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Abstract: Sulfonic acids in ionic liquids (ILs) are used as catalysts, electrolytes, and solutions for
metal extraction. The sulfonic acid ionization states and the solution acid/base properties are
critical for these applications. Methane sulfonic acid (MSA) and camphor sulfonic acid (CSA) are
dissolved in several IL solutions with and without bis(trifluoromethanesulfonyl)imine (HTFSI).
The solutions demonstrated higher conductivities and lower viscosities. Through calorimetry and
temperature-dependent conductivity analysis, we found that adding MSA to the IL solution may
change both the ion migration activation energy and the number of “free” charge carriers. However,
no significant acid ionization or proton transfer was observed in the IL solutions. Raman and IR
spectroscopy with computational simulations suggest that the HTFSI forms dimers in the solutions
with an N-H-N “bridged” structure, while MSA does not perturb this hydrogen ion solvation structure
in the IL solutions. CSA has a lower solubility in the ILs and reduced the IL solution conductivity.
However, in IL solutions containing 0.4 M or higher concentration of HTFSI, CSA addition increased
the conductivity at low CSA concentrations and reduced it at high concentrations, which may indicate
a synergistic effect.

Keywords: ionic liquid; sulfonic acid; solution properties

1. Introduction

Investigations and reports about ionic liquids (ILs) have been burgeoning in the past two decades
due to their unique chemical and physical properties as organic liquid substances. These properties
include a combination of negligible vapor pressure, non-flammability, good stability, good solvents
for many organic and inorganic compounds, good ionic conductivity, and large electrochemical
windows [1]. Because of these advantages, ILs have been broadly used in organic reactions as solvents
and catalysts and in electrochemical devices as electrolytes. Many of the typical ILs are “neutral” in
terms of their acid/base properties. Acidic ionic liquids (AILs) contain active protons from Brønsted
acids present as cations, anions, or solutes in IL solutions. Their acidity provides active hydrogen
ions (H+) for numerous chemical and electrochemical applications [2]. In this context, the activity,
ionization, solvation, and transportation of the acidic protons (H+) in the ILs are critical fundamental
knowledge to understand the structure-property relations in the ILs and to optimize their functions in
different areas of applications.

In our previous reports, we investigated the properties of a series of acid solutions in ILs such
as 3-butyl-1-methylimidazolium tetrafluoroborate (BMIBF4) [3], 3-butyl-1-methylimidazolium
bis(trifluoromethanesulfonyl)imide (BMITFSI) [4,5], N-butyl-N-methylpyrrolidinium
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bis(trifluoromethanesulfonyl)imide (PyrrTFSI) [6], and 3-ethyl-1-methylimidazolium acetate
(EMIOAc) [7]. It has been concluded that the AIL properties strongly depend on the structures of ILs or
acids. When a very strong acid, such as HBF4 (in its aqueous solution), is dissolved in an IL, the H+

ions will protonate water molecules in the solution and the non-volatile H3O+ ion will remain in the IL
solution when water molecules are evaporated. On the other hand, when a weak acid (e.g., acetic acid)
is dissolved in an IL, the acid does not dissociate significantly, and remains a neutral molecule in the
solution. Bis(trifluoromethanesulfonyl)imine (HTFSI) is a typical strong acid in aqueous solutions,
but a moderate one in non-aqueous solutions. In HTFSI/IL solutions, HTFSI molecules and TFSI ions
can form dimers with an N-H-N “bridged” structure. In this paper, we investigate the properties of
organic sulfonic acid (R-SO3H)/IL solution properties with a combination of various methods, including
conductivity, viscosity, calorimetry, spectroscopy, and computational studies.

Many organic sulfonic acids, R-SO3H, are relatively strong. For example, the ionization constant
(pKa) of methane sulfonic acid (MSA) is −1.9, while toluenesulfonic acid has a pKa of −2.8 [8,9].
Sulfonic acids have applications not only as bulk materials or in their aqueous solutions, but also in IL
solutions. As sources of active protons, sulfonic acids are less expensive and more stable compared
with HTFSI. Moreover, the properties of the organic sulfonic acids can be adjusted by changing the
structure of the R-group.

