinear structures. Accordingly, conventional linear modal analysis techniques can
be employed to identify nonlinear modal parameters as functions of modal amplitude. Unmeasured
constant-force FRFs, which may even have unstable branches, can then be synthesized by using these
modal parameters based on the single nonlinear mode theory [9]. Alternatively, constant-force FRFs
can be directly extracted from the measured Harmonic Force Surface (HFS), an innovative concept
proposed in Reference [16]. The key feature of the RCT approach is that it simply uses standard
equipment, which makes it very attractive especially for industrial applications. Furthermore, the
identification of nonlinear modal damping and of mass normalized NNMs is straightforward via
applying standard linear modal analysis methods to measured quasi-linear FRFs. The proposed
HFS concept was employed as a validation tool for the constant-force FRFs synthesized by using
experimentally extracted nonlinear modal parameters. The current paper is a complementary work
specifically dedicated to demonstrating the performance of HFS in experimentally identifying backbone
curves of strongly nonlinear systems by emphasizing its ability to accurately identify turning points
of frequency response curves with unstable branches. It is important to note that in the context of
this paper, strong nonlinearity terminology is used to refer to nonlinear systems with overhanging
unstable branches in the frequency response curves which result in jump phenomenon in standard
constant-force stepped-sine testing. This does not necessarily imply a significant effect of higher
harmonics, as illustrated in the numerical and experimental case studies.

The paper is organized as follows. In Section 2, the RCT approach and HFS concept are briefly
summarized. Section 3 is dedicated to the analytical illustration of the HFS method on a 5 DOF system
with strong conservative nonlinearity. In Section 4, HFS is successfully applied to identify the backbone
curves of a benchmark beam with cubic stiffness and of a control fin actuation mechanism of a real
missile structure, both of which exhibit strong nonlinearity causing jump phenomenon during classical
constant-force stepped-sine testing. Finally, conclusions are given in Section 5.

2. Experimental Modal Analysis with RCT and HFS

Experimental modal analysis using response-controlled stepped-sine testing was recently proposed
by the authors of this paper in Reference [16], where the theoretical background is explained in full
detail. Here, only a brief summary of the experimental methodology will be given, with the emphasis
being on important key features.

The flow chart of the proposed experimental methodology by using RCT is shown in Figure 2.
The right column of the flow chart consists of the experimental extraction of nonlinear modal parameters
and of the synthesis of constant-force FRFs by using these parameters. The identification of nonlinear
modal parameters is straightforward via applying standard linear modal analysis techniques to
quasi-linear constant-response FRFs measured by RCT. Quasi-linearization of FRFs by keeping the
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displacement of the test point (equivalently, the modal amplitude) constant is based on the Nonlinearity
Matrix concept [17] and the single nonlinear mode theory [9] as explained in Reference [16]. The key
formulation of the quasi-linearization concept is as follows:

α jk(ω, qr) =
A jkr(qr)

ω2
r (qr) −ω2 + i2ξr(qr)ωωr(qr)

(1)

where α jk is the near-resonant receptance at point j for a given excitation at point k and ω is the
excitation frequency. A jkr(qr), ωr(qr) and ξr(qr) are the modal constant, natural frequency, and modal
damping ratio of the rth mode, respectively. These nonlinear modal parameters are functions of a
single parameter; the modal amplitude qr.
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Figure 2. Experimental modal analysis with RCT and HFS.

It was shown that if the modal amplitude is kept constant during stepped-sine testing, the measured
constant-response FRFs turn out to be quasi-linear. In the case of a single input sine testing, the modal
amplitude can be kept constant by just keeping the displacement amplitude of the driving point
constant. In References [13,16,18], it was shown that nonlinear modes can be isolated with acceptable
accuracy by just using single-point single harmonic excitation under the condition that no internal
resonance occurs. On the other hand, the RCT method can theoretically be employed by using
multi-input sine testing, which requires careful tuning of the amplitude ratios of excitation signals to
keep the modal amplitude at a constant level [16].

