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Abstract: We consider a quantum charged particle moving in the xy plane under the action of
a time-dependent magnetic field described by means of the linear vector potential of the form
A = B(t) [−y(1 + β), x(1− β)] /2. Such potentials with β 6= 0 exist inside infinite solenoids with
non-circular cross sections. The systems with different values of β are not equivalent for nonstationary
magnetic fields or time-dependent parameters β(t), due to different structures of induced electric fields.
Using the approximation of the stepwise variations of parameters, we obtain explicit formulas describing
the change of the mean energy and magnetic moment. The generation of squeezing with respect to the
relative and guiding center coordinates is also studied. The change of magnetic moment can be twice
bigger for the Landau gauge than for the circular gauge, and this change can happen without any change
of the angular momentum. A strong amplification of the magnetic moment can happen even for rapidly
decreasing magnetic fields.

Keywords: circular gauge; Landau gauge; arbitrary linear gauge; stepwise variation; center-of-orbit
coordinates; relative coordinates; elliptic and hyperbolic solenoids; angular momentum; magnetic
moment; squeezing

1. Introduction

The motion of a quantum non-relativistic charged particle in a uniform stationary magnetic field,
B = (0, 0, B) = rot A, has been studied since the dawn of quantum mechanics, beginning with the papers
by Kennard, Darwin, and Fock [1–3]. These authors used the “circular” gauge of the vector potential
Ac = [B × r]/2 = B (−y, x, 0) /2. Another gauge, AL = B (−y, 0, 0), was considered by Landau [4].
Although the form of solutions to the Schrödinger equation is rather different for these two gauges,
the physical results, such as the magnetization of the free electron gas, were identical.

The Schrödinger equation in the case of time-dependent uniform magnetic field was solved by Malkin,
Man’ko, and Trifonov [5] for the “circular” gauge of the vector potential and by Dodonov, Malkin, and
Man’ko for the Landau gauge [6]. However, in these two cases, the physical results turned out quite
different, e.g., comparing the transition probabilities between the energy levels. This can be explained by
different geometries of the induced electric field E(r, t) = −∂A(r, t)/∂(ct) (we use the Gaussian system of
units). Other manifestations of the nonequivalence between the Landau and circular gauges in the case of
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time-dependent magnetic fields were observed in studies [7,8] devoted to the problem of generation of
squeezed states of charged particles in magnetic fields.

In this paper, we suppose that the homogeneous magnetic field B, directed along z-axis, is described
by means of a general linear vector potential,

A(t) = B(t) [−y(1 + β), x(1− β), 0] /2, (1)

with arbitrary values of real parameter β. The circular gauge corresponds to β = 0, whereas the Landau
gauge corresponds to β = ±1. Our main goal is to see how the mean values of energy, angular momentum,
and other quantities can change in the case of time-dependent magnetic field with arbitrary values of
parameter β. In particular, interesting questions are whether it is possible to “cool” the particle by changing
the magnetic field or the shape of solenoid, or how strong is the change of the magnetic moment due to
the change of the magnetic field? Unfortunately, the general treatment of the time-dependent problem
with arbitrary functions B(t) and/or β(t) is very difficult. For this reason, we confine ourselves in this
paper with the simplified model of instantaneous changes of parameters. Although abrupt changes of
parameters are idealizations of real processes, they are frequently used for the analysis of various physical
processes [9–17].

Our plan is as follows. In Section 2, we show how the general linear vector potential can be created
inside solenoids with non-circular cross sections. In Section 3, we present the basic equations and explicit
expressions for the transformation matrix, relating the relative and guiding center coordinates before
and after the jump. Section 4 is devoted to concrete formulas describing the changes of the mean energy,
magnetic moment, and mean positions of the guiding center, as well as the squeezing with respect to
the relative and guiding center coordinates. Section 5 contains a discussion of the results, including a
justification of the sudden jump model.

2. Vector Potential Inside an Infinite Solenoid with an Arbitrary Cross Section

Our starting point is the well-known formula for the vector potential created by an arbitrary
distribution of the electrical current density j (in the Gauss system of units) [18]:

A(r) =
1
c

∫ j(r′)
|r− r′|dV. (2)

Consider the cylindrical solenoid of length 2Z and an arbitrary cross section. Two examples are
shown in Figure 1.

Suppose that the current density differs from zero in a thin slab of thickness τ, being directed
perpendicular to the cylinder axis z and having the constant absolute value j0. The element of the
integration volume dV can be chosen as dV = τdldz, where dl is the infinitesimal length element along
the cylinder boundary in the horizontal plane xy. We are interested in the vector potential in the plane
z = 0 (assuming that −Z < z < Z for the points of the solenoid surface), keeping in mind to take the limit
Z → ∞. We can write jdV = Idldz, where I = j0τ is the surface current density and dl is the infinitesimal
vector along the contour of the cross-section. Then, (2) takes the form

A(x, y) =
I
c

∮
dl
∫ Z

−Z

dz

(ρ2 + z2)
1/2 , ρ2 = (x− ξ)2 + (y− η)2, (3)
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where (ξ, η) is the point on the cylinder surface in the plane z = 0, so that dl = (dξ, dη). The integral over
dz can be easily calculated with the aid of the substitution z = ρ sinh(χ):

∫ Z

−Z

dz

(ρ2 + z2)
1/2 = 2χZ = 2 ln

[(
Z +

√
Z2 + ρ2

)
/ρ

]
.

