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T H E  N E E D  F O R  S T A T I S T I C S

When you enrolled for a degree course, you were probably under the impression that
much of your time would be spent playing sport, participating in outdoor pursuits,
meeting new friends, enjoying your leisure activities in the many local hostelries,
and even attending the odd lecture, seminar or workshop to learn about important
phenomena in your field of interest. To discover that you had to register for a course
in data handling is likely to have generated little enthusiasm, and more likely caused
you some concern. So, why is it that many degree programmes require students to
undertake a statistics course?

The answer to this question lies in the fact that statistics play a vitally important
role in research. They help answer important research questions and it is the answers
to such questions that further our understanding of the field and provide a knowledge
base for academic study. This body of knowledge resides, for the most part, in the
textbooks and academic research journals that grace the shelves of university
libraries. In the future this knowledge base will continue to expand as many more
answers to important research questions are provided. 

At this point you may be thinking that you have no interest in research or in
becoming a researcher. Although this may be true it is also a fact that during the next
few years you will be asked to read a considerable amount of information as part of
your academic programme of study. This activity will require you to interpret the
results of research employing many different research methods. Consequently, it is
imperative that you become familiar with the research process so that you become
an informed consumer of the literature in the field, and can think critically about
everything you read. An awareness of how to answer research questions and read
research articles will enable you to discern valuable information that forms part of
the knowledge base in academic study, from unsubstantiated speculation that adds
little to our understanding of important issues in the field. Therefore, not only will
this book help you understand the research process, but it will help you reflect crit-
ically on the research literature.

It is not uncommon for students who are just beginning their university careers to
be directed towards the library by academic staff and asked to read selected articles
in preparation for a lecture or seminar. However, most undergraduate students find
the task of reading a research article to be quite intimidating. If the task can be
avoided, the article will rarely be read. If it cannot be avoided, the following strat-
egy appears common. There is a tendency to read the abstract in minute detail,
because it is short and concise. Once this task has been completed attention is turned

1
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towards the introduction and discussion sections because they appear to be most
understandable and contain what most neophyte researchers believe to be the rele-
vant information. Next, the methods section is typically given a cursory glance, or at
best it is skimmed because it tends to be dull and boring and simply describes what
the researchers did. Then the results section is ignored completely because the sta-
tistics appear incomprehensible. Finally the discussion section is read because, like
the introduction, it is partially comprehensible. Although this is an understandable
strategy when one first encounters research articles, it is not one that is going to pro-
duce either informed consumers of research, or university graduates who are inde-
pendent critical thinkers. Worse still, it can lead to the acceptance of conclusions that
a critical examination of the methods and results sections would have shown to be at
best speculative and at worst incorrect. Changing this strategy so that you are able to
feel confident about reading the results section of a research article is a central aim
of this text. However, simplifying the task of understanding the statistics section in
a research article is not easy. Even the most dedicated knowledge seeker can be turned
off by terms such as canonical correlation, factorial analysis of variance, or discrimi-
nant function analysis. However, to avoid getting bogged down with statistical termi-
nology it would be especially wise at this point to keep in mind that statistics are
simply tools that researchers employ to help answer research questions. 

Using the Appropriate Tools

The selection of the most appropriate tool to perform a job is a crucial issue whether
you are a carpenter, a surgeon, a motor mechanic or a research scientist. The tool
selected by a carpenter obviously depends upon the job that is being done at the time.
Similarly, which statistical tool a research scientist selects depends upon the question
being asked. Unfortunately, it is all too noticeable that when students are asked to
conduct research they often base the selection of their statistical analysis upon tests
which they might have heard mentioned once or twice, rather than upon their suit-
ability for the job. This is analogous to a homeowner who attempts to perform all the
major home improvement projects with the first tool that is pulled from a toolbox.

Let us suppose that our homeowner had chosen to work on a project that involved
installing a new door on a shed. To complete the job correctly requires the door
frame to be rebuilt, a little material to be removed from the bottom of the new door,
the door to be rehung on its new hinges, and a new lock attached. All these jobs
could be performed efficiently if the homeowner possessed the correct tools for each
job. However, the only tool that our homeowner possessed was a hammer. Unfortu-
nately, rather than making an expensive trip to the local ‘DIY’ store to purchase the
appropriate tools, the homeowner attempted to get by with the aid of this one trusty
implement. Some early success was met because the door frame only required nail-
ing into position. For this task the hammer proved to be the correct tool for the job.
Taking a little off the bottom of the new door with a hammer was more difficult, but
it was achieved with a few hefty whacks. The wood splintered and cracked around
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the bottom of the door, but it was only a shed so it didn’t really matter that the job
wasn’t well done. Next, our homeowner attached the door to the new frame by bash-
ing all the screws into place, again splintering the wood, and bending the screws.
This meant the door hinges didn’t hold the door in place well but it looked fine from
a distance, and it was better than the old door that suffered from dry rot. Finally, the
homeowner forced a new lock into place with the aid of the trusty hammer. Unfor-
tunately, the lock no longer worked after the homeowner’s efforts with the hammer.
The homeowner thought that if the new door was tied to the frame with a piece of
string it would look just fine – that is, until it needed opening.

Fortunately, most property owners do not go about making home improvements
in this fashion. They attempt to utilise the correct tools for each job. However, the
point to be considered here is that it was possible for our homeowner to complete the
job on the shed door with only the use of the hammer. Upon closer inspection, how-
ever, the results indicated that the job was a complete disaster. Similarly, it would be
possible for a researcher to select the wrong statistical techniques to analyse data and
still be able to draw conclusions from the analyses. Only upon close scrutiny of the
results by someone versed in research methods would they be found to be meaning-
less. Consequently, whether you are a homeowner or a novice researcher, it is recom-
mended that you have an understanding of what tools are suitable for the particular
jobs you are likely to undertake. This involves knowing how to use each tool, and
recognising when each should be used. Knowledge such as this will allow you to
avoid the drawbacks of selecting the wrong tools for the job. That is, picking up your
hammer and treating everything as if it were a nail. 

Numerophobia

Even when students become aware of the importance of using statistics to help
answer research questions, many feel anxious about their mathematical expertise.
This is not an uncommon phenomenon. Many intelligent people who are capable of
competent performance in other areas experience ‘numerophobia’ (i.e. a fear of
numbers) at the thought of having to solve more than the most basic mathematical
problems. Fortunately, the subject of statistics is not mathematics, although it does
involve the use of some simple mathematical operations. In using this manual you
will need to know how to add, subtract, multiply, use brackets, and understand the
principle of squaring and taking the square root of numbers. Beyond this you will
not find yourself encountering any mind-blowing mathematics. What might cause a
few problems are the symbols and notation that are used to describe particular oper-
ations or specify particular statistics. However, just as when learning a foreign lan-
guage one has to become familiar with new words and symbols in order that the
language makes sense, the learning of unfamiliar statistical symbols and notation
will take time, patience and some considerable thought before they become second
nature to you. The meaning of these symbols and notation will be explained to you
as you progress through the manual. You can also find a brief description of symbols
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and notation in Appendix 1. However, if you still find that you do not understand
something, consider the alternative strategies that might be available to you to help
overcome this barrier. It is important to remember that if you continue to invest effort
into understanding the principles covered in this manual you will begin to develop
some confidence in the subject and overcome many potential barriers to under-
standing. In contrast, if you adhere to a view that your lack of understanding cannot
be changed, no matter how hard you try, then it is unlikely that you will develop any
confidence in the subject matter and this may simply reinforce the numerophobic
condition.

