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Abstract: The basic notion of physical system states is different in classical statistical mechanics and
in quantum mechanics. In classical mechanics, the particle system state is determined by its position
and momentum; in the case of fluctuations, due to the motion in environment, it is determined
by the probability density in the particle phase space. In quantum mechanics, the particle state is
determined either by the wave function (state vector in the Hilbert space) or by the density operator.
Recently, the tomographic-probability representation of quantum states was proposed, where the
quantum system states were identified with fair probability distributions (tomograms). In view of the
probability-distribution formalism of quantum mechanics, we formulate the superposition principle
of wave functions as interference of qubit states expressed in terms of the nonlinear addition rule for
the probabilities identified with the states. Additionally, we formulate the probability given by Born’s
rule in terms of symplectic tomographic probability distribution determining the photon states.

Keywords: entanglement; interference phenomenon; superposition of quantum states; quantum
tomograms

1. Introduction

The superposition principle of quantum states, identified with the wave functions introduced
by Schrödinger [1], is the fundamental property of quantum systems. Its formulation provides the
possibility to associate with two wave functions corresponding to the two pure states of the system,
the third function which is an arbitrary linear combination of the two wave functions. A property
of the quantum world is that this combination also corresponds to a physical state of the system.
An analogous formulation takes place for two state vectors in a Hilbert space and the linear combination
of these vectors [2]. The foundation of quantum mechanics and the role of superposition principle
were also discussed for quantum states [3,4], which are associated with the density matrices of density
operators acting in the Hilbert space, introduced in [5,6]. The foundations of quantum optics were
developed in connection with coherence properties of the electromagnetic-field states in [7,8] as well
as in [9].

The aim of this paper is to demonstrate how such a phenomenon as interference of quantum states,
described by the superposition principle of complex wave functions, is considered in the probability
representation of quantum mechanics [10–21]. In the probability picture, the interference is described
by the nonlinear addition rule of the probabilities describing the superposed states; the rule provides
the probabilities describing the superposition state, and this corresponds to the nonlinear addition rule
of the projectors. We demonstrate this rule on an example of the superposition of qubit states.

The superposition principle describes the interference phenomenon in quantum mechanics. Since
the density operators ρ̂ψ1 =| ψ1〉〈ψ1 | and ρ̂ψ2 =| ψ2〉〈ψ2 | provide the expression for the density
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operator of superposition state | ψ〉〈ψ |, where vector | ψ〉 is a linear combination of vectors | ψ1〉
and | ψ2〉, the superposition principle can be formulated as an addition rule of the probabilities
(quantum-state tomograms). We provide explicitly an example of such addition rule for a particular
system, namely, for the spin-1/2 particle or the two-level atom.

The other goal of this paper is to formulate Born’s rule for probabilities given by an overlap of
two state wave functions in the form of expression providing the probability Pψ(ϕ) = |〈ψ | ϕ〉|2 as a
function of probabilities determining the states given by the density operators ρ̂ψ and ρ̂ϕ. The result
obtained shows that such a complete quantum phenomenon as the interference of wave functions can
be formulated by applying only classical tools like probabilities used in classical statistics.

This paper is organized as follows:
Section 2 is ad memoriam of Roy Glauber and George Sudarshan, where we give a short review

of their fundamental results in quantum physics. In Section 3, we provide a brief review of the
scientific results of our colleague Viktor Dodonov, in connection with his 70th anniversary. In Section 4,
we discuss the qubit-state density matrix in the probability representation using classical-like probability
distributions of dichotomic variables [22]. Section 5 is devoted to the superposition principle in the
probability representation, while the quantum suprematism picture of qubit states is presented in
Section 6 and Born’s rule is formulated as a nonlinear addition rule of probabilities in Section 7. We
discuss quantum tomography of continuous variables and quantum tomography of coherent states in
Sections 8 and 9, respectively. Born’s rule for oscillator states are considered in Section 10. Finally, our
results and prospectives are given in Section 11.

2. Ad Memoriam of Roy Glauber and George Sudarshan

Last year we suffered great losses. Professor Roy J. Glauber and Professor E. C. George Sudarshan,
founders of quantum optics, passed away in 2018. We are extremely sad about this. (Ad Memoriam
of Roy Glauber and George Sudarshan was also presented in the talks of Margarita A. Man’ko at the
26th Central European Workshop on Quantum Optics {CEWQO} (Paderborn University, Germany,
3–7 June 2019) [23] and the 18th International Symposium “Symmetries in Sciences” (Gasthof Hotel
Lamm, Bregenz, Vorarlberg, Austria, 4–9 August 2019) [24] and will be published in the Journal of
Russian Laser Research (2019) and the Journal of Physics: Conference Series (2020), respectively.)

Ennackal Chandy George
Sudarshan (Texas University)

1931–2018

These distinguished scientists made famous discoveries in the foundations of quantum physics
that provide the possibility today to raise quantum optics and quantum mechanics to a level of
understanding such that quantum technologies can now be developed. The operation of such devices
as lasers is based on understanding the coherence properties of radiation and realizing how to achieve
the conditions for obtaining such properties.
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Roy Jay Glauber
(Harvard University)

1925–2018

In 1963, the notion of the coherent state of electromagnetic-field oscillations as well as the
terminology “coherent state” of an arbitrary oscillator were introduced. Roy Glauber and George
Sudarshan simultaneously published the papers [7,8] where the properties of coherent states were
discussed. These publications are cited in the majority of papers where quantum optics and quantum
information technologies are discussed.

