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Abstract: Gedanken experiments in quantum gravity motivate generalised uncertainty relations
(GURs) implying deviations from the standard quantum statistics close to the Planck scale. These
deviations have been extensively investigated for the non-spin part of the wave function, but existing
models tacitly assume that spin states remain unaffected by the quantisation of the background in
which the quantum matter propagates. Here, we explore a new model of nonlocal geometry in which
the Planck-scale smearing of classical points generates GURs for angular momentum. These, in turn,
imply an analogous generalisation of the spin uncertainty relations. The new relations correspond
to a novel representation of SU(2) that acts nontrivially on both subspaces of the composite state
describing matter-geometry interactions. For single particles, each spin matrix has four independent
eigenvectors, corresponding to two 2-fold degenerate eigenvalues ±(h̄ + β)/2, where β is a small
correction to the effective Planck’s constant. These represent the spin states of a quantum particle
immersed in a quantum background geometry and the correction by β emerges as a direct result of
the interaction terms. In addition to the canonical qubits states, |0〉 = |↑〉 and |1〉 = |↓〉, there exist
two new eigenstates in which the spin of the particle becomes entangled with the spin sector of the
fluctuating spacetime. We explore ways to empirically distinguish the resulting "geometric" qubits,
|0′〉 and |1′〉, from their canonical counterparts.

Keywords: generalised uncertainty relations; nonlocal geometry; quantum information theory;
quantum reference frames; Planck scale; de Sitter scale; dark energy

1. Introduction

The Heisenberg uncertainty principle (HUP) contains the essence of quantum theory.
It can be motivated heuristically by the Heisenberg microscope thought experiment, giving

∆xi ∆pj &
h̄
2

δi
j , (1)

or derived rigorously from the quantum formalism. In the latter it follows from the Schrödinger–

Robertson inequality ∆ψO1 ∆ψO2 ≥ (1/2)| 〈[Ô1, Ô2]〉ψ |, where ∆ψO =
√
〈Ô2〉ψ − 〈Ô〉

2
ψ, plus

the canonical position-momentum commutator,

[x̂i, p̂j] = ih̄δi
j I , (2)

yielding

∆ψxi ∆ψ pj ≥
h̄
2

δi
j . (3)

In this case, the inequality is precise and the heuristic uncertainties, ∆xi and ∆pj, are
replaced by well defined standard deviations, ∆ψxi and ∆ψ pj. The HUP (3) is a fundamental
consequence of wave-particle duality and follows directly from the properties of the Fourier
transform, plus the canonical de Broglie relation p = h̄k.
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In recent years, the Heisenberg microscope argument has been extended to include
the effects of the gravitational attraction between the massive particle and the probing
photon [1,2]. This motivates the generalised uncertainty principle (GUP),

∆xi &
h̄

2∆pj
δi

j

[
1 + α0

2G
h̄c3 (∆pj)

2
]

, (4)

where α0 ∼ O(1) is a numerical constant of order unity. Conversely, neglecting grav-
itational attraction, but incorporating repulsive effects due to the presence of a back-
ground dark energy density, ρΛ = Λc2/(8πG), where Λ ' 10−56 cm−2 is the cosmological
constant [3], motivates the extended uncertainty principle (EUP). This may be written as

∆pj &
h̄

2∆xi δi
j

[
1 + 2η0Λ(∆xi)2

]
, (5)

where η0 ∼ O(1) is a numerical constant [4–6]. The GUP (4) implies the existence of a
minimum length scale, of the order of the Planck length, whereas the EUP (5) implies a
minimum momentum scale, of the order of the de Sitter momentum ∼ (h̄/c)

√
Λ.

For later convenience, we define the Planck length and mass scales as

lPl =

√
h̄G
c3 ' 10−33 cm , mPl =

√
h̄c
G
' 10−5 g , (6)

and the de Sitter length and mass scales as

ldS =

√
3
Λ
' 1028 cm , mdS =

h̄
c

√
Λ
3
' 10−66 g , (7)

respectively. Incorporating the effects of both gravitational attraction and dark energy
repulsion motivates the extended generalised uncertainty principle (EGUP),

∆xi∆pj &
h̄
2

δi
j

[
1 + α0

2G
h̄c3 (∆pj)

2 + 2η0Λ(∆xi)2
]

. (8)

This implies the existence of both a minimum length, of order lPl, and a minimum
momentum, of order mdSc [4–6].

Various attempts have been made to derive quantum gravity-inspired generalised
uncertainty relations (GURs) from a modified quantum formalism, but traditional models
based on modified commutation relations face severe difficulties [7]. The four most serious
problems are (i) violation of the equivalence principle, (ii) reference frame-dependence of
the minimum length, (iii) violation of Lorentz invariance in the relativistic limit, and (iv) the
inability to construct sensible multiparticle states, known as the soccer ball problem [8,9].

Recently, a new model was proposed, which successfully generates the GUP, EUP
and EGUP, but which solves (or rather, evades) problems (i)–(iv) [10–13]. In this paper,
we extrapolate its consequences for orbital angular momentum and spin, focussing on the
structure of the modified spin-measurement operators, and their associated eigenstates, for
one- and two-particle systems. Our analysis shows that, although the predicted deviations
from canonical quantum statistics remain small, and probably unmeasurable with current
experimental technology, the algebraic and geometric structure of the theory is rich and
highly novel. Furthermore, the theory is immediately relevant for studies of quantum
information, since, although the canonical qubits |0〉 and |1〉 are purely abstract, their most
obvious realisation in real world quantum systems is as spin states, e.g.,

|0〉 = |↑z〉 , |1〉 = |↓z〉 . (9)

We demonstrate that, in the EGUP-compatible spin model derived in [11,13], the
canonical qubits (9) are generalised such that {|0〉, |1〉} → {|0〉, |1〉; |0′〉, |1′〉}, where |0′〉
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and |1′〉 represent spins that are entangled with the background geometry. These "ge-
ometric" qubits are empirically indistinguishable from their canonical counterparts, via
simultaneous measurements of Ŝz and Ŝ2, despite their completely different geometric struc-
ture. Nonetheless, they may in principle be probed by an appropriately subtle measurement
technique, capable of exploiting their entanglement with the background space [11,13].

The structure of this paper is as follows. In Section 2, we review the basic formalism of
the smeared space model, derive the GUP, EUP and EGUP, and introduce GURs for orbital
angular momentum. Analogous GURs for spin measurements are introduced in Section 3
and the algebraic structure of the generalised spin operators is analysed. We first analyse
one-particle states in Section 3.1, before considering two-particle systems in Section 3.2.
Special attention is paid to the generalisation of canonical Bell states, which are dealt with in
Section 3.3. In Section 4, we derive the explicit form of the four-dimensional representation
of SU(2) that acts on the composite state describing matter–geometry interactions. Section 5
contains a summary of our conclusions and a discussion of prospects for future work. For
convenience, a brief recap of the treatment of one- and two-particle systems in canonical
quantum mechanics is given in Appendix A. This contains only well known textbook
material, which is included as a reference, to which the reader can compare the generalised
theory presented in Section 3. For this reason, the structures of Sections 3.1–3.3 and
Appendixes A.1–A.3 are analogous, so that the relevant results may be easily contrasted.
In order to distinguish between analogous operators in the canonical and smeared space
theories, we use lower case letters to denote former and upper case letters for the latter,
e.g., Ŝz and Ŝ2, as opposed to ŝz and ŝ2. Due to their relatively large size, the explicit forms
of Ŝz, Ŝ2 and Ŝ± for the smeared two-particle state are given in Appendix B.

2. The Smeared Space Model of Nonlocal Geometry

The model proposed in [10,11] is based on the modified de Broglie relation

p′ = h̄k + β(k′ − k) , (10)

where β is a very small constant of action that is determined by the ratio of the Planck and
dark energy densities,

β = 2h̄
√

ρΛ

ρPl
' h̄× 10−61 . (11)

Here, p′ represents the observable momentum of a quantum particle propagating
in a quantum background space and the non-canonical term in Equation (10) describes
additional momentum ‘kicks’ due to fluctuations of the geometry.

In this model, p = h̄k and p′−p = β(k′−k) are independent degrees of freedom and
the non-spin part of the quantum state of the composite system describing matter-geometry
interactions can be written as

|Ψ〉 = |ψ〉 ⊗ |g〉 , (12)

where |ψ〉 =
∫

ψ(x)|x〉d3x =
∫

ψ̃h̄(p)|p〉d3p. The additional ket |g〉 is given by

|g〉 =
∫

g(x′ − x)|x′ − x〉d3x′ =
∫

g̃β(p′ − p)|p′ − p〉d3p′ , (13)

where 〈g|g〉 =
∫
|g(x′ − x)|2d3x′ =

∫
|g̃β(p′ − p)|2d3p′ = 1. This describes the quantum

state of the background geometry, or, more specifically, the influence that quantum fluc-
tuations of the background geometry have on the canonical quantum particle described
by |ψ〉.

For simplicity, g(x′ − x) can be thought of as a Gaussian distribution with standard
deviation σg ' lPl. Its momentum space representation g̃β(p′ − p) is given by the Fourier
transform, where the transformation is performed at the scale β rather than h̄ [11,13]. This
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yields the standard deviation σ̃g = β/(2σg) ' mdSc. In this way, the model based on
Equation (10) represents a form a nonlocal geometry in which points in the canonical
quantum phase space become smeared over finite-width volumes of order ∼ l3

Pl and
∼ (mdSc)3, in each representation of the theory [13]. The smearing functions g(x′ − x) and
g̃β(p′ − p) are interpreted as quantum probability amplitudes for the coherent transitions
x↔ x′ and p↔ p′, respectively, and the primed variables represent the possible measured
values of the particle’s position and momentum, incorporating its interaction with the
fluctuating quantum background.

Since an individual measurement of x′ cannot determine which of the canonical phase
space point(s) x underwent the transition x ↔ x′, we must sum over all possible values,
and analogous reasoning holds in the momentum space picture. For Gaussian smearing,
x′ = x and p′ = p are the most probable measurement outcomes, but fluctuations within
one standard deviation of |g(x′ − x)|2 or |g̃β(p′ − p)|2 remain relatively likely [10–13].
The associated probability distributions take the form of convolutions, i.e., dP(x′|Ψ) =
(|ψ|2 ∗ |g|2)(x′)d3x′ and dP(p′|Ψ̃) = (|ψ̃h̄|2 ∗ |g̃β|2)(p′)d3p′, where

Ψ(x, x′) = ψ(x) g(x′ − x) , (14)

Ψ̃(p, p′) = ψ̃h̄(p) g̃β(p′ − p) , (15)

are the position space and momentum space wave functions of the interacting matter-plus-
geometry states, respectively. These give rise to GURs of the form

∆Ψx′i =
√
(∆ψx′i)2 + σ2

g , (16)

∆Ψ p′j =
√
(∆ψ p′j)

2 + σ̃2
g . (17)

(Note the difference between Ψ = ψg and ψ and in the subscripts.)
Using σg ' lPl and σ̃g ' mdSc, substituting for ∆ψx′i and ∆ψ p′j from the HUP (3), and

Taylor expanding the right-hand sides of Equations (16) and (17) to first order yields the
GUP (4) and EUP (5), respectively, but with the heuristic uncertainties replaced by the
standard deviations of well defined probability distributions.