The importance of this fact is illustrated by the following story. It describes an
incident that took place at the end of the third or fourth lecture of an introductory
statistics course being taught by one of the authors of this text. A disgruntled student
approached the lecturer and announced angrily: ‘I hate this course! I don’t under-
stand any of it.’ When the lecturer enquired about which aspects in particular were
causing the problem, the student looked vacantly at him and replied, ‘All of it. I just
don’t have a clue about anything!’ At this point, the lecturer thought for a while and
asked why the student hadn’t communicated this lack of understanding during the
lecture when he had attempted to solicit feedback by asking if everyone understood
what was said. Back came the reply: ‘Do you think I’m stupid? I’m not going to put
up my hand in front of the class and say that I don’t understand. You’ve got to realise
that just because there’s silence when you ask if we understand, doesn’t mean that
we do. Anyway, I don’t want everyone thinking I’m a half-wit, so I’m not going to
give them the opportunity, and publicly embarrass myself in the process.’ When
quizzed as to why one might perceive others in the class to be so judgemental, the
student responded by saying ‘Everyone else seems to understand the subject, and I
don’t.’ ‘But why does it matter if others really do know more than you?’, said the
lecturer. ‘Surely, what is important is that you feel you’ve learned something in the
course.’ This response was met by a torrent of verbal abuse and a diatribe on why it
would probably be better to give up on the course rather than to suffer the indignity
of realising that others might be more competent and to experience the humility of
publicly displaying this lack of understanding. 

Realising he was inflaming an emotionally charged situation, the lecturer tried
another strategy. He enquired if there were parts of the lecture that made any sense
that day. At this point, the student began to describe the different measures of central
tendency and their properties. ‘You see’, said the lecturer, ‘You do understand some-
thing.’ The lecturer then stepped up to the whiteboard and drew a long horizontal
line, representing the continuum of student understanding. The continuum ranged
from no knowledge of statistics to a sound understanding of the subject. He then
asked the student to mark a cross at some point on this line which signified the level
of understanding of statistics at the start of the course. The student marked the board
at the extreme left above the words ‘no understanding’. Then the lecturer asked the
student to repeat the process by marking a cross on the line to signify current under-
standing. The student responded by inserting the cross a couple of centimetres to the
right of the first mark. At this point, the lecturer looked at the student, and noting that
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there didn’t seem to have been much progress made in understanding, said: ‘As I see
it, my job is to help you move along this continuum. How far you get in this class
depends on how willing you are to invest in reading the assigned material, complet-
ing the practical exercises, and asking questions to help you comprehend what it is
you’ve read. Everyone is likely to end up at a different point on the continuum by
the semester’s end, but that’s OK. What is important is that you begin to develop a
clearer understanding of the subject.’ Realising that it was more important to focus
upon personal improvement and understanding than on how one’s performance
compared with that of others in the class, the student departed with a little more
reassurance that continued investment could bring rewards.

We would like to be able to recount that this student is now a statistical consultant
for a nationally known research organisation, but you would probably not believe
this. However, the point of this true story is very simple. Your understanding of
statistics will be a direct function of your personal investment in the subject matter.
Therefore spend time reading around the subject and asking questions about issues
of concern. You will reap the benefits in the future as you read and learn more about
the research process and the role it plays in your field of interest. 

Stages of the Research Process

Identifying the Research Question

Whether you are reading published research, or attempting to conduct a research
project, the first stage is to identify the research question being asked. It is some-
times difficult to identify the research question in a published article, particularly if
the author has not made it explicit. However, it can usually be found in the intro-
duction of the article where it is framed within the context of current literature. This
literature aims to outline the importance of research on the topic, and explain why
an answer to the question is being sought. 

The awareness of current research is extremely important, as research questions
do not arise in a vacuum. While questions may occasionally arise from personal intu-
ition, personal observation of the environment or personal beliefs, the ideas are more
often developed through interaction with others. Similarly, research questions tend
to arise from an examination of other people’s work which can be found in the
research journals and textbooks of different scientific disciplines. Therefore, in order
to progress successfully through the first stage of a research investigation, a researcher
must become familiar with the current literature on a topic and be able to frame the
research question of interest within the context of that literature.

Generating Hypotheses

Once the question has been determined, it will be possible to develop specific,
testable hypotheses. Hypotheses outline the propositions to be investigated and state
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the expected relationships between the variables of interest in the investigation. In
other words, they are the researcher’s best estimation of the expected results. This
will be explored further in Chapter 4.

Conducting the Research

Deciding upon the most appropriate methodology for an investigation depends upon
the question being asked. The research question and the hypotheses provide guide-
lines to the researcher about how to go about collecting data. As data collection is
one of the basic foundations upon which scientific enquiry is built, it is necessary for
the researcher to design a methodological approach which will allow him/her to
obtain an answer to the specific research question. The methods used to answer
important research questions take many different forms. These include experimental
methods, survey methods, observational methods, historical methods and qualitative
methods, to name but a few. The important fact to remember is that the selection
of the most appropriate method will be determined by the question being asked by
the researcher.

Statistical Analyses

Once data have been collected, statistical analyses can be performed so that the
hypotheses put forward by the researcher can be objectively tested. Two types of
statistics are used in most research investigations:

1. descriptive statistics
2. inferential statistics.

Descriptive statistics describe or summarise the characteristics of the data set. For
example, let’s say we are interested in the effects of three different training techniques
upon aerobic endurance in college athletes. Rather than describe the scores of every
participant training under each condition, we might describe the average scores of
participants in each condition by reporting the mean. Then we might describe how
much variability existed around the mean in each set of scores by reporting the stan-
dard deviation. Descriptive statistics do not allow us to test too many hypotheses, but
they provide useful descriptive information to the researcher and should always be
reported in any research article. This will become apparent in Chapters 2 and 3.

Inferential statistics are much more complex and coverage of this topic begins in
Chapter 4. They are used to test hypotheses, and make inferences about a sample to
a larger population. Using the previous example, I could determine which is the most
effective training technique to improve aerobic endurance in a sample of college
athletes by using a test known as an analysis of variance test. Because the athlete
sample is assumed to be representative of a larger population, the results of this test
could then be generalised to a larger population containing all college athletes.

6 D O I N G  S T A T I S T I C S  W I T H  S P S S
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The results obtained from the application of inferential statistical tests will either
support or refute research hypotheses. When students first utilise statistical analyses
to test their hypotheses, it is often tempting for them to suggest that the results of
their analysis prove their hypotheses to be correct. However, scientific explanations
are always tentative. They are frequently changed and updated. Indeed, one of the
beauties of science is that it is open to self-correction. Because of this quality, it is
advisable to be cautious and merely suggest support for a hypothesis if the results
are in the expected direction. Similarly, if the results are not in the expected direc-
tion a hypothesis may be refuted though the results would not be sufficient to estab-
lish proof. Coverage of different types of inferential statistics begins in Chapter 5
and various tests are discussed throughout the remainder of the book.

Drawing Conclusions

The final stage of the research process involves relating the results back to the liter-
ature from where the question was generated and attempting to offer a clear expla-
nation for what happened in the investigation. While it is a relatively straightforward
task to explain research findings that support a hypothesis, it is a little more chal-
lenging to explain unexpected results. Regardless of whether the results support or
refute a research hypothesis, explaining the results requires a sound knowledge of
the subject matter. This is because researchers must often consider alternative expla-
nations for the findings, thereby remaining cautious that their explanation is not the
only possibility. This stage, as well as the question-generation stage, is where the
researcher’s detailed knowledge and creativity are most often demanded.

Before proceeding with the contents of this book you may find it useful to fami-
liarise yourself with the role of statistics in your field of interest. To assist you in this
respect it is suggested that you complete the following exercise.

Understanding how and why statistics are used will only become apparent if you
become familiar with current research in your area. The purpose of this exercise is
to enable you to become more familiar with this research, and to recognise the range
of different statistics that are being used to answer research questions.

1. Find a research journal that focuses on some aspect of your field of interest.
2. Select a research article from the journal. Read through the abstract, and skim

read the article.
3. Write down the title of the article and the journal from which it came. Then,

based upon your understanding of the abstract, write down the research question
that you think the researchers were interested in answering. If you cannot
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determine the question from the title or by reading the abstract, examine the last
paragraph of the introduction, just preceding the methods section, to see if the
authors state the purpose of the investigation.