For Z � ρ, the right-hand side can be written as 2 ln(2Z) + ρ2/(2Z2)− 2 ln ρ. As
∮

dl ln(2Z) = 0,
we obtain the following limit of (3) for Z → ∞:

A(x, y) = − I
c

∮
dl ln

(
ρ2
)

. (4)

This general formula holds for any infinite cylindrical solenoid, with an arbitrary cross-section
(provided the surface current density does not depend on z). (One can be unhappy to see the dimensional
quantity ρ2 in the argument of the logarithmic function. However, one can make this argument
dimensionless, adding to the right-hand side of (4) the expression

∮
dl ln(S) = 0, where S can be an

arbitrary constant with the dimension of square of length. In any case, no error with the dimensionality
will appear in the final results).

-

-

(ξ,η)

(x,y)

-

-

(x,y)
(ξ,η)

Figure 1. (Left) The cross section of the elliptic solenoid with the axes ratio a/b = 2, yielding the vector
potential (1) with β = 1/3. (Right) The cross section of the hyperbolic solenoid with β ≈ −3/2.

For the elliptical solenoid with the axes 2a and 2b, one can use the parametrization ξ = a cos ϕ and
η = b sin ϕ. Then, the two components of the vector potential can be written as(

Ax

Ay

)
= − I

c

∫ 2π

0
dϕ

(
−a sin ϕ

b cos ϕ

)
ln
[
(x− a cos ϕ)2 + (y− b sin ϕ)2

]
. (5)

One can see that the change of the integration variable ϕ = ψ− π/2, together with the substitutions
x → y, y→ −x and a↔ b, transforms the integral for Ax into the integral for Ay. Therefore, it is sufficient
to calculate Ax. However, the calculation of integral (5) for arbitrary four parameters, a, b, x, y, is rather
complicated. Therefore, we assume that |x| � a and |y| � b. This means that we consider the motion in
some relatively small region inside the solenoid with big enough perpendicular sizes. One can see that
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integral (5) equals zero for x = y = 0, as the integrand is an odd function in this case. Taking into account
only linear terms with respect to x and y, we arrive at the formula

Ax = − 2abyI
c

∫ 2π

0

dϕ sin2 ϕ

a2 cos2 ϕ + b2 sin2 ϕ
. (6)

The integral proportional to x equals zero, as the related integrand is an odd function of ϕ. The
integral in (6) can be written as

∫ 2π

0

dψ(1− cos ψ)

a2 + b2 + (a2 − b2) cos ψ
= −

∮
|z|=1

dz
iz

(z− 1)2

(a2 − b2) (z2 + 1) + 2 (a2 + b2) z
,

where ψ = 2ϕ and z = exp(iψ). The integrand of the contour integral has two poles inside the circle
|z| = 1: z1 = 0 and z2 = (b− a)/(b + a). Using the residue method, we arrive at the formula

∫ 2π

0

dϕ sin2 ϕ

a2 cos2 ϕ + b2 sin2 ϕ
=

2π

b(a + b)
. (7)

Consequently, the vector potential components near the center of the elliptic solenoid have the form

Ax = − Bay
a + b

, Ay =
Bbx

a + b
, B = 4πI/c, (8)

where B is the strength of the uniform magnetic field inside the solenoid. Comparing (1) with (8), we obtain
the relation between parameter β and the semi-axes of the elliptic solenoid:

β = (a− b)/(a + b). (9)

Actually, the linear vector potential of the form (1) exists for an arbitrary shape of the solenoid cross
section, possessing a symmetry with respect to reflections from the x and y axes, within a small (compared
with the transverse solenoid sizes) region near the center. For example, let us consider the rectangular
cross section −a ≤ ξ ≤ a and −b ≤ η ≤ b. Then, Formula (4) yields

Ay =
I
c

∫ b

−b
dη ln

[
(η − y)2 + (x + a)2

(η − y)2 + (x− a)2

]
. (10)

The corresponding indefinite integrals can be calculated exactly:∫
dz ln

(
z2 + g2

)
= z ln

(
z2 + g2

)
− 2z + 2g tan−1(z/g).

