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Abstract: To simultaneously enhance agricultural productivity and lower negative impacts on the
environment, food systems need to be much more efficient in using resources such as land, water,
and fertilizer. This study examines resource use efficiency of maize production among smallholder
farmers in Nyando, Kenya. The main objective is to assess the degree of technical efficiency of
smallholder farmers and identify the impact of so-called “climate smart practices” on technical
efficiency. The method of Stochastic Frontier Analysis is used to simultaneously estimate a stochastic
production frontier and a technical inefficiency effect model. Data for 324 subplots farmed by
170 households were available for this analysis. The study reveals that maize production in Nyando is
associated with mean technical efficiency of 45% and that soil conservation practices such as residue
management, legume intercropping, and improved varieties significantly increase farmers’ technical
efficiency. Soil carbon is found to be a critical factor of production. These results imply that there
is potential to more than double production using the same resources and that soil conservation
practices can be very “climate smart,” at once increasing soil carbon, production, climate resilience,
and technical efficiency.

Keywords: technical efficiency; climate smart agriculture; residue management; technologies;
soil conservation

1. Introduction

Agriculture is portrayed as both victim and culprit in debates about global climate change. In its
victim roles, the sector is one of the most vulnerable to the effects of climate change. The characteristics
of climate change include increases in mean temperatures, changes in rainfall patterns, increased
variability in both the onset and amount of rainfall, and more frequent occurrence of extreme weather
events such as droughts and floods. These changes have negative effects on agricultural yields, making
it more difficult for smallholder farmers in the tropics to grow certain food crops such as maize,
the main staple food for many countries in Africa.

Small-scale farmers and pastoralists in Africa, who are already resource scarce, are facing
localized climate change impacts that could push them into new levels of poverty and hunger [1,2].
Empirical studies show that farmers in arid and semi-arid areas of the region are already experiencing
shorter growing seasons, lower yields and reduced lands suitable for agriculture, mainly due to the
warming climate [3]. Moreover, the human population of Africa is projected to grow to 1.5 billion by
2050 from its current 800 million, and this will mean greater need for food production [4].

In its culprit roles, agriculture contributes to Green House Gas (GHG) emissions. It is estimated
that 24% of global anthropogenic GHG emissions are generated by agriculture, forestry, and other land
uses [5]. Crop and animal farming contribute to emissions in a variety of ways. For instance, farm
management practices such as fertilizer application, crop residue burning, and land preparation lead
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to GHG emissions in the form of carbon dioxide (CO2) and nitrous oxide (NO2) gases. In addition,
agricultural practices such as soil cultivation, tillage, manure storage, and crop residue burning degrade
soil carbon stocks. Enteric fermentation by ruminant animals releases methane gases, accounting
for about 40 percent of the global GHG emissions by the sector [1]. As more lands are cleared for
agricultural production, these emissions are projected to grow significantly. For instance, global
methane emissions from cattle and livestock manure are projected to jump by 60 percent while nitrous
oxide emissions will increase by 35–60 percent by 2030 [1].

Policy makers, researchers, development practitioners, and farming communities are faced with
three intertwined challenges related to agriculture and climate change. These are ensuring food
security, adapting to climate change, and mitigating GHG emissions. Researchers are challenged to
develop and test interventions that can transform food systems to be more efficient, more climate
resilient, and more sustainable [1].

One of the most promising approaches so far identified is Climate Smart Agriculture (CSA).
CSA was first coined at the 2010 Hague conference on “Agriculture, Food Security, and Climate Change.”
The concept is defined as agriculture that simultaneously increases productivity, enhances climate
resilience, and mitigates GHG emissions [6]. Examples of CSA practices are integrated crop-livestock
farming, agroforestry, conservation agricultural practices such as residue management and intercropping,
use of stress-tolerant crop varieties, meteorological weather advisories, and index-based insurance [6].

Most studies applying the concept of CSA have thus far focused on specific practices such as
those mentioned above and their impacts on production per unit area [7,8]. Recently, we see mention
of resource use efficiency as a climate smart approach [1,2]. An increase in resource use efficiency
reduces the intensity of GHG emissions per kilogram of output while also improving food security [1].
However, little research has been done to link the agricultural efficiency literature with the concept
of climate-smart agriculture. Most previous efficiency studies in the region focussed on quantifying
efficiency and examining the effects of socio-economic and farm characteristics such as income, age,
and land size [9,10]. Little attention has been paid to how the best management of agricultural practices
affects efficiency. Using the case of maize-growing smallholder farmers in Kenya, this study measures
farmers’ technical efficiency (TE) and examines how their efficiency is affected by the adoption of soil
conservation practices such as residue management and intercropping. The study also examines the
technical impact of adopting improved seed varieties on farmers’ productivity and efficiency.

Improved soil management can be a critical element of climate smart agriculture. Soils in most
African countries are depleted of key nutrients, as population pressures make traditional fallow
practices less viable and high prices for inorganic fertilizer limit use [11]. These lost nutrients can
be replaced through organic resources such as composting manure, crop residues, and legume
intercropping. These measures have the potential to increase soil organic matter while acting as
substitutes or complements to high cost inorganic fertilizers [6]. Another possible climate smart
practice is to use crop varieties that are better suited to local agro-ecological conditions and adapted to
erratic rainfall and drought conditions.