Sulfonic acids in ILs have various applications. First, sulfonic acid-based AILs have been used as
solvents and catalysts for Fischer esterification reactions and for alcohol, amine, and starch acetylation
reactions [10–26]. When AILs are used in these reactions, they are “bi-functional”, as solvents and
homogeneous catalysts. In many of the catalytic reactions, the active proton dissociated from the
–SO3H reacts and produces intermediators. For example, in the Fisher esterification reactions, the H+

catalyst adds to a carboxylic acid to make a reactive electrophilic intermediate, which eventually
results in an H+ addition elimination. The sulfonic acid catalyst demonstrates better catalytic effects
compared with sulfuric acid or other heterogeneous catalysts. Second, sulfonic acid AILs have also
been used as electrolytes of electrochemical devices, such as fuel cells and flow batteries, although
the long-term stability of the IL solutions in the battery/fuel cell conditions has not been fully
understood [27–33]. The majority of the fuel cells use the proton exchange membrane (PEM), which can
separate the cathode and anode compartments and allow the transportation of H+ ions thought the
PEM. Nafion, a perfluorosulfonic acid membrane, is widely used in PEM fuel cells [34–38]. In recent
years, IL-containing polymer membranes have been used as the PEM of fuel cells in order to improve
the high temperature performance of the PEMs and fuel cells. ILs’ low volatilities and high thermal
stabilities allow IL-based PEM works at temperatures as high as ~300 ◦C without observable IL
evaporation and loss of electrochemical functionality. For this purpose, many cross-linked polymers
with sulfonic acid functional groups have been synthesized and swollen with ILs. Extra sulfonic acids
may also be added to further enhance the proton conductivity. Third, sulfonic acid-functionalized
ILs are good solvents that can solubilize metal oxides and extract metals from raw materials [39,40].
Sulfonic acid AILs are milder compared with typical strong acids (HNO3, H2SO4) for metal extraction.
HNO3 and H2SO4 are very corrosive, and their reactions with metal oxides produce noxious and
corrosive gas products. The AILs exhibit large contact area with no vapor or gas produced.

These applications, in general, are based on the strong acidic property of sulfonic acids and
non-volatile liquid properties of the ILs. Therefore, the sulfonic acid dissociation, microenvironment of
active protons, and the channels and mechanisms of proton transportation are very essential knowledge
to know in order to understand their performance in applications and to design and develop optimistic
systems for the applications. In dilute aqueous solutions, many sulfonic acids are very strong; most of
the acids are ionized. However, the microenvironment, structure and interactions around the active
proton in bulk ILs have not been made very clear to date. Molecular dynamics simulation indicates
that the dissociation might be affected by the anions of the AILs, which can interact with the active
H+ [41]. Any dissociation of the acids in the AILs should be accompanied by the solvation of the
H+ ion by a Brønsted base, an anion in the IL systems. The H+ activity will be determined by the
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relative strength of the acids and bases in the solution, based on the Brønsted-Lowry acid-base theory.
In this paper, the anion in the solutions is TFSI anion which is the conjugate base of a strong acid
HTFSI. The solution properties were characterized with and without the presence of extra HTFSI in the
sulfonic acid/IL solutions. Conductivity and viscosity of the AIL solutions with different concentrations
were measured at room temperature and elevated temperatures. The microenvironments/solvation
clusters of H+ in the solutions are also characterized by Raman spectroscopy. The interactions at the
molecular level are further supported by computational simulation with a “mini-clusters” method.
The collective properties of the interactions are reflected by the solution enthalpy (∆Hsol) that is
measured by solution calorimetry.

2. Materials and Methods

ILs PyrrTFSI, BMITFSI, and BMIBF4 were purchased from Ionic Liquid Technologies Inc (Heilbronn,
Germany). The ILs were treated in a vacuum oven at 60 ◦C overnight prior to use. All the acids,
including the MSA, camphor sulfonic acid (CSA), and HTFSI, were purchased from Sigma-Aldrich,
Inc (St. Louis, MO, USA). MSA and CSA were treated in vacuum oven at room temperature overnight
prior to use; HTFSI was used as received.