Due to the popularity of accelerometer in modal testing, it was preferably used as the control
sensor in the applications of the proposed method. Accordingly, a constant displacement amplitude
condition at the driving point over the frequency range of interest was achieved in an indirect way
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by feeding the closed-loop controller with an appropriate user-defined acceleration profile, which is
supported by standard modal testing software (e.g., LMS Test Lab).

The HFS concept was successfully used for the validation of constant-force FRFs synthesized
from identified nonlinear modal parameters [16]. The focus of the current paper is demonstrating the
performance of HFS in experimentally extracting the backbone curves of strongly nonlinear systems
by emphasizing its ability to accurately extract the turning points of frequency response curves with
unstable branches.

As shown in the left column of the flow chart given in Figure 2, HFS is constructed from the
harmonic force spectra of the driving point measured at different constant displacement amplitude
levels by using linear interpolation. A frequency response curve corresponding to a specific constant
force level, which will include any existing unstable branch, is simply determined by picking up points
of the HFS corresponding to that force level.

In this paper, it is proposed to determine the backbone curves of nonlinear systems by picking
up resonance peaks of nonlinear frequency response curves extracted from HFS at various different
constant force levels. Picking up resonance peaks requires smoothly identified turning points, which is
an important issue for the state-of-the-art experimental continuation techniques. The successful
application of HFS in extracting backbone curves of strongly nonlinear systems is demonstrated with
numerical and experimental case studies in the subsequent sections.

3. Numerical Validation

In this section, the application of the HFS approach to identify the backbone curves is demonstrated
on a 5 DOF nonlinear lumped system with 5 cubic stiffness elements. The parameters of the system
(Figure 3) are as follows: m = 1 kg, k = 10, 000 N/m, c = 5 Ns/m, k∗ = 10 7 N/m3. Here, k∗ denotes
the coefficient of cubic stiffness.
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Figure 3. The 5 DOF system with cubic stiffness nonlinearity [16].

The backbone curves obtained from HFS are validated with the ones determined from
constant-force simulation. Constant-force and RCT simulations used to extract backbone curves
are conducted by using a multiple harmonics version of the Describing Function Method (DFM) details
of which can be found in References [16,17,19].

3.1. Determination of Backbone Curves by Using Constant-Force Simulations

Frequency response curves of the 1st and 5th DOFs obtained from constant force simulations at
force levels ranging from 10 N to 50 N and corresponding to the first mode are illustrated in Figure 4.
In Reference [16], where the same simulated data is used to validate nonlinear modal parameters
identified with RCT, it is shown that the effect of higher harmonics is negligible for the force and
displacement levels of interest. However, stiffness nonlinearity is still strong in the sense that it
leads to overhanging unstable branches, as shown in Figure 4. Although in a simulated experiment
resonance peaks can accurately be determined with the help of an arc length continuation algorithm,
in a real experiment this may not be possible due to a jump or, even worse, due to a premature jump,
as explained in the Introduction section. In the next section, it is demonstrated that by just using RCT
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and HFS concept, the inaccuracies due to the jump can be avoided, which makes it possible to identify
the backbone curve more accurately with standard equipment.
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3.2. Determination of Backbone Curves by Using RCT with HFS

Harmonic excitation force spectra of the driving point (1st DOF) obtained from RCT simulations
at several constant displacement amplitude levels ranging from 0.01 m to 0.1 m in the first mode are
illustrated in Figure 5a. As explained in Section 2, the HFS corresponding to the 1st DOF is constructed
by combining harmonic excitation force spectra and using linear interpolation, as shown in Figure 5b.
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Figure 5. Construction of the HFS corresponding to the 1st DOF by combining harmonic force spectra
with linear interpolation. (a) Harmonic excitation force spectra; (b) HFS of the 1st DOF [16].

By cutting the HFS with constant force planes ranging from 10 N to 50 N (with 5 N increments) as
shown in Figure 6a, constant-force frequency response curves of the 1st DOF are successfully extracted
with accurate resonance turning points and unstable branches as demonstrated in Figure 6b. Finally,
the backbone curve of the 1st DOF is determined by combining resonance peaks of the extracted
frequency response curves, as shown in the same figure.