2. Materials and Methods

The site chosen for this study is the Nyando river basin, a research site of the Climate Change,
Agriculture and Food Security Program in Western Kenya. The majority of the inhabitants throughout
the Basin are poor smallholder farmers who depend on rain-fed mixed agriculture for their livelihoods.
Smaller numbers of farmers practice irrigation farming in the lower areas, large-scale commercial
sugarcane farming in the mid-altitude areas, and large scale tea production in the upper altitudes [12].
The Nyando river basin lies approximately between longitudes 34◦47” E and 35◦44” E and latitudes
0◦07” N and 0◦20” N. The area is characterized by a historical pattern of severe land degradation
and deforestation as human settlement and farming expanded along the basin, with water and soil
conservation structures used on less than 20 percent of farm plots [13,14]. Land degradation is made
worse by frequent floods, particularly in the low-lying areas, rendering 75% of the plains unsuitable
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for farming [13]. The area is also characterized by severe soil erosion. For instance, severe gully
erosion in the lower areas of the basin is the most visible sign of land degradation, and land conversion
and farming degradation have increased the severity of soil erosion and sedimentation over the past
60–100 years [12].

The Nyando River basin is characterized by humid to sub-humid climates with annual rainfall
ranging from less than 1100 mm in areas near Lake Victoria to over 1700 mm in the highland areas [15].
An analysis of rainfall data from 1950 to 2010 shows that annual rainfall has had stable variance but
a downward shift in mean rainfall from 1520 mm/year between 1950 and 1979 and 1403 mm/year
between 1979 and 2010 [15]. There are two main rainy seasons in this area. The long rains occur
between March and June, while the short rains occur between October and December [16]. In an
informal interview, farmers in the Nyando area mentioned experiencing periods of missed rains,
shorter growing seasons, and at times, periods of heavy precipitation leading to flooding especially in
the low-lying areas of Nyando.

The lower part of the study area is best suited to drought-resistant crops like sorghum and millet.
However, like other areas of Western Kenya, farmers in the Nyando basin exhibit a strong preference
toward maize production. Maize is the most important cereal crop in Kenya, making up one third of
caloric intake and 56% of the cultivated land in the country [17]. Sorghum and millet are considered to
be inferior substitutes for maize, while rice and wheat are preferred. Since every farmer in our sample
produced some maize, we focus our study on maize.

The Western Kenyan Integrated Management Project (WKIEMP) classified the Nyando River
basin into three blocks, namely Lower, Middle, and Upper Nyando based on biophysical features
identified through satellite imagery and ground survey [14]. The Lower Nyando has lowest elevation,
moderate slopes, and unreliable rainfall. The Middle Nyando is characterized by higher elevation,
steep slopes, and less intermittent rains. The Upper Nyando is characterized by large farms, higher
elevation, and steep slopes. According to yield data for 1991, large differences exist in the per hectare
value of agricultural yield among the three blocks [12]. Lower altitude areas were characterized by
per hectare value of production of less than Ksh 5000, mid altitude areas produced Kenyan Shillings
(Ksh) 5000–15,000 per hectare, while upper altitude areas produced Ksh 45,000–50,000 per hectare
(in July 2018, 100 Ksh = 1 US dollar) [12].

2.1. Data

The data used for this study come from three sources. The production data and household
socio-economic characteristics come from the Climate Change Agriculture and Food Security (CCAFS)
IMPACTlite data collected through a survey in Nyando, Kenya in 2012. The survey technique
was characterized by the development of village lists based on Nyando’s three production systems:
maize-sorghum in Lower Nyando, sugarcane-maize in Middle Nyando, and dairy-perennials-maize
in Upper Nyando. Eight villages were selected to represent the production system of Lower Nyando,
and six villages were selected to represent each of the Middle Nyando and Higher Nyando production
systems. Ten households were randomly selected from each of the 20 villages and 200 households were
surveyed in all. The survey asked farmers to identify their various farming activities, crops grown, seed
varieties used, and improved technologies adopted in a particular subplot during a particular season of
the year. A subplot is a sub-unit within a plot for recording differences in land use pattern in space
and/or in time [18]. The purpose of the sub-plot concept is to describe farming activities that could
change in space or in time and to record labour and inputs requiring activities, production and use of
crop residues. 183 of the 200 surveyed households grew maize. Data on 13 households whose maize
yield was less than 10 kg were dropped to minimize the effect of outliers on the stochastic production
frontier estimation. Meanwhile, there were no subplots with extremely high output values. Outliers and
extreme values affect the maximum likelihood method used to estimate stochastic frontier models [19].