4. Examine the results section, and make a list of as many different statistics as you
can identify. For example:

Descriptive statistics Inferential statistics
Mean t-test
Median Analysis of variance (ANOVA)
Mode Correlation
Standard deviation Multiple regression
Variance Factor analysis
Range Discriminant analysis

Chi square
Repeated measures ANOVA

5. To help you with this task, consult the later chapters of this text, a dictionary of
statistical tests or an introductory statistics textbook for your specific discipline.
Write a sentence to describe the purpose of each statistical test employed in the
research article; that is, explain what the statistical test is designed to do.

6. Explain why it was necessary to use the statistical test to answer the research
question posed in the article.

8 D O I N G  S T A T I S T I C S  W I T H  S P S S
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D E S C R I P T I V E  S T A T I S T I C S

Introduction to Descriptive Statistics

In attempting to answer most research questions, it is common to collect large
amounts of data that often represent individual participant’s scores on variables of
interest. For example, in order to be able to help in the recovery of patients who have
undergone heart surgery, exercise researchers might be interested in knowing how
important factors such as age, previous exercise habits and self-confidence on
adherence to a cardiac rehabilitation programme. To study the influence of these
variables on adherence we would first have to obtain a measurement of each partici-
pant’s age, previous exercise habits and self-confidence, along with measurements
of adherence to the rehabilitation programme. But rather than deal with every indi-
vidual score on the variables of interest, data reduction techniques would be utilised
to refine the data and reduce it to a manageable form. This allows us to make sum-
mary statements about the sample as a whole, rather than refer to each participant’s
scores. We can therefore see that descriptive statistics aim to provide a shorthand
description of large amounts of data.

To illustrate what this means let’s consider a rather less complex exercise-related
example. A researcher who was interested in the exercise behaviour of students at a
local university distributed a questionnaire to a sample of students who regularly
used the university health club to determine their patterns of use.

The data in Table 2.1 represents part of the information collected by the researcher
and it illustrates the number of times per month that a sample of students participated
in aerobic exercise classes at the student health club. A sample of 19 students
provided the researcher with information on their exercise behaviour.

In statistics the number of observations is denoted by the letter n. Therefore in
this case,

n = 19

As it is displayed in this raw form, it is difficult to comprehend any features of the
data and answer any questions about how often people engage in aerobic exercise.
One useful process is to arrange the observations in order from the smallest to the
largest. This process will produce what is termed an array (Table 2.2).

It can now readily be seen from this arrangement that the scores in this data set
range between 1 and 13. Therefore, it can be concluded that the minimum amount

2
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of exercise a student engages in is one aerobic session per month, and the maximum
number of sessions undertaken is 13. This range equals the highest score minus the
lowest score plus one. The reason for the plus one is because this range is inclusive
of both the highest and lowest scores:

Range of data = 13 − 1 + 1
= 13

Knowing the number of observations (n = 19) and having a rough measure of the
dispersion of these scores (range = 13) are useful but they are not enough to provide
an accurate shorthand description of the data. For example, they do not provide any
indication of how the 19 scores are distributed across this range of 13. Furthermore,
it is not known whether most students exercise once or twice a month with only an
odd few exercising 12 or 13 times a month, or whether most exercise 12 or 13 times
a month with only an indolent few exercising once or twice per month. To find out
how the frequency of exercise is distributed across this range of 13 the data needs to
be classified into what is known as a frequency distribution.

To undertake this task the range of scores must be divided into a number of dif-
ferent classes ranging from low attendance to high attendance. Then, the frequency
of scores falling within each specific level of attendance can be counted in order to
produce a frequency distribution.

Frequency Distribution

If data are to be divided into a number of classes then the first thing to do is to decide
how many classes there should be. There is in fact no rule to guide this process.
However, it ought to be clear that the more classes there are, the narrower the width
of each class. In this example we have decided that the number of classes is to be 7.
The number of classes is denoted by the letter k:

10 D O I N G  S T A T I S T I C S  W I T H  S P S S

Table 2.1 Raw data

7 4 5 13 8 10 8
7 3 5 9 8 10
6 1 6 12 11 9

Table 2.2 Array of data

1 5 6 8 9 10 13
3 5 7 8 9 11
4 6 7 8 10 12
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k = 7

Range of data = 13

Therefore the width of each class =
= 1.86

The resulting class width of 1.86 is an awkward number to deal with if the frequency
distribution is to be worked out by hand. Fortunately, just as the number of classes
is arbitrary, so also is the point at which to begin the lowest class and the point at
which to end the last class. For example, instead of starting at 1, the lowest score,
and ending at 13, the largest score, we could alter this so that the starting point is 1
and the end point is 14. This would ensure the class width becomes a whole number.
To see the consequences of this decision, let us repeat the above process:

k = 7

Range of data = 14 − 1 + 1

= 14

Therefore width of each class =
= 2

As you can see, the effect has been to increase the class width from 1.86 to 2. A class
width of 2 is much easier to work with if this exercise is to be calculated by hand.

In the above example seven classes have been created, each with an equal width of
two participating points. The first class starts at 1, known as the lower class limit, and
ends at 2, known as the upper class limit. If you now consider the array of data in
Table 2.2 only one score, which in this case is 1, falls into this first class. Let’s now
consider the second class. This will have a lower class limit of 3 and an upper class
limit of 4. Looking once again at the array of data in Table 2.2 it can be seen that two
scores, in this case 3 and 4, fall into this class. This process can be repeated for all
seven classes and tabulated in the form of the frequency distribution given in Table 2.3.
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Table 2.3 Frequency distribution of student participation
in aerobic exercises per month

Class Class limits Class frequency (f)

1 1–2 1
2 3–4 2
3 5–6 4
4 7–8 5
5 9–10 4
6 11–12 2
7 13–14 1

Total (Σ) = 19
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If the only information available to the reader was this table, then it would be
possible to conclude that one student attended one or two aerobic classes per month,
two students attended three or four classes per month and so on.

The term class limits in the table refers to the smallest and largest value that are
permitted in each class. The point half-way between the class limits is termed the
class mark. So, for example, the class mark of the first class would be 1.5 and of the
seventh class 13.5.

Sometimes it is more convenient to define a class not by its upper and lower limits
but by its boundaries, that is where it begins and ends. Looking back at our fre-
quency distribution we can see that the first class’s upper limit is 2 and the second
class’s lower limit is 3. Therefore, the boundary between these classes must be
between 2 and 3. The definition of where this boundary is does not matter as long as
we are consistent. The easiest thing would be to put it half-way between the two, that
is at 2.5. This point is known as the class boundary.

Graphical Representations

The distribution of the data across the classes can often be more clearly seen from a
graphical presentation. A graphical representation of a frequency distribution is known
as a histogram. A histogram of the above frequency distribution is shown in Figure 2.1.

If a line is drawn that joins all the class marks a frequency polygon will be
constructed.

As with the frequency distribution this histogram illustrates that one student
attended between one and two aerobic classes per month, two students attended
between three and four classes per month and so on.
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Figure 2.1 Histogram of student participation in aerobic classes
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Cumulative Frequency Curves

Sometimes it is useful to illustrate the number of observations that are less than
certain specified values. For example, it might be useful for the management of the
student health club to know how many members attended less than 11 classes per
month so that information on exercise adherence could be mailed to them, thereby
encouraging them to continue with a regular exercise programme. The cumulative
frequency values are the number of scores falling below the lower class limits, begin-
ning with the second class. To see how this works let’s use our previous array of data
on attendance at aerobic classes shown in Table 2.2.

Table 2.4 shows that only one student attended fewer than three sessions per month,
three students attended less than five times a month and so on.