However, the resulting exact formula for Ay is very cumbersome. On the other hand, expanding the
integrand in (10) with respect to x and y, we obtain in the linear approximation:

Ay =
I
c

∫ b

−b

4axdη

a2 + η2 = (2/π)Bx tan−1(b/a). (11)

In this case,
β = 1− (4/π) tan−1(b/a). (12)

To show how the vector potential (1) with |β| > 1 can be created, let us consider the concave
solenoid with two hyperbolic boundaries, (ξ/a)2 − (η/b)2 = 1, parametrized as ξ = ±a cosh(χ) and
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η = b sinh(χ). As the current must flow along the closed circuit, we suppose that −χm < χ < χm,
so that the circuit is closed by two straight lines η = ±b sinh(χm). In this geometry, the component Ay is
determined only by the current in the hyperbolic boundaries. It can be written as (if the current flows in
the counterclockwise direction)

Ay =
I
c

∫ χm

−χm
b cosh χdχ ln

[
(b sinh χ− y)2 + (x + a cosh χ)2

(b sinh χ− y)2 + (x− a cosh χ)2

]
. (13)

In the linear approximation, with respect to variables x and y, we arrive at the integral

Ay =
4abxI

c

∫ χm

−χm

dχ cosh2 χ

a2 cosh2 χ + b2 sinh2 χ
. (14)

This integral can be calculated exactly [19]. The result is

Ay =
2Babx

π (a2 + b2)

[
χm +

b
a

tan−1
(

b
a

tanh χm

)]
. (15)

Consequently,

β = 1− 4ab
π (a2 + b2)

[
χm +

b
a

tan−1
(

b
a

tanh χm

)]
. (16)

If χm � 1, then β is close to the unity. But β can be less than −1 for sufficiently large values of
parameter χm. In particular, if χm � 1 and a = b, then β ≈ 1/2− 2χm/π.

The linear approximation for the vector potential can be justified if the transverse solenoid size is
much larger than the Larmor radius of the charged particle RL = |v/ω|. For the quantum particle with
the minimum energy h̄ω0/2, one has RL0 =

√
h̄/(mω0) =

√
ch̄/(eB0). To have an idea on the orders

of magnitude of parameters, we consider an electron moving in a magnetic field of order of B0 = 103 G.
Then, ω0 ∼ 2× 1010 s−1 and RL0 ∼ 10−5 cm. Therefore, the linear approximation is quite good for
solenoids whose transverse dimensions are much bigger than 1 mm and magnetic fields are stronger
than 1 G.

3. Main Equations

We consider a quantum nonrelativistic spinless particle of mass m and charge e, whose motion in the
xy plane is governed by the Hamiltonian

Ĥ = π̂2/(2m), π = p− eA/c. (17)

If the magnetic field B = B0 does not depend on time, then Hamiltonian (17) admits two linear
integrals of motion,

X̂ = x̂ + π̂y/(mω0), Ŷ = ŷ− π̂x/(mω0), ω0 = eB0/mc, (18)

which are merely the coordinates of the center of a circle, which the particle rotates around with the
cyclotron frequency ω0. The importance of these integrals of motion was emphasized by many authors
during decades [4,17,20–25].

The second pair of physical observables consists of two relative coordinates:

ξ̂ = x̂− X̂ = −π̂y/(mω0), η̂ = ŷ− Ŷ = π̂x/(mω0). (19)
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Then Hamiltonian (17) with B = B0 = const can be written as

Ĥ = mω2
0

(
ξ̂2 + η̂2

)
/2. (20)

Due to the commutation relations,[
ξ̂, η̂
]
=
[
Ŷ, X̂

]
= ih̄/(mω0),

[
ξ̂, X̂

]
=
[
ξ̂, Ŷ

]
=
[
η̂, X̂

]
=
[
η̂, Ŷ

]
= 0, (21)

the eigenvalues of operator (20) assume discrete values h̄ω0(n + 1/2). Moreover, these eigenvalues have
infinite degeneracy [4], because they do not depend on the mean values of operators X̂ and Ŷ (or their
functions). In addition to the energy, there exists another quadratic integral of motion, which can be
considered as the generalized angular momentum (the formulas below are identical for the classical
variables and quantum operators; therefore, we do not put here the symbol ˆ over operators):

L = xπy − yπx + mω0

(
x2 + y2

)
/2 = xpy − ypx + mω0β

(
x2 − y2

)
/2. (22)

It coincides formally with the canonical angular momentum Lcan = xpy − ypx in the case of “circular”
gauge of the vector potential. It follows from (22) that the “kinetic” angular momentum, defined as

Lkin = xπy − yπx, (23)

is not a conserved quantity, and it can vary with time in the generic case [20,26,27]. On the other hand,
the “intrinsic” angular momentum

J = ξπy − ηπx = −mω0

(
ξ2 + η2

)
= −2H/ω0 (24)

is obviously conserved for the constant magnetic field. Formulas (22) and (23) can be written in terms of
“geometric” variables (different from the phase plane coordinates) as

L = mω0

(
X2 + Y2 − ξ2 − η2

)
/2, Lkin = −mω0

(
ξ2 + η2 + Xξ + Yη

)
. (25)

It is convenient to use the vector q = (ξ, η, X, Y), whose components can be either classical variables,
quantum operators, or mean values of these operators. The initial values, before the variation of parameters,
are contained in vector q0. Vector q f contains the information about the geometrical coordinates after the
variations of parameters. Due to the linearity of the equations of motion, these two vectors are connected
by means of some transformation matrix Λ:

q f = Λq0, Λ =

∥∥∥∥∥ λ1 λ2

λ3 λ4

∥∥∥∥∥ . (26)