In real experimental cases, the measurements of unstable branches together with smooth turning
points shown in Figure 6b would not be possible with conventional constant-force testing due to
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the jump (or even worse, premature jump) phenomenon, which eventually led the development of
advanced experimental continuation techniques in the last decade to determine the backbone curves of
structures exhibiting strong conservative nonlinearity. Alternatively, the RCT strategy combined with
HFS concept reveals that standard equipment can still do a good job in the experimental extraction of
unstable branches and backbone curves. In the RCT-HFS approach, instead of consecutively tracing
out points on an unstable branch or a backbone curve, these points are measured at different times
during stepped-sine tests carried out at different constant amplitude levels, and then merged into
the HFS.
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frequency response curves (black—ranging from 10 N to 50 N with 5N increments) and identification
of the backbone curve (red) of the 1st DOF from HFS.

It is important to note that HFS given in Figure 5b was constructed by considering the displacement
amplitudes of the 1st DOF, i.e., |X1|, as can be seen from the label of the displacement axis. So, this
surface specifically belongs to the 1st DOF, and can only be used to obtain constant-force frequency
response curves of the 1st DOF. In order to obtain frequency responses of another DOF, the HFS needs
to be reconstructed by considering the displacement amplitudes of that specific DOF. As an example,
the HFS corresponding to the 5th DOF is illustrated in Figure 7a. Once again, constant-force frequency
response curves and the backbone curve corresponding to the 5th DOF are successfully determined,
as shown in Figure 7b.

Finally, backbone curves determined from the HFS approach are compared with those obtained
from constant-force simulations for the 1st and 5th DOFs, as shown in Figure 8. The excellent match
indicates that HFS is a very promising concept for extracting backbone curves of strongly nonlinear
systems directly from experimental measurements. It is interesting to note that, once backbone curves
corresponding to several different measurement points are experimentally identified as illustrated
in Figure 8, collecting the points on these backbone curves corresponding to the same resonance
frequency (or equivalently energy level) into a vector gives the NNM of the structure at that energy level.
This is an alternative way of obtaining the NNM of a nonlinear structure directly from experimental
measurements, whereas in the earlier work of the authors [16] it is proposed to use experimental data
to identify nonlinear modal constants and then to calculate NNM by using these modal constants.
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4. Experimental Applications

4.1. T-Beam

The T-beam is a benchmark test setup which consists of a cantilever beam clamped at its free end
by two metal strips, as shown in Figure 9. The structure exhibits geometric nonlinearity due to large
deformations of the metal strips. Dimensions of the rig are given in Reference [20]. The focus of this
study is the first nonlinear mode of the structure, where a strong cubic stiffness behavior is observed.

During experiments, the structure was excited with a B&K shaker at the T-junction. The excitation
force was measured by using a Dytran 1022 V force transducer and vibration measurement was
accomplished via a Dytran 3225M23 miniature accelerometer attached to the top of the T-junction.
The frequency step was taken to be 0.125 Hz. All measurements and closed-loop controls were achieved
using LMS modal test equipment (SCADAS Mobile and LMS Test Lab.).

As a first step in determining unstable branches and backbone curve, eight stepped-sine tests were
conducted at constant displacement amplitude levels ranging from 0.50 mm to 2.25 mm by using the
RCT approach. Even though the proposed approach requires more measured data compared to some
other state-of-the-art techniques, the testing time is within reasonable limits thanks to the response
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control strategy which renders the system more predictable due to quasi-linear behavior. In the case of
this T-beam application, a single stepped-sine test conducted at a constant response level was 3 times
faster than a single constant-force stepped-sine test.