Data on soil erosivity come from the Reconnaissance Soil Survey collected at scale of 1:25,000
by Kenya Soil Survey (KSS) in 2003 for Nyando, Kenya. Data on climate (precipitation and
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evapotranspiration) are sourced from a digital climate surface produced by the USAID Development
Strategies for Fragile Lands project (DESFIL) project, downloaded from the GIS services website of the
International Livestock Research Institute (ILRI). Measures of soil organic carbon for Nyando were
primary data obtained from ILRI. ArcGIS 10.1 software (ESRI, Redlands, CA, USA) was used to merge
the climate, soil and IMPACTlite data using the geographic coordinates of the surveyed households.

Table 1 describes the variables used in the study and provides summary statistics for each of the
variables. Overall, those statistics reveal extremely high variability between plots. The yield variable
shows harvested amount of maize grains in Kilograms obtained from a specific subplot for a specific
crop-growing season. Average subplot yield for maize was about 479 kg, ranging from 12 kg to about
8100 kg per subplot. The labour variable is defined by total days of labour spent on a subplot and
includes family and hired labour. Average labour spent on the subplots was about six days, with a
minimum of one day and a maximum of 60 days. Land size is measured in hectares. The average
subplot size allocated to maize is about one hectare and ranges from 0.02 to 7.5 hectares.

The seed variable represents the amount of money in Kenya shillings (Ksh) spent on seeds used
in a subplot. The seed variable is reported in the data as the amount of seeds used for a particular crop,
the type of seed (local or improved variety) and market value in Ksh per Kilogram. The market value
of seeds has been chosen to account for the possibility that local and improved seed varieties are not
equally productive. On average, 4232 Ksh in seeds is spent on the subplots, and the amount ranges
from 37.5 to 375,000 Ksh (In July 2012, 1 US$ was the equivalent of 83.8 Kenya Shillings). Farmers noted
purchasing the following improved varieties: Hybrid, DH14, DH04, KenyaSeed, 505, Yellow maize
and H614. The Kenya Seed Company recommends short duration varieties such as DH04 for lower
altitudes and longer varieties such as H614 for higher altitudes (http://www.kenyaseed.com/index.
php?option=com_content&view=article&id=243&Itemid). “Yellow maize” and “hybrid” are more
general designations that are difficult to interpret.

The carbon variable is defined by the percentage amount of organic carbon in the soil (%C).
The average soil carbon content is 1.788% and ranges from 1.3 to 3% with standard deviation of 0.553%.
These soil carbon measures are very low, even compared to other parts of Western Kenya. For example,
on 445 plots in seven villages in Vihiga and Nandi districts, soil carbon ranged from 0.90% and 6.50%,
with an average of 3.70% [20]. Soil erosivity refers to the susceptibility of soil to be eroded by rain,
wind or surface runoff [21]. The susceptibility of the soil to erosion is a function of the slope, soil
cover, soil carbon, silt/clay ratio, soil depth, level of exchangeable sodium, and flocculation index [16].
Based on these factors, the erosion hazard of the Nyando basin was classified as being slight, moderate,
high, or severe. An erosion index has been constructed for these erosion hazard levels and ranges from
one to four with one being slight and four depicting severe.

The P/EP variable is defined as precipitation (P)/evapotranspiration (EP) obtained by dividing
annual precipitation by annual evapotranspiration. Evapotranspiration is the sum of evaporation and
plant transpiration. When P/PE is more than one, precipitation is higher than evapotranspiration
and there is more than sufficient moisture available for crops to grow. When the ratio is less than one,
evapotranspiration is greater than precipitation and the risk of drought could be higher and more
water is lost from plant crops through transpiration and evaporation. For the sample data, average
P/EP is 0.950 and ranges from 0.759 to 1.077.

The variables for improved crop variety, residue management, and legume intercropping are
binary, equal to one if a specific practice was adopted on the subplot, zero otherwise. In this study,
the crop variety variable is defined by whether a household used an improved or a local maize
variety on a subplot. Residue management is defined by whether or not crop residues were left on
fields after harvest. Intercropping is the growing of two or more crop types in one sub-plot. In this
study, the variable is defined by whether or not a farmer grew maize with beans in the same subplot.
The average adoption rate of improved seed varieties was found to be 81.8%, which is relatively higher
compared to residue management (69.1%) and legume intercropping (2.1%).

http://www.kenyaseed.com/index.php?option=com_content&view=article&id=243&Itemid
http://www.kenyaseed.com/index.php?option=com_content&view=article&id=243&Itemid
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Table 1. Descriptive statistics.

Variable Description Mean SD Min Max

Yield Maize Yield in Kg/sub-plot 478.5895 830.6019 12 8070
Labour Days per month 5.867284 6.437913 1 60
Land Size in hectares 0.9649383 0.9686518 0.02 7.5
Seeds Value in Kenyan Shilling 4232.529 28,979.04 37.5 375,000

Carbon % Organic Carbon in soil 1.788 0.553 1.3 3.000
P/PE Precipitation/Evapotranspiration 0.950 0.084 0.759 1.077

Variety 1 if improved seed variety 0.818 0.387 0 1
Residue Mngment 1 if residue is left on subplot 0.691 0.463 0 1

Intercrop 1 if maize is intercropped with Beans 0.207 0.406 0 1
Gender 1 if subplot is farmed by male 0.688 0.464 0 1

Distance Distance of plot from homestead in meters 160.785 530.288 0 5000
Ploughs 1 if HH * owns a plough 0.485 0.501 0 1
Radio Number of Radios in the HH 0.941 0.629 0 3
Age Age of HH head in Years 52.559 15.389 20 84

Adults Number of adults ≥ 18 years 2.799 1.388 1 7
Income Total Income in Ksh per HH 3761.281 4796.653 0 35,000

* HH denotes household.