The smeared space GURs can also be rewritten in terms of the generalised position
and momentum operators,

X̂i = Q̂i + Q̂′i = (q̂i ⊗ I) + (I⊗ q̂′i) , (18)

P̂j = Π̂j + Π̂′j = (π̂j ⊗ I) + (I⊗ π̂′j) , (19)

where

q̂i =
∫

qi |q〉 〈q|d3q , q̂′i =
∫

q′i |q′〉 〈q′|d3q′ , (20)

π̂j =
∫

πj |π〉 〈π|d3ß , π̂′j =
∫

π′j |π′〉 〈π′|d3ß′ , (21)

and we have defined the new variables

q = x , q′ = x′ − x , (X = q + q′ = x′) , (22)

π = p , π′ = p′ − p , (P = π + π′ = p′) . (23)
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Equations (16) and (17) then take the form

∆ΨXi =
√
(∆ΨQi)2 + (∆ΨQ′i)2 , (24)

∆ΨPj =
√
(∆ΨΠj)2 + (∆ΨΠ′j)

2 , (25)

since ∆ΨQi = ∆ψx′i, ∆ΨQ′i = ∆gx′i ≡ σg and ∆ΨΠj = ∆ψ p′j, ∆ΨΠ′j = ∆g p′j ≡ σ̃g, yielding

∆ΨXi = ∆Ψx′i and ∆ΨPj = ∆Ψ p′j, respectively [11,13]. Combining Equations (24) and (25),
Taylor expanding to first order and ignoring subdominant terms, and again using σg ' lPl
and σ̃g ' mdSc, yields

∆ΨXi ∆ΨPj &
h̄
2

δi
j [1 + α(∆ΨXi)2 + η(∆ΨPi)

2] , (26)

with α = 4G/(h̄c3) and η = Λ/6. This is the EGUP (8), expressed in terms of the observable
uncertainties ∆ΨXi and ∆ΨPj, which are derived from the smeared-space joint probability
distribution |Ψ|2.

To obtain Equations (24) and (25), directly from Equations (18) and (19), we made use
of the fact that covΨ(Q̂i, Q̂′i) = covΨ(Q̂′i, Q̂i) = 0 and covΨ(Π̂j, Π̂′j) = covΨ(Π̂′j, Π̂j) = 0,
where cov(X, Y) = 〈XY〉 − 〈X〉 〈Y〉 is the covariance of the random variables X and Y. The
operator pairs Q̂i, Q̂′i and Π̂j, Π̂′j are uncorrelated because they act on disjoint subspaces
of the total state |Ψ〉 (12). In this basis, all unprimed operators commute with all primed
operators, and the subcomponents of X̂i and P̂j, satisfy the algebra

[Q̂i, Π̂j] = ih̄δi
j I , [Q̂′i, Π̂′j] = iβδi

j I , (27a)

[Q̂i, Π̂′j] = [Q̂′i, Π̂j] = 0 , (27b)

[Q̂i, Q̂j] = [Q̂′i, Q̂′j] = 0 , (27c)

[Π̂i, Π̂j] = [Π̂′i, Π̂′j] = 0 , (27d)

[Q̂i, Q̂′j] = 0 , [Π̂i, Π̂′j] = 0 , (27e)

whose individual relations combine to give

[X̂i, P̂j] = i(h̄ + β)δi
j I , (28a)

[X̂i, X̂ j] = 0 , [P̂i, P̂j] = 0 . (28b)

Together, (27a) and (27b) yield Equation (28a), while (27c)–(27e) yield Equation (28b).
The commutation relations (28a) and (28b) are simply a rescaled version of the canon-

ical Heisenberg algebra, with h̄ → h̄ + β, but the most general uncertainty relation for
smeared position and momentum measurements is not of the canonical Heisenberg type.
It takes the form

∆ΨXi ∆ΨPj ≥ . . . ≥
(

h̄ + β

2

)
δi

j I , (29)
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where the dots in the middle represent a sum of terms that is generically greater than or
equal to the Schrödinger–Robertson bound on the far right-hand side. The GUP, EUP and
EGUP all arise as different limits of this general relation [10–13].

In other words, the simplicity of Equation (28a) is deceptive. At first sight, one may
be forgiven for thinking that the presence of (h̄ + β) rather than h̄ represents a rescaling of
our measurement units, without introducing new physics, but the subalgebra structure
(27a)–(27e) shows that this is not the case. Ultimately, it is this subalgebra that is responsible
for the rescaling h̄→ h̄+ β and the smeared-space GUR (29), from which the GUP, EUP and
EGUP can be recovered [10,13]. This may be seen, explicitly, by considering the position
space representation of the wave mechanics picture, in which

X̂i = xi + (x′i − xi) = x′i . (30)

The operator d̂j = i(h̄ + β)−1P̂j then generates infinitesimal shifts in the x′j direction.
However, it is important to note that P̂j 6= −i(h̄ + β)∂/∂x′j. Instead, the correct expression
for P̂j is

P̂j = −ih̄
∂

∂xj

∣∣∣
x′−x=const.

− iβ
∂

∂(x′j − xj)

∣∣∣
x=const.

. (31)

The corresponding shift-isometry generator is parameterised in terms of the dimen-
sionless ratio,

δ = h̄/β ' 10−61 , (32)

as

d̂j(x′) =
1

1 + δ
d̂j(x) +

δ

1 + δ
d̂j(x′ − x) . (33)

We then have exp[i a.P̂/(h̄ + β)]x′ = (x + a/(1 + δ)) + (x′ − x + δa/(1 + δ)) = x′ + a.
The key point is that each sub-shift is associated with a different probability amplitude. The
first is associated with ψ(x), whereas the second represents an additional shift, induced by
fluctuations of the background, and is associated with g(x′ − x). The composite probability
amplitude for both shifts is Ψ(x, x′) (14).

In the remainder of this section, we show that similar considerations hold for smeared
angular momentum measurements. The canonical so(3) Lie algebra is rescaled such that
h̄→ h̄ + β, but this does not arise from a change of units. Instead, it is the consequence of a
complex subalgebra structure that also generates GURs.

The smeared space angular momentum operators are defined as

L̂i = εij
kX̂ j P̂k , (34)

where εij
k is the Levi–Civita symbol and X̂ j, P̂k are given by Equations (18) and (19),

respectively. In terms of the subcomponents
{

Q̂i, Q̂′i, Π̂j, Π̂′j
}

these may be decomposed as

L̂i = L̂i + L̂′i + L̂i , (35)

where

L̂i = εij
kQ̂jΠ̂k , L̂′i = εij

kQ̂′jΠ̂′k , (36a)

L̂i = εij
k(Q̂′jΠ̂k + Q̂jΠ̂′k) . (36b)
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The angular momentum subcomponents
{
L̂i, L̂′i, L̂i

}
satisfy the subalgebra

[L̂i, L̂j] = ih̄ εij
kL̂k , [L̂′i, L̂′j] = iβ εij

kL̂′k , (37a)

[L̂i, L̂′j] = [L̂′i, L̂j] = 0 , (37b)

[L̂i, L̂j]− [L̂j, L̂i] = ih̄ εij
kL̂k , (37c)

[L̂′i, L̂j]− [L̂′j, L̂i] = iβ εij
kL̂k , (37d)

[L̂i, L̂j] = iβ εij
kL̂k + ih̄ εij

mL̂′m , (37e)

whose individual relations combine to give

[L̂i, L̂j] = i(h̄ + β)εij
k L̂k , (38a)

[L̂i, L̂2] = 0 . (38b)

In canonical quantum mechanics, the angular momentum commutation relations form
a representation of the so(3) Lie algebra, scaled by h̄, yielding uncertainty relations of the
form ∆ψli∆ψlj ≥ (h̄/2) |εij

k 〈l̂k〉ψ |. This is because the angular momentum operators are

directly identified with the rotation generators, via l̂i = −ih̄ R̂i, where
{

R̂i
}3

i=1 perform

rotations on the space R3, spanned by the coordinates
{

xi}3
i=1. In the smeared space

theory, the identification is more subtle. The subcomponents L̂i = −ih̄ R̂i and L̂′i = −iβ R̂′i
generate rotations on the subspaces spanned by

{
qi}3

i=1 and
{

q′i
}3

i=1, respectively, but
the L̂i subcomponents do not represent rotations in either domain. The L̂i represent
the angular momenta of a material particle, as in the canonical theory, whereas the L̂′i
represent the components of angular momentum carried by the fluctuating background, in
which the particle propagates. The L̂i operators determine how the two interact and the
associated dimensionless generators are R̂i = i L̂i/(h̄ + β). The sum of terms R̂i(q + q′) :=
(1 + δ)−1[R̂i(q) + δR̂′i(q

′)] + R̂i(q, q′) then generates rotations on the space spanned by the

coordinates
{

x′i
}3

i=1 =
{

qi + q′i
}3

i=1. We recall that, in the smeared space model, these
represent the only observable values of the particle’s position.

The net result is the rescaled Lie algebra, Equation (38a), but it is important to realise
that

{
L̂i
}3

i=1 in the smeared space model represent more than just rotations in classical
Euclidean space. Instead, they represent rotations in the space spanned by all possible
measurement outcomes, x′ = q + q′. This is isomorphic to the classical space, R3, but the
total phase space of the nonlocal geometry is R3 ×R3. In [10], this was interpreted as a
superposition of Euclidean geometries and the smeared phase space “points” described
by |g〉 were interpreted as quantum reference frames, i.e., as superpositions of classical
reference frames [14]. This interpretation provides a physical basis for the GUR (29) and
the corresponding uncertainty relations for angular momentum take the form

∆ΨLi ∆ΨLj ≥ · · · ≥
(

h̄ + β

2

)
|εij

k 〈L̂k〉Ψ | , (39)

where the sum of terms in the middle is determined by the relation

(∆ΨLi)
2 = (∆ΨLi)

2 + (∆ΨL′i)2 + (∆ΨLi)
2

+ cov(L̂i, L̂i) + cov(L̂i, L̂i)

+ cov(L̂′i, L̂i) + cov(L̂i, L̂′i) . (40)
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3. Spin in Smeared-Space Quantum Mechanics

Established physical theories are based on two types of symmetries. The first are
“external” symmetries, that is, symmetries of the spacetime background in which the matter
fields are defined, and the second are “internal” symmetries of the matter Lagrangian,
otherwise known as gauge symmetries [15]. In canonical quantum mechanics, the angular
momentum algebra emerges as a consequence of the rotational invariance of the physical
space in which the quantum particle “lives”. Since the space is classical, this is identical
to the target space spanned by all possible measured values of the particle’s position. By
contrast, quantum mechanical spin is a consequence of SU(2) gauge invariance, where
SU(2) is the double cover of the classical SO(3) rotation group.

In Section 2, we argued that the canonical shift and rotation isometries must be
modified, in a subtle way, when the geometry ceases to be classical and instead becomes
nonlocal, in the sense defined by Equation (12). The smearing of spatial points leads to a
doubling of the canonical phase space dimensions, R3 7→ R3 ×R3 ∼= R6. In this scenario,
the target space of possible measured values, x′, is isomorphic, but no longer identical to the
classical physical space, R3. It is nontrivially embedded in the total phase space, R3 ×R3,
whose individual subspaces are spanned by q = x and q′ = x′ − x, respectively. At the
algebraic level, this is expressed by constructing novel representations of the translation
and rotation generators, d̂j(x′) and R̂i(x′), that act nontrivially on both the first and second
subspaces of the extended phase space. We claimed that this split defines the “smearing” of
classical symmetries, which is correctly described by the subalgebra structures (27a)–(27e)
and (37a)–(37e). These give rise to GURs, but preserve the underlying group structure
of canonical quantum mechanics. It is then reasonable to ask, if the representations of
spacetime symmetries must be modified to account for Planck-scale physics, is this possible
without a concomitant "smearing" of gauge symmetries?