Just as a frequency distribution can be represented graphically by a histogram so the
cumulative frequency distribution shown in Table 2.2 can be illustrated by a cumula-
tive frequency curve (Figure 2.2). Note that the cumulative frequency (denoted by F)
is on the vertical axis and the lower class limits are on the horizontal axis.

From this graph it can be seen that approximately 16 students attended less
than 11 classes per month. This may indicate to the management of the student
health club that advice on exercise behaviour and adherence should be mailed to
16 of the 19 students.

Cumulative frequency curves can also be used to illustrate rates of change. For
example, imagine you were interested in comparing how effective two training
schedules were at promoting skill development. If the frequency with which par-
ticipants successfully displayed the activity was recorded and plotted against time,
a cumulative record of their behaviour would be established. In this case, the slope
of the two lines on the graph would show how rapidly the skill was developed by
each of the techniques. This approach has often been adopted in learning in animals
where the behaviour is automatically recorded on what is known as a cumulative
frequency recorder.

A related approach is employed in leisure studies to create a graph that is similar
in principle to what economists call a demand curve. For example, imagine you were
interested in developing a health centre. After explaining the plan to members of the
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Table 2.4 Cumulative frequency distribution

Lower class limit Cumulative frequency (F)

<3 1
<5 3
<7 7
<9 12
<11 16
<13 18
<15 19
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public, you then ask them whether they would use the facility and how much they
would be prepared to pay to use it. If you then construct a frequency distribution and
plot a cumulative frequency curve based on the percentage values of each class
frequency you will get something similar to the graph in Figure 2.3.

From this graph it can be seen how the percentage of the public who claim they
will use the health centre decreases as the entry fee is increased. Multiplying the
percentage who claim they will use the facility by the charge at various points
would provide a calculation of the entrance fee that would maximise income for
the facility.
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people who will use the health centre as the charge increases.
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Measures of Central Tendency

In addition to knowing how the data is distributed, it is also extremely useful to be
able to identify the typical score. Using the data in our student aerobic exercise exam-
ple we might want to know the typical number of aerobic exercise sessions that
students attend each month. To find such a value we refer to what are known as
measures of central tendency, as these aim to provide a typical score around which
the other scores are scattered.

Before discussing the student data in detail let’s consider an additional data set
that the researcher obtained from university staff attending aerobic exercise classes
at the student health centre. The data in Table 2.5 represents part of the information
that was collected and illustrates the number of times per month that a sample of
university staff participated in aerobics classes.

Adopting the same procedure as before, the frequency distribution given in
Table 2.6 can be constructed.

The questions we now want to ask are first what is the typical number of times per
month that students participate in aerobic classes and second what is the typical
number of times per month that staff participate in aerobic classes?

To answer these questions we should note that there are three measures of central
tendency that we might employ. These are:

1. the mode
2. the median
3. the mean.
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Table 2.5 Array of data of the number of times staff participate
in aerobic classes per month

1 3 4 4 6 9 14
3 4 4 5 7 10
3 4 4 5 8 12

Table 2.6 Frequency distribution of staff participation in
aerobic exercises per month

Class Class limits Class frequency (f)

1 1–2 1
2 3–4 9
3 5–6 3
4 7–8 2
5 9–10 2
6 11–12 1
7 13–14 1

Total (Σ) = 19
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The Mode

This is defined as the observation in the sample that occurs most frequently. If there
are two scores that occur most frequently, then the sample is said to be bimodal. If
more than two modes exist, then the data set is considered to be multi-modal. In the
student data in Table 2.2 there is only one mode and this is the number 8 which
occurs three times. Therefore, according to this measure, typically students attend
eight classes per month.

For staff, on the other hand, the most frequent observation (from Table 2.5) is 4,
which also occurs three times. This suggests that staff typically attend four sessions
per month.

The Median

When the data is arranged from the lowest to the highest value, the median is the
middle observation in the array. In both our student and staff data we have an odd
number of observations (n = 19) so the median observation is the 10th observation.

Median for student data = 8
Median for staff data = 4

Thus for both staff and students, the corresponding modes and medians are the same.
That is, both measures suggest that students typically attend eight classes per month
and staff four classes per month.

The Mean

This is the sum of all the observations divided by the number of observations made:

While the mean for the students is very similar to the median and mode, that is 7.47
compared with 8, the corresponding figures for the staff are 5.84 and 4. Given that
one measure suggests that staff typically attend nearly six classes per month and the
other two measures suggest they attend four classes per month, which measure are
we to believe? That is, which provides a truly typical score?

Mean =
∑

x

n

16 D O I N G  S T A T I S T I C S  W I T H  S P S S

Mean for students (x−) = sum of observations = 142 = 7.47
n 19

Mean for staff (x−) = sum of observations = 111 = 5.84
n 19
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To answer this question it is important to appreciate that the mean is sensitive to every
score in the array, whereas the median and the mode are not. To illustrate this imagine
that the score of 14 in the staff data was changed to 140; this would suggest that one
faculty member was probably obsessive about exercise. It would also affect the mean
of the array so that the mean would become 237/19 = 12.47. However, the median
would remain at 4, because it is still the middle score. Therefore, it appears that while
the mean becomes distorted by this extreme value, the median remains unaffected.

This example illustrates that how the data is distributed over the range of values will
influence the three measures of central tendency in different ways. For this reason
an understanding of a concept termed skewness is important.

Skewed Distributions

If the mode, median and mean for the student data are drawn on the histogram in
Figure 2.1, it can be noted that they almost fall in the same place on the histogram,
that is close to 8. If the distribution had been truly symmetrical, that is if the scores
had been evenly distributed around a mid-point, then the mean, median and mode
would all have had exactly the same value and would fall at the mid-point of the
distribution.

Note that in Figure 2.4 the mean is represented by the solid vertical line and the
median and mode by the dashed line. If this procedure is now repeated for the staff
data it can be seen that the measures of central tendency do not fall at the same point
because the mean is located to the right of the other two measures. It can also be seen
that, whilst the figure representing the student data looks almost symmetrical, the
figure representing the staff data (Figure 2.5) is clearly not symmetrical.

Distributions that are not symmetrical are termed skewed. They may be skewed to
the left (negative) or to the right (positive). The direction of the skewness is determined
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Figure 2.4 Histogram of student participation displaying the mean,
median and mode values
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by the direction in which the tail of the distribution falls, that is the direction of the
most extreme scores.

If a distribution is skewed, its mean will be changed in the direction of these
extreme scores. The mean then may not provide us with the most appropriate repre-
sentation of a typical score. In fact, it can be seen that this is the case for the staff
data. Those one or two staff members who are rather more keen on aerobic exercise
classes than the others are distorting the mean. However, the median is unaffected
by these extreme scores. Therefore, with a skewed distribution, the median will pro-
vide a more appropriate indication of the typical score.

The direction of skewness is indicated by the location of the mean relative to the
median. As the mean of the staff data is to the right of the median the distribution is
skewed to the right or positively skewed. The magnitude of skewness will reflect the
difference between the mean and median values.

Boxplots

A useful way of graphically representing the symmetry of data is the boxplot. This
type of graph displays the median value by a horizontal bar surrounded by 50% of
the scores shown within a box. This 50% of scores falls between the 25th and 75th
percentile marks. The 25th percentile is at the bottom of the box and the 75th per-
centile is at the top. The whiskers extending from both ends of the box show the
highest and lowest values that are not outliers. Outliers are scores in the distribution
that are more than 1.5 box-lengths from the 25th or 75th percentile, and they are dis-
played by a circle; those that are more than 4 box-lengths away are shown by an
asterisk. Look at the boxplots of the staff and student aerobic participation rates
displayed in Figure 2.6.
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The boxplot for the students looks moderately symmetrical as the box is almost in
the middle of the whiskers and the median is only slightly above the middle of the
box. This suggests that this data is very slightly negatively skewed and therefore the
mean may be employed as the appropriate measure of central tendency.