The gender variable is defined by whether a subplot is farmed by a male or a female and
represented by a binary variable—one if a subplot is farmed by a male, zero otherwise. About 68% of
the subplots are farmed by males. The distance variable refers to the distance of the subplot from the
homestead in meters. Average subplot distance is about 160 m, with a range of 0 to 5000 m. The plough
variable is defined by whether a household owns a plough or not. 49% of the households own a plough.
The radio variable is defined by the number of radios the household owns. Average radio ownership
per household is about 1 and ranges from 0 to 3 for the households. The adult variable represents
the number of adults who are 18 years and above living in the household. On average, about three
adults live in a household, and the range is from one to seven. The income variable represents average
monthly off-farm income in Kenyan Shillings. Households mentioned income from off-farm activities
such as employment, business, and remittances. Average household income for the sample ranges
from 0 to 35,000 Kenyan Shillings.

2.2. Method

Productivity is defined as the ratio of output(s) produced to input(s) used [22]. Economic theory
postulates that changes in productivity arise from a combination of three sources: technical change,
technical efficiency change, and change in scale of operations [22]. An improvement in technical
efficiency involves a movement towards the “best practice” production, whereas technical change
is realized when a firm produces more output(s) with the same level of input(s) through a shift in
the production frontier due to technological improvement. Meanwhile, a change in scale comes from
an increase in firm’s scale of operations; and involves a movement along a particular production
function. While also capturing technical change, this study mainly focusses on technical efficiency.
Using the approach of stochastic frontier analysis (SFA), the measurement of technical efficiency starts
with specifying and estimating a stochastic production frontier function from which measures of
technical inefficiency are estimated. A competing approach to SFA is Data Envelopment Analysis
(DEA), which uses a non-stochastic mathematical programming approach to estimate the production
frontier. Both DEA and SFA have widely been used in the efficiency literature and theory does not
favour one method over the other. Unlike DEA, SFA requires the specification of a functional form,
and distributional assumptions for the inefficiency error term, both of which could have consequences
for the efficiency results. DEA, on the other hand, does not impose a particular functional form
nor does it require assumptions on the error structure. In doing so, DEA lets the data “speak for
themselves” [23] (p. 356). Despite this, SFA is advantageous in that it accounts for the influence of
random factors that are outside of the decision maker’s control. Also, the use of SFA enables one to
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perform formal statistical test of hypotheses. While aware of the tradeoffs in choosing a particular
approach, we use the framework of SFA for this analysis.

For this study, the technical inefficiency effects model of Battese and Coelli [24], which assumes
a truncated normal distribution for the inefficiency error term, has been specified to estimate the
farmers’ stochastic production frontier. The model consists of a stochastic production function and
a technical inefficiency effects model, both of which are simultaneously estimated using maximum
likelihood estimation.

The stochastic production function takes the following form:

Yi = f (Labori, Landi, Seedsi, Carboni, Erosivityi, P/PEi, Varietyi; β)exp(vi − ui) (1)

where for each of the ith household;

f = the stochastic production frontier function to be estimated;
Yi = Subplot maize production in Kilograms;
Labouri = Adult labour days including family and hired labour;
Landi = size of subplot in hectares;
Seedsi = market value in Kenyan Shillings of maize seeds;
Carboni = Percentage amount of carbon in the soil;
Erosivityi = Indexed extent of soil erosion (1 = Slight; 2 = Moderate; 3 = High; 4 = Severe);
P/PEi = Ratio of Precipitation to Potential Evapotranspiration;
Varietyi = 1 if household adopted an improved maize variety;
vi − ui = Combined random error term;
vi = Random error term;
ui = Technical inefficiency

The dependent variable is maize produced in Kilograms per subplot. The variables labour, land,
and seeds are inputs directly used in the production of maize. Soil organic carbon is considered
as an environmental input in production. Use of soil carbon in production functions is justified in
the literature [25–27]. Erosivity, P/PE, and Variety are used as control factors in maize production.
In addition, the adoption of climate smart improved maize varieties is hypothesized to increase maize
productivity through a shift in the production frontier (technological effect).

The vis are assumed to be independently and identically distributed random variables that
account for deviations from the frontier output due to random shocks and measurement error. The uis
are assumed to be identically distributed non-negative variables independent of the vis that account
for deviations from the frontier output due to technical inefficiency. Prediction of technical efficiency
involves decomposing the combined random error, (vi − ui), into its components to obtain firm specific
technical inefficiency effects that are then used to compute firm specific technical efficiency effects.
This is achieved through the prediction of the conditional distribution of, ui, given that the combined
random error, (vi − ui), is observable and could be estimated.