There are strong arguments on both sides. On the one hand, we may argue that,
as internal symmetries, there is no reason why gauge invariances of any kind should be
affected by the nonlocality of the background space. Preserving the action of the canonical
SU(2) representation on the composite state describing matter-geometry interactions, i.e.,
setting ŝi = (h̄/2) σi ⊗ I so that [ŝi, ŝj] = ih̄εij

k ŝk, while smearing the SO(3) representation
according to Equations (37e)–(37e) and (38a) and (38b), then results in a clear break between
the algebraic structures of internal and external angular momentum. Furthermore, this
break has potentially observable consequences, since smeared symmetry algebras give rise
to GURs, whereas unsmeared ones do not.

On the other hand, we may ask if it is possible to construct an alternative representation
of the SU(2) generators, which also act nontrivially on both subspaces of the composite
state describing matter-geometry interactions, and which describes faithfully the behaviour
of quantum mechanical spin in the presence of a nonlocal background. We expect the
generators of this representation to be split into three subcomponents, by analogy with
Equation (35). The first component should act nontrivially only on the first spin subspace
of the composite state |Ψ〉spin, which is associated with canonical quantum matter, whereas
the second subcomponent should act nontrivially only on the second subspace, which is
associated with the spin sector of the background. The third subcomponent should act
nontrivially on both subspaces and all three subcomponents should have constant matrix
elements, as required for generators of internal symmetries.

In Section 3.1, we construct such a generalised representation and show how it gives
rise to spin GURs that are analogous to Equations (39) and (40) for one-particle states. Note,
however, that we do not require |Ψ〉spin to be separable in any basis,

|Ψ〉spin 6= |ψ〉spin ⊗ |g〉spin (41)

since no physical condition compels this. As we will see, this is key to the emergence
of new spin physics in the smeared space model. Following the analysis of one-particle
states, two-particle states are dealt with in Section 3.2, and Bell-type states are explicitly
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considered in Section 3.3.

3.1. One-Particle Systems in Smeared Space

We construct the generalised spin-measurement operators, for a single particle propa-
gating in the smeared background, as

Ŝi = Ŝi + Ŝ ′i + Ŝi , (42)

where

Ŝi =
h̄
2

σi ⊗ I , Ŝ ′i =
β

2
I⊗ σ′i , (43a)

Ŝi =

√
h̄β

2
εi

jkσj ⊗ σ′k . (43b)

It is straightforward to show that, if both σi and σ′i represent spin-1/2 Pauli matrices,
the subcomponents satisfy the algebras

[Ŝi, Ŝj] = ih̄ εij
kŜk , [Ŝ ′i , Ŝ ′j ] = iβ εij

kŜ ′k , (44a)

[Ŝi, Ŝ ′j ] = [Ŝj, Ŝ ′i ] = 0 , (44b)

[Ŝi, Ŝj]− [Ŝj, Ŝi] = ih̄ εij
kŜk , (44c)

[Ŝ ′i , Ŝj]− [Ŝ ′j , Ŝi] = iβ εij
kŜk , (44d)

[Ŝi, Ŝj] = iβ εij
kŜk + ih̄ εij

mŜ ′m , (44e)

and {
Ŝi, Ŝj

}
=

h̄2

2
δijI ,

{
Ŝ ′i , Ŝ ′j

}
=

β2

2
δijI , (45a){

Ŝi, Ŝj

}
+
{
Ŝj, Ŝi

}
= 0 , (45b){

Ŝ ′i , Ŝj

}
+
{
Ŝ ′j , Ŝi

}
= 0 , (45c){

Ŝi, Ŝj

}
= h̄β δijI−

{
Ŝi, Ŝ ′j

}
−
{
Ŝj, Ŝ ′i

}
, (45d)

where I denotes the four-dimensional identity matrix and { . , . } is the anticommutator.
Choosing s = s′ = 1/2, or, more specifically, s = h̄/2 and s′ = β/2, corresponds to the
presence of canonical spin-1/2 fermions (e.g., electrons) in the smeared background [11,13].
(Throughout the rest of this paper, we restrict ourselves to this scenario, which is of greatest
physical interest. Higher-spin structures will be analysed, in depth, in a later publication).

Equations (44a)–(44e) then combine to give the rescaled Lie algebra

[Ŝi, Ŝj] = i(h̄ + β)εij
kŜk , (46a)

[Ŝi, Ŝ2] = 0 , (46b)

and Equations (45a)–(45d) combine to give the rescaled Clifford algebra

{
Ŝi, Ŝj

}
=

(h̄ + β)2

2
δij I . (47)
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Written explicitly, the generalised spin operators take the form

Ŝx =


0

(β+i
√

h̄β)
2

(h̄−i
√

h̄β)
2 0

(β−i
√

h̄β)
2 0 0

(h̄+i
√

h̄β)
2

(h̄+i
√

h̄β)
2 0 0

(β−i
√

h̄β)
2

0
(h̄−i
√

h̄β)
2

(β+i
√

h̄β)
2 0

 ,

Ŝy =


0 − (iβ−

√
h̄β)

2 − (ih̄+
√

h̄β)
2 0

(iβ+
√

h̄β)
2 0 0 − (ih̄−

√
h̄β)

2
(ih̄−
√

h̄β)
2 0 0 − (iβ+

√
h̄β)

2

0
(ih̄+
√

h̄β)
2

(iβ−
√

h̄β)
2 0

 ,

Ŝz =


(h̄+β)

2 0 0 0
0 (h̄−β)

2 i
√

h̄β 0
0 −i

√
h̄β − (h̄−β)

2 0
0 0 0 − (h̄+β)

2

 , (48)

and the spin-squared operator is

Ŝ2 =
3

∑
i=1

Ŝ2
i =

3(h̄ + β)2

4
I . (49)

The normalized eigenvectors of Ŝz are

||↑z〉〉 = |↑z〉1 |↑z〉2 = (1, 0, 0, 0) , (50a)

||↓z〉〉 = |↓z〉1 |↓z〉2 = (0, 0, 0, 1) , (50b)

and

||↑′z〉〉 =
1√

1 + δ
(|↑z〉1 |↓z〉2 − i

√
δ |↓z〉1 |↑z〉2)

=
1√

1 + δ
(0, 1,−i

√
δ, 0) , (51a)

||↓′z〉〉 =
1√

1 + δ
(|↓z〉1 |↑z〉2 − i

√
δ |↑z〉1 |↓z〉2)

=
1√

1 + δ
(0,−i

√
δ, 1, 0) , (51b)

where we have again used the dimensionless parameter δ = β/h̄ ' 10−61 (32). The double
ket notation ||. . .〉〉, introduced in Equations (50a), (50b), (51a) and (51b), is intended to
emphasise that spin ‘up’ and spin ‘down’ states in the smeared space theory are, in fact,
states in the tensor product Hilbert spaceH = H1 ⊗H2. Throughout the rest of this work
we use double kets to distinguish smeared spin states from their canonical counterparts.

A few comments are in order. First, we note that, despite their radically different
structures, the eigenvectors ||↑z〉〉 and ||↓z〉〉 are empirically indistinguishable from the
eigenvectors ||↑′z〉〉 and ||↓′z〉〉, respectively, via simultaneous measurements of Ŝz and
Ŝ2. For this reason, notation of the form ||Ŝz = . . . , Ŝ2 = . . .〉〉 is not useful to distinguish
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between eigenstates with degenerate eigenvalues. This also motivates the introduction of
new notation for the “canonical” and “geometric” qubit states, namely

||0〉〉 = ||↑z〉〉 , ||1〉〉 = ||↓z〉〉 , (52a)

||0′〉〉 = ||↑′z〉〉 , ||1′〉〉 = ||↓′z〉〉 , (52b)

as promised in the Introduction. In contrast to canonical quantum mechanics, the measure-
ment of a spin “up” state in smeared space is not sufficient to collapse the wave vector into
a single eigenstate of Ŝz. Instead, this measurement yields a two-parameter family of states,

||Ŝz = +(h̄ + β)/2, Ŝ2 = 3(h̄ + β)2/4〉〉 = αz ||↑z〉〉+ α′z ||↑′z〉〉 , (53)

where |αz|2 + |α′z|2 = 1. Similarly, a spin "down" measurement yields

||Ŝz = −(h̄ + β)/2, Ŝ2 = 3(h̄ + β)2/4〉〉 = α̃z ||↓z〉〉+ α̃′z ||↓′z〉〉 , (54)

where |α̃z|2 + |α̃′z|2 = 1. The most general pre-measurement state is given by

||Ψ〉〉spin = αz ||↑z〉〉+ α′z ||↑′z〉〉+ α̃z ||↓z〉〉+ α̃′z ||↓′z〉〉 , (55)

where the coefficients are instead subject to the constraint |αz|2 + |α′z|2 + |α̃z|2 + |α̃′z|2 = 1.
We refer to the qubits (52a) as “canonical” because they are simple products of the true
canonical qubits, |↑z〉 and |↓z〉, and to (52b) as “geometric” because they are entangled
with the quantum state of the background geometry. However, as we will now show, all
four eigenstates of both Ŝy and Ŝx are entangled states. In this sense, there are only two
canonical-type qubits in this model.

The normalised eigenstates of Ŝy and Ŝx may be written as

||↑y〉〉 =
1√

2
√

1 + δ
(|↑y〉1 |↑y〉2 − i

√
δ |↓y〉1 |↑y〉2 + (1− i

√
δ) |↑y〉1 |↓y〉2)

=
1√

2
√

1 + δ
(−1 + i

√
δ,−
√

δ,−i, 0) , (56a)

||↓y〉〉 =
1√

2
√

1 + δ
(|↓y〉1 |↓y〉2 − i

√
δ |↑y〉1 |↓y〉2 + (1− i

√
δ) |↓y〉1 |↑y〉2)

=
1√

2
√

1 + δ
(1− i

√
δ,−
√

δ,−i, 0) , (56b)

||↑′y〉〉 =
1√

2
√

1 + δ
(|↑y〉1 |↓y〉2 − i

√
δ |↓y〉1 |↑y〉2 − (1 + i

√
δ) |↑y〉1 |↑y〉2)

=
1√

2
√

1 + δ
(−i
√

δ,−i +
√

δ, 0, 1) , (57a)

||↓′y〉〉 =
1√

2
√

1 + δ
(|↓y〉1 |↑y〉2 − i

√
δ |↑y〉1 |↓y〉2 − (1 + i

√
δ) |↓y〉1 |↓y〉2)

=
1√

2
√

1 + δ
(−i
√

δ, i−
√

δ, 0, 1) , (57b)
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and

||↑x〉〉 =
1√

2
√

1 + δ
(|↑x〉1 |↓x〉2 − i

√
δ |↓x〉1 |↑x〉2 + (1− i

√
δ) |↑x〉1 |↑x〉2)

=
1√

2
√

1 + δ
(1− i

√
δ,−i
√

δ, 1, 0) , (58a)

||↓x〉〉 =
1√

2
√

1 + δ
(|↓x〉1 |↑x〉2 − i

√
δ |↑x〉1 |↓x〉2 + (1− i

√
δ) |↓x〉1 |↓x〉2)

=
1√

2
√

1 + δ
(1− i

√
δ, i
√

δ,−1, 0) , (58b)

||↑′x〉〉 =
1√

2
√

1 + δ
(|↑x〉1 |↓x〉2 − i

√
δ |↓x〉1 |↑x〉2 − (1 + i

√
δ) |↑x〉1 |↑x〉2)