Here, λj are four 2× 2 blocks of the 4× 4 matrix Λ.
The mean energy in the stationary magnetic field equals E = mω2

0〈ξ̂2 + η̂2〉/2. It can be written as
the sum of two independent parts:

E = Ec + Eq, Ec = mω2
0

(
〈ξ〉2 + 〈η〉2

)
/2, Eq = mω2

0
(
σξξ + σηη

)
/2, (27)

where σαβ = 〈α̂β̂ + β̂α̂〉/2− 〈α̂〉〈β̂〉 with α, β = ξ, η, X, Y. The quantity Ec coincides with the energy
of the classical particle moving along the mean trajectory (〈ξ〉 , 〈η〉), whereas the quantum correction
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Eq in (27) arises due to quantum fluctuations, described by means of the variances σξξ and σηη of the
relative coordinates.

3.1. Change of the Classical Part of Energy

The change of the classical part of the mean energy can be written as some quadratic form with
respect to the initial quantum-mechanical mean values of the relative and guiding center coordinates:
∆Ec =

(
mω2

0/2
)

∑ Wαβ〈α〉0〈β〉0, where coefficients Wαβ are certain bilinear combinations of the elements
of matrix Λ. Therefore, ∆Ec depends on four initial parameters. In particular, these parameters can be
almost always chosen in such a way that the final classical part of energy will be equal to zero. For example,
it is sufficient to solve the equations 〈ξ〉 f = 〈η〉 f = 0 with respect to the initial values 〈X〉0 and 〈Y〉0 with
fixed values of 〈ξ〉0 and 〈η〉0. The answer in terms of elements of matrix Λ is as follows,

〈X〉0 = [(Λ14Λ21 −Λ24Λ11) 〈ξ〉0 + (Λ14Λ22 −Λ24Λ12) 〈η〉0] / [Λ13Λ24 −Λ23Λ14] , (28)

〈Y〉0 = [(Λ23Λ11 −Λ13Λ21) 〈ξ〉0 + (Λ23Λ12 −Λ13Λ22) 〈η〉0] / [Λ13Λ24 −Λ23Λ14] . (29)

However, this is an extremely peculiar situation.
Therefore, let us consider a rarefied gas of charges in the uniform magnetic field. Neglecting the

interaction between charges (i.e., assuming the magnetic field to be strong enough), we can write the total
energy as the sum of independent single-particle energies. However, the positions of guiding centers of the
gas particles can be quite arbitrary, as well as the concrete values of the relative coordinates of each particle
(obeying the restriction 〈ξ〉20 + 〈η〉

2
0 = ρ2

0 = 2E (0)c /(mω2
0). In such a case, the most interesting quantity

is the average value of ∆Ec, where the averaging is performed over the whole ensemble of charges with
arbitrary initial quantum-mechanical mean values. Designating such an additional averaging by means of
the over-line (to distinguish from the primary quantum-mechanical averaging), it seems natural to assume
the absence of initial correlations and the isotropic distribution of non-zero mean values:

〈α〉0〈β〉0 = 0 if α 6= β; 〈ξ〉20 = 〈η〉20 = E (0)c /(mω2
0) = ρ2

0/2, 〈X〉20 = 〈Y〉20 = R2
0/2. (30)

Here,R2
0 is the average square of the distance between the classical guiding center position and the center

of solenoid, whereas ρ2
0 is the average square of the classical radius of orbit. Under these assumptions, the

average change of the classical part of energy can be written as

∆Ec = mω2
0

(
Fρρ2

0 + FRR2
0

)
/2, (31)

Fρ = Θ2
(

Λ2
11 + Λ2

21 + Λ2
12 + Λ2

22

)
/2− 1 = Θ2Tr

(
λ1λ̃1

)
/2− 1, (32)

FR = Θ2
(

Λ2
13 + Λ2

23 + Λ2
14 + Λ2

24

)
/2 = Θ2Tr

(
λ2λ̃2

)
/2, (33)

where Θ = ω f /ω0 and λ̃j means the transposed matrix. Coefficient FR is always non-negative.
However, coefficient Fρ can be negative, thus indicating a possibility to cool the gas by means of fast
variations of the magnetic field.