The general linear positive map of the density matrix to the other density matrices for
finite-dimensional systems was presented in the form [25], which later on was generalized in [26] for
arbitrary systems. In addition, we should point out that the new evolution equation for open quantum
systems, which generalizes the Schrödinger equation for the wave function and the von Neumann
equation for the density matrix considered in the case of unitary evolution to the case of nonunitary
evolution, was obtained in [27,28] and called the GKSL equation.

The pioneer scientific results obtained by these distinguished researchers play an important role
in developing quantum optics. Studies of the properties of quantum states, especially the coherence
and squeezing phenomena, correlations, unitary evolution, and the evolution of the electromagnetic
fields in the presence of dissipation are based on the original results of Glauber and Sudarshan. All
applications of quantum optics discussed in connection with the development of quantum technologies,
motivated by the attempts to construct quantum computers and quantum information devices, are
based on the theoretical notion and foundations of quantum mechanics associated with the results
obtained by Glauber and Sudarshan.

A specific phase-space quasidistribution representation of quantum states, which employs the
basis of coherent states, was introduced independently by Glauber and Sudarshan—it is called
the Glauber–Sudarshan P-representation. This representation plays an important role in discussing
the properties of quantum systems analogously to the Wigner quasidistribution function [29] and
the Husimi–Kano quasidistribution [30,31]. These famous contributions play an important role in
the foundations of quantum optics and quantum information, and in developing future quantum
technologies.

Substantial developments in laser physics were made at the Lebedev Physical Institute in Moscow
by Nikolay G. Basov, who won the Nobel Prize in 1964 together with Aleksandr M. Prokhorov and
Charles H. Townes due to their revolutionary work in the invention of masers and lasers (as well as
laser physics based on quantum mechanics and quantum optics). The official formulation reads that
the Nobel Prize was given “for fundamental work in the field of quantum electronics, which has led to
the construction of oscillators and amplifiers based on the maser–laser principle”.

Roy J. Glauber received the Nobel Prize in 2005 “for his contribution to the quantum theory of
optical coherence”, along with John L. Hall and Theodor W. Hansch who received the Nobel Prize
“for their contributions to the development of laser-based precision spectroscopy, including the optical
frequency comb technique”. Roy Glauber made an important contribution to the nuclear physics
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providing a rigorous analysis of the scattering theory. Additionally, the important results were obtained
by Glauber in the theory of correlation functions in quantum optics. The correlation functions play a
substantial role on the analysis of classical and quantum phenomena in radiation fields.

Professor Glauber exercised substantial influence on the development of quantum optics
in European Scientific Centers—he would invite young researchers to Harvard University for
collaborations, among which we can list Fritz Haake from Germany, Paolo Tombesi from Italy, Vladimir
Man’ko from the Soviet Union, and Stig Stenholm from Finland.

Since the entire scientific life of M. A. Man’ko was connected with the Lebedev Physical Institute,
she was a witness and participant in the collaboration of Roy Glauber with Lebedev scientists.
The results of these collaborations were published in such series as the Proceedings of the Lebedev
Institute [32] and Journal of Experimental and Theoretical Physics [33]. Among the four Nobel-prize
papers, there was a paper by G. Schrade, V. I. Man’ko, W. P. Schleich, and R. Glauber [34], where
the collaboration of Harvard University, the Lebedev Institute (Moscow), and University of Ulm
was mentioned.

As for George Sudarshan, the great scientist, we are happy to recall that he was in Moscow many
times due to the International Workshops on Squeezed States, Group Theoretical Colloquium, and the
International Conference on Squeezed States and Uncertainty Relations. Particular mention should be
made of the University Federico II of Naples and especially Professor Giuseppe Marmo who enabled
many European scientists to collaborate with Professor Sudarshan in Italy.

There exist other representations, like the probability representation of quantum states [35–39],
where states are identified with fair probability distributions. The state superposition is expressed in
this representation using the addition rule for the probabilities. We are happy to let the readers of the
Journal of Russian Laser Research know that famous results concerning the study of entanglement
phenomenon, quantum tomography, and superposition principle in terms of density operators were
published by Sudarshan with coauthors in [3,4,40,41].

Foundations of Quantum
Optics – Russian edition.

The famous book—Foundations of Quantum Optics [9], written by John Klauder and George
Sudarshan and translated into Russian—is an excellent textbook on the foundation of quantum theory;
it is used in all universities of the world, including universities in Russia, by students and professors
to obtain basic knowledge in developing new quantum technologies in the future.

The results of Glauber and Sudarshan mentioned above provided the theoretical basis in studies
of the evolution of open quantum systems, theory of quantum channels, and applications of these
approaches in future quantum technologies. Therefore, we are extremely pleased to be able to witness
these deep international connections today, and we show below a kaleidoscope of pictures taken
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recently and a long time ago connected with participants of the ICSSUR series (with Professor
Young Suh Kim, the Founder) and the CEWQO series (with Professor Jozsef Janszky, the Founder), as
well as some other meetings.