For the staff data the picture is quite different. The upper whisker is longer than
the lower one and has one outlier. The number against this outlier is the case num-
ber. This case number identifies which participant had this extreme score. It can also
be seen that the median score is at the bottom of the box. This suggests that the data
is heavily positively skewed and hence the median may be employed as the appro-
priate measure of central tendency. Therefore the conclusion is that, on average,
students attend 7.47 aerobic classes per month while staff attend only 4 classes
per month. Later on you will be instructed in how to generate boxplots using SPSS.

The choice of which measure of central tendency to employ is not restricted to
whether the data is skewed or not. In addition, the type of measurement that produced
the data needs to be taken into account. Whenever anything is measured, numbers or
values are assigned to observations. It is important to remember that how values are
assigned determines the arithmetic operations that are permitted on the data. In other
words, the type of data that is collected determines the statistical tests that can be used.
Thus, different types of measurement result in the production of different types of data.

Levels of Data

Data may be measured in a variety of forms, but there are three specific forms of
measurement to which we wish to draw your attention at this point. 
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Figure 2.6 Boxplot of staff and student aerobic class participation rates

SKerr02.qxd  2/7/02 12:38 PM  Page 19



First, data may be measured on a nominal scale whereby the units used bear no
meaningful relationship to one another. For example, the researcher assigned the
number 1 to someone who attended aerobic classes, 2 to someone who played field
sports, 3 to someone who engaged in track events and so on. Here we can see that
the researcher is only nominally (i.e. in name only) assigning these units 1, 2, 3, 4,
etc., to participation in these activities and therefore they have no meaningful
mathematical relationship to one another. As a consequence of this, it is meaningless
to engage in any mathematical operation. For example, we cannot add the units
together. Two people participating in aerobic classes who were given the number 1
do not equal one person who participated in field sports and had the number 2
assigned. All we can do is simply determine the frequency with which people parti-
cipate in the various leisure activities. If the aim is to identify the typical leisure
activity then the mode would be the most appropriate measure of central tendency.
Because information collected in this way does not fall on any continuous scale it
may be less confusing if the term nominal data rather than nominal scale is adopted.

A second form of data is measured on what is termed an ordinal scale. For exam-
ple, children may be asked to rank a list of 10 sports from 1 to 10 in order of prefer-
ence from most to least enjoyable.  In this case the method of ordinal scaling provides
no grounds for assuming that the difference in preference between sports listed 2 and
3 is of the same magnitude as that between sports listed 7 and 8. Furthermore, if a
leisure researcher had students rank fitness clubs in terms of the facilities each provided
for its members, it could not be assumed that the difference in facilities between the
first and second ranked clubs was the same as that between the second and third ranked
clubs. All that is known is the order in which the clubs were ranked for their facilities,
not the magnitude of the distance between them. If a typical score of how these clubs’
are ranked is required, then the median (the middle observation) should be employed. 

The third distinct form of measurement is that of the interval scale. This is like
an ordinal scale but with the additional feature that all of the intervals are equal. For
example, the data the researcher gathered on participation in aerobic classes might
be considered to be measured on an interval scale. The difference between attending
three and four classes is the same as the difference between attending 10 and 11 classes,
namely one aerobics class.

To obtain a typical measure with interval data the mean is normally employed.
However, as described previously, this will only provide a typical score if the distri-
bution is not heavily skewed, that is the distribution is symmetrical. If the data is
heavily skewed then the median will render a more typical score. It was for this
reason that the median was chosen as the appropriate measure of central tendency
for the staff data even though it was measured on an interval scale.

Measures of Dispersion

By itself, a measure of central tendency does not provide an adequate shorthand
summary of the data. Whilst it is very useful to know the typical score, it is also
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important to know how the rest of the data clusters around this mid-point. This
requires a measure of the spread of the data. Measures of dispersion provide
information on how the data is distributed around the typical score.

For example, if you are told that the mean exam score for a health and fitness class
is 55, it tells you the average score that students achieved on the exam, but it does
not tell you how the rest of the scores varied around that point. If there was no vari-
ability in the exam scores, everyone would have received a grade of 55. If there was
a great deal of variability in the scores some students would have performed very
poorly on the exam and some would have performed very well. In contrast, if the
variability in exam scores had been low then most students would have performed
close to the mean score of 55. One simple indication of the variability in exam scores
might be provided by the range. Earlier in this chapter it was stated that the range
equals the difference between the highest score and the lowest score. It was also
noted that sometimes the value 1 is added to this equation to reflect the fact that the
range is inclusive of the two extreme scores:

Range = (highest − lowest) + 1

For example, the range of scores in an exam where the lowest mark is 25 and the
highest mark is 75, is 51, not 50. If the smallest value is subtracted from
the largest, this would measure the difference between these values, but exclude
the values themselves.  Another way of expressing this is to recall that each of the
scores in the distribution occupies a class interval equal to one unit. Therefore,
the mid-points between class intervals extend 0.5 below the lowest score, and
0.5 above the highest score. So 24.5 should be subtracted from 75.5 to produce a
range of 51.

Variance

The goal of a measure of dispersion is to produce some metric of how the scores are
dispersed around the mean. One obvious solution would seem to be to subtract the
mean from each score, and sum the differences to determine the total dispersion:

Unfortunately, if the distribution is symmetrical, there will be just as many scores
greater than the mean as there are scores smaller than the mean. Therefore, when all
the difference scores (i.e. the deviations from the mean) are added together, the
answer will always sum to zero. To overcome this problem the differences could be
multiplied by themselves; that is, calculate the square of each of the deviation scores.
This would have the effect of eliminating all the negative numbers, as a minus

∑
(x − x)
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multiplied by a minus equals a plus. This sum of the squared deviation from the
mean is called the sum of squares:

Sum of squares =
∑

(x – x– )2

This process would produce a measure that would increase as the range of the data
increased. Unfortunately, the sum of squares would also increase as the number of
the observations increased, that is as n increases. To control for the size of n the sum
of the squares of the differences can be divided by n. This will calculate what is
known as the variance, and the formula for this is

Variance = sum of squares =
∑

(x − x– )2

n n

This formula, translated into words, reads:

1. The mean is subtracted from each score.
2. The results (of step 1) are squared.
3. The squared deviations are summed.
4. The sum total of the squared deviations is divided by the number of observa-

tions (n).

In effect, when the variance is calculated, the calculation produces the average of the
squared deviations from the mean, that is the mean of the squared deviations from the
mean. To illustrate this let’s work out the variance for the data concerning student
participation in aerobic classes.

Example 2.1 Calculation of the variance of the
data set presented in Table 2.2. (The mean of this data set

was calculated subsequently to be 7.47.)

x x −− x
_

(x −− x
_

)2

1 −6.47 41.86
3 −4.47 19.98
4 −3.47 12.04
5 −2.47 6.10
5 −2.47 6.10
6 −1.47 2.16
6 −1.47 2.16
7 −0.47 0.22
7 −0.47 0.22
8 0.53 0.28
8 0.53 0.28
8 0.53 0.28
9 1.53 2.34
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9 1.53 2.34
10 2.53 6.40
10 2.53 6.40
11 3.53 12.46
12 4.53 20.52
13 5.53 30.58

Σ = 142 0.0 172.72

Variance = sum of squares =
∑∑

(x − x– )2

n n

= 172.72
19

≅ 9

Standard Deviation

In calculating the variance the differences between each observation and the mean
were squared. Therefore, the variance reflects the dispersion of scores measured in
units that are the square of the original units. For example, if the original units were
the number of aerobic classes attended per month then the variance would be these
units squared. To get back to our original units, the simplest solution is to take the
square root of the variance. This will produce what is known as the standard
deviation. This is a measure of the average variability in the distribution of scores:

Standard deviation (s) = variance

If the variance of a data set was equal to 9 then

Standard deviation (s) = 9 = 3

Standard deviation is a very important concept in statistics but this importance will
only become apparent when we consider the normal distribution in the next chapter.