=
1√

2
√

1 + δ
(−i
√

δ,−1− i
√

δ, 0,−1) , (59a)

||↓′x〉〉 =
1√

2
√

1 + δ
(|↓x〉1 |↑x〉2 − i

√
δ |↑x〉1 |↓x〉2 − (1 + i

√
δ) |↓x〉1 |↓x〉2)

=
1√

2
√

1 + δ
(−i
√

δ, 1 + i
√

δ, 0,−1) , (59b)

respectively. However, most importantly, they can also be rewritten in terms of the z-spin
eigenstates as

||↑y〉〉 =
1√
2

[
−1 + i

√
δ√

1 + δ
||↑z〉〉 − i ||↓′z〉〉

]
, (60a)

||↓y〉〉 =
1√
2

[
−−1 + i

√
δ√

1 + δ
||↑z〉〉 − i ||↓′z〉〉

]
, (60b)

||↑′y〉〉 =
1√

2
√

1 + δ

[
−i
√

δ ||↑z〉〉+ ||↓z〉〉 −
i−
√

δ√
1 + δ

(
||↑′z〉〉+ i

√
δ ||↓′z〉〉

)]
, (61a)

||↓′y〉〉 =
1√

2
√

1 + δ

[
−i
√

δ ||↑z〉〉+ ||↓z〉〉+
i−
√

δ√
1 + δ

(
||↑′z〉〉+ i

√
δ ||↓′z〉〉

)]
, (61b)

and

||↑x〉〉 =
1√
2

[
1− i
√

δ√
1 + δ

||↑z〉〉+ ||↓′z〉〉
]

, (62a)

||↓x〉〉 =
1√
2

[
1− i
√

δ√
1 + δ

||↑z〉〉 − ||↓′z〉〉
]

, (62b)

||↑′x〉〉 =
1√

2
√

1 + δ

[
−i
√

δ ||↑z〉〉 − ||↓z〉〉 −
1 + i
√

δ√
1 + δ

(
||↑′z〉〉+ i

√
δ ||↓′z〉〉

)]
, (63a)
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||↓′x〉〉 =
1√

2
√

1 + δ

[
−i
√

δ ||↑z〉〉 − ||↓z〉〉+
1 + i
√

δ√
1 + δ

(
||↑′z〉〉+ i

√
δ ||↓′z〉〉

)]
. (63b)

Equations (60) and (61) should be compared with the canonical expressions (A7),
whereas (62) and (63) should be compared with (A8).

We can now consider successive spin measurements along different axes, in the
smeared space theory, and compare them with their counterparts in canonical quantum
mechanics. To this end, we define the general post-measurement states as

||Ŝi = +(h̄ + β)/2, Ŝ2 = 3(h̄ + β)2/4〉〉 = αi ||↑i〉〉+ α′i ||↑′i〉〉 , (64)

where |αi|2 + |α′i|2 = 1, and

||Ŝi = −(h̄ + β)/2, Ŝ2 = 3(h̄ + β)2/4〉〉 = α̃i ||↓i〉〉+ α̃′i ||↓′i〉〉 , (65)

where |α̃i|2 + |α̃′i|2 = 1. We then define P(↑i | ↑j) as the probability that, if the first
measurement along the i-axis yields spin “up”, then the second measurement along the
j-axis will also yield spin “up”. The probabilities P(↑i | ↓j), P(↓i | ↑j) and P(↓i | ↓j) are
defined in like manner. Using Equations (60)–(63), it is straightforward to verify that

P(↑i | ↑j) = P(↑i | ↓j) = 1/2 ,

P(↓i | ↑j) = P(↓i | ↓j) = 1/2 , (66)

for all i 6= j.
Despite the very different mathematical structures of the generalised spin operators,

their eigenstates remain indistinguishable from the canonical spin eigenstates, via simul-
taneous measurements of Ŝi and Ŝ2, except for a very small rescaling of the measured
spin values such that ±h̄/2 → ±(h̄ + β)/2. Nonetheless, the model is, in principle, dis-
tinguishable from canonical quantum mechanics, even in the spin sector, via the presence
of spin GURs. These are analogous to the GURs for smeared orbital angular momentum
measurements, i.e.,

∆ΨSi ∆ΨSj ≥ · · · ≥
(

h̄ + β

2

)
|εij

k 〈Ŝk〉Ψ | , (67)

where the sum of terms in the middle of the two inequalities is determined by the relation

(∆ΨSi)
2 = (∆ΨSi)

2 + (∆ΨS ′i )2 + (∆ΨSi)
2

+ cov(Ŝi, Ŝi) + cov(Ŝi, Ŝi)

+ cov(Ŝ ′i , Ŝi) + cov(Ŝi, Ŝ ′i ) . (68)

We now introduce the smeared space creation and annihilation operators,

Ŝ± = Ŝx ± iŜy , (69)

which satisfy the algebra

[Ŝz, Ŝ±] = ±(h̄ + β) Ŝ± , [Ŝ+, Ŝ−] = 2(h̄ + β) Ŝz . (70)
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Written explicitly, Ŝ± take the form

Ŝ+ =


0 β + i

√
h̄β h̄− i

√
h̄β 0

0 0 0 h̄ + i
√

h̄β

0 0 0 β− i
√

h̄β
0 0 0 0

 ,

Ŝ− =


0 0 0 0

β− i
√

h̄β 0 0 0
h̄ + i

√
h̄β 0 0 0

0 h̄− i
√

h̄β β + i
√

h̄β 0

 . (71)

The eigenvectors of Ŝ+ are two copies of the null vector, ||null〉〉 = (0, 0, 0, 0), plus
the z-spin up eigenstates ||↑z〉〉 = (1, 0, 0, 0) (50a) and ||↑′z〉〉 = (1 + δ)−1/2(0, 1,−i

√
δ, 0)

(51a), whereas the eigenvectors of Ŝ− are two copies of the null vector, plus the z-spin
down eigenstates ||↓z〉〉 = (0, 0, 0, 1) (50b) and ||↓′z〉〉 = (1 + δ)−1/2(0,−i

√
δ, 1, 0) (51b).

For each operator, all four eigenvectors correspond to the eigenvalue 0. Hence, Ŝ± are
analogous to their canonical counterparts (A12), but each annihilates two of the four spin
eigenstates of Ŝz.

The generalised creation and annihilation operators perform spin flips according to:

Ŝ− ||↑z〉〉 =
√

1 + δ (h̄ + i
√

h̄β) ||↓′z〉〉 ,

Ŝ− ||↑′z〉〉 =
√

1 + δ (h̄− i
√

h̄β) ||↓z〉〉 , (72a)

Ŝ+ ||↓z〉〉 =
√

1 + δ (h̄ + i
√

h̄β) ||↑′z〉〉 ,

Ŝ+ ||↓′z〉〉 =
√

1 + δ (h̄− i
√

h̄β) ||↑z〉〉 . (72b)

These may be compared with Equations (A13) in the canonical theory. It is interesting
to note that Ŝ± flip unentangled states to entangled states with opposite spin, and vice
versa, and that the corresponding dimensionful values are complex conjugates of one
another.

Finally, before concluding this section, we note that the generalised qubits
{||↑z〉〉 , ||↓z〉〉 ; ||↑′z〉〉 , ||↓′z〉〉} satisfy the braket relations

〈〈↑i || ↑i〉〉 = 1 , 〈〈↑i || ↓i〉〉 = 0 ,

〈〈↓i || ↑i〉〉 = 0 , 〈〈↓i || ↓i〉〉 = 1 , (73a)

〈〈↑′i || ↑′i〉〉 = 1 , 〈〈↑′i || ↓′i〉〉 = 0 ,

〈〈↓′i || ↑′i〉〉 = 0 , 〈〈↓′i || ↓′i〉〉 = 1 , (73b)

〈〈↑i || ↑′i〉〉 = 0 , 〈〈↑i || ↓′i〉〉 = 0 ,

〈〈↓i || ↑′i〉〉 = 0 , 〈〈↓i || ↓′i〉〉 = 0 . (73c)

These may be compared with Equation (A14). A key point is that the primed and
unprimed eigenvectors are orthogonal in the tensor product Hilbert space,H1 ⊗H2, even
when both represent either spin “up” or spin “down” states, according to their measurable
eigenvalues. This permits expansions of the form (64) and (65).

3.2. Two-Particle Systems in Smeared Space

In order to construct the generalised spin operators for two-particle states, we must
carefully consider the physical meaning of the second spin subspace in the tensor product
space for single particles, i.e., H = H1 ⊗H2, where |ψ〉spin ∈ H1 is the canonical one-
particle state and |g〉spin ∈ H2 determines the influence, on it, of the quantum background
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geometry. If |g〉spin is interpreted literally, that is, as the physical spin state of the back-
ground, then the correct generalisation to two particles, labelled A and B, takes the form
H1 ⊗H2 → HA1 ⊗HB1 ⊗H2.

However, this is at odds with the treatment of the non-spin part of the multiparticle
wave function presented in [10]. In this work, N-particle states were constructed by
taking the canonical variables {qA, qB, . . . qN} = {xA, xB, . . . xN} and adding to them the
“geometric” degrees of freedom

{
q′A, q′B, . . . q′N

}
=
{

x′A − xA, x′B − xB, . . . x′N − xN
}

, by
analogy with the one-particle case, Equation (22). In this interpretation, |g〉 ∈ HA2 ⊗
HB2 · · · ⊗HN2 does not represent the quantum state of the background per se, but, instead,
the ability of the nonlocal geometry to influence any number of particles that may be
propagating within it. It is therefore reasonable that the form of |g〉, and the number of
subspaces in the Hilbert space to which it belongs, depend on the number of degrees of
freedom in the matter sector, i.e., on the number of particles. Extending this interpretation
to the spin sector, the spin Hilbert space is expanded such thatH1⊗H2 → (HA1⊗HA2)⊗
(HB1 ⊗HB2) · · · ⊗ (HN1 ⊗HN2) for an N-particle state.

The two-particle spin operators for the smeared space theory are then constructed as

Ŝ(A)
i = (S (A)

i + S ′(A)
i + S(A)

i )⊗ IB , Ŝ(B)i = IA ⊗ (S (B)i + S ′(B)i + S(B)i ) , (74)

where IA = (IA1 ⊗ IA2) and IB = (IB1 ⊗ IB2). In this case, each set of operators
{

Ŝ(A)
i

}3

i=1

and
{

Ŝ(B)i

}3

i=1
satisfies the rescaled Lie algebra (46a) and (46b) and the two sets commute,

[Ŝ(A)
i , Ŝ(B)j ] = 0 , (75)

as in canonical quantum mechanics.
The total spin in the ith direction is given by

Ŝi = Ŝ(A)
i + Ŝ(B)i (76)

and each Ŝi has 16 independent eigenvectors. These can be written as 4 groups of 4, namely

{||↑i〉〉A ||↑i〉〉B , ||↑i〉〉A ||↓i〉〉B , ||↓i〉〉A ||↑i〉〉B , ||↓i〉〉A ||↓i〉〉B} , (77a)

{
||↑′i〉〉A ||↑i〉〉B , ||↑′i〉〉A ||↓i〉〉B , ||↓′i〉〉A ||↑i〉〉B , ||↓′i〉〉A ||↓i〉〉B

}
, (77b)

{
||↑i〉〉A ||↑′i〉〉B , ||↑i〉〉A ||↓′i〉〉B , ||↓i〉〉A ||↑′i〉〉B , ||↓i〉〉A ||↓′i〉〉B

}
, (77c)

{
||↑′i〉〉A ||↑

′
i〉〉B , ||↑′i〉〉A ||↓

′
i〉〉B , ||↓′i〉〉A ||↑

′
i〉〉B , ||↓′i〉〉A ||↓

′
i〉〉B

}
. (77d)

The eigenvectors in each group correspond to the eigenvalues {+(h̄ + β), 0, 0,−(h̄ + β)},
respectively, and may be compared with the canonical two-particle eigenstates, Equation (A18),
which correspond to the eigenvalues {+h̄, 0, 0,−h̄}. The total spin-squared operator is

Ŝ2 =
3

∑
i=1

(Ŝ(A)
i + Ŝ(B)i )2 = (ŜA)

2 + 2 ŜA . ŜB + (ŜB)
2 , (78)

where

ŜA/B =
3

∑
i=1

Ŝ(A/B)
i ei(0) , (79)
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and {ei(0)}3
i=1 are the tangent vectors at the coordinate origin.