The technical inefficiency effects model captures the determinants of variation in technical
inefficiency. The model is specified as follows:

ui = δ0 + δ1(Residi) + δ2(Intercropi) + δ3(Distancei) + δ4(Radioi) + δ5 ploughi

+δ6(Agei) + δ7(Adultsi) + δ8(Genderi) + δ9(Inci) + ωi.
(2)

where for each of the ith household,

ui = Subplot level technical inefficiency;
Residi =Residue management (=1 if residue is left on the field);
Intercropi =Intercropping (=1 if a subplot is intercropped with Beans);
Distancei =Distance in Metres of the subplot from the household;
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Radioi =Number of radios in the household;
Ploughi = 1 if the household owns a plough;
Agei =Age of the household head in years;
Adultsi = Number of persons above 15 years of age in the household;
Genderi = 1 if subplot is farmed by male;
Inci =Average off-farm income of the household;
ωi = A randomly distributed statistical error term.

The literature shows a number of factors affecting technical efficiency, including the use of specific
production practices, attributes of the plot or farm, and more general demographic characteristics
that could affect crop management. Crop residue management is a good example of a climate smart
soil conservation practice that can affect farmer’s maize productivity. Leaving the crop residues
of last year’s harvest on the farm aids in sequestering soil organic carbon, prevents soil erosion by
acting as a ground cover, improves soil tilth, and adds organic matter after its decomposition [26].
Legume intercropping is another example of a climate smart practice that can potentially improve
maize productivity. Legumes have nitrogen-fixing capacity and increase the nitrogen uptake of
intercropped plants. Intercropping may also reduce productivity since the different plant crops
compete for resources such as water, nutrients and sunlight. However, studies conducted in
Africa [28,29] investigated this using LER (Land Equivalent Ratio)—obtained by dividing the amount
of intercropped yields by the amount of monocropped yields. The studies found LER to be greater
than 1.0, implying that intercropped fields are more productive than monocropped fields. The distance
from the subplot to the homestead affects the manner in which the household allocates resources
which could have different implications for productive efficiency. The farmer may, for example, prefer
to cultivate subplots nearer to their home first and the rest later due to transport and other transaction
costs. The nearby subplots may thus get adequate resources thus generating higher yields. However,
all else equal, the farmer may have more incentive to devote more supervision and care time to
subplots further from the homestead due to fear of theft and being grazed by animals. For example,
a study by [30] found a strong gradient of soil fertility with distance to the house, indicating that
farmers deliberately concentrate scarce resources on the plots closest to their house. Both ploughs and
radios may be considered agricultural assets, but also could be interpreted as indicators of household
wealth. The age of the household head in years is used here as a proxy for experience and also
physical ability to do farming. Households with more adult members have a potential supply of family
labour and are expected to be more technically efficient than other households. Subplots owned and
controlled by males are expected to be more efficient compared to female-owned subplots at least in
the context of the developing world. Off-farm income can increase efficiency if part of the earning is
used in the investment of farm inputs and sustainable technologies, however, it is also possible that
off-farm income takes time and attention away from production management thus resulting in low
productive efficiency.

3. Results

3.1. Production Function Estimates

Two functional forms of the production function were estimated and compared—Translog and
Cobb-Douglas—although the Translog results are not reported here. While the Translog has the
advantage of greater flexibility, it is susceptible to multi-collinearity and degrees of freedom problems
due to the numerous interaction terms. The Cobb-Douglas imposes more restrictions but can be
more readily estimated with limited data sets as available in this study. The Cobb-Douglas results
are also easily interpreted. While the Translog function provided better goodness-of-fit, as indicated
by the log-likelihood ratio, it generated many statistically insignificant parameter estimates, both for
first-order and second-order coefficients. Here, we report the focus on the results for the Cobb-Douglas
function, which generated statistically significant results consistent with expected signs.
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Table 2 presents the results of the Cobb-Douglas stochastic production frontier estimation.
The coefficient estimates have the expected signs. All inputs have positive effects on yield and
all their coefficient estimates are statistically significant at 1% level of confidence. Concerning the
environmental factors, the effects of soil carbon and P/PE were found to be positive and significant.
The coefficient estimate of the carbon variable is positive and significant at 5% level of confidence.
The Erosivity variable is negative but statistically insignificant. The variety variable is significant at the
5% level and implies that adoption of improved maize varieties has a significant effect on maize output.
The coefficient on Variety indicates that adoption of one of the improved maize varieties increases
maize productivity by 37%.

Table 2. Coefficient estimates for parameters of the Cobb-Douglas production frontier.

Variable Coefficient T-Ratio

Constant 3.814 *** 8.900
Labour 0.311 *** 4.640
Land 0.304 *** 4.890
Seeds 0.323 *** 7.220

Carbon 0.423 ** 2.160
Erosivity −0.107 −1.490

P/PE 3.123 *** 4.270
Variety 0.371 ** 2.840

σu 0.973 *** 7.300
σv 0.463 *** 6.800
λ 2.101 *** 13.340

Log-Likelihood −387.785
Number of Obs 324

Note: *** and ** represent significance at 1% and 5%, respectively.