An AC Mode TraceableTM conductivity meter (Traceable® Products Inc., Webster, TX, USA) at
a constant frequency of 3 KHz was used to measure the conductivities of pure ILs and solutions.
The meter has a pair of parallel Pt plate electrodes with a cell constant of unity. The cell was calibrated
by standard solutions with conductivity of 1 and 10 mS/cm, respectively, prior to measurement. A hot
water bath was used to control the temperature of the IL solutions. Temperature values were read by
the built-in thermal couple of the conductivity probe.

A Brookfield rotational viscometer was used to measure the viscosities of pure ILs and AIL
solutions at shear rates of 15–30 s−1. The viscometer was equipped with a CPA-40Z cone-shaped
spindle and a built-in temperature probe. The temperature of the samples (room temperature −70 ◦C)
was controlled by circling water from a thermostat to the sample cup. The instrument was calibrated
by mineral oil viscosity standards of 20 cP and 200 cP, respectively, prior to use.

A standard “coffee-cup” calorimeter was used to measure the solution enthalpy (∆Hsol) when ILs
and sulfonic acids were mixed in plastic containers that were isolated from the surroundings with
aluminum foil and Styrofoam. The temperature of the system was monitored by a thermocouple
connected to a computer. The specific heat capacity of the solutions was measured with a pre-heated
copper slug. By measuring the dissolution of CaCl2 in H2O, we estimated that there was a ~28% total
heat loss when the maximum temperature was reached within several minutes [42]. The measured
∆Hsol values were compensated for this 28% heat loss.

A Horiba Jobin-Yvon LabRam Evolution Raman Microscope (Horiba, Edison, NJ, USA) was
used to measure the Raman spectra. The excitation wavelengths were either 532 nm or 633 nm.
Fluorescence backgrounds were subtracted using the Labspec 6 software. Density Functional Theory
(DFT) calculations of IL solvation structures were performed with the GAMESS code incorporated
with the ChemBio3D program (Perkin Elmer, Waltham, MA, USA) that can compute Raman intensities.
IL structures used for inputs to DFT calculations were generated using molecular mechanics and
molecular dynamics simulations in the ChemBio3D software package. Initial structures, chosen with
random starting geometries, were subjected to a ~10 ps simulation with the MM2 force field followed
by a geometry minimization using the same force field. These geometries of IL molecular cation-anion
complexes with and without acid solutes were computed at the B3LYP/6-31+G* level. Raman spectra
(frequencies and intensities) were computed at the same level of theory and simulated by scaling the
harmonic frequencies by 0.97 and convolving the frequencies and intensities with 10 cm−1 FWHM
Lorentzian line shapes.
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3. Results

3.1. MSA in PyrrTFSI

MSA is a low-volatility, stable, and relatively strong acid (pKa =−1.9) that has been demonstrated to
be a good catalyst for many organic reactions and a good electrolyte for electrochemical reactions [43–45].
MSA has good solubility in water and many organic solvents and has been found to be soluble or even
miscible in several ILs. When MSA is added into PyrrTFSI, the conductivity of the IL solution increases
from about 3 mS/cm, pure PyrrTFSI, to about 6 mS/cm, 6 M MSA, Figure 1A. Similar results have
also been observed when MSA is dissolved in ILs BMITFSI or BMIBF4, data not shown in this paper.
In our previous reports, we also found the addition of weak organic acids to ILs increased the overall
conductivity of the solutions, as well as the addition of polar organic solvents [7,46,47]. On the other
hand, the addition of strong acid such as HTFSI will increase the conductivity at lower concentrations
and then reduce the conductivity at higher concentrations [3,4]. The strong acid HBF4 will simply
increase the conductivity of the IL solutions, because of the un-removable water carried into the
solution [3]. MSA is relatively strong, compared with carboxylic acids, while it is significantly weaker
than HTFSI and HBF4. These results also indicate that the MSA may not ionize as much as the HTFSI in
IL solutions, due to its relatively smaller Ka value. Further evidence of the low ionization of MSA is that
when CH3SO3