3. Professor Viktor V. Dodonov: On the Occasion of His 70th Birthday

On 26 November 2018, Viktor V. Dodonov, a recognized Russian physicist and current professor
at the National University of Brazil (Brazilia), turned 70. In addition to his University academic activity,
Professor Dodonov is an Editorial board member of our Journal of Russian Laser Research published
by Springer in New York, and we celebrate this date with all our friends and colleagues, see also [42].

Professor Viktor V. Dodonov—in addition to his scientific activity and obtaining many interesting
results in foundations and applications of quantum theory—participated together with us during all
his scientific life in organizing conferences, workshops, and publications of the Proceedings of the
conferences, and is the Editorial Board member of Journal of Russian Laser Research. Together with
Vladimir Man’ko, he has issued the book Invariants and the Evolution of Nonstationary Quantum Systems,
published by Nauka in Moscow as volume No. 183 of the Lebedev Institute Proceedings and translated
into English by Nova Science Publishers, Commack, New York in 1983 [43], where many of his results on
time-dependent integrals of motion, parametric oscillators, even and odd coherent states, and general
theory of uncertainty relations were presented.

Professor Dodonov is the coauthor of the paper [44] where developing the approach of Glauber
and Sudarshan for describing the superposition of coherent states modeling Schrödinger cat states, and
where the even and odd coherent states were introduced. He is also the coauthor of papers [45,46],
where the idea of experimental checking of the nonstationary Casimir effect (later on called in the literature
the dynamical Casimir effect) using the devices based on Josephson junctions was suggested. The photons
created due to the dynamical Casimir effect were predicted to be in squeezed states. Experimental
results demonstrating the existence of this effect were obtained in [47].

A substantial contribution of foundations of quantum mechanics was done by Professor Dodonov,
who extended the approach for analyzing the uncertainty relations [48,49]. The new kinds of uncertainty
relations for different physical observables including the position and momentum, spin variables, as
well as entropic inequalities play an important role in discussing quantum-information devices and
quantum-channel technique.

In times of the Soviet Union, Viktor Dodonov together with the Lebedev people organized several
international meetings in Moscow, Moscow Region (Zvenigorod), Urmala (Latvia), Baky (Azerbaijan),
Tambov (his native place), and so on. Scientific Programs of the conferences and publication of the
Proceedings were always a prerogative of Dodonov—he did this job perfectly.
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We are absolutely happy to have Professor Dodonov as the Editorial Board Member of Journal
of Russian Laser Research, as permanent referee of Physica Scripta, and hope that he will help us to
produce referee’s estimation of contributions to Quantum Reports, where we announced to publish
the Proceedings of the 16th ICSSUR.

We wish Viktor V. Dodonov long scientific activity and continuation of his work with us!

1 2 3 4

G. Sudarshan (1), Y. S. Kim (2), F. Haake (3), and M. Nieto (4)

among the participants of ICSSUR 1992 in Moscow.

P. Tombesi, M. A. Man’ko, R. J. Glauber, Y. S. Kim, and D. Han

at ICSSUR 1992 in Moscow.

M. A. Man’ko and V. I. Man’ko visited E. Wigner

in his house in Princeton, New Jersey in 1990.

Y. S. Kim, M. A. Man’ko, Mrs. Kim, and V. I. Man’ko

at ICSSUR 1991 in College Park, Maryland.

E.S. Fradkin, V.I. Man’ko, F. Gürsey, M.A. Markov, F. Iachello,

and A. Bohm at Group Theory Colloquium 1990 in Moscow.

V. I. Man’ko, M. A. Man’ko, and Y. S. Kim

at ICSSUR 1992 in Moscow.
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V. A. Isakov, M. A. Man’ko, O. V. Man’ko, and A. S. Chirkin

at ICSSUR 2001 in Boston, Massachusetts.

J. Janszky, J. Klauder, and M. A. Man’ko

at ICSSUR 2003 in Puebla, Mexico.

M. A. Man’ko and O. V. Man’ko at Harmonic Oscillators

Workshop 1992 in College Park, Maryland.

1 2 3 4

V. I. Man’ko (1), M. A. Man’ko (2), R. Kerner (3), and

A. Solomon (4) at Quantum Theory and Symmetries 2011 in Prague.

1 2 3 4 5

O.V. Man’ko (1), S. Biedenharn (3), Mrs. Kim (3), M.A. Man’ko (4),

and E. Moshinsky (5) at ICSSUR 1992 in Moscow.

Y. S. Kim, V. I. Man’ko, and M. A. Man’ko

at Group Theory Colloquium 1992 in Salamanca, Spain.
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E. Giacobino and V. I. Man’ko

at Group Theory Colloquium 2002 in Paris.

1 2 3

Y. S. Kim (1), J. Janszky (2), and V. I. Man’ko (3)

at ICSSUR 2003 in Puebla, Mexico.

ICSSUR 2003 in Puebla, Mexico.
M. A. Man’ko and R. Glauber

at ICSSUR 2003 in Puebla, Mexico.

S. Mizrahi, L. Dodonova, V. V. Dodonov, and M. A. Man’ko

at ICSSUR 2005 in Besancon, France.