Computational Formulae for Calculating Standard Deviations

The computational formula used above for the variance can be used in calculating
the standard deviation. All that needs to be done is to calculate the square root of the
variance:

s =
√

SS

n
=

√∑
(x − x)2

n
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Usually this statistic is calculated for a sample of scores rather than for the whole
population, so the value produced is only an estimate of the standard deviation in the
population. Because it is only an estimate an error could have been made, and the
statistic may not reflect the true variability in the whole population. In order to over-
come this problem and offer a more conservative estimate of variability, n − 1 is used
in the denominator instead of n, thereby increasing the size of the standard deviation
slightly.

The formula now reads

When there are whole numbers in the calculation, this formula is easy to use.
However, when the mean involves decimal places, the calculation can become cum-
bersome. In this case an easier formula is available:

A Simple Example

In case the previous discussion on variance seems a little obscure to you and the for-
mulae a little abstract let’s consider some simple data sets. In arrays of data that are
based on small samples and whole numbers it is easy to visualise what the average
variability in the data set might be. Consider the following example where there are
three sets of data labelled A, B and C. 

A B C
3 2 1
3 3 3
3 4 5

For each data set, the mean score is 3. As all the values in data set A are the same
there is no variability at all in this data set. There is clearly greater variability in data
set B, where the scores range from 2 to 4, and even greater variability in data set C
where the scores range from 1 to 5. In data set B, the two scores that deviate from
the mean appear to vary by an average of one unit. For data set C, however, the two
scores that deviate from the mean appear to vary by an average of two units. 

s =
√ ∑

x2

(n − 1)
− x 2

s =
√

SS

n − 1
=

√∑
(x − x)2

n − 1
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If we were to use the formula below to calculate the standard deviations for data
sets B and C we would confirm our speculation:

Consider data set B in Table 2.7.

Now consider data set C in Table 2.8.

s =
√

SS

n − 1
=

√∑
(x − x)2

n − 1
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Table 2.7 Data set B

x x−− x– (x−− x–)2

2 −1 1
3 0 0
4 1 1

Σ = 2

Table 2.8 Data set C

x x−− x– (x−− x–)2

1 −2 4
3 0 0
5 2 4

Σ = 8

s =
√

SS

n − 1
=

√
2

2
= √

1

s = √
1 = 1

s =
√

SS

n − 1
=

√
8

2
= √

4

s = √
4 = 2
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These calculations confirm the previous estimates of the average deviation based
on a simple inspection of each of the two data sets, for they show that the average
deviation for set B is 1 and for set C is 2. However, they also confirm the legitimacy
of the formulae as they produce the same values that our quick visual inspection of
the two data sets suggested.

Summary

Descriptive statistics aim to provide a shorthand description of large amounts of data
by making summary statements about the sample as a whole, rather than making
reference to each participant’s scores. These statistics include the sample size (n), the
typical score (mean, median and mode) and how the scores are dispersed around the
typical score (standard deviation).

Which measure of central tendency will provide a typical score depends upon the
type of scale on which the data was measured upon (interval, ordinal or nominal) and
whether the distribution is symmetrical or skewed. If the data is symmetrical all
three measures will have the same value but if the data is skewed the mean will be
distorted in the direction of the extreme scores. Hence, the direction of skewness is
indicated by the location of the mean relative to the median.

The distribution of the data can be graphically represented in the form of a histo-
gram or a boxplot, or statistically represented through the concepts of variance and
standard deviation. The variance is the average of the squared deviations from the
mean whilst the standard deviaition is the square root of the variance.

A student researcher was interested in the importance of sound effects on computer
games. He first of all noted the frequency with which a particular computer game
was played. Then, using two identical computer games, he arranged for the sound
effects on one computer game to be almost inaudible while the other was set at a
high level. Observers then noted how often individuals would play the two computer
games between midday and one o’clock on two consecutive days. The results of his
observations were as follows:

Data list showing the number of times different individuals played the com-
puter game with the high sound volume:

8, 7, 2, 3, 5, 3, 4, 6, 4, 4, 5, 3, 6, 7, 5, 6, 4, 5, 6, 2, 7, 5, 8, 1, 9
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Data list showing the number of times different individuals played the com-
puter game with the low sound volume:

1, 7, 2, 5, 3, 6, 4, 5, 3, 1, 4, 6, 5, 7

For each of the two groups of data:

1. Construct a frequency distribution.
2. Draw a histogram of the frequency distribution.
3. Compute:

(a) the mode
(b) the median
(c) the mean
(d) the variance
(e) the standard deviation.

If you are not sure how to work out the variances then look at the example on
page 22.

From your examination of both sets of descriptive statistics does it appear as if
there is any difference in the frequency with which the computer game was played
when the sound was high and when it was low?

Below are listed a number of scenarios in which you are asked to identify the type
of data collected and explain the reason for your choice. In carrying out this task you
might find it helpful to consider how the researcher records the data and how it could
be represented graphically.

1. A woman with a clipboard accosts you outside a shopping centre, and asks you
which one of five laundry detergents you use most often.

Data = Laundry detergents: ............................................................................

2. An exercise physiologist is looking at the effects of exercise on the core temper-
ature of the body, and uses a rectal thermometer to measure body temperature.

Data = Temperature: ............................................................................

3. A sports sociologist investigating the effects of socio-economic status (SES) on
children’s participation in leisure activities measures SES by recording the
father’s occupation.
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Data = SES: ............................................................................

4. A researcher interested in comparing the attacking capabilities of each football
team in the Premiership assigns the value 1 to the team which has scored the
most goals, 2 to the next top scorers, 3 to the third top scorers and so on.

Data = Attacking capability: ............................................................................

5. A researcher measuring how successful marathon runners felt after completing
the London Marathon asked participants to rate themselves on a 1 to 10 scale,
with 1 being unsuccessful, and 10 being successful.

Data = Perceived success: ............................................................................

6. A physiotherapist, trying to investigate how different sports influence the type
and severity of injuries, collects data from athletes involved in several types of
sport, and determines the severity of injury by how many days of practice have
been missed.

Data = Type of sport: ............................................................................

Data = Severity of injury: ............................................................................

7. During a drunken conversation in a local pub, a friend of yours asks you to list
the 10 best athletes in the world in order of their ability.

Data = Athletes: ............................................................................
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T H E  N O R M A L  D I S T R I B U T I O N

Normal Distribution

Any phenomenon which is produced by a large number of ‘chance’ factors that are
not interrelated will produce what is known as a normal distribution. The graphi-
cal representation (Figure 3.1) of this distribution generates a bell-shaped curve that
is symmetrical.

It is important to note that the normal distribution is a mathematical concept
defined by the following intimidating equation:

where

Y = frequency n = number of cases
x = a raw score σ = standard deviation
e = 2.7183* µ = mean of scores
π = 3.1416*

and the asterisks indicate that these are mathematical constants.
While it is not necessary to remember or understand this equation, it is included

here to emphasise that the origins of the normal distribution reside in human endeav-
ours and not in nature. This is important because the normal distribution is a
mathematical concept that is the product of human thinking. There should be no
expectation that nature will copy human thought and distribute natural occurrences
in the form of a normal distribution. What should be expected is that a wide variety
of objects, characteristics and occurrences will be distributed in ways that vary in
their approximation to a normal distribution. 

The fact that objects and qualities are not distributed in an exactly normal manner
does not mean that the qualities of a normal distribution, to be outlined below, can-
not be applied to phenomena that are imperfectly distributed. The researcher just
has to be aware that the accuracy of the descriptions and predictions made will
depend upon how close the observed distribution approximates to a perfectly normal

Y = n

σ
√

2π
e−(x−µ)2/2σ

2

3
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distribution. For this reason, a researcher should always examine the descriptive
statistics relevant to the data before carrying out any statistical analysis.