From here on, we focus on the simultaneous eigenvectors of the total z-spin operator
and the total spin-squared operator, as in the standard analysis of two-particle states in
canonical quantum mechanics. The explicit forms of Ŝz and Ŝ2 for the smeared two-particle
state are given in Appendix B. The 16 independent eigenvectors of Ŝz and Ŝ2, given in
Equations (A28) and (A29), respectively, can be written in 4 groups of 4, i.e.,

||Ψ1a〉〉 = ||↑z〉〉A ||↑z〉〉B
= (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , (80a)

||Ψ1b〉〉 = ||↑′z〉〉A ||↑z〉〉B

=
1√

1 + δ
(0, 0, 0, 0, 1, 0, 0, 0,−i

√
δ, 0, 0, 0, 0, 0, 0, 0) , (80b)

||Ψ1c〉〉 = ||↑z〉〉A ||↑′z〉〉B

=
1√

1 + δ
(0, 1,−i

√
δ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , (80c)

||Ψ1d〉〉 = ||↑′z〉〉A ||↑′z〉〉B

=
1

1 + δ
(0, 0, 0, 0, 0, 1,−i

√
δ, 0, 0,−i

√
δ,−δ, 0, 0, 0, 0, 0) , (80d)

which correspond to the eigenvalues Ŝz = +(h̄ + β), Ŝ2 = 2(h̄ + β)2,

||Ψ2a〉〉 = ||↓z〉〉A ||↓z〉〉B
= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , (81a)

||Ψ2b〉〉 = ||↓′z〉〉A ||↓z〉〉B

=
1√

1 + δ
(0, 0, 0, 0, 0, 0, 0,−i

√
δ, 0, 0, 0, 1, 0, 0, 0, 0) , (81b)

||Ψ2c〉〉 = ||↓z〉〉A ||↓′z〉〉B

=
1√

1 + δ
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−i

√
δ, 1, 0) , (81c)

||Ψ2d〉〉 = ||↓′z〉〉A ||↓′z〉〉B

=
1

1 + δ
(0, 0, 0, 0, 0,−δ,−i

√
δ, 0, 0,−i

√
δ, 1, 0, 0, 0, 0, 0) , (81d)

which correspond to Ŝz = −(h̄ + β), Ŝ2 = 2(h̄ + β)2,

||Ψ3a〉〉 =
1√
2
(||↑′z〉〉A ||↓z〉〉B + ||↓z〉〉A ||↑′z〉〉B)

=
1√

2
√

1 + δ
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,−i

√
δ, 0, 1,−i

√
δ, 0) , (82a)
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||Ψ3b〉〉 =
1√
2
(||↑z〉〉A ||↓′z〉〉B + ||↓′z〉〉A ||↑z〉〉B)

=
1√

2
√

1 + δ
(0,−i

√
δ, 1, 0,−i

√
δ, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) , (82b)

||Ψ3c〉〉 =
1√
2

[
||↑′z〉〉A ||↓′z〉〉B +

(1− i
√

δ)2

1 + δ
||↓z〉〉A ||↑z〉〉B

]

=
1√

2(1 + δ)
(0, 0, 0, 0, 0,−i

√
δ, 1, 0, 0,−δ,−i

√
δ, 0, (1− i

√
δ)2, 0, 0, 0) , (82c)

||Ψ3d〉〉 =
1√
2

[
||↓′z〉〉A ||↑′z〉〉B +

(1− i
√

δ)2

1 + δ
||↑z〉〉A ||↓z〉〉B

]

=
1√

2(1 + δ)
(0, 0, 0, (1− i

√
δ)2, 0,−i

√
δ,−δ, 0, 0, 1,−i

√
δ, 0, 0, 0, 0, 0) , (82d)

which correspond to Ŝz = 0, Ŝ2 = 2(h̄ + β)2, and

||Φa〉〉 =
1√
2
(||↑′z〉〉A ||↓z〉〉B − ||↓z〉〉A ||↑′z〉〉B)

=
1√

2
√

1 + δ
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,−i

√
δ, 0,−1, i

√
δ, 0) , (83a)

||Φb〉〉 =
1√
2
(||↑z〉〉A ||↓′z〉〉B − ||↓′z〉〉A ||↑z〉〉B)

=
1√

2
√

1 + δ
(0,−i

√
δ, 1, 0, i

√
δ, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0) , (83b)

||Φc〉〉 =
1√
2

[
||↑′z〉〉A ||↓′z〉〉B −

(1− i
√

δ)2

1 + δ
||↓z〉〉A ||↑z〉〉B

]

=
1√

2(1 + δ)
(0, 0, 0, 0, 0,−i

√
δ, 1, 0, 0,−δ,−i

√
δ, 0,−(1− i

√
δ)2, 0, 0, 0) , (83c)

||Φd〉〉 =
1√
2

[
||↓′z〉〉A ||↑′z〉〉B −

(1− i
√

δ)2

1 + δ
||↑z〉〉A ||↓z〉〉B

]

=
1√

2(1 + δ)
(0, 0, 0,−(1− i

√
δ)2, 0,−i

√
δ,−δ, 0, 0, 1,−i

√
δ, 0, 0, 0, 0, 0) . (83d)

which correspond to Ŝz = 0, Ŝ2 = 0. These may be compared with the canonical two-
particle eigenstates (A22a)–(A22d). The states ||Ψ1a〉〉 to ||Ψ1d〉〉, ||Ψ2a〉〉 to ||Ψ2d〉〉, ||Ψ3a〉〉
to ||Ψ3b〉〉 and ||Φa〉〉 to ||Φb〉〉 have clear analogues in the canonical theory, but ||Ψ3c〉〉,
||Ψ3d〉〉 and ||Φc〉〉, ||Φd〉〉 have rather different structures.

The physical states that can be prepared via simultaneous measurements of Ŝz and Ŝ2

in the smeared space theory are, therefore,

||Ψ1〉〉 = ||Ŝz = +(h̄ + β), Ŝ2 = 2(h̄ + β)2〉〉
= α1a ||Ψ1a〉〉+ α1b ||Ψ1b〉〉+ α1c ||Ψ1c〉〉+ α1d ||Ψ1d〉〉 , (84a)
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||Ψ2〉〉 = ||Ŝz = −(h̄ + β), Ŝ2 = 2(h̄ + β)2〉〉
= α2a ||Ψ2a〉〉+ α2b ||Ψ2b〉〉+ α2c ||Ψ2c〉〉+ α2d ||Ψ2d〉〉 , (84b)

||Ψ3〉〉 = ||Ŝz = 0, Ŝ2 = 2(h̄ + β)2〉〉
= α3a ||Ψ3a〉〉+ α3b ||Ψ3b〉〉+ α3c ||Ψ3c〉〉+ α3d ||Ψ3d〉〉 , (84c)

||Φ〉〉 = ||Ŝz = 0, Ŝ2 = 0〉〉
= α̃a ||Φa〉〉+ α̃b ||Φb〉〉+ α̃c ||Φc〉〉+ α̃d ||Φd〉〉 , (84d)

where the conditions

∑
k
|αik|2 = 1 , ∑

k
|α̃k|2 = 1 , (85)

hold for all k ∈ {a, b, c, d} and i ∈ {1, 2, 3}.
Finally, we construct the smeared two-particle creation and annihilation operators as

Ŝ± = Ŝx ± i Ŝy = Ŝ(A)
± + Ŝ(B)± . (86)

Together with the total z-spin of the two-particle state, Ŝz = Ŝ(A)
z + Ŝ(B)z , these satisfy

the algebra Equation (70). Their explicit forms are given in Equations (A30) and (A31),
and we note that, unlike their canonical counterparts Equation (A24), both operators are
asymmetric along the main right-to-left diagonals of their respective matrices.

The simultaneous eigenvectors of Ŝ+ and Ŝ2 are ||Ψ1a〉〉 to ||Ψ1d〉〉 (80a)–(80d) and
||Φa〉〉 to ||Φd〉〉 (83a)–(83d), plus 8 copies of the sixteen-dimensional null vector, whereas
the eigenvectors of Ŝ− and Ŝ2 are ||Ψ2a〉〉 to ||Ψ2d〉〉 (81a)–(81d) and ||Φa〉〉 to ||Φd〉〉, plus
8 copies of the null vector. All 16 eigenvectors of both operators correspond to the eigen-
value 0. These may be compared with the eigenvectors of their canonical two-particle
counterparts, Equation (A24).

Using Equations (72a) and (72b), it is straightforward to determine the two-particle
spin flips induced by (A30) and (A31). Below, we give only a sample, in order to illustrate
their main differences with the corresponding canonical expressions:

Ŝ− ||↑z〉〉A ||↑z〉〉B =
√

1 + δ (h̄ + i
√

h̄β) (||↓′z〉〉A ||↑z〉〉B + ||↑z〉〉A ||↓′z〉〉B) ,

Ŝ− ||↑′z〉〉A ||↑z〉〉B =
√

1 + δ [(h̄− i
√

h̄β) ||↓z〉〉A ||↑z〉〉B + (h̄ + i
√

h̄β) ||↑′z〉〉A ||↓′z〉〉B] ,

Ŝ− ||↑z〉〉A ||↑′z〉〉B =
√

1 + δ [(h̄ + i
√

h̄β) ||↓′z〉〉A ||↑′z〉〉B + (h̄− i
√

h̄β) ||↑z〉〉A ||↓z〉〉B]
Ŝ− ||↑′z〉〉A ||↑′z〉〉B =

√
1 + δ (h̄− i

√
h̄β) (||↓z〉〉A ||↑′z〉〉B + ||↑′z〉〉A ||↓z〉〉B) , (87a)

Ŝ+ ||↓z〉〉A ||↓z〉〉B =
√

1 + δ (h̄ + i
√

h̄β) (||↑′z〉〉A ||↓z〉〉B + ||↓z〉〉A ||↑′z〉〉B) ,

Ŝ+ ||↓′z〉〉A ||↓z〉〉B =
√

1 + δ [(h̄− i
√

h̄β) ||↑z〉〉A ||↓z〉〉B + (h̄ + i
√

h̄β) ||↓′z〉〉A ||↑′z〉〉B] ,

Ŝ+ ||↓z〉〉A ||↓′z〉〉B =
√

1 + δ [(h̄ + i
√

h̄β) ||↑′z〉〉A ||↓′z〉〉B + (h̄− i
√

h̄β) ||↓z〉〉A ||↑z〉〉B]
Ŝ+ ||↓′z〉〉A ||↓′z〉〉B =

√
1 + δ (h̄− i

√
h̄β) (||↑z〉〉A ||↓′z〉〉B + ||↓′z〉〉A ||↑z〉〉B) . (87b)

Equations (87a) and (87b) may be compared with the expressions on the top line of
Equations (A25a) and on the bottom line of Equations (A25b), respectively.