− ion is added, the solution conductivity decreases, Figure 2. This result may indicate
that CH3SO3

− ion is not produced when MSA is dissolved in the ILs. The conductivity of the solutions
increased when the solutions were heated to higher temperatures. The conductivity of the solutions
was around ~10 mS/cm at a temperature of 78 ◦C. The conductivity changes as a function of the
temperature (Arrhenius Plots) of MSA solution in PyrrTFSI with various concentrations was shown in
Figure 1B. As the Arrhenius plots are not linear, the results were fitted with the Vogel-Fulcher-Tamman
(VFT) equation of ionic conductivity (σ):

σ = σ0e
−B

T − T0 (1)

where σ0, B, and T0 are all constants dependent on the contents of the solution. Based on the free-volume
theory [48,49], σ0 may be associated with the infinite conductivity (proportional to the concentration
of charge carriers) of a system at an extreme temperature, B has a temperature unit and relates to
the activation energy of charge carrier’s motion, and T0 is the virtual glassy transition temperature
of the liquid. The values, as shown in Figure 1C, were estimated by fitting the VFT equation with
the data in Figure 1B. It can be seen that the addition of MSA in the PyrrTFSI increased the σ0 value
(number of charge carriers) and the B (apparent activation energy) slightly, while the T0 value has
no significant change. The increase of “activation energy” of the charge carriers’ transportation may
indicate the interactions between the ions and molecules in the solution are stronger compared with
those in pure PyrrTFSI. This is also in agreement with the calorimetry results, which found dissolving
MSA in PyrrTFSI to be an exothermic process. The solution enthalpy is ~ −0.4 ± 0.1 kJ/mol. This also
indicates that the addition of the polar molecule MSA will cause the overall interactions between the
charged ions and molecules to be associated more tightly through dipole interactions. The increase of
the charge carriers’ concentration may be attributed to the “dilution” effects of the molecular solute
MSA that has break the ion clusters in the pure IL and make more mobile charge carriers in the solution.
Therefore, the increase of the solution conductivity may be due to the larger number of charge carriers.
In our previous report, a weaker acid, acetic acid, was dissolved in EMIOAc [7]. It was found that
the increase of conductivity was due to the same effect: the increase in the number of charge carriers.
On the other hand, when a non-electrolyte polar molecular solvent propylene carbonate was dissolved
in ILs, the increase of solution conductivity was attributed to a different mechanism: the reduction
of the activation energy (B factor in the VFT equation) [47]. The viscosity of the solutions showed
opposite trends of change from solution conductivity with changing concentration and temperature,
as summarized by the Walden’s Rule. Increase of concentration or temperature reduces the viscosity
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of the solutions, as shown in Figures 1D and 3A. The Walden’s constant (conductivity X viscosity) is
relatively stable over the concentration range measured, as shown in Figure 3B.ChemEngineering 2019, 3, x FOR PEER REVIEW 5 of 14 

 

 

 

Figure 1. (A) Conductivity vs. MSA concentration in PyrrTFSI; (B) Arrhenius plots of MSA/PyrrTFSI 
solutions over temperature range of 23–80 °C; (C) Fitted values of σ0, B, and T0 in the VFT equation; 
(D) Viscosity vs. temperature of the solutions with various MSA concentrations. 

  
Figure 2. Conductivity of BMICH3SO3 solutions in IL BMIBF4. 