The Importance of the Normal Distribution

Approximations of normal distributions are not only produced by many things that
are of interest to social scientists (e.g. fitness, memory, performance), but they also have
a number of unique properties that make them very useful. As in all distributions that
are symmetrical, the mean, median and mode are all to be found at the same posi-
tion at the centre of the distribution. However, normal distributions have one unique
characteristic that makes them particularly useful. 

This characteristic is that whenever a distance is measured away from the mean
in units of standard deviation the same proportion of the area of the curve is always
cut off. This fact is illustrated by the graph shown in Figure 3.2. From this graph it
can be seen that, as the distribution is symmetrical, the mean is in the middle of the
distribution. Therefore, half of the scores in the distribution fall above the mean and
half fall below. If a vertical line is now drawn one unit of standard deviation away
from the mean then, from Figure 3.2, it can be noted that an area of 15.87% of the
distribution is cut off from the end of the distribution. Hence, the area that remains
between the mean and this cut-off point of one standard deviation will be equal to
50% of the scores in the distribution less the 15.87% of the scores that are cut off.
Therefore the area remaining between the mean and this cut off will be 34.13%. If
the distance moved from the mean is increased to two units of standard deviation
then Figure 3.2 illustrates that the tail cut-off will have an area of 2.28%. Therefore,
the area that now remains between the mean and this point that is two units of standard
deviation away from the mean will equal 50% less 2.28%, or 47.72%.
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From the above it can be seen that if the area between the mean and one standard
deviation away is always 34.13%, then the area between one standard deviation
above and one standard deviation below the mean will always be twice this amount,
that is 68.27%. Hence, 68.27% of all scores in a normally distributed sample of
scores will fall between one standard deviation above the mean and one standard
deviation below the mean. For the same reasons the area between two standard devi-
ations above and below the mean will contain 95.45% of all scores in the distribu-
tion, and the area between three standard deviations above and below the mean will
always include 99.73% of all scores.

These observations concerning the fixed percentage of scores falling, for example,
between plus and minus one standard deviation provide a clue as to the importance
of this property of normal distributions, for this principle can be extended so that if
the mean and standard deviation of a distribution are known then the proportion of
scores that fall above, below or between any particular value on the horizontal axis
may be determined. Thus the mean and the standard deviation together provide a
shorthand description of data that approximates to a normal distribution.

The practical importance of this information can be illustrated through the
following example. Understanding the properties of the normal distribution and
having knowledge of the mean score and standard deviation of an exam can influence
the emotions of students when they discover how they performed. Imagine that your
final exam grade for a course that is important to you was 70%. Not surprisingly you
begin to glow with pride because at the university 70% is usually considered to be a
good grade. Because you are keen to determine how your grade compares with that
of others, you ask your lecturer for the mean and standard deviation of the exam. You
discover that the mean was 60% and the standard deviation was 5. At this point you
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Figure 3.2 Graph showing area cut off at various distances from the
mean, measured in units of standard deviation
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become overwhelmed with joy in the knowledge that your score lies two standard
deviations above the mean. Therefore, if the scores on the test are normally distributed
then only 2.28% of your classmates scored more than you.

However, let’s change some of this information slightly and see how your emotions
might be affected. Once again you discover you’ve scored 70% and begin to feel
good. Then, however, you discover that the mean of the exam was 80% and the stan-
dard deviation was 5. Your initial joy begins to turn to despair as you realise that only
2.28% scores were poorer than your own. If you were then to discover that the stan-
dard deviation was not 5, but 3, you could only conclude that despite a grade of 70%,
there was a strong probability that your score was perhaps the poorest in the class.
This is because your score lies more than three standard deviations below the mean.

It is useful to remember approximately what percentage of scores fall beyond one
and two standard deviation points away from the mean. When scores fall at some
other point in the distribution then the calculation of the proportion of scores falling
above and below that point becomes less straightforward. To illustrate this point, if
in the previous example where the mean of the exam was 60% and the standard devi-
ation was 5 you would know that in achieving a grade of 65%, 15.87% of scores in
the distribution would fall above yours. However, if you were to score 64% it would
be more of a challenge to determine what proportion of scores lay above your own. 

To find an exact answer to questions such as ‘what proportion of scores fall above,
below or between any particular value on the horizontal axis?’, it is not necessary to
measure the area of the curve cut off. Instead the distance between the mean and the
value of interest in units of the standard deviation has to be determined. This is
known as the z-score and is expressed as

In this equation, x is the value of interest and s is the standard deviation of the
sample of scores. Note that the numerator determines the distance away from the
mean in the original units and the denominator, s, converts this distance to units of
standard deviation. Once the value of z is calculated then Table 3.1 may be used to
identify the area cut off.

To illustrate this, the distribution of the data set used in the previous chapter con-
cerning aerobic exercise participation by students can be used as it approximates to
a normal distribution. On average students went to aerobic classes 7.5 times a month
(i.e. the mean = 7.5), and the standard deviation was three classes. To determine what
proportion of students participate more than, for example, 10.5 times per month
simply substitute these values into the above equation:

z = x − x

s
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From Table 3.1 it can be noted that a z-value of 1.0 cuts off 15.87% of the area of
the curve; that is, 15.87% of the students participated more than 10.5 times per week.
As the total area under the curve represents the total number of students it is
possible to calculate the actual number of students who would be expected to attend
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Table 3.1 The proportion of a normal curve cut off at various distances –
measured in units of standard deviations – away from the mean

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4801 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0082 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007
3.3 0.0005
3.4 0.0003
3.5 0.00023
3.6 0.00016
3.7 0.00011
3.8 0.00007
3.9 0.00005
4.0 0.00003
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more than 10.5 times a month. To do this, divide the percentage cut off by 100 to
convert it to a proportion and then multiply this by the sample size. Therefore, as the
sample size was 19 the task is simply to workout 15.87% of 19:

Number participating more than 10.5 times per month = × 19

= 3.015

From an examination of the array of this data in Table 2.2 it can be seen that in fact
three students participated more than 10.5 times per month.

To illustrate a more complicated use of Table 3.1 we shall consider what percent-
age of students achieved a higher exam score than a grade of 64 when the mean for
the class was 60 and the standard deviation was 3. This again requires the calcula-
tion of z before the table can be used:

To use the z-table (Table 3.1) look down the column headed z until the value 1.3 is
identified. Now look along that row until the column headed 0.03 is reached. The
cell that is identified by the row 1.3 and the column 0.03 contains the value 0.0918.
This number represents the area cut off as a proportion when a line is drawn 1.33
standard deviations away from the mean. To convert this proportion to a percentage
multiply the value 0.0918 by 100 (i.e. move the decimal place two places to the
right). Therefore, a z-score of 1.33 cuts off an area of 9.18%, so it may be concluded
that 9.18% of students achieved a grade higher than 64 in the exam.

It should be clear from these examples that a researcher no longer needs the raw
data because knowledge of the standard deviation, the mean and the sample size can
help to recreate a comprehensive picture of the original data as long as it approximates
to a normal distribution. However, the importance of these measures is not restricted
to providing a shorthand account of the data, for these statistical measures are also the
basic tools that allow for the testing of predictions that are made about the data. It is
with the testing of such predictions that the remainder of this book is concerned.

Summary

Normally distributed data is distributed in the form of a bell-shaped curve.
Although many phenomena in the real world that are produced by a large number
of ‘chance’ factors that are not interrelated closely approximate to a normal distri-
bution, the distribution itself is a mathematical concept that is defined by a com-
plex equation. Normal distributions have one unique characteristic that makes
them particularly useful. This characteristic is that whenever a distance is
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measured away from the mean in units of standard deviation the same proportion
of the area of the curve is always cut off. For example, a vertical line drawn one
unit of standard deviation away from the mean will always cut off 15.87% of the
distribution. Therefore, if the mean and standard deviation of a distribution are
known then the proportion of scores that fall above, below, or between any particu-
lar value on the horizontal axis may be determined. Hence, the mean and the stan-
dard deviation together provide a shorthand description of data that approximates
to a normal distribution.