ICSSUR 2005 in Besancon, France.
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W. Schleich (1), T. Kramer (2), M. Kleber (3), P. Kramer (4),

M.A. Man’ko (5), V.I. Man’ko (6), V.V. Dodonov (7), and M. Scully (8)

among the participants of Quantum Nonstationary Systems 2007 in Blaubeuren, Germany.

W. Vogel and V. I. Man’ko among the participants

of ICSSUR 2009 in Olomouc, Czech Republic.

A. Messina, M. A. Man’ko, V. V. Dodonov,

V. I. Man’ko, Y. S. Kim, D. M. Gitman,

and B. Militello at ICSSUR 2011 in Foz do Iguacu, Brazil.

V. I. Man’ko and V. V. Dodonov

at ICSSUR 2011 in Foz do Iguacu, Brazil.

ICSSUR 2011 in Foz do Iguacu, Brazil. V. I. Man’ko, M. A. Man’ko, and S. Mizrahi

at ICSSUR 2011 in Foz do Iguacu, Brazil.
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A. Solomon, V. V. Dodonov, Mrs. Kim,

and Y. S. Kim at ICSSUR 2011 in Foz do Iguacu, Brazil.

A. Vourdas and A. Solomon

at ICSSUR 2011 in Foz do Iguacu, Brazil.

A. Messina, L. Dodonova, V. I. Man’ko, and

B. Militello at ICSSUR 2011 in Foz do Iguacu, Brazil.

1 2 3

O. V. Man’ko (1), Y. S. Kim (2), and S. Mizrahi (3)

with the participants of ICSSUR 2011 in Foz do Iguacu, Brazil.

R. J. Glauber and M. A. Man’ko

at ICSSUR 1992 in Moscow.

O. V. Man’ko and V. I. Man’ko

at ICSSUR 2003 in Puebla, Mexico.
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A. Zeilinger, H. Rauch, and S. Stenholm

at CEWQO 2009 in Turku, Finland.

M. A. Man’ko and G. Marmo

at Universidad Carlos III de Madrid in 2008.

T. Seligman, V. I. Man’ko, M. A. Man’ko, and G. Marmo

at Problems of Mathematical and Quantum Physics

(75 + 75 years of Margarita and Vladimir Man’ko),

Cuernavaca, Morelos, Mexico, 2015.

V. V. Dodonov, L. Dodonova, V. I. Man’ko, M. A. Man’ko,

M. K. Atakishiyeva, and N. M. Atakishiyev

at Problems of Mathematical and Quantum Physics

(75 + 75 years of Margarita and Vladimir Man’ko),

Cuernavaca, Morelos, Mexico, 2015.

4. Qubit States in the Probability Representation

The density matrix of the spin-1/2 state is 2 × 2 matrix ρmm′ ; for spin projections on the z axis
m, m′ = ±1/2, it reads

ρ =

(
ρ1/2, 1/2 ρ1/2,−1/2

ρ−1/2, 1/2 ρ−1/2,−1/2

)
, (1)

where 1 ≥ ρ1/2, 1/2, ρ−1/2,−1/2 ≥ 0 are probabilities to have spin projections +1/2 and −1/2 on the
z axis. Off-diagonal matrix elements ρ1/2,−1/2 = ρ∗−1/2, 1/2 provide the condition of hermiticity of
the density matrix ρ† = ρ. The non-negativity of the eigenvalues of this matrix gives det ρ ≥ 0, i.e.,
ρ1/2, 1/2 · ρ−1/2,−1/2 − |ρ1/2,−1/2|2 ≥ 0 .

Recently [50,51], the probability representation of the density matrix was found to be

ρ =

(
p3 p1 − (1/2)− i(p2 − 1/2)

p1 − (1/2) + i(p2 − 1/2) 1− p3

)
. (2)

One can check that the number p3 = ρ11, 1 ≥ p3 ≥ 0, is the probability to have the spin projection
on the z axis equal to +1/2 in the state with the density matrix ρ. This means that, in view of Born’s
rule, the probability p3 reads
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p3 = Tr

[(
ρ1/2, 1/2 ρ1/2,−1/2

ρ−1/2, 1/2 ρ−1/2,−1/2

)
ρ3

]
. (3)

The state with the density matrix ρ3 =

(
1 0
0 0

)
is the pure state

(
1
0

) (
1 0
)
= ρ3 with

the state vector | +1/2〉z =

(
1
0

)
, which is the eigenstate of the Pauli matrix σz =

(
1 0
0 −1

)
determining the spin-projection operator sz = σz/2 on the z-axis.