3.3. Bell States in Smeared Space

Finally, we see that the smeared space Bell states, for spin measurements in the ith
direction, can be constructed by analogy with Equations (A27a)–(A27d) as
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||Ψ(i)
+ 〉〉 = ||Ψ

(i)
3 〉〉 = ||Ŝi = 0, Ŝ2 = 2(h̄ + β)2〉〉 , (88a)

||Ψ(i)
− 〉〉 = ||Φ(i)〉〉 = ||Ŝi = 0, Ŝ2 = 0〉〉 , (88b)

||Φ(i)
+ 〉〉 =

1√
2
(||Ψ(i)

1 〉〉+ ||Ψ
(i)
2 〉〉)

=
1√
2
(||Ŝi = +(h̄ + β), Ŝ2 = 2(h̄ + β)2〉〉+ ||Ŝi = −(h̄ + β), Ŝ2 = 2(h̄ + β)2〉〉) , (88c)

||Φ(i)
− 〉〉 =

1√
2
(||Ψ(i)

1 〉〉 − ||Ψ
(i)
2 〉〉)

=
1√
2
(||Ŝi = +(h̄ + β), Ŝ2 = 2(h̄ + β)2〉〉 − ||Ŝi = −(h̄ + β), Ŝ2 = 2(h̄ + β)2〉〉) , (88d)

where

||Ψ(i)
1 〉〉 = ||Ŝi = +(h̄ + β), Ŝ2 = 2(h̄ + β)2〉〉

= α1a ||Ψ
(i)
1a 〉〉+ α1b ||Ψ

(i)
1b 〉〉+ α1c ||Ψ

(i)
1c 〉〉+ α1d ||Ψ

(i)
1d〉〉 , (89)

and ∑k |α1k|2 = 1 for k ∈ {a, b, c, d}, etc. The simultaneous eigenstates of Ŝi and Ŝ2,{
||Ψ(i)

1k 〉〉 , ||Ψ(i)
2k 〉〉 , ||Ψ(i)

3k 〉〉 , ||Φ(i)
k 〉〉

}
, take forms analogous to the simultaneous eigenstates

of Ŝz and Ŝ2, denoted simply as {||Ψ1k〉〉 , ||Ψ2k〉〉 , ||Ψ3k〉〉 , ||Φk〉〉} in Equations (80)–(83),
but with ||↑z〉〉 and ||↓z〉〉 replaced by ||↑i〉〉 and ||↓i〉〉, for any i ∈ {x, y, z}.

Written explicitly, the smeared Bell states are considerably more complex than their
canonical counterparts. Nonetheless, they remain indistinguishable from them, in individual
measurements, except for a small rescaling of their eigenvalues such that h̄→ h̄ + β. Em-
pirically, this shift is undetectable, except via the existence of the spin GURs (67) and (68),
whose middle terms contain non-canonical contributions that depend only on h̄ or β, alone.

Our analysis suggests that, if geometry is truly nonlocal at the Planck scale, we must
look for signatures of entanglement between material particles and the quantum spatial
background in the statistical correlations between subspaces of multiparticle states. Such
non-canonical correlations are a direct result of the SU(2) invariance of the composite wave
vector ||Ψ〉〉spin (55). We repeat that this corresponds to the state of a spinning particle,
interacting with the nonlocal background geometry, as opposed to the state of a spinning
particle propagating in classical space.

The representation of SU(2) generated by the generalised spin matrices, Equations (48),
describes the “internal” gauge symmetry that is compatible with the EGUP (26), and with
the corresponding smearing of the “external” symmetry algebra, SO(3), that it implies.
This representation is characterised by the subalgebras (44a)–(44e) and (45a)–(45d), that
also give rise to spin GURs. If our model is correct, these are the "smoking gun" of nonlocal
geometry in the low-energy regime of the spin sector.

4. The Smeared-Space Representation of SU(2)

In the canonical representation, a general element of SU(2) is written as

U = u0I+ i u .~σ =

[
u0 + iu3 u2 + iu1
−u2 + iu1 u0 − iu3

]
, (90)

where u = (u1, u2, u3), with u0 , ui ∈ R,~σ = (σ1, σ2, σ3), and

det U = u2
0 + u2

1 + u2
2 + u2

3 = 1 . (91)
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The fundamental relation, σiσj = δij I + i εij
kσk, ensures that the product of two

matrices of the form (90) is again of the same form. This shows that ordinary matrix
multiplication is a valid group composition law. Equation (91) defines the unit 3-sphere,
embedded in R4, so that

SU(2) ∼= S3 . (92)

It is also useful to parameterise the elements of SU(2) in a different way, in terms of
the components of a unit vector,

n = −u/|u| , (93)

and an angle θ, such that

cos(θ/2) = u0 , − sin(θ/2)ni = ui . (94)

These identifications ensure that 0 ≤ |u| ≤ 1 for θ ∈ [0, 2π]. We then have
U ≡ Un(θ), where

Un(θ) = cos(θ/2)I− i sin(θ/2)n .~σ = exp
(
− iθ n .~σ

2

)
. (95)

Next, we note that the matrices {Σi}3
i=1, defined as

Σi :=
2

h̄ + β
Ŝi =

1
1 + δ

(σi ⊗ I+ δ I⊗ σi +
√

δ εi
jkσj ⊗ σk) , (96)

satisfy the algebras

[Σi, Σj] = 2i εij
kΣk ,

{
Σi, Σj

}
= 2δij I , (97)

which, together, are equivalent to the fundamental relation

ΣiΣj = δij I+ iεij
kΣk . (98)

These are the smeared space analogues of the canonical Pauli matrices, σi = (2/h̄)ŝi.
Unlike {σi}3

i=1, whose matrix elements do not depend on any parameters, or constants,
of a physical theory, {Σi}3

i=1 depend explicitly on the smearing parameter, δ = h̄/β (32).
Another important difference between the smeared-space sigma matrices and the canonical
Pauli matrices is that

tr Σi = 0 , det Σi = 1 , (99)

whereas tr σi = 0 and det σi = −1. The {Σi}3
i=1 matrices are hermitian, and also uni-

tary, since

Σi = Σ†
i = Σ−1

i = (Σ−1
i )† , (100)

which is exactly analogous to the relation σi = σ†
i = σ−1

i = (σ−1
i )†.

Exponentiating the Σi generators gives

Un(θ) = cos(θ/2)I− i sin(θ/2)n .~Σ = exp

(
− iθ n .~Σ

2

)
, (101)

or, equivalently,
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U = u0I+ i u .~Σ =


u0 + iu3

(u2+iu1)
√

δ

−i+
√

δ

u1−iu2
−i+
√

δ
0

(−u2+iu1)
√

δ

i+
√

δ
u0 + i

(
1−δ
1+δ

)
u3 − 2u3

√
δ

1+δ − u1−iu2
i+
√

δ

− u1+iu2
i+
√

δ

2u3
√

δ
1+δ u0 − i

(
1−δ
1+δ

)
u3

(u2+iu1)
√

δ

i+
√

δ

0 u1+iu2
−i+
√

δ

(−u2+iu1)
√

δ

−i+
√

δ
u0 − iu3

 , (102)

where ~Σ = (Σ1, Σ2, Σ3) and we have again used Equation (94). We then have

trU = 4u0 , detU = (u2
0 + u2

1 + u2
2 + u2

3)
2 , (103)

which may be compared with the equivalent expressions for U (90), i.e., tr U = 2u0 and
det U = u2

0 + u2
1 + u2

2 + u2
3 (91).

Imposing detU = 1 is then equivalent to imposing

u2
0 + u2

1 + u2
2 + u2

3 = ±1 . (104)

However, since uµ ∈ R for all µ ∈ {0, 1, 2, 3}, this condition can only be satisfied by
the first of Equations (104), which corresponds to choosing +1 on the right-hand side. This
demonstrates that {Σi}3

i=1 generates a non-canonical representation of the canonical spin
group, with U ∼= U ∈ SU(2) ∼= S3 for a given set of parameters,

{
uµ

}3
µ=0.

In other words, the smeared-space spin group is simply the canonical spin group,
SU(2), but U (102) is distinct from the “trivial” four-dimensional representations, U ⊗
I and I ⊗ U, where U is given by Equation (90). We refer to these representations as
“trivial”, because they act nontrivially only on one subspace of the tensor product and
trivially on the remainder of the composite state. In stricter terminology, they are spin-
1/2 representations that are trivially embedded in a higher-dimensional space, not trivial
spin-0 representations of the kind considered in formal group theory. Their generators
are σi ⊗ I and I⊗ σi, respectively, which are obtained as different limits of the general
expression for Σi (96). The former corresponds to the unsmeared limit, β → 0, and the
latter is obtained by taking h̄→ 0 and β→ h̄. Each limit corresponds to one particle of a
two-particle state in canonical quantum mechanics. The Σi matrices are also inequivalent to
the four-dimensional generators of SU(2)× SU(2), which is the internal symmetry group
of the canonical two-fermion state. Its generators are written as the sum σi ⊗ I+ I⊗ σi,
which emerges from Equation (96) when the interaction term, 2(h̄ + β)−1Ŝi, is ignored, and
β→ h̄.

In most models of quantum geometry including matter, it is conventionally assumed
that spin-1/2 SU(2) symmetry applies only to canonical fermions in the matter sector, rather
than to the composite state that incorporates matter-geometry interactions. In this case, the
spin operators for single fermions take the simple form ŝi = (h̄/2)(σi ⊗ I) (*), where the
identity acts on the geometric part. The representation (102) is different in that it seeks to
describe the SU(2) invariance of fermionic matter interacting with a fluctuating quantum
spacetime. The corresponding spin operators are not equivalent to (*), but act nontrivially
on both subspaces of the tensor product state. Furthermore, the noncanonical effects of this
representation are determined by the smearing parameter δ = h̄/β ' h̄× 10−61, previously
employed to derive the EGUP (26), and the predictions of canonical models are recovered
in the limit δ→ 0.

This construction does not imply that the total quantum state of the background
is invariant under a spin-1/2 representation SU(2), but only that the composite state
describing its interactions with the canonical fermions should be. Theoretically, the force-
mediating bosons that transmit spacetime fluctuations to the matter sector may have any
spin, although it is widely accepted that gravitons should have spin-2 [16]. In [11,13], it was
argued that a distinction should be drawn between the quanta of gravity, i.e., spacetime
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curvature, and the quanta of spacetime itself. This raises the intriguing possibility that
the latter could still be fermionic, with spin ±β/2, but our model must be extended to the
relativistic regime before this issue can be clarified.

5. Discussion
5.1. Conclusions

We have proposed a new model of quantum nonlocal geometry [10–13] and have
investigated its consequences for both external and internal symmetries. (Though many
models of nonlocal geometry have been proposed in the literature, most are intrinsically
classical in nature. See [13] for further discussion of this point.). In the position space
representation, classical spatial points are “smeared” over the Planck volume, whereas,
in the momentum space representation, momentum space points are smeared over the
volume associated with the de Sitter mass. The smearing of the canonical phase space
generates generalised uncertainty relations (GURs), including the generalised uncertainty
principle (GUP), extended uncertainty principle (EUP), and extended generalised uncer-
tainty principle (EGUP), previously proposed in the quantum gravity literature [1,2,4–6], as
well as GURs for angular momentum. This, in turn, suggests an analogous generalisation
of the spin uncertainty relations.