The parameter λ refers to the ratio of the standard deviation of technical inefficiency to the standard
deviation of the random error. The value of this parameter is positive and significant (p-value < 0.01)
and implies that variance due to inefficiency is greater than variance due to random shocks.

Table 3 presents the output elasticities of the four inputs (labor, land, seeds, carbon) along with
returns to scale. Output elasticity refers to the percentage increase in maize yield as a result of
increasing one of the inputs by 1%, holding all other inputs constant. Returns to scale is the long run
proportional rate of increase of output relative to the associated increase in all the inputs by the same
proportion. When the proportional increase in output is equal to the proportional increase in all inputs,
the production process is said to exhibit constant returns to scale (CRS). When the proportional increase
in output is less than the proportional increase in all inputs, the production process is said to exhibit
decreasing returns to scale (DRS), and if output increases by more than that proportional increase in
inputs, the production process is said to exhibit increasing returns to scale (IRS). The formula of the
elasticity of output is given as

∂ln(Ŷ)
∂ln(Xj)

= Bj (3)

where Ŷ is the mean of yield for the sample and Xj is the jth input. The output elasticities
for the Cobb-Douglas production function are simply the coefficients of the log-linear stochastic
production model.

All of the output elasticities are positive, increasing each input increases output. Maize yield is
most responsive to changes in carbon, followed by seeds, labor, and land, in that order. One percent
increases in the inputs lead to the following increases in maize output: carbon—0.423%, seeds—0.323%,
labor—0.311%, and land—0.304%. Returns to scale is the sum of the values of the elasticities.
The returns to scale value is greater than one, implying increasing returns to scale: a 1% increase in
all inputs increases output by 1.361%. The high responsiveness of maize yield to soil carbon shows
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that soil carbon is a critical determinant of maize productivity, which has significant implications for
climate smart agriculture in this part of Kenya. Low soil carbon is a major problem in most areas along
the Nyando River basin.

Table 3. Output elasticities and returns to scale.

Input Elasticity

Carbon 0.423
Seeds 0.323

Labour 0.311
Land 0.304

Returns to Scale 1.361

3.2. Technical Efficiency

The presence of technical inefficiency was tested using a Likelihood Ratio (LR) test. The null
hypothesis of this test is formulated as H0: λ = 0, where lambda is the ratio of the standard deviation
of the inefficiency error term to that of the random error term (i.e., λ = σu

σv
). The null hypothesis is

that there is no significant technical inefficiency in the subplot level maize production. Failing to
reject the null hypothesis implies that all deviations from potential output are due to random shocks.
The log-likelihood function values of the Ordinary Least Squares and the stochastic frontier model
were used for the test. The test is formulated as follows:

LR = −2(LLFR − LLFU) (4)

where LLFR and LLFU represent the log-likelihood function values for the restricted (OLS) and
unrestricted (Stochastic Frontier) model respectively. The results of the test are presented in Table 4.
The null hypothesis of no inefficiency is rejected at 5% level of significance. This implies that subplot
level maize production in Nyando is associated with significant technical inefficiency. Figure 1 presents
the percentage distribution of the technical efficiency scores.

Table 4. Likelihood ratio tests for the hypotheses of inefficiency effects model.

Hypothesis Test Result

(a) H0: λ = 0
Estimated Frontier not different from OLS

LLFU −387.785
LLFR −424.187

LR 72.04
Critical Value (5% level) 20.41

Decision Reject H0

(b) H0: δ1 = δ2 = . . . = δ10
Variables in the inefficiency effects model are
simultaneously equal to zero (No TE effects)

LLFU −387.785
LLFR −416.131

LR 56.69
Critical Value (5% level) 17.67

Decision Reject H0

(c) H0: δ1 = δ2 = 0
TE effects of Soil Conservation variables are

simulatenously equal to zero

LLFU −387.87
LLFR −397.23

LR 12.58
Critical Value (5% level) 5.14

Decision Reject H0

Template modified from [31]. The LR test statistic does not have a standard chi-square distribution. The test has
a mixture of chi-square distributions [32]. We therefore use the critical values of [33] that take this assumption
into account. TE: technical efficiency.
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The mean technical efficiency of the subplots was found to be 0.45 with a minimum of 0.03 and a
maximum of 0.87. An empirical restriction of stochastic frontier analysis models is that no producer
is found to have a technical efficiency equal to 1, that is, no farmer is fully efficient in their use of
inputs [34]. Nonetheless, the technical efficiency results show that the farmers in Nyando are not
efficiently using available production resources. The farmers are on average operating 55% below the
output frontier. The results presented on Figure 1 show a relatively uniform distribution of technical
efficiency across the sub-plots included in this analysis. The low TE associated with maize production
has implications for food security given the effects of climate change, land scarcity due to population
pressure, and increasing prices of agricultural inputs. There exists a large scope for improving farmers’
productivity through technical and TE improvements in order to tackle the challenges of food security.