The number p1 is given by an analogous relation

p1 = Tr

[(
ρ1/2, 1/2 ρ1/2,−1/2

ρ−1/2, 1/2 ρ−1/2,−1/2

)
ρ1

]
, (4)

where the density matrix ρ1 =

(
1/2 1/2
1/2 1/2

)
=

(
1
√

2
1/
√

2

) (
1/
√

2 1/
√

2
)
, with the state vector

| +1/2〉x =

(
1/
√

2
1/
√

2

)
. It is the eigenvector of the Pauli matrix σx =

(
0 1
1 0

)
determining the

spin-projection operator sx = σx/2 on the x-axis.
One can easily check that, due to Born’s rule, the number

p2 = Tr

[(
ρ1/2, 1/2 ρ1/2,−1/2

ρ−1/2, 1/2 ρ−1/2,−1/2

)
ρ2

]
(5)

is the probability to have the spin projection on the y-axis equal to +1/2 in the state with the density

matrix ρ2 =

(
1/2 −i/2
i/2 1/2

)
, since

(
1/2 −i/2
i/2 1/2

)
=

(
1/
√

2
i/
√

2

) (
1/
√

2 − i/
√

2
)
, and the state

vector | +1/2〉y =

(
1/
√

2
i/
√

2

)
is the eigenvector of the Pauli matrix σy =

(
0 −i
i 0

)
determining

the spin-projection operator sy = σy/2 on the y-axis.
The state of spin equal to 1/2 can be determined by three probability distributions (p1, 1− p1),

(p2, 1− p2), and (p3, 1− p3), which can be considered as probabilities for three different nonideal
classical coins in such a game as coin flipping, coin tossing, or heads or tails, which is the practice
of throwing a coin in the air and checking which side is showing when it lands, in order to choose
between two alternatives pk or (1− pk); k = 1, 2, 3.

For quantum states, there exist quantum correlations given by the condition det ρ ≥ 0 or

(p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 ≤ 1/4.

This condition does not take place for classical coins.

5. Pure States of Qubits and Their Superposition

The classical condition for these probabilities, e.g., if p1 = p2 = p3 = 1, reads

(p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 ≤ 3/4. (6)

One can check that the density matrix of the pure state | ψ〉, providing the density matrix

ρψ =| ψ〉〈ψ | (7)
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of the form (2), where

| ψ〉 =

 √
p3

p1 − 1/2
√

p3
+ i

p2 − 1/2
√

p3

 (8)

represents a pure state if and only if

(p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 = 1/4. (9)

The inequalities

1/4 < (p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 ≤ 3/4 (10)

are forbidden for “quantum” coins or for spin-1/2 projection probabilities in the state with any
density matrix ρ.

Thus, we show that the pure state of spin equal to 1/2 is determined by three probabilities
0 ≤ p1, p2, p3 ≤ 1 to have spin projection +1/2 on the three directions x, y, and z, respectively.
This means that all properties of spin-1/2 states, including the superposition principle, can be
formulated in terms of these probabilities.

In view of gauge invariance of wave functions, we assume the first component of the Pauli spinor
| ψ〉 to be a real and non-negative number; the second component can be given as a complex number√

1− p3 eiϕ, where the phase ϕ is the function of the probabilities, i.e,

cos ϕ =
p1 − 1/2√
p3(1− p3)

, sin ϕ =
p2 − 1/2√
p3(1− p3)

. (11)

We point out that new trigonometric formulas (11) are expressed in terms of probabilities [50]
describing dichotomic random variables.

Thus, for two arbitrary pure spin states | ψ1〉 and | ψ2〉, the superposition principle means
the following:

The Pauli spinors | ψ〉 = C1 | ψ1〉 + C2 | ψ2〉, such that 〈ψ | ψ〉 = 1 and 〈ψ1 | ψ2〉 = 0,

the numbers C1 =
√

Π3 and C2 =
Π1 − 1/2√

Π3
+

i(Π2 − 1/2)√
Π3

are expressed in terms of probabilities

0 ≤ Π1, Π2, Π3 ≤ 1 satisfying the equality (Π1 − 1/2)2 + (Π2 − 1/2)2 = Π3(1−Π3); they also have
the form

| ψ〉 =

 √
P3

P1 − 1/2√
P3

+
i(P2 − 1/2)√

P3

 eiϕ. (12)

Due to gauge invariance of quantum-state vectors, these spinors are determined up to the phase

factors by the three probabilities P1, P2, and P3. The density matrix ρψ =
| ψ〉〈ψ |
〈ψ | ψ〉 expressed in terms

of the numbers P1, P2, and P3, provides the addition rule of the probabilities p1, p2, p3 and P1, P2, P3,
determining the nonorthogonal vectors | ψ1〉 and | ψ2〉 yielding the explicit relations

P3 = (1/T )
{

Π3 p3 + (1−Π3)P3 + 2
√

p3P3 (Π1 − 1/2)
}

, (13)

P1 − 1/2 = (1/T )
{

Π3(p1 − 1/2) + (P1 − 1/2)(1−Π3)

+ [(Π1 − 1/2)(p1 − 1/2) + (Π2 − 1/2)(p2 − 1/2)]
√
P3/p3

+ [(Π1 − 1/2)(P1 − 1/2)− (Π2 − 1/2)(P2 − 1/2)]
√

p3/P3

}
, (14)
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where

T = 1 +
2√

p3P3
{(Π1 − 1/2) [(p1 − 1/2)(P1 − 1/2) + (P2 − 1/2)(p2 − 1/2) + p3P3]

+ (Π2 − 1/2) [(p2 − 1/2)(P1 − 1/2)− (p1 − 1/2)(P2 − 1/2)]} . (15)

Equations (13)–(15) provide the addition rule for probabilities determining the pure states | ψ1〉
and | ψ2〉 in the general case where these states are not orthogonal. Here, we use the same parameters
Π1, Π2, and Π3 defining the complex numbers C1 and C2.