0 1 2 3 4 5 6

3.0

3.5

4.0

4.5

5.0

5.5

6.0 A

room temperature

C
on

du
ct

iv
ity

 (m
S/

cm
)

MSA Concentration (M)
0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1 B

Lo
g 

σ 
(m

S/
cm

)
1/T (K)

 0.5 M MSA in PyrrTFSI
 1    M MSA in PyrrTFSI
 2    M MSA in PyrrTFSI
 3    M MSA in PyrrTFSI
 4    M MSA in PyrrTFSI
 6    M MSA in PyrrTFSI

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700
C

Fi
tte

d 
Va

lu
es

 Parameter σ0
 Parameter B
 Parameter T

0

MSA Concentration (M)
20 30 40 50 60 70 80

0

10

20

30

40

50

60
D

Temperature (oC)

Vi
sc

os
ity

 (c
P)

 0.5M MSA in PyrrTFSI
 1   M MSA in PyrrTFSI
 2   M MSA in PyrrTFSI
 3   M MSA in PyrrTFSI
 4   M MSA in PyrrTFSI
 6   M MSA in PyrrTFSI

0 1 2 3 4 5
2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

C
on

du
ct

iv
ity

 (m
S/

cm
)

BMICH3SO3 Concentration (M)

Figure 1. (A) Conductivity vs. MSA concentration in PyrrTFSI; (B) Arrhenius plots of MSA/PyrrTFSI
solutions over temperature range of 23–80 ◦C; (C) Fitted values of σ0, B, and T0 in the VFT equation;
(D) Viscosity vs. temperature of the solutions with various MSA concentrations.
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Figure 3. (A) Viscosity; and (B) Walden’s Product of MSA/PyrrTFSI solutions at room temperature,
~23 ◦C.

The Raman spectra of MSA in PyrrTFSI are shown in Figure 4. The spectrum of pure PyrrTFSI
(bottom trace) clearly exhibits a peak at 740 cm−1. This was assigned to a TFSI molecular vibration
that is sensitive to intermolecular interactions and IL solvation structures. In all spectra, this peak is
unchanged (and all other PyrrTFSI peaks are unchanged), which indicates that the PyrrTFSI structure
is unaffected by MSA. As the MSA concentration increases to 5.0 M, the appearance of a Raman band
around 765 cm−1 can be identified as arising from the MSA C-S stretch mode by comparison to the
Raman spectrum of pure MSA, shown as the upper trace. Other than a slight shift from 763 cm−1

(low MSA concentration) to 767 cm−1 (high MSA concentration) to 770 cm−1 (pure MSA), the MSA
C-S stretch band is mostly unchanged from the pure MSA spectrum. MSA deprotonation would
result in significantly larger shifts in the C-S stretch band. The Raman spectra hence indicate that
the MSA structure is not affected by the PyrrTFSI, and the slight shifts in the C-S stretch frequency
can be attributed to differences in solvation and solvent dielectric fields. The MSA behaves like a
non-electrolyte molecule in the solution and no ionization or proton transfer can be observed.
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Figure 4. Raman spectra of MSA in PyrrTFSI shown with increasing MSA concentration from 0 to 5.0 M.
The top trace is the Raman spectrum of pure MSA. (A) Full spectra; (B) Expanded region between 700
and 800 cm−1 to correspond to the region discussed in the text.
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3.2. MSA in 0.4 M and 2.0 M HTFSI/PyrrTFSI

HTFSI solutions in PyrrTFSI show very interesting conductivity change behaviors. The solution
conductivity increases at lower concentrations and decrease at higher concentrations; a maximum
conductivity value can be observed at ~1 M HTFSI [6]. The HTFSI partially ionizes in the solution
and a N-H-N “bridged” structure may be formed in the solution, in which a proton is solvated by
two TFSI anions. In this work, two HTFSI/PyrrTFSI solutions with different concentrations, 0.4 M
(lower than 1.0 M) and 2.0 M (higher than 1.0 M), were used to dissolve MSA to form a series of
MSA/HTFSI/PyrrTFSI solutions. Their conductivity and viscosity values are shown in Figure 5. In both
solutions, the conductivity increased with the increase of MSA concentration, which is similar to the
results in PyrrTFSI solutions without HTFSI. On the other hand, the viscosity increased first to a
maximum value at 0.5 M MSA and then decreased after the peaks. Meanwhile, the dissolution of MSA
in the HTFSI/PyrrTFSI is also exothermic, ∆H = −0.20 ± 0.15 kJ/mol when MSA and HTFSI/PyrrTFSI
are mixed at equal moles, which may also indicate slightly stronger intermolecular interactions in
the solutions when MSA is added. The conductivity and viscosity data over a temperature range of
23–78 ◦C are plotted (Figure 6A,C), and the results are fitted with the VFT equations for conductivity
and viscosity, respectively. The values of the parameters from the fitting are shown in Figure 6B,D.
The VFT equation for viscosity is presented as:

η = η0e
B

T − T0 (2)

where η0, B, and T0 are constants of equation that do not depend on the concentration and temperature.
The results for both conductivity and viscosity showed relatively stable σ0, η0, and T0 values,

while the B values changed more significantly with an increase in the lower concentration range
and a decrease at higher concentrations. This increase and decrease in the B values (proportional to
the activation energy of the motion of particles in mechanical share force field for viscosity and in
electrical field for conductivity, respectively) may explain the increase and decrease of the viscosity
of the solutions when the concentration increases. On the other hand, in the case of conductivity,
the increase of the number of charge carriers (σ0) may be more dominant in the determination of
conductivity. Temperature course results in the 2.0 M HTFSI/PyrrTFSI solutions showed similar results
and, therefore, are not shown in this paper.
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Figure 5. Conductivity (�) and viscosity (∆) of MSA solutions in HTFSI (0.4 M)/PyrrTFSI (A), and HTFSI
(2.0 M)/PyrrTFSI (B), at room temperature.
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Figure 6. Conductivity (A) and viscosity (C) of MSA in HTFSI (0.4 M)/PyrrTFSI solutions at different
temperatures and the value of parameters in the VFT equations fitted with the experimental data:
(B) fitted from conductivity data, and (D) fitted from viscosity data.

The Raman spectra of MSA in the HTFSI/PyrrTFSI solutions are shown in Figure 7. The relevant
spectral region is between 700 and 800 cm−1, so only this region is shown. A doublet Raman
signal observed for the TFSI molecular vibrational mode was used to identify the HTFSI-PyrrTFSI
bridged-proton structure [6]. In Figure 7, the TFSI molecular vibration exhibits a single Raman
band at 740 cm−1, indicating that the bridged-proton structure is not formed with 0.4 M HTFSI.
The MSA C-S stretch mode appears with increasing MSA concentration as a Raman band at ~765 cm−1.
This position is nearly identical to the band position in the MSA/PyrrTFSI solutions (Figure 7A) and
suggests that the MSA does not interact with the HTFSI or PyrrTFSI molecules, and does not form
a bridged-proton structure. With 2.0 M HTFSI in PyrrTFSI (Figure 7B), the doublet TFSI molecular
vibration band is observed, confirming the presence of the HTFSI-PyrrTFSI N-H-N “bridged” structure.
With increasing MSA concentration, this doublet is unchanged and the MSA C-S stretch band appears
mostly unchanged relative to the pure MSA spectrum (top trace). This suggests that the MSA does not
alter the structure or stability of the HTFSI-PyrrTFSI interactions.