The existence of inefficiency effects was tested using the Likelihood Ratio test. The results are
reported in Table 4. The null hypothesis of the test is defined as Ho : δ1 = δ2 . . . . = δ10, which implies
that the mean of the inefficiency error term is constant and not a function of the exogenous variables.
The results reject the null hypothesis of no technical inefficiency effects. This implies that at least one
of the specified determinants has an effect on technical efficiency.

The results of the inefficiency effects model are presented in Table 5. A negative coefficient implies
a positive impact on technical efficiency and vice versa. The maximum likelihood coefficients of the
technical effects model are not marginal effects due to the non-linearity in the relationship between
E(ui) and the Zis [35]. Given the model, Ui = Zi

′δ, the marginal effect of the kth element of Zi on E(ui)
is given by the formula:

∂E(ui)

∂Z[k]
= δ[k]

[
1−Λi

[
φ(Λi)

Φ(Λi)

]
−
[

φ(Λi)

Φ(Λi)

]2
]

, (5)

where Λi =
µi

σu ,i
, and δ[k] is the corresponding coefficient. The average marginal effect for each variable

is computed and reported alongside its coefficient estimate in Table 5.
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Table 5. Results of the determinants of technical efficiency.

Variable Coefficient Marginal Effect T-Ratio

Constant 1.724 *** - 3.660
Residue Mngment −0.492 ** −0.25 −2.280

Intercrop −0.701 * −0.35 −2.02
Distance −0.001 * −0.43 × 10−3 −1.700

Radio −0.421 ** −0.21 −2.400
Plough −0.598 ** −0.30 −2.420

age 0.009 4.5 × 10−2 1.390
adults −0.131 −0.07 −1.580

Income 0.325 × 10−4 0.162 × 10−4 −1.320
Gender 0.073 0.04 0.330

Note: ***, **, and * represent significance at 1%, 5%, and 10%, respectively.

The coefficient on residue management is negative and statistically significant at 5%. The negative
sign means subplots in which the farmers leave the residue are more technically efficient compared to
subplots where residue is removed for use as fuel or animal feed, all else being equal. The marginal
effect of adopting residue management is −0.25. Residue management increases the subplot level
mean TE of the farmers by 25% on average, leading to an increase in mean subplot level TE from 45 to
56.25%.

The coefficient on intercropping is negative and statistically significant at 5%. The negative sign
implies a positive effect on TE. The marginal effect is −0.35. That is, intercropped subplots are on
average about 35% more technically efficient compared to monocropped subplots and adoption of
intercropping increases subplot level TE from 45 to 60.75% on average.

In addition, we tested the hypothesis of whether the given climate smart soil conservation
practices, residue management and intercropping simultaneously affect technical efficiency levels.
Results of the test are presented in Table 4. We reject the null hypothesis that the technical efficiency
effects of these two practices were simultaneously equal to zero. The results imply that residue
management and legume intercropping jointly affect technical efficiency levels.

The coefficient on subplot distance from the homestead is negative and statistically significant at
10%. The negative sign on the coefficient implies that distance from the homestead positively affects
TE. The marginal effect on the coefficient of this variable is very small and hence its impact on TE
is negligible.

The coefficient on radio is negative and statistically significant at 5%. The effect of radio
ownership on TE is positive. The marginal effect is −0.21. This implies that radio ownership increases
subplot level TE by about 21%. The coefficient on plough ownership is negative and statistically
significant at 5%. Plough ownership increases the subplot level TE of the farmers on average by about
30%. Coefficients on age, number of adults, income, and gender are statistically insignificant and
thus inconclusive.

3.3. Linking Soil Conservation Practices to Soil Capital

As mentioned earlier, the soils of Nyando are characterized by severe depletion and soil
erosion which has consequences for food insecurity. Improving soil capital through climate
smart soil conservation measures is necessary to improve food security and farmers’ welfare.
Residue management enhances soil organic matter and biodiversity thus improving soil structures,
nutrient cycling, and also increases agricultural productivity while also decreasing soil erosion, water
runoff and fertilizer loss [36]. The adoption of residue management combined with other climate smart
technologies can help in sequestering soil organic carbon. In addition, intercropping with legumes
increases soil fertility by enhancing both carbon and nitrogen accumulation over time [37]. Here we
investigate whether there is any difference in soil carbon content (%C) between farmers adopting
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residue management and intercropping and those who do not. This is achieved through an equality of
means test.

The results of the test and descriptive statistics are presented in Table 6. The results indicate a
statistically significant difference (p-value < 0.01) in mean soil carbon content (%C) between subplots
in which farmers practice or do not practice residue management, intercropping or neither practice.
The average soil carbon content (%C) for subplots under residue management 0.208% higher than
subplots not under residue management. Also, the average soil carbon content (%C) for subplots under
intercropping is 0.418% more than subplots not under intercropping. These findings may imply that
residue management and intercropping enhance the accumulation of soil organic matter leading to
increased yields and higher efficiency. Unfortunately, we do not have data on farmers’ past use of these
conservation practices or soil organic carbon. Hence, we cannot conclude that individual practices
have resulted in differences in the content of soil organic carbon among adopters and non-adopters.