At 〈ψ1 | ψ2〉 = 0, the above number T = 1. The relative phase χ in the superposition of states | ψ1〉

and | ψ2〉 is determined by the phase of the complex number C2, cos χ =
Π1 − 1/2√
Π3(1−Π3)

. The obtained

rule of probability addition corresponds to the formula for superposition principle obtained in [3]—for
ρ̂ψ1 ρ̂ψ2 = 0, it reads

ρ̂ψ = λ1ρ̂ψ1 + λ2ρ̂ψ2 +
√

λ1λ2
ρ̂ψ1 ρ̂0ρ̂ψ2 + ρ̂ψ2 ρ̂0ρ̂ψ1√

Tr ρψ1 ρ0ρψ2 ρ0
, (16)

where ρ̂0 is an arbitrary projector, and 0 ≥ λ1, λ2 ≥ 1 are the probabilities such that λ1 + λ2 = 1.
Taking the trace of Equation (16) yields

Tr
{

ρ̂ψ1 ρ̂0ρ̂ψ2 + ρ̂ψ2 ρ̂0ρ̂ψ1

}
= 0, (17)

which does not hold in general, but holds if 〈ψ1 | ψ2〉 = 0.
Thus, we see that pure and mixed states of the spin-1/2 system can be identified with three

probability distributions (p1, 1− p1), (p2, 1− p2), and (p3, 1− p3).
Assume that we have three nonideal classical coins in such a game as coin flipping, coin tossing,

or heads (“UP”) or tails (“DOWN”), which is the practice of throwing a coin in the air and checking
which side is showing when it lands, in order to choose between three alternatives pk or (1− pk);
k = 1, 2, 3. We interpret the numbers p1, p2, and p3 as “coin” probabilities to be in the position “UP”
for each coin, and (1− p1), (1− p2), and (1− p3), to be in the position “DOWN”.

For pure states, there is the rule of nonlinear addition of the distributions that is equivalent
to the superposition of Pauli spinors. This rule can be illustrated by addition of two Triadas of
Malevich’s squares determined by “coin” probabilities p1, p2, p3, P1, P2, P3, and Π1, Π2, Π3, and
providing the probabilities P1, P2, P3 as a result. This rule can be illustrated by the formula for adding
the probabilities  p1

p2

p3

⊕~Π

 P1

P2

P3

 =

 P1

P2

P3

 , (18)

where symbol ⊕~Π of the addition means that we use the probabilities Π1, Π2, and Π3 associated with
complex numbers C1 and C2 determining the superposition | ψ〉 = C1 | ψ1〉+ C2 | ψ2〉 of states | ψ1〉
and | ψ2〉.

6. Illustration of the Qubit State by Triada of Malevich’s Squares

Now, we explain how to illustrate qubit states by Triada of Malevich’s squares [50,52–56].
Given the triangle A1 A2 A3 with sides yk; k = 1, 2, 3,

yk =
(

2 + 2p2
k − 6pk + 2p2

k+1 + 2pk pk+1

)1/2
; (19)

in the above equation, the k + 1 addition is modulo 3. We construct three squares with sides yk
associated with triangle A1 A2 A3 as shown in Figure 1 and called Triada of Malevich’s squares. The sum
of the areas of these three squares is expressed in terms of the three probabilities pk as
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S = y2
1 + y2

2 + y2
3 = 2

[
3 (1− p1 − p2 − p3) + 2p2

1 + 2p2
2 + 2p2

3 + p1 p2 + p2 p3 + p3 p1

]
. (20)

The three squares constructed, using the sides of the triangle, are analogs of the Triada of Malevich’s
squares in art. The properties of area S associated with the triada, given by Equation (20), are different
for the classical system states and for the quantum system states, namely, for three classical coins and
for qubit states.

Figure 1. Triada of Malevich’s squares corresponding to the spin-1/2 state and determined by the triangle
A1 A2 A3.

For classical coins, the numbers p1, p2, and p3 take any values in the domains 0 ≤ pk ≤ 1—this
means that for statistics of classical coins the area of the Triada of Malevich’s squares satisfies the inequality
3/2 ≤ S ≤ 6.

For qubit states, the probabilities 0 ≤ pk ≤ 1 to have spin projections m = +1/2 along three
orthogonal directions satisfy the non-negativity condition of the density matrix—this provides the
maximum value of the sum of areas of three Malevich’s squares S = 3.

The formulas obtained correspond to the addition rule for two Triadas of Malevich’s squares,
illustrated by Figure 2.

+ =

Figure 2. The superposition principle for two pure spin-1/2 states as a result of addition of two Triadas
of Malevich’s squares, which yields the Triada of Malevich’s squares associated with the addition rule.