We have shown that the spin GURs can be obtained from a set of generalised spin-
measurement operators, Ŝi, each of which is given by the sum of three subcomponents.
The first subcomponent, Ŝi, acts nontrivially only on the Hilbert space of the canonical
quantum particle(s), whereas the second, Ŝ ′i , acts nontrivially only on the Hilbert space that
describes their interactions with the fluctuating background geometry. The third, Ŝi, acts
nontrivially on both subspaces and can also be interpreted as a noncanonical interaction
term [11,13].

The subcomponents
{
Ŝi, Ŝ ′i , Ŝi

}3

i=1
obey the generalised Lie and Clifford algebras,

Equations (44a)–(44e) and (45a)–(45d), and the Ŝi operators for one-particle states are
four-dimensional, possessing four independent eigenvectors. For the Ŝz operator, these
can be split into two spin “up” states, {||↑z〉〉 , ||↑′z〉〉}, corresponding to the eigenvalue
+(h̄ + β)/2, and two spin “down” states, {||↓z〉〉 , ||↓′z〉〉}, corresponding to −(h̄ + β)/2,
where β ' h̄× 10−61 is the quantum of action for the background geometry [10–13]. The
double ket notation indicates that the eigenvectors exist in the tensor product Hilbert space
of the composite state describing matter-geometry interactions. Crucially, we found that
the unprimed eigenvectors can be written as simple product states, whereas the primed
eigenvectors represent states in which the spin of the particle is entangled with the spin
sector of the geometry.

Finally, we extended our analysis to smeared two-particle states, focussing on the
simultaneous eigenvectors of Ŝz and Ŝ2, and on the two-particle creation and annihilation
operators Ŝ±. We have shown that, for every eigenvector of the corresponding operator in
canonical quantum theory, there exist 4 eigenvectors in smeared space. These take radically
different forms from their canonical counterparts, but, remarkably, the corresponding
eigenvalues differ only by the simple rescaling h̄ → h̄ + β. For this reason, it is very
unlikely that smeared states can be distinguished from unsmeared states, using individual
measurements, with current or near-future technology. Nonetheless, the existence of spin
GURs provides a distinct experimental signature of the model and it may be hoped that
the nonlocality of the quantum geometry can be probed, indirectly, by measuring the
noncanonical correlations between material particles, induced by their interaction with the
background. In a future work, we will investigate this possibility in more detail. Below, we
outline several other avenues for future research.

5.2. Future Work

There is still lots of work to be done. In addition to further studies of the spin GURs, for
example, constructing the smeared space generalisations of the canonical Bell and CHSH
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inequalities, the model has immediate implications for the information loss paradox [17,18],
relativity, and particle physics. These include the following:

• In [10], we argued that a smeared spatial “point” can be viewed as a quantum reference
frame (QRF). However, there is a fundamental difference between a QRF embedded
as a material quantum system in a classical background geometry, as proposed in [14],
and one generated by the nonlocality of the geometry itself [10,13]. Realistic observers
are embedded as material quantum systems in quantum geometries, so that the
smeared-space and canonical QRF formalisms should be combined to describe this
scenario.

• The model should be extended to the relativistic regime via an appropriate smearing
of the time coordinate and we expect this to generate a generalisation of the canonical
Poincaré algebra. The generalisation should support an appropriate subalgebra
structure that classifies the symmetries of nonlocal Minkowski space. Generalisations
of the canonical Dirac and Klein–Gordon equations can then be obtained, which are
compatible with the minimum length and minimum momentum phenomenology
implied by the EGUP.

• If the subalgebra structure of the Poincaré group, which classifies the symmetries
of nonlocal spacetime, can be consistently constructed, this has immediate conse-
quences for the standard model of particle physics. The seminal realisation, by Eugene
Wigner, that canonical quantum particles are “unitary representations of the inho-
mogeneous Lorentz group” [19], is conventionally applied to particles propagating
in classical spacetimes. We aim to construct representations that act nontrivially on
both subspaces of a tensor product Hilbert space describing matter-geometry inter-
actions. From these representations, we can expect to obtain minimum length and
minimum momentum phenomenology that remains consistent with the symmetries
of special relativity.

• Finally, the existence of qubits that are entangled with the spacetime background may
have profound implications for the black hole information loss paradox [17]. Consider,
for example, two black holes with identical mass, charge, and “spin”. (In the common
terminology, the “spin” of a black hole refers to its orbital angular momentum [20]
and must not be confused with genuine quantum mechanical spin.) Let us imagine
that the first black hole emits a particle of Hawking radiation, say, an electron, in the
spin “up” eigenstate ||↑z〉〉, whereas the second emits an electron in the spin “up”
eigenstate ||↑′z〉〉. Due to recoil, both particles are entangled with their respective black
holes, and, according to the smeared space theory, the states of the two black-hole-
plus-electron systems are indistinguishable, via simultaneous measurements of Ŝz and
Ŝ2. Nonetheless, the electron in state ||↑′z〉〉 possesses additional entanglement, with
the nonlocal spacetime background, and, hence, additional entanglement entropy.
Such "geometric" qubits may radiate more entropy away from the black hole than
their canonical counterparts, and, therefore, more information. According to our
previous arguments, this information should be encoded in additional noncanonical
correlations between the subsystems of multiparticle states, due to their mutual
interaction with the nonlocal background geometry. However, existing models of
black hole evaporation do not account for this type of entanglement [17], which is
explicitly generated by the delocalisation of spatial “points” over regions comparable
to the Planck volume.
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Appendix A. Spin in Canonical Quantum Mechanics

In this Appendix, we briefly review the treatment of one- and two-particle states
in canonical quantum mechanics. The structure of Appendixes A.1–A.3 parallels that of
Sections 3.1–3.3, so that the results of the smeared space theory can be easily compared and
contrasted with their canonical counterparts.

Appendix A.1. One-Particle Systems

The spin-1/2 Pauli matrices are

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (A1)

For a one-particle state, the spin-measurement operators are

ŝi =
h̄
2

σi , (A2)

and the total spin-squared operator is a Casimir operator,

ŝ2 =
3

∑
i=1

ŝi
2 =

3h̄2

4
I , (A3)

where I denotes the two-dimensional identity matrix. These satisfy the canonical Lie algebra

[ŝi, ŝj] = ih̄ εij
k ŝk , (A4a)

[ŝi, ŝ2] = 0 , (A4b)

and the canonical Clifford algebra

{
ŝi, ŝj

}
= i

h̄2

2
δijI , (A5)

where { . , . } denotes the anticommutator.
The one-particle spin eigenvectors are

|↑x〉 = |ŝx = +h̄/2, ŝ2 = 3h̄2/4〉 = 1√
2
(1, 1) ,

|↓x〉 = |ŝx = −h̄/2, ŝ2 = 3h̄2/4〉 = 1√
2
(1,−1) , (A6a)

|↑y〉 = |ŝy = +h̄/2, ŝ2 = 3h̄2/4〉 = 1√
2
(1, i) ,

|↓y〉 = |ŝy = −h̄/2, ŝ2 = 3h̄2/4〉 = 1√
2
(1,−i) , (A6b)

|↑z〉 = |ŝz = +h̄/2, ŝ2 = 3h̄2/4〉 = (1, 0) ,

|↓z〉 = |ŝz = −h̄/2, ŝ2 = 3h̄2/4〉 = (0, 1) , (A6c)

respectively. The eigenvectors of ŝy and ŝx may be written in terms of the ŝz eigenvectors as

|↑y〉 =
1√
2
(|↑z〉+ i |↓z〉) , |↓y〉 =

1√
2
(|↑z〉 − i |↓z〉) , (A7)
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and

|↑x〉 =
1√
2
(|↑z〉+ |↓z〉) , |↓x〉 =

1√
2
(|↑z〉 − |↓z〉) . (A8)

From Equation (A4a), the single-particle spin uncertainty relations are

∆si ∆sj ≥
h̄
2
|εij

k〈ŝk〉ψ| . (A9)

It is also convenient to define the creation and annihilation operators,

ŝ± = ŝx ± iŝy , (A10)

which satisfy the algebra

[ŝz, ŝ±] = ±h̄ ŝ± , [ŝ+, ŝ−] = 2h̄ ŝz . (A11)

Written explicitly, ŝ± take the form

ŝ+ = h̄
[

0 1
0 0

]
, ŝ− = h̄

[
0 0
1 0

]
. (A12)

The eigenvectors of ŝ+ are the null vector, |null〉 = (0, 0), and the z-spin up eigenstate,
|↑z〉 = (1, 0), whereas the eigenvectors of ŝ− are the null vector and the z-spin down
eigenstate, |↓z〉 = (0, 1). For each operator, both eigenvectors correspond to the eigenvalue
0. The creation and annihilation operators perform spin flips according to:

ŝ− |↑z〉 = h̄ |↓z〉 , ŝ+ |↓z〉 = h̄ |↑z〉 . (A13)

Finally, we note that the canonical spin states obey the braket relations

〈↑i | ↑i〉 = 1 , 〈↑i | ↓i〉 = 0 ,

〈↓i | ↑i〉 = 0 , 〈↓i | ↓i〉 = 1 . (A14)

Appendix A.2. Two-Particle Systems

For a two-particle state, in which the particles do not interact, the spin-measurement
operators are

ŝ(A)
i =

h̄
2
(σ

(A)
i ⊗ IB) , ŝ(B)i =

h̄
2
(IA ⊗ σ

(B)
i ) . (A15)

Each set of operators
{

ŝ(A)
i

}3

i=1
and

{
ŝ(B)i

}3

i=1
satisfies the canonical Lie algebra

(A4a) and (A4b) and the two sets commute,

[ŝ(A)
i , ŝ(B)j ] = 0 . (A16)

The total spin in the ith direction is given by

ŝi = ŝ(A)
i + ŝ(B)i (A17)

and each ŝi has four independent eigenvectors,

{|↑i〉A |↑i〉B , |↑i〉A |↓i〉B , |↓i〉A |↑i〉B , |↓i〉A |↓i〉B} . (A18)

These correspond to the eigenvalues {+h̄, 0, 0,−h̄}, respectively.
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The total spin-squared is

ŝ2 =
3

∑
i=1

(ŝ(A)
i + ŝ(B)i )2 = (ŝA)

2 + 2 ŝA . ŝB + (ŝB)
2 , (A19)

where

ŝA/B =
3

∑
i=1

ŝ(A/B)
i ei(0) , (A20)

and {ei(0)}3
i=1 are the tangent vectors at the coordinate origin. From Equations (A16)

and (A19), we see that {ŝi}3
i=1 and ŝ2 for the two-particle state satisfy the canonical Lie

algebra (A4a) and (A4b), and the canonical Clifford algebra (A5), where I now denotes the
four-dimensional identify matrix, in complete analogy with the one-particle case.

Written explicitly, ŝz and ŝ2 take the form

ŝz = h̄


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 , ŝ2 = h̄2


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 . (A21)

Note that, unlike the spin-squared operator for the one-particle state, this ŝ2 is not a
Casimir operator. Its eigenvectors are

|Ψ1〉 = |↑z〉A |↑z〉B
= |ŝz = +h̄, ŝ2 = 2h̄2〉 = (1, 0, 0, 0) ,

(A22a)

|Ψ2〉 = |↓z〉A |↓z〉B
= |ŝz = −h̄, ŝ2 = 2h̄2〉 = (0, 0, 0, 1) ,

(A22b)

|Ψ3〉 =
1√
2
(|↑z〉A |↓z〉B + |↓z〉A |↑z〉B)

= |ŝz = 0, ŝ2 = 2h̄2〉 = 1√
2
(0, 1, 1, 0) ,

(A22c)

|Φ〉 =
1√
2
(|↑z〉A |↓z〉B − |↓z〉A |↑z〉B)

= |ŝz = 0, ŝ2 = 0〉 = 1√
2
(0,−1, 1, 0) .