3.2. Change of the Quantum Part of Energy

It is convenient to combine all covariances in the single 4× 4 symmetrical covariance matrix σ = ‖σαβ‖.
Then , the linear transformation (26) implies the following relation between the final (σ f ) and initial (σ0)
covariance matrices [28],

σ f = Λσ0Λ̃, (34)



Quantum Rep. 2019, 1 200

where Λ̃ is the transposed matrix. The change of the quantum part of the mean energy,

∆Eq =
(

mω2
f /2
) (

σξξ + σηη

)
f −

(
mω2

0/2
) (

σξξ + σηη

)
0 , (35)

depends on the evolution matrix Λ and the initial covariance matrix σ0. In general, σ0 can have
10 independent elements (obeying some restrictions due to the uncertainty relations). Therefore, it is
difficult to analyze the problem for the most general initial states. We consider the simplest situation,
when the initial state possesses some rotational symmetry inside the pairs (ξ, η) and (X, Y). Therefore,
we assume that non-zero initial elements of matrix σ are σξξ = σηη = G and σXX = σYY = χ, i.e.,

σ(0) =

∥∥∥∥∥ GI2 0
0 χI2

∥∥∥∥∥ , (36)

where I2 is the 2× 2 unity matrix. Then,

∆Eq =
(

mω2
f /2
)

Tr
(
Gλ1λ̃1 + χλ2λ̃2

)
−mω2

0G. (37)

In view of the commutation relations (21), two positive parameters in matrix (36) must obey the
restrictions G ≥ h̄/|2mω0| and χ ≥ h̄/|2mω0|. In particular, the variance matrix (36) can describe the
thermal quantum state with different temperatures of the (ξη) and (XY) subsystems. However, this is
by no means the only possible state, because the covariance matrix describes uniquely only the Gaussian
states (unless G = χ = h̄/|2mω0|).

3.3. Change of the Average Guiding Center Position

Calculations similar to that of the preceding subsections give the following formulas for the “classical”
and “quantum” parts of the change of the average square of the radius of the guiding center position.

∆R2
c ≡ 〈X〉2f + 〈Y〉

2
f −R

2
0 =

1
2

Tr
(

λ3λ̃3ρ2
0 + λ4λ̃4R2

0

)
−R2

0, (38)

∆R2
q ≡ (σXX + σYY) f − (σXX + σYY)0 = Tr

(
Gλ3λ̃3 + χλ4λ̃4

)
− 2χ. (39)

One can see that, under conditions (30) and (36), the formulas for the “classical” and “quantum” parts
of the quantities ∆E and ∆R2 are, in fact, identical, if one makes the formal substitutions χ→ R2

0/2 and
G → ρ2

0/2 (remembering that parameters χ and G are limited from below, whereas R2
0 and ρ2

0 can be
arbitrary non-negative numbers). Therefore, in the subsequent sections, we give explicit formulas for the
“quantum” parts of the quantities under study only.

3.4. Change of the Angular Momentum

Due to the choice of the initial variance matrix in the form (36), the initial mean value of the quantum
part of the angular momentum operator (25) equals 〈L̂〉q = mω0(χ− G). Equations (25), (34) and (36)
yield the following formula for the change of this quantity,

∆Lq = mω0
{

2(G− χ) + ΘTr
[
G
(
λ3λ̃3 − λ1λ̃1

)
+ χ

(
λ4λ̃4 − λ2λ̃2

)]}
, Θ = ω f /ω0. (40)



Quantum Rep. 2019, 1 201

3.5. Evolution of the Magnetic Moment

The operator of magnetic moment M̂ can be introduced in several ways. One can start from the
thermodynamic relation 〈M〉 = −∂〈E〉/∂B and define M̂ = −∂Ĥ/∂B. This definition was used, e.g.,
in [20] for the circular gauge (β = 0). For the general linear gauge, such a definition results in the formula

M̂1 =
e

2mc
[
x̂π̂y − ŷπ̂x − β

(
x̂π̂y + ŷπ̂x

)]
≡ e

2mc
(

L̂kin − βΛ̂
)

. (41)

However, one can use as the starting point the standard definition of the classical magnetic moment

M =
1
2c

∫
dV [r× j] (42)

Then, using the expression for the quantum probability current density

j =
ieh̄
2m

(ψ∇ψ∗ − ψ∗∇ψ)− e2

mc
Aψ∗ψ, (43)

one can write the right-hand side of (42) as the mean value of operator

M̂2 =
e

2mc
L̂kin. (44)

Therefore, the relation M = eL/(2mc) does not hold for the time independent angular
momentum (22).

Formulas (41) and (44) coincide only for β = 0 (note that namely this special gauge was used in
the overwhelming number of papers devoted to the motion of quantum particles in the magnetic field).
However, writing the operator Λ̂ in (41) as Λ̂ = mω0

(
η̂2 − ξ̂2 + Ŷη̂ − X̂ξ̂

)
, one can see that the average

value of Λ̂ over the period 2π/ω0 equals zero (as X̂ and Ŷ do not depend on time, whereas ξ̂(t) and
η̂(t) oscillate with frequency ω0 in the Heisenberg picture; in addition, the difference η̂2 − ξ̂2 oscillates
with frequency 2ω0). Using the symbol 〈〈· · · 〉〉 for the double averaging (over the quantum state and
over the period of rotation in the magnetic field), we have 〈〈M̂1〉〉 = 〈〈M̂2〉〉. Moreover, in view of (24)
and (25), we have 〈〈L̂kin〉〉 = 〈〈 Ĵ〉〉. Therefore, 〈〈M̂〉〉 = −eE/(mcω0), for any definition of the magnetic
moment operator. (Actually, some authors used this formula as the definition of the magnetic moment
of a charged particle moving in the magnetic field [29].) This relation explains why different choices of
the vector potential gauge do not influence the final results for the magnetization of the free electron gas
in the time-independent magnetic field. Designating ∆M = 〈〈M̂〉〉 f − 〈〈M̂〉〉0, we obtain the following
expression for the quantum part of the change of the magnetic moment in the nonstationary case,