7. Born’s Rule for Qubits as a Quadratic Form of Probabilities

Born’s rule provides the probability w12 to obtain the properties of the state with the density
matrix ρ2

ρ2 =

(
p(2)3 p(2)1 − (1/2)− i(p(2)2 − 1/2)

p(2)1 − (1/2) + i(p(2)2 − 1/2) 1− p(2)3

)
, (21)

if one measures these properties in the state with the density matrix ρ1

ρ1 =

(
p(1)3 p(1)1 − (1/2)− i(p(1)2 − 1/2)

p(1)1 − (1/2) + i(p(1)2 − 1/2) 1− p(1)3

)
. (22)
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According to Born’s rule w12 = Tr (ρ2ρ1), we have the equality w12 = w21.
Thus, the probabilities p(k)1 , p(k)2 , p(k)3 ; k = 1, 2, 3, due to Born’s rule, provide the probability w12

which, as the function of probabilities p(1)1 , p(1)2 , p(1)3 , p(2)1 , p(2)2 , and p(2)3 , reads

w12 = p(1)3 p(2)3 +
(

1− p(1)3

) (
1− p(2)3

)
+ 2

[(
p(1)1 − 1/2

) (
p(2)1 − 1/2

)
+
(

p(1)2 − 1/2
) (

p(2)2 − 1/2
)]

,

i.e., we expressed the probability w12 given by Born’s rule in terms of probabilities determining two
states of qubit. It is worth noting that the above formula provides the probability given by a quadratic
form of other probabilities; such quadratic forms were not considered in the literature related to
probability theory. Such expression of Born’s probability w12 is a generic property of qubit and qudit
states, which can be given by the quadratic form, we will prove this in a future publication.

8. Probability in Quantum Mechanics and Quantum Optics for States with Continuous Variables

Now, we formulate, for continuous variables, the superposition principle of quantum-state wave
functions in the probability representation of quantum mechanics, where the states are identified with
probability distributions.

In standard formulation of quantum mechanics, the pure states are associated with complex wave
functions ψ(x) = |ψ(x)| exp[iϕ(x)]. The mixed states are associated with density matrices ρ(x, x′), which
are Hermitian matrices ρ = ρ† with unit trace Tr ρ = 1 and non-negative eigenvalues.

Recently [35,37,38,57], the probability representation of quantum states for both continuous
variables like quantum-oscillator states and for discrete variables, like spin states or N-level atom
states, was introduced. The review and development of the tomographic-probability distribution of
quantum states are given in [39,51,58,59]. On the other hand, the classical-particle states are determined
either by their position and momentum (if there is no fluctuations) or by the probability-distribution
functions f (q, p) ≥ 0, such that

∫
f (p, q) dp dq = 1 in the case of presence of fluctuations like, e.g.,

thermal fluctuations.
In quantum mechanics, there exist different quasiprobability distribution representations of

quantum states like the Wigner function W(q, p) [29], which is similar to the classical probability
distribution f (q, p) in the phase space, but it can take negative values and, due to this fact, it is not the
probability distribution.

Nevertheless, there exists the bijective map of the density matrices (density operators ρ̂) onto
fair probability distributions both for continuous variables [37] given by the Radon transform of the
Wigner function and determined by the trace of the product of operator ρ̂ and Dirac delta-function of a
specific operator, it is

w(X, µ, ν) = Tr
[
ρ̂ δ
(
X1̂− µq̂− ν p̂

)]
. (23)

Operators q̂ and p̂ are the position and momentum operators; 1̂ is the identity operator. Here,

the Dirac delta-function of operator
(
X1̂− µq̂− ν p̂

)
is given by δ

(
X1̂− µq̂− ν p̂

)
=

1
2π

∫
eik(X1̂−µq̂−ν p̂)dk ,

the Fourier transform with −∞ ≤ X ≤ ∞ being photon quadrature (oscillator’s position) and µ and ν,
real parameters determining the reference frame in the phase space where the oscillator’s position X
is considered.

For µ = cos θ and ν = sin θ, the probability distribution of variable X is called the optical tomogram
of quantum radiation state. The inverse transform reads

ρ̂ =
1

2π

∫
w(X, µ, ν) exp

[
i
(
X1̂− µq̂− ν p̂

)]
dX dµ dν. (24)

Thus, the state (photon state, oscillator’s state) can be described either by the density operator ρ̂

or by the tomographic-probability distribution w(X, µ, ν), since they contain the same information on
the state.



Quantum Rep. 2019, 1 146

The superposition principle of the wave functions means that, for two given wave functions
ψ1(x) and ψ2(x) describing two different pure states | ψ1〉 and | ψ2〉, the wave function reads ψ(x) =
C1ψ1(x) + C2ψ2(x) and the state vector is | ψ〉 = C1 | ψ1〉 + C2 | ψ2〉, where C1 and C2 are complex
coefficients, also describes the physical system state.