Table 6. Results of t-tests and descriptive statistics of soil carbon by soil conservation practice.

Practice

Group Test

Adopters Non-Adopters
T Diff

Mean SD n Mean SD n

Residue
Management 1.852 0.597 224 1.644 0.407 100 3.173 *** −0.208

Intercropping 2.119 0.682 67 1.702 0.480 257 5.775 *** −0.418

Note: *** represents significance at 1%.

4. Discussion

This study has revealed that maize production in the Nyando area of Kenya is associated with
mean technical efficiency of 45%. Previous efficiency studies for smallholder maize farmers in Kenya
show similar results regarding mean technical efficiency levels [38–40]. Similarly, other technical
efficiency studies conducted in Kenya for other crops such as wheat and sorghum report low mean
technical efficiency [41,42].

These results imply that there is a large scope for improving farmers’ resource use efficiency in
this area of Kenya, which would have positive consequences for farmer income and food security.
We found increasing returns to scale for the average plot, which is expected given the small sizes
of farm plots in the area. Increasing plot size to capture these scale economies, however, may have
unintended negative consequences for equity of land ownership. Another way to increase technical
efficiency is through technology. We found that the adoption of improved varieties of maize seed had
a positive and significant impact on maize productivity. Informal interviews with farmers in the area
suggested that most farmers understand the benefits of improved varieties, with cost and access being
the main barriers. This is consistent with the conclusion of [43] (p. 284).

One surprising result from this study was the very low use of inorganic fertilizer, even by farmers
who are using improved seed varieties. A central reason for this low adoption is that the low levels of
soil organic matter limit the effectiveness of inorganic fertilizer. Another study from Western Kenya
found that the marginal value of production of applied nitrogen was less than the price for all levels of
soil carbon less than 3%, and the highest marginal returns were for soils with soil organic carbon of
6% or more [20]. In our study area, the maximum soil organic carbon is 3%. This result implies that
inorganic fertilizer will not be a primary means for enhancing soil fertility.

This study went beyond most other studies of technical efficiency in the incorporation of
biophysical variables. We found soil carbon to be a critical determinant of maize productivity, with
an output elasticity of 0.41%, higher than any of the other inputs. This study also found that soil
conservation practices known to improve soil carbon, such as residue management, have significant
positive effects on technical efficiency. Residue management was found to increase farmer technical
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efficiency by 25%. The importance of residue management for soil carbon is well documented in other
studies and this finding should not come as a surprise. Despite this, the rate of adoption of residue
management has been slow in developing countries due to the other competing uses of crop residues
such as fuel and animal feed. Previous studies indicate that crop residue retention is the cheapest
source of soil nutrient for the productivity of the next crop. However, farmers usually “prioritized
its use for cattle feeding” [44] (p. 24). One possible solution would be to secure carbon financing to
encourage farmers to use crop residues as soil amendments and thus capture the win-win benefits
that this promises [26]. However, any carbon credit policy will need to assess the economics of these
competing uses of crop residues by farmers as the societal value of sequestering carbon in the soil
must be taken into account to be fair and transparent [26]. In addition, legume intercropping was
found to have a significant effect on TE. Practice of intercropping improved TE by 35% on average.
Legume intercropping is also known to help in building soil carbon.

5. Conclusions

This study has examined the resource use efficiency of maize production among smallholder
farmers in Nyando, Kenya. The main objective was to assess the degree of technical efficiency
of smallholder farmers and identify the impact of so-called “climate smart practices” on technical
efficiency. The study revealed that maize production in Nyando is associated with low mean technical
efficiency, which implies that farmers are not maximizing yield from the resources they are applying
to maize production. There is scope for significant increases in production through more effective use
of available inputs.

Another finding of this study is the significance of soil nutrient management for farmers’
productivity. Soil organic carbon was found to be a critical determinant of maize production.
Meanwhile, soil conservation practices such as residue management and legume intercropping that are
known to enhance soil carbon also significantly increased farmers’ technical efficiency. These results
imply that there is potential to more than double production using the same resources and that
soil conservation practices can be very “climate smart”, at once increasing farm production, climate
resilience and soil carbon levels. Overall, we conclude that the triple wins of climate smart agriculture
can be a reality in this part of western Kenya. We encourage development projects and extension agents
to emphasize these climate-smart practices and other measures to enhance soil carbon. This type of
research should also be extended to other parts of Africa.

These results provide a strong case study for the “4 per mille Soils for Food Security and Climate”
initiative that was announced at the UNFCCC (United Nations Framework Convention on Climate
Change) Conference of Parties meeting in 2015 [45]. “4 per mille” recognizes the dual importance of
soil carbon as a productive asset and as a means for sequestration of carbon from the global atmosphere.
Reaching the target of increasing soil carbon stocks by 0.4% per year would greatly alleviate food
insecurity problems in this case study area.
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