The DFT-computed structures of MSA in the HTFSI/PyrrTFSI solutions are shown in Figure 8.
Figure 8A shows the HTFSI-TFSI N-H-N “bridged” structure surrounded by pyrrolidinium cations and
a non-interacting MSA molecule while 8B shows MSA interacting with and disrupting the HTFSI-TFSI
interaction. These calculated clusters are most relevant to the high-concentration samples which
have high-concentration MSA and HTFSI relative to the PyrrTFSI. The simulated Raman and IR
spectra are compared to the experimental spectra in Figure 9. The relative ∆G values from the DFT
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calculations are provided in kJ/mol. The N-H-N “bridged” structure is that shown in Figure 9A and the
N-H-O “bridged” structure is that shown in Figure 9B. The N-H-N structure is more favorable at about
20.6 kJ/mol, which is a large enough number to suggest that the N-H-O “bridged” structure would not
be observed experimentally. This is consistent with the spectroscopic experiment-theory comparison.
Previously, we have shown that the vibrational frequencies around 750 cm−1 are underestimated in our
DFT calculations [6], and in that context, the N-H-N simulated spectra are closer to the experiments.
Figure 9, therefore, provides strong evidence that the N-H-N “bridged” structure is most consistent
with the 5.0 M MSA and 2.0 M HTFSI in PyrrTFSI. Together with Figures 8 and 9, we can conclude that
the MSA does not interact with the HTFSI-TFSI structure and is present in solution as a non-interacting
molecular solute.
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Figure 8. B3LYP/6-31+G* structures of MSA/HTFSI/PyrrTFSI AILs. For computational simplicity,
the cation is 1,3-dimethylimidazolium. (A) N-H-N “bridged” structure, in which the HTFSI is
hydrogen-bonded to a TFSI anion while the MSA is not involved in hydrogen bonding; (B) N-H-O
“bridged” structure, in which the MSA is hydrogen bonded to a TFSI anion.
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Figure 9. The experimental Raman spectrum (A) and IR spectrum (B) are compared to simulated
Raman spectra (A) and simulated IR spectra (B) for the N-H-N “bridged” structure from Figure 8A and
the N-H-O “bridged” structure from Figure 8B. In both panels A and B, the top trace is the experimental
result and the bottom two traces are simulations.

3.3. CSA in ILs and HTFSI/IL

CAS is another organic sulfonic acid with pKa of 1.2 and limited solubility in ILs. It is weaker
than MSA, but still stronger than most of the carboxylic acids. When CSA is dissolved in BMIBF4,
the conductivity of the solution decreases, as shown in Figure 10A; the “dilution” effect that will increase
the conductivity is not observed. In the same IL, the addition of HTFSI up to 0.8 M demonstrated no
significant effects on the solution conductivity, Figure 10B, probably because of the balance of two
effects of HTFSI, which are increasing the ion migration activation energy and the number of charge
carriers that will cause the conductivity change to the opposite directions. When both CSA and HTFSI
present in the BMIBF4 solutions, a synergistic effect that increases the solution conductivity is observed,
Figure 11. At low HTFSI concentrations (<0.4 M), the conductivity of the solution also decreased when
CSA was added to the solution. However, the conductivity increased when CSA was added to BMIBF4

containing 0.4 M or 0.8 M HTFSI. The maximum conductivity was obtained at a CSA concentration of
0.05 M in 0.4 M HTFSI/BMIBF4 and at CSA concentration of 0.1 M in 0.8 M HTFSI/BMIBF4.
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Figure 10. Conductivity of CSA solutions in BMIBF4 (A) and HTFSI solutions in BMIBF4 (B).
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4. Conclusions

MSA and CSA are both relatively strong organic acids. MSA is very soluble in ILs and CSA has a
solubility of about 0.15 M. When MSA is dissolved in ILs, it increases the solution conductivity and
decreased the solution viscosity, while the CSA has the opposite effects. It has been found that the MSA
can dilute the IL and release more “free” ions or ion clusters, while it can also increase the “activity
energy” of the migration, which means stronger intermolecular interactions. This is also reflected by
the exothermic effect of dissolution. After the addition of the MSA, the Raman spectra of the solutions
indicate that there is not observable ionization or proton transfer in the IL solutions with or without
the existence of strong acid HTFSI in the solution. At high concentrations, HTFSI can form dimers
through N-H-N “bridge” hydrogen bonds between the TFSI and the proton. The MSA added into the
solution is non-interactive and cannot affect the N-H-N “bridged” TFSI dimers. On the other hand,
the CSA decreased the solution conductivity that may indicate a stronger solvation by the ions. In one
of our previous reports, we found that the active hydrogen of MSA can react with acetate ion in ILs and
produce acetic acid, which is a proton transfer reaction between a Brønsted acid and a base. However,
in TFSI− or BF4

− ILs, the anions are too weak as proton acceptors, and therefore, the ionization of MSA
is not observed in these systems. Overall, in the TFSI− or BF4

− ILs, the sulfonic acids do not ionize
significantly nor affect the solvation structures of the strong acid HTFSI.
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