∆Mq = (eω0/c)
[
G− (Θ/2)Tr

(
Gλ1λ̃1 + χλ2λ̃2

)]
. (45)

3.6. The Transformation Matrix for the Sharp Jump of Parameters

For the constant magnetic field with the cyclotron frequency ω0, the canonical coordinates (x, y, px, py)

are related to the “geometrical” coordinates (ξ, η, X, Y) as follows,

x̂ = ξ̂ + X̂, ŷ = η̂ + Ŷ, (46)

p̂x = mω0
[
η̂(1− β)− Ŷ(1 + β)

]
/2, p̂y = mω0

[
X̂(1− β)− ξ̂(1 + β)

]
/2. (47)

The canonical coordinates (or mean values of the corresponding operators in the quantum case) do
not change during the instantaneous finite jump of the parameters (as the wave function cannot change
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instantaneously in the nonrelativistic quantum mechanics; the same result can be obtained by integrating
the equations of motion for the canonical variables during the infinitesimally short time of the jump).
However, the relations between the canonical and geometrical variables are different before and after the
jump. Therefore, one can easily find the elements of matrix Λ, solving the equations

ξ̂0 + X̂0 = ξ̂ f + X̂ f , ω0
[
X̂0(1− β0)− ξ̂0(1 + β0)

]
= ω f

[
X̂ f (1− β f )− ξ̂ f (1 + β f )

]
and similar equations for the pair (η, Y). If ω f = Θω0 and ∆β = β f − β0, then

Λ =
1

2Θ

∥∥∥∥∥∥∥∥∥
L− 0 K− 0
0 L+ 0 K+

K+ 0 L+ 0
0 K− 0 L−

∥∥∥∥∥∥∥∥∥ , (48)

where
K± = κ

(
1± β f

)
± ∆β, L± = 2 + K±, κ ≡ Θ− 1. (49)

Matrix (48) equals the unity matrix if κ = ∆β = 0. For this reason, many formulas in the subsequent
section have the most compact form if they are written in terms of parameter κ, instead of Θ.

4. Results

4.1. Energy Evolution

Equations (37), (48) and (49) yield the following expression for the quantum part of the energy change,

∆Eq =
(

mω2
0/4

){[(
κβ f + ∆β

)2
+ κ2

]
(G + χ) + 4κG

}
. (50)

The energy always increases after the jump of the gauge parameter β with the fixed value of the
magnetic field (κ = 0): ∆Eq = mω2

0(∆β)2(G + χ)/4. On the other hand, ∆Eq can be negative for the fixed
β and negative values of parameter κ = Θ− 1 inside the interval

− 4G
(1 + β2) (G + χ)

< κ < 0. (51)

The minimum is achieved in the middle of this interval:

∆E (min)
q = −

E (0)q G
(1 + β2) (G + χ)

, E (min)
q =

E (0)q
[
Gβ2 + χ

(
1 + β2)]

(1 + β2) (G + χ)
. (52)

In the special case of G = χ, we have

∆Eq =
1
2
E (0)q

[
2κ + κ2

(
1 + β2

)]
, κmin = − 1

1 + β2 , E (min)
q = E (0)q

1 + 2β2

2 + 2β2 . (53)

In this case, the quantum part of the energy can be reduced to the half of the initial value for β = 0
(the circular gauge) and Θ = 0 (the total switch off the magnetic field), but it can be reduced by only 25%
for β = 1 (the Landau gauge) and Θ = 1/2. For κ = −1 (or Θ = 0), we have

∆Eq =
1
4

mω2
0

[(
1 + β2

)
(G + χ)− 4G

]
, ∆Eq

∣∣
G=χ

=
1
2
E (0)q

(
β2 − 1

)
. (54)
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Another interesting special case is κ = −2 (when Θ = −1: the instantaneous inversion of the magnetic
field). Then,

∆Eq = mω2
0

[(
1 + β2

)
χ−

(
1− β2

)
G
]

, ∆Eq
∣∣
G=χ

= 2E (0)q β2. (55)

For |β| = 1 (the Landau gauge), the energy always increases, and the increase depends on the initial
fluctuations of the guiding center position only. On the other hand, if β = 0, then ∆Eq = mω2

0(χ− G),
so that the final quantum part of energy is determined by the guiding center fluctuations: E f = mω2

0χ.