9. Coherent State Superposition

We consider nonlinear addition of tomographic-probability distributions corresponding to the
superposition of coherent states | α〉, i.e., normalized eigenstates of the oscillator annihilation operator â,(

â | α〉 = α | α〉
)

introduced and studied in quantum optics by Roy Glauber and George Sudarshan [7,8].
The wave function of the coherent state in the position representation reads

ψα(x) = π−1/4 exp
(
− x2

2
− |α|

2

2
− α2

2
+
√

2αx
)

; we assume h̄ = m = ω = 1. (25)

The tomogram of the state with the wave function ψ(y) is given by its fractional Fourier
transform [60]

w(X, µ, ν) =
1

2π|ν|

∣∣∣∣∫ ψ(y) exp
[

iµ
2ν

y2 − iXy
ν

]
dy
∣∣∣∣2 . (26)

This formula provides tomogram of the coherent state in the form of Gaussian distribution

wα(X, µ, ν) =
1√

2πσ2
exp

(
− (X− X̄)2

2σ2

)
, (27)

where σ2 = (µ2 + ν2)/2 and X̄ = µ
√

2 Re α + ν
√

2 Im α.
The superposition of states | α〉± = N± (| α〉± | −α〉) introduced and called even and odd coherent

states in [44] provides the addition rule for tomographic-probability distributions wα(X, µ, ν) and
w−α(X, µ, ν), it is given by the formula

wα± (X, µ, ν) =
N2
±

2π|ν|

∣∣∣∣∫ [ψα(y)± ψ−α(y)
]

exp
[

iµ
2ν
− iXy

ν

]
dy
∣∣∣∣2 .

Thus, the first two terms of the tomographic-probability distributions are contributions of states
| α〉 and | −α〉, while the other two terms describe the contribution of the interference term into the
tomographic-probability distribution.

In terms of state vectors | α〉 and | −α〉, we have the addition rule of the form

wα±(X, µ, ν) = N2
± Tr [δ (X− µq̂− ν p̂) (| α〉〈α | + | −α〉〈−α | ± | α〉〈−α | ± | −α〉〈α |)] . (28)

Thus, we can formulate the addition rule of the tomographic-probability distributions as follows:

wα±(X, µ, ν) = N2
± [wα(X, µ, ν) + w−α(X, µ, ν) + F(X, µ, ν)] , (29)

where
F(X, µ, ν) = Tr [δ (X− µq̂− ν p̂) (± | α〉〈−α | ± | −α〉〈α |)] . (30)

10. Born’s Rule for Continuous Variables

In the general case, Born’s rule provides the probability W12 to have the properties of a system
state with density operator ρ̂1 if these properties are measured in the system with the density operator
ρ̂2, given as W12 = Tr (ρ̂1ρ̂2). If one has the operator Û(x) and the operator D̂(x), such that one maps
an operator Â onto the function fA(x) = Tr ÂÛ(x), and the function fA(x) is mapped onto the operator
Â =

∫
fA(x)D̂A(x) dx, the generic formula for Born’s rule reads
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W12 =
∫

KB(x1x2) fA1 (x1) fA2 (x2) dx1 dx2, (31)

where KB(x1x2) = Tr
(

D̂(x1)D̂(x2)
)

is the kernel providing the probability W12 in the formalism of the
used operators Û(x) and D̂(x).

As we discussed for symplectic-tomography scheme, x = (X, µ, ν), we have that

Û(X, µ, ν) = δ(X1̂− µq̂− ν p̂), D̂(X, µ, ν) =
1

2π
exp i(X1̂− µq̂− ν p̂).

Thus, the kernel KB(x1, x2) = KB(X1, µ1, ν1, X2, µ2, ν2) is given by the formula

KB(X1, µ1, ν1, X2, µ2, ν2) =
ei(X1+X2)

4π2 Tr
(

ei(µ1 q̂+ν1 p̂) · ei(µ2 q̂+ν2 p̂)
)

. (32)

As operator Â, we used the density operators ρ̂1 and ρ̂2. Applying this kernel, we obtain Born’s
rule for symplectic tomograms.

In fact, one has the relation for probabilities |〈ψ1 | ψ2〉|2 = W12 (Born’s rule) in terms of tomograms
w1(X, µν) and w2(X, µν), where

wk(X, µ, ν) = Tr ρ̂kδ (X1− µq̂− ν p̂) , k = 1, 2, (33)

i.e.,
W12 =

1
2π

∫
w1(X1, µ, ν)w2(X2,−µ,−ν)ei(X1+X2) dX1 dX2 dµ dν. (34)

Thus, the tomographic-probability distributions determining the oscillator states | ψ1〉 and | ψ2〉
provide the probability W12 to have the properties of the pure state | ψ2〉 if they are measured in the
pure state | ψ1〉.

We expressed the probability given by Born’s rule in terms of tomographic-probability distributions
determining the photon states. It is worth noting that Born’s rule (34) is given by functional quadratic
form of tomographic probabilities determined by the parameters µ and ν, characterizing the reference
frames analogous to the qubit case.

11. Conclusions

On an example of spin - 1/2, we showed that for quantum systems considered in the probability
representation of quantum mechanics, the superposition principle can be expressed as a specific
nonlinear addition rule of the probabilities determining pure quantum states. From the viewpoint
of simplex theory, the new nonlinear expressions obtained in the form of polynomials of several
variables (probabilities), which again yield the probabilities, can be obtained using the discussed
qubit-system properties.

We found an explicit expression for the probability determined by Born’s rule in terms of the
probabilities determining the quantum states.

Additionally, we considered the superposition principle of quantum system states with continuous
variables, like oscillator’s ones, and discussed the addition rule of the tomographic-probability distributions
on the example of even and odd coherent states, which demonstrate that generic properties of addition
of probabilities for arbitrary state vectors for both discrete (spin) variables and continuous variables
(oscillator) can be formulated as the nonlinear addition rule of probability distributions describing
the states.
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