Harmonic force spectra measured at each displacement amplitude level are shown in Figure 10a.
Secondly, the HFS is built up by combining these force spectra and using linear interpolation as shown
in Figure 10b. Nonlinear frequency response curves extracted by cutting the HFS with 0.5 N and 1.0 N
constant force planes are validated by comparing them with constant-force test results, as shown in
Figure 11. Obviously, the frequency response curve obtained from HFS incorporates the unstable
branch at 1.0 N, which cannot be captured by constant-force testing. It is important to note that the
negligible effect of higher harmonics around resonance for the force and displacement amplitude
levels considered in this case study, which is the fundamental assumption of the proposed RCT-HFS
technique, is experimentally confirmed in [21].Vibration 2020, 3 FOR PEER REVIEW  9 
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Nonlinear frequency response curves corresponding to various constant force levels ranging
from 0.1 N to 1.4 N with 0.05 N increments were extracted by cutting the HFS with corresponding
constant force planes, as shown in Figure 12. Finally, the backbone curve was determined by collecting
resonance peaks of these frequency response curves, as shown in the same figure. It is important
to note that, in this context, the resonance peak is defined as the maximum value of the imaginary
part of the frequency response curve. Figure 12 clearly demonstrates that the HFS technique can
successfully extract the turning points of overhanging frequency response curves, which cannot be
achieved accurately by conventional constant-force testing due to the jump phenomenon and which is
still a challenging issue for the state-of-the-art experimental continuation techniques.
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4.2. Control Fin Actuation Mechanism

Control fins of guided missiles, which play a key role in aeroelastic behavior of the missile
system [22,23], may exhibit severe nonlinearity caused by backlash and friction between moving parts
of the actuation mechanism. In some cases, the first torsional mode may exhibit strong nonlinearity
with a jump in the frequency response, which makes it a challenging nonlinear system identification
problem. In this experimental study, the HFS approach is successfully applied to identify the backbone
curve of a real control fin actuation mechanism of a missile. The sketch of the test rig is shown in
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Figure 13. The same experimental setup was also used in Reference [21] to validate the so-called
Describing Surface Method recently proposed by the authors for nonparametric identification of
structural nonlinearities in the frequency domain.
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Figure 13. Sketch of the experimental setup for the real control fin actuation mechanism.

The casing of the mechanism is rigidly fixed to the ground. The response of the system was
measured by using 10 accelerometers as shown in Figure 13. The system was excited, in the z-direction,
with an electrodynamic shaker (B&K) at point 1. The excitation force at the driving point is measured
with a Dytran 1022 V force transducer.

During the test campaign, RCT was repeated at 15 different displacement amplitude levels,
which are labelled as D1, D2, . . . , D15, around the first torsional mode. The harmonic force spectra
measured at only 10 different constant displacement amplitude levels are shown in Figure 14a for
clarity. The HFS constructed by combining harmonic force spectra with linear interpolation is shown
in Figure 14b. The frequency response curves obtained by cutting HFS with constant force planes F1,
F2, and F3 are compared with constant force testing results in Figure 15a–c, respectively. Obviously,
the frequency response curves measured during constant-force testing and those obtained by the
HFS do not match perfectly. In Reference [21], it is experimentally confirmed that the effect of higher
harmonics is not significant. Therefore, it is concluded that the contribution of higher harmonics
cannot be the main reason for the discrepancy between two types of tests. The main reason seems to be
the repeatability issue, which is very typical even in simple benchmark structures [24]. In the control
fin problem, repeating the same test for a second time does not give exactly the same constant-force
frequency response curve. This may be related to the reconfiguration of the gaps and contact surfaces
due to vibration as well as a significant temperature change of lubricants due to heat generation.

Nonlinear frequency response curves corresponding to various constant force levels were extracted
by cutting the HFS with corresponding constant force planes as shown in Figure 16. Finally, the
backbone curve was determined by collecting resonance peaks of these frequency response curves,
as shown in the same figure. This backbone curve indicates the softening–hardening nonlinear behavior
of the control fin actuation mechanism, where the initial softening is probably related to the stick to slip
transition and the hardening results from the backlash. This experimental case study shows that HFS
can successfully determine backbone curves of real engineering structures which exhibit strong and
complex nonlinear behavior, whereas the backbone curve that could be obtained from constant-force
tests would be considerably inaccurate (Figure 15 for F2 indicates huge inaccuracy in resonance peak
prediction due to premature jump). It is important to note that the backbone curve shown in Figure 16
was identified from a single data set, and consequently it does not reflect the variability of the repeatedly
measured frequency response data which is discussed in the previous paragraph.
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Figure 16. Constant-force frequency response curves and the backbone curve of the real control
fin actuation mechanism at the driving point, obtained by cutting the HFS with various constant
force planes.