4.2. Shift of the Guiding Center and Variation of the Angular Momentum

The “classical” and “quantum” parts of the guiding center mean position shift are described by
Equations (38) and (39). The explicit formula for the quantum part is as follows,

∆R2
q =

1
2Θ2

{[(
κβ f + ∆β

)2
+ κ2

]
(G + χ)− 4κΘχ

}
(56)

For small changes of the magnetic field, when Θ ≈ 1 and |κ| � 1, we have ∆R2
q ≈ −2κχ. According

to (56), ∆R2
q → ∞ for Θ→ 0. However, this is a consequence of Equation (18), because in the absence of

the field the particle moves along a straight line, whose curvature radius is obviously infinite.
If κ = 0 but ∆β 6= 0, then ∆R2

q is always positive. A more interesting case is ∆β = 0. For example,
if G = χ, then

∆R2
q =

Gκ2

Θ2

(
β2 − Θ + 1

Θ− 1

)
. (57)

In this case, if Θ < −1, then ∆R2
q < 0 for β = 0, whereas ∆R2

q > 0 for β2 = 1, with the critical value
β2

c = (|Θ| − 1) / (|Θ|+ 1), when ∆R2
q changes its sign.

The angular momentum does not change its value for any values of parameters β and Θ, as
Equation (40) leads to the formula ∆Lq ≡ 0. Actually, this is the direct consequence of Equations (22), (36)
and the instant jump approximation, because the canonical coordinates do not change during the instant
jump, whereas 〈x̂2 − ŷ2〉 = 0, due to the diagonal form of the initial covariance matrix. Situations with
∆Lq 6= 0 can happen for asymmetric initial conditions.

4.3. Change of the Mean Magnetic Moment

Using Equations (45) and (48), we obtain the following formula for the relative change of quantum part
of the mean magnetic moment ∆µ ≡ ∆Mq/M0 (whereM0 = −(e/c)ω0G is the initial magnetic moment):

∆µ = (4Θ)−1
[(

κβ f + ∆β
)2

+ κ2
]
(1 + g) , g = χ/G. (58)

We see that the sign of change is determined completely by the sign of ratio Θ = ω f /ω0. If κ = 0, then
any change of the solenoid shape increases the magnetization: ∆µ = (1 + g) (∆β)2/4.

If ∆β = 0, then ∆µ = κ2 (1 + β2) (1 + g) /(4Θ), so that the Landau gauge yields a twice bigger
relative change of the magnetic moment than the circular gauge. Bigger changes can be achieved in
hyperbolic solenoids with |β| > 1. Note that function κ2/(4Θ) = (Θ− 2 + 1/Θ)/4 is symmetrical with
respect to the transformation Θ → 1/Θ. Consequently, the increase and decrease of the magnetic field
result in the same relative change of the magnetic moment (by the absolute value). If Θ = −1 (the instant
inversion of the magnetic field), then ∆µ = −

(
1 + β2) (1 + g), so that 〈〈M̂〉〉 f = −〈〈M̂〉〉0 for g = 1 and

β = 0, but 〈〈M̂〉〉 f = −2〈〈M̂〉〉0 for the Landau gauge.
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4.4. Generation of Squeezing

The squeezed states of a free charged particle moving under the homogeneous magnetic field (with
the circular gauge of the vector potential) were considered by several authors [16,30,31], but they calculated
the squeezing coefficients with respect to the canonical pairs of variables, such as x, px and y, py, whose
physical meaning is not quite clear. Therefore, it was suggested in [32–34] to analyze the variances in the
pairs (X, Y) and (ξ, η). The states possessing variances of any element of the pairs (X, Y) or (ξ, η) less than
h̄/2mω0 were named “geometrical squeezed states” (GSS) in [7], to emphasize that all the observables
(X, Y, ξ, η) have the meaning of coordinates in the usual (“geometrical”) space, and not in the phase space.
Only the circular gauge was considered in [32–34]. Two gauges—the circular and Landau ones—were
compared in [7].

An interesting problem raised in [7] is how one could create GSS, starting from coherent states (having
all variances equal to h̄/2mω0). For the single-mode systems, such a problem can be solved effectively by
using quadratic Hamiltonians with suitably chosen time-dependent coefficients [28]. However, can this can
be done using time-dependent magnetic fields in two dimensions? It appeared that the answer depends
on the choice of time-dependent gauge. Namely, it was shown in [7] that no squeezing can be obtained for
any geometrical observable (X, Y, ξ, η) for an arbitrary time-dependent magnetic field described by means
of the circular gauge of the vector potential. On the other hand, some degree of squeezing can be obtained
in the case of Landau gauge. These observations explain our interest to the general vector potential (1).