(A22d)

These form a triplet {|Ψ1〉 , |Ψ2〉 , |Ψ3〉} with total spin 2h̄2 and a singlet |Φ〉 with zero
total spin. Finally, we note that, because {ŝi}3

i=1 for the two-particle state obey the canonical
algebra (A4a), the corresponding spin uncertainty relations are given by Equation (A9).

It is straightforward to construct the two-particle creation and annihilation operators,

ŝ± = ŝx ± iŝy = ŝ(A)
± + ŝ(B)± . (A23)
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Together with the total z-spin of the two-particle state, ŝz = ŝ(A)
z + ŝ(B)z , these satisfy the

algebra (A11).
Written explicitly, ŝ± for the two-particle state take the form

ŝ+ = h̄


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

 , ŝ− = h̄


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

 . (A24)

The eigenvectors of ŝ+ are |Ψ1〉 = |↑z〉A |↑z〉B = (1, 0, 0, 0) (A22a) and
|Φ〉 = 2−1/2(|↑z〉A |↓z〉B − |↓z〉A |↑z〉B) = 2−1/2(0, 1,−1, 0) (A22d), plus two copies of
the null vector, |null〉 = (0, 0, 0, 0). Three of the eigenvectors of ŝ− are the same, but |Ψ1〉
is replaced by |Ψ2〉 = |↓z〉A |↓z〉B = (0, 0, 0, 1) (A22b). As in the one-particle case, every
eigenvector of ŝ+ and ŝ− corresponds to the eigenvalue 0. The two-particle creation and
annihilation operators perform spin flips according to:

ŝ− |↑z〉A |↑z〉B = h̄ (|↑z〉A |↓z〉B + |↓z〉A |↑z〉B) ,

ŝ− |↑z〉A |↓z〉B = ŝ− |↓z〉A |↑z〉5B = h̄ |↓z〉A |↓z〉B ,

ŝ− |↓z〉A |↓z〉B = 0 , (A25a)

ŝ+ |↑z〉A |↑z〉B = 0 ,

ŝ+ |↑z〉A |↓z〉B = ŝ+ |↓z〉A |↑z〉B = h̄ |↑z〉A |↑z〉B ,

ŝ+ |↓z〉A |↓z〉B = h̄ (|↑z〉A |↓z〉B + |↓z〉A |↑z〉B) . (A25b)

Appendix A.3. Bell States

The Bell states for spins in the ith direction are constructed as

|Ψ(i)
± 〉 =

1√
2
(|↑i〉A |↓i〉B ± |↓i〉A |↑i〉B) , (A26a)

|Φ(i)
± 〉 =

1√
2
(|↑i〉A |↑i〉B ± |↓i〉A |↓i〉B) . (A26b)

These may be rewritten in terms of the simultaneous eigenvectors of ŝi and ŝ2, giving

|Ψ(i)
+ 〉 = |Ψ

(i)
3 〉 = |ŝi = 0, ŝ2 = 2h̄2〉 , (A27a)

|Ψ(i)
− 〉 = |Φ(i)〉 = |ŝi = 0, ŝ2 = 0〉 , (A27b)

|Φ(i)
+ 〉 =

1√
2
(|Ψ(i)

1 〉+ |Ψ
(i)
2 〉)

=
1√
2
(|ŝi = +h̄, ŝ2 = 2h̄2〉+ |ŝi = −h̄, ŝ2 = 2h̄2〉) , (A27c)

|Φ(i)
− 〉 =

1√
2
(|Ψ(i)

1 〉 − |Ψ
(i)
2 〉)

=
1√
2
(|ŝi = +h̄, ŝ2 = 2h̄2〉 − |ŝi = −h̄, ŝ2 = 2h̄2〉) , (A27d)
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where
{
|Ψ(i)

1 〉 , |Ψ(i)
2 〉 , |Ψ(i)

3 〉 , |Φ(i)〉
}

are defined, for any i ∈ {x, y, z}, by analogy with
(A22a) and (A22d).

However, by convention, |Ψ±〉 and |Φ±〉 are usually defined with respect to the z-axis,
so that the superscript denoting direction may be dispensed with. Using Equations (A7)
and (A8), it is straightforward to show that, for any group of Bell states

{
|Ψ(i)
± 〉 , |Φ(i)

± 〉
}

,
the particle spins are entangled with respect to measurements along any axis.

Appendix B. The Explicit forms of Ŝz, Ŝ2 and Ŝ± for the Smeared Two-Particle State

Written explicitly, Ŝz and Ŝ2 for the two-particle state in smeared space, take the form

Ŝz = (h̄ + β)(1 + δ)−1 ×



1 + δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 i

√
δ 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −i
√

δ δ 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 i

√
δ 0 0 0 0 0 0 0

0 0 0 0 0 1− δ i
√

δ 0 0 i
√

δ 0 0 0 0 0 0
0 0 0 0 0 −i

√
δ 0 0 0 0 i

√
δ 0 0 0 0 0

0 0 0 0 0 0 0 −δ 0 0 0 i
√

δ 0 0 0 0
0 0 0 0 −i

√
δ 0 0 0 δ 0 0 0 0 0 0 0

0 0 0 0 0 −i
√

δ 0 0 0 0 i
√

δ 0 0 0 0 0
0 0 0 0 0 0 −i

√
δ 0 0 −i

√
δ −(1− δ) 0 0 0 0 0

0 0 0 0 0 0 0 −i
√

δ 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −δ i

√
δ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −i
√

δ −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −(1 + δ)



, (A28)
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Ŝ2 = (h̄ + β)2(1 + δ)−1×

2(1 + δ) 0 0 0 0 0 0 0
0 2 + δ i

√
δ 0 δ 0 0 0

0 −i
√

δ 1 + 2δ 0 i
√

δ 0 0 0

0 0 0 1 + δ 0 2δ+i(1−δ)
√

δ
1+δ − (iδ+

√
δ)2

1+δ 0
0 δ −i

√
δ 0 2 + δ 0 0 0

0 0 0 2δ−i(1−δ)
√

δ
1+δ 0 2(1+δ+δ2)

1+δ
i(1−δ)

√
δ

1+δ 0

0 0 0 − (iδ+
√

δ)2

1+δ 0 − i(1−δ)
√

δ
1+δ

1+4δ+δ2

1+δ 0
0 0 0 0 0 0 0 1 + 2δ

0 i
√

δ 1 0 −i
√

δ 0 0 0

0 0 0 − (i+
√

δ)2

1+δ 0 − i(1−δ)
√

δ
1+δ

2δ
1+δ 0

0 0 0 2δ−i(1−δ)
√

δ
1+δ 0 − 2δ

1+δ
i(1−δ)

√
δ

1+δ 0
0 0 0 0 0 0 0 i

√
δ

0 0 0 0 0 2δ+i(1−δ)
√

δ
1+δ − (i+

√
δ)2

1+δ 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 −i

√
δ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
−i
√

δ 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 − (i+
√

δ)2

1+δ
2δ+i(1−δ)

√
δ

1+δ 0 0 0 0 0
i
√

δ 0 0 0 0 0 0 0

0 i(1−δ)
√

δ
1+δ − 2δ

1+δ 0 2δ−i(1−δ)
√

δ
1+δ 0 0 0

0 2δ
1+δ − i(1−δ)

√
δ

1+δ 0 − (i+
√

δ)2

1+δ 0 0 0
0 0 0 −i

√
δ 0 1 i

√
δ 0

1 + 2δ 0 0 0 0 0 0 0

0 1+4δ+δ2)
1+δ − i(1−δ)

√
δ

1+δ 0 − (iδ+
√

δ)2

1+δ 0 0 0

0 i(1−δ)
√

δ
1+δ

2(1+δ+δ2)
1+δ 0 2δ−i(1−δ)

√
δ

1+δ 0 0 0
0 0 0 2 + δ 0 −i

√
δ δ 0

0 − (−iδ+
√

δ)2

1+δ
2δ+i(1−δ)

√
δ

1+δ 0 1 + δ 0 0 0
0 0 0 i

√
δ 0 1 + 2δ −i

√
δ 0

0 0 0 δ 0 i
√

δ 2 + δ 0
0 0 0 0 0 0 0 2(1 + δ)


(A29)

and the corresponding creation and annihilation operators are:



Quantum Rep. 2021, 3 225

Ŝ+ = (h̄ + β)(1 + δ)−1×

0 δ + i
√

δ 1− i
√

δ 0 δ + i
√

δ 0 0 0
0 0 0 1 + i

√
δ 0 δ + i

√
δ 0 0

0 0 0 δ− i
√

δ 0 0 δ + i
√

δ 0
0 0 0 0 0 0 0 δ + i

√
δ

0 0 0 0 0 δ + i
√

δ 1− i
√

δ 0
0 0 0 0 0 0 0 1 + i

√
δ

0 0 0 0 0 0 0 δ− i
√

δ
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

,

1− i
√

δ 0 0 0 0 0 0 0
0 1− i

√
δ 0 0 0 0 0 0

0 0 1− i
√

δ 0 0 0 0 0
0 0 0 1− i

√
δ 0 0 0 0

0 0 0 0 1 + i
√

δ 0 0 0
0 0 0 0 0 1 + i

√
δ 0 0

0 0 0 0 0 0 1 + i
√

δ 0
0 0 0 0 0 0 0 1 + i

√
δ

0 δ + i
√

δ 1− i
√

δ 0 δ− i
√

δ 0 0 0
0 0 0 1 + i

√
δ 0 δ− i

√
δ 0 0

0 0 0 δ− i
√

δ 0 0 δ− i
√

δ 0
0 0 0 0 0 0 0 δ− i

√
δ

0 0 0 0 0 δ + i
√

δ 1− i
√

δ 0
0 0 0 0 0 0 0 1 + i

√
δ

0 0 0 0 0 0 0 δ− i
√

δ
0 0 0 0 0 0 0 0



,

(A30)
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Ŝ− = (h̄ + β)(1 + δ)−1×

0 0 0 0 0 0 0 0
δ− i
√

δ 0 0 0 0 0 0 0
1 + i
√

δ 0 0 0 0 0 0 0
0 1− i

√
δ δ + i

√
δ 0 0 0 0 0

δ− i
√

δ 0 0 0 0 0 0 0
0 δ− i

√
δ 0 0 δ− i

√
δ 0 0 0

0 0 δ− i
√

δ 0 1 + i
√

δ 0 0 0
0 0 0 δ− i

√
δ 0 1− i

√
δ δ + i

√
δ 0

1 + i
√

δ 0 0 0 0 0 0 0
0 1 + i

√
δ 0 0 0 0 0 0

0 0 1 + i
√

δ 0 0 0 0 0
0 0 0 1 + i

√
δ 0 0 0 0

0 0 0 0 1− i
√

δ 0 0 0
0 0 0 0 0 1− i

√
δ 0 0

0 0 0 0 0 0 1− i
√

δ 0
0 0 0 0 0 0 0 1− i

√
δ

,

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

δ− i
√

δ 0 0 0 0 0 0 0
1 + i
√

δ 0 0 0 0 0 0 0
0 1− i

√
δ δ + i

√
δ 0 0 0 0 0

δ + i
√

δ 0 0 0 0 0 0 0
0 δ + i

√
δ 0 0 δ− i

√
δ 0 0 0

0 0 δ + i
√

δ 0 1 + i
√

δ 0 0 0
0 0 0 δ + i

√
δ 0 1− i

√
δ δ + i

√
δ 0



.
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