5. Conclusions

Conventional constant-force sine testing is not suitable for accurately measuring turning points of
frequency response curves of nonlinear structures exhibiting strong conservative nonlinearity due to
the jump phenomenon. Consequently, the accuracy of backbone curves determined by constant-force
testing is always questionable, which led to the development of advanced experimental continuation
algorithms to extract backbone curves in the last decade. Although the current state-of-the-art
provides promising control algorithms, it cannot directly make use of available modal testing
equipment. This paper proposes an alternative approach that relies on standard equipment to
identify backbone curves of strongly nonlinear systems directly from experimental measurements by
using the Response-Controlled stepped-sine Testing (RCT) and the Harmonic Force Surface (HFS)
concept recently proposed by the authors. These methods can be applied to systems where there are
several nonlinearities at unknown locations. However, these techniques are not applicable to systems
where internal resonances occur. So, the method is applicable to systems with strong nonlinearity in the
sense that they exhibit unstable branches in the frequency response curves obtained with constant-force
testing, as illustrated in the numerical and experimental case studies given in this paper, but not for
nonlinearities which give rise to internal resonance.

In the proposed method, harmonic excitation force spectra measured at several different constant
displacement amplitudes are collected into a smooth HFS by using linear interpolation. Next,
constant-force frequency response curves with smooth turning points and unstable branches (if there
is any) are extracted by cutting the HFS with constant force planes. Finally, the backbone curve is
determined by connecting the resonance peaks of these frequency response curves. Points which
correspond to the same resonance frequency on the backbone curves that belong to different locations
build-up the NNM of the structure under test. The proposed method is numerically validated on
a 5 DOF lumped system which exhibits strong conservative nonlinearity due to cubic stiffnesses.
Furthermore, the method is successfully applied on a cantilever beam with a nonlinear connection
and a control fin actuation mechanism of a real missile structure. The cantilever beam is supported
at its free-end by two metal strips constrained at both ends to create strong stiffening nonlinearity.
The control fin actuation mechanism exhibits very complex and strong nonlinearity due to backlash
and friction.
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16. Karaağaçlı, T.; Özgüven, H.N. Experimental modal analysis of nonlinear systems by using response-controlled
stepped-sine testing. Mech. Syst. Signal Process. 2021, 146. [CrossRef]

17. Tanrıkulu, Ö.; Kuran, B.; Özgüven, H.N.; Imregün, M. Forced harmonic response analysis of nonlinear
structures using describing functions. AIAA J. 1993, 31, 1313–1320.

18. Peter, S.; Scheel, M.; Krack, M.; Leine, R.I. Synthesis of nonlinear frequency responses with experimentally
extracted nonlinear modes. Mech. Syst. Signal Process. 2018, 101, 498–515. [CrossRef]

19. Ferreira, J.V.; Ewins, D.J. Algebraic nonlinear impedance equation using multi-harmonic describing function.
In Proceedings of the 15th International Modal Analysis Conference (IMAC), Orlando, FL, USA, 3–6 February 1997.

http://dx.doi.org/10.1016/j.jsv.2014.01.024
http://dx.doi.org/10.1016/j.ymssp.2005.04.008
http://dx.doi.org/10.1016/j.ymssp.2016.07.020
http://dx.doi.org/10.1016/0022-460X(92)90421-S
http://dx.doi.org/10.1006/mssp.2002.1562
http://dx.doi.org/10.1016/0022-460X(79)90823-X
http://dx.doi.org/10.2514/1.5651
http://dx.doi.org/10.1016/j.ymssp.2007.11.016
http://dx.doi.org/10.1016/j.jsv.2015.03.015
http://dx.doi.org/10.1016/j.jsv.2010.08.028
http://dx.doi.org/10.1016/j.ymssp.2017.04.011
http://dx.doi.org/10.1016/j.jsv.2015.12.035
http://dx.doi.org/10.1016/j.ymssp.2020.107023
http://dx.doi.org/10.1016/j.ymssp.2017.09.014


Vibration 2020, 3 280

20. Arslan, Ö.; Aykan, M.; Özgüven, H.N. Parametric identification of structural nonlinearities from measured
frequency response data. Mech. Syst. Signal Process. 2011, 25, 1112–1125. [CrossRef]
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