Let us suppose, for the sake of simplicity, that the initial state was coherent with respect to all
geometrical observables, i.e., G = χ = h̄/|2mω0|. Then, we have the following form of matrix σf = GΛΛ̃

immediately after the jump, σ f =
(

h̄/|2mω f |
)

σ∗, where

σ∗ =
1

4|Θ|

∥∥∥∥∥∥∥∥∥
L2
− + K2

− 0 L+K− + L−K+ 0
0 L2

+ + K2
+ 0 L+K− + L−K+

L+K− + L−K+ 0 L2
+ + K2

+ 0
0 L+K− + L−K+ 0 L2

− + K2
−

∥∥∥∥∥∥∥∥∥ . (59)

The relative squeezing with respect to the new ground state value h̄/|2mω f | immediately after the
jump is characterized by two coefficients:

σ− = σ∗ξξ = σ∗YY =
L2
− + K2

−
4|Θ| =

1 +
[
(1− ∆β) + κ

(
1− β f

)]2

2|Θ| , (60)

σ+ = σηη = σXX =
L2
+ + K2

+

4|Θ| =
1 +

[
(1 + ∆β) + κ

(
1 + β f

)]2

2|Θ| . (61)

If κ = 0, then squeezing is possible provided |1± ∆β| < 1. The maximum squeezing of 50% can be
achieved for ∆β = ±1. If ∆β = 0, then

σ± =
1 + (Θ± κβ)2

2|Θ| , (62)

so that no squeezing is possible for the circular gauge (β = 0), in accordance with the authors of [7]. On the
other hand, σ− = 1/|Θ| for β = 1. In any case, squeezing is possible only for 2|Θ| > 1. The minimal value
σmin = (2|Θ|)−1 can be achieved for β = ±Θ/(Θ− 1). If |κ| � 1, then σ± ≈ 1± βκ, so that squeezing is
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possible for any β 6= 0. Note the symmetry relations σ+(Θ, β) = σ−(Θ,−β) and σ±(Θ, β) = σ±(−Θ,−β).
Figure 2 shows typical plots of σ±(Θ, β) for some fixed positive values of β.
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Figure 2. The functions σ+(Θ) (left) and σ−(Θ) (right) for some fixed positive values of the gauge
parameter β (shown near the respective curves).

5. Discussion

The results of the preceding section show that, indeed, the choice of the gauge parameter β (i.e., the
choice of the solenoid shape) can influence significantly on changes of many physical quantities after
the stepwise variation of the magnetic field. Moreover, it appears that the directions of these changes
can be quite different for different quantities. For example, the change of the mean value of the angular
momentum does not depend on β (for the chosen symmetric initial conditions). The energy change can
be stronger for the circular gauge (β = 0) than for the Landau gauge with |β| = 1. On the contrary,
no squeezing can be created from the initial coherent state for β = 0, whereas it can be quite significant
for |β| = 1. However, the most interesting results, probably, are related to the change of the average
magnetic moment.

This change is twice bigger for the Landau gauge than for the circular one. The magnetic moment
increases with the increase of the magnetic field, and this behavior seems natural. An unexpected result is
the increase of the magnetic moment when the magnetic field decreases. An especially strange consequence
is the infinite magnetic moment after the instant switching off the magnetic field. Of course, the sharp
change of the magnetic field in time is an idealization, which can be justified if the magnetic field varies
rapidly during a small time interval δt � 2π/ω0. This means that the particle practically does not
change its position, and its wave function does not change its value, during the interval δt. On the
other hand, the time-dependent magnetic field in the empty space inside the solenoid cannot be strictly
homogeneous, due to the time dependence of the induced electric field. However, this inhomogeneity can
be neglected if the Larmor radius is much smaller than the scale of spatial variations of the time-dependent
electromagnetic field, which is of the order of the characteristic wave length λ ∼ cδt. Thus, we arrive at
the restrictions

√
h̄/(mc2ω0)� δt� 2π/ω0, which are self-consistent if the cyclotron frequency satisfies

the condition ω0 � (2π)2mc2/h̄, which is equivalent to B0 � (2π)2m2c3/(eh̄). For the electron, one
obtains B0 � 1015 G. Consequently, the model considered in the paper seems to be well justified for
typical magnetic fields used in laboratories, which do not exceed 106 G (see also [16]). For ω0 ∼ 1010 s−1

(B0 ∼ 500 G), the restrictions on the parameter δt takes the form 3× 10−16 s � δt � 6× 10−10 s. These
restrictions are much softer for atomic ions, whose masses are five orders of magnitudes higher than the
electron mass.

Strictly speaking, we cannot exclude a possibility that the model of homogeneous and rapidly
changing in time magnetic field can be invalid for Θ → 0, when the quantum Larmor radius
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RL =
√

h̄c/|eB f | becomes too large. This special case needs a separate detailed investigation. In this
connection, it would be interesting to find solutions to the problem (approximate analytical or numerical),
considering more realistic time dependencies of the magnetic field B(t) and the gauge parameter β(t).
Note, however, that RL ∼ 2µm for B f ∼ 1 G, which can be considered as practically zero field if B0 ∼ 1 T.

Among other results, it is worth mentioning a possibility of cooling the system of charged particles
by means of fast variations of the magnetic field. Actually, this is a subtle problem, because one has to take
into account many other effects, such as the interaction between the charged particles in the gas, to make
realistic estimations. On the other hand, the problem of interaction does not exist, e.g., for single ions
in traps. In any case, it would be interesting to verify our results experimentally, using solenoids with
different shapes of the cross sections.
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