The distance away from the mean measured in units of standard deviation on a
normal distribution is known as the z-score. The proportions of the area that are cut
off as the value of z increases from zero are displayed on what are known as
z-tables.

At the end of the academic year, a university professor who was concerned that none
of the undergraduate students were being disadvantaged by having a graduate student
teaching a class in data handling sat pondering the final grades for the class. She
became curious as she noticed that the students in the graduate student’s class seemed
to perform better overall than students in her own class. Being a good researcher, she
did not rely on an inter-ocular test (i.e. eyeballing the data) to draw conclusions.
Rather, she set out to test empirically whether there was a difference between the per-
formance of students in her own class and that of the graduate student. The professor
reported the data in Table 3.2 that represents the final grades for both her class and
the class taught by the graduate student.

Because other pressing matters have prevented the professor from obtaining an
answer to her question, you have been selected to act as her research assistant owing
to your considerable promise in the area of data handling. 

The first step in determining whether there are differences between the student
grades is to examine the important descriptive statistics. Your task is to:

1. Calculate the mean, median and mode for both data sets.
2. Construct a frequency distribution for each data set.
3. Calculate the range and standard deviation for each data set. 
4. For each data set, describe which measure of central tendency best represents

the average score. Provide a brief explanation for your choice. 
5. Determine if there is a difference between the grades of the students in the two

classes. On what criteria would you base your answer?

Now that you have completed this exercise you will be guided on how to employ
SPSS to execute the same analysis. You can use the results from SPSS to check
whether your calculations by hand were correct.
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1. Start SPSS by clicking on the SPSS icon. If a window opens with the option Type
in data then select it and click on OK, otherwise just proceed to the next step.

2. Make sure that the Data View window is open so that the screen is displaying
a series of empty cells in the form of a spreadsheet. If this is not the case then
click on the tab Data View in the bottom left-hand corner of your screen. In
SPSS each participant must have their own row. This means that as there are 44
participants you will require 44 rows. In addition, you will require two columns.
The first column is to identify whether the participant is in the professor’s class
or the graduate student’s class and the second column is to contain the partici-
pant’s final grade. An example of how this should appear is shown below:

3. Move the cursor to the first row of the first column and click on it. Type in
the number ‘1’ and press the return key. As there are 22 participants in the
professor’s class, repeat this procedure 21 times, that is until 22 rows have the
number 1 in the first column. Now enter the number ‘2’ in the 23rd row and
repeat the above procedure until there are number 2s in rows 23 to 44 inclusive.
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Class Grade

1 49

1 51

1 56

etc.

2 59

2 45

2 51

etc.
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Table 3.2

Professor’s class Graduate student’s class

49 55 59 59
51 54 45 59
56 55 51 71
59 58 53 67
91 92 57 61
63 55 56 56
56 55 57 59
10 53 55 61
43 51 49 61
47 56 49 64
52 49 74 65
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4. Move the cursor to the first row of the second column and click on it. Now you
need to enter the actual final grade. To do this, type in the first value for the
professor’s class (i.e. 49), and press the return key. Now enter the second
value – 51 – and press return. Repeat this procedure until all of the data for both
classes is entered.

5. You now need to label the variables. Click on the tab Variable View in the
bottom left-hand corner of your screen. In the Name column double click on
the first variable and replace var00001 with the name ‘Class’. Move along to
the sixth column which is headed Values and click on where the word None
is written in the first row. A shaded box with three dots will appear at the right-
hand end of this cell. Click on this shaded area and a Variable Labels
window will open. Click on the Value box and type in the number 1, then click
on the Value Label box and type in ‘Prof’. Now click on the Add box. The
cursor will now flash in the Value box. Type in the number 2, click on the
Value Label box and type in ‘Grad’, then click on the Add box. Finally, click
on the Continue box and then on OK.

6. In the Name column double click on the second variable and replace
var00002 with the name Grade. Click on the tab Data View in the bottom
left-hand corner of your screen and you should return to the spreadsheet of
your data. The names you have written should appear at the top of the two
columns of data. In the first column the numbers you entered should now dis-
play the labels Prof and Grad. If they do not then click on the View menu at
the top of the screen and click on Value Labels.

7. You will now make a series of selections from the menus to utilise the SPSS
Explore option. First of all click on Analyze and then on the option
Descriptive Statistics. Finally select the option Explore.

Select the variable you named ‘Grade’by clicking on it once and then clicking on
the arrow pointing to the Dependent List. Employ a similar process to enter the
variable ‘Class’ in the Factor List. Click on the Plots box and deselect ‘Stem-
and-leaf’ and select ‘Histogram’. Click on Continue and then on OK.

8. The Output window should be displayed. If it is not then click on the Window
menu at the top of the screen and select Output1 - SPSS Viewer. Print out the
results by either clicking on the print icon and then click on OK in the Print
window that opens. Alternatively go to the File menu and select Print.

9. Close down SPSS by selecting Exit from the File menu. When you are asked
if you want to save the output select No as you can easily reproduce this. How-
ever, when you are asked if you want to save the data select Yes, as you will
use this again in a later exercise. 

10. EXAMINING YOUR PRINTOUT

Descriptive statistics
Professor Student
Median .................... Median ....................
Mean .................... Mean ....................
Standard Deviation .................... Standard Deviation ....................
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Boxplot
Is the median in the

middle of the box? Yes/No Yes/No
Are the whiskers the

same length? Yes/No Yes/No
Are there any outliers? Yes/No Yes/No

What do you conclude about the normality of the distributions of each set of
scores from the boxplots?

Professor: ...........................................................................................................

Student: ...........................................................................................................

Is this interpretation supported by the histograms for the following?

Professor: ...........................................................................................................

Student: ...........................................................................................................

From comparing the means in the context of the standard deviations and look-
ing at the boxplots, do you think there is a practical difference in the final grades
of the students in the two classes? 

...............................................................................................................................

...............................................................................................................................

...............................................................................................................................

After your success as a research assistant, you have been approached by Nationwide,
the sponsors of the Football Conference, to help it reward the leading goal scorers at
each club in the Conference. Nationwide has decided to give £1000 to the top 10%
of the leading goal scorers, £900 to the next 10%, £800 to the next 10%, etc. The
bottom 10% will receive a reward of £100. 

To complete this task you need to know the mean, standard deviation and sample
size. These values can be calculated by hand or the data may be entered into SPSS
using the instructions from the previous exercise.

1. Using z-scores from Table 3.1 and the data listed below in Table 3.3, calculate
what percentage of players scored more than and less than 22 goals, 26 goals,
14 goals. Into which reward band do each of these three scores fall?
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2. Calculate how many goal scorers should fall between one standard deviation
above and below the mean in the present sample. Does the data confirm this?

3. Because of the current slowdown in the economy and recent reductions in
Nationwide profits, the company has decided that it will only reward the top
15% of leading goal scorers in the Conference. How many goals need to be
scored in order to receive financial reward? How many goal scorers would you
predict to be in the top 15% in the present sample? Does the data confirm this?

4. How many goal scorers would you predict scored between 19 and 31 goals
inclusive? Does your data confirm this?

Table 3.3

1. % Scoring more than % Scoring less than Reward band
22 goals .................................. ................................ ......................
26 goals .................................. ................................ ......................
14 goals .................................. ................................ ......................

2. Predicted Actual
Goal scorers falling 1 standard deviation above the mean ............. ..............
Goal scorers falling 1 standard deviation below the mean ............. ..............

3. How many goals would need to be scored to receive a financial reward? ........
How many goal scorers were predicted to be in the top 15%? ........
Do the data confirm this prediction? Yes/No

4. How many goal scorers were predicted to score between 19 and 31 goals? ........
Do the data confirm this prediction? Yes/No

Goals scored by the leading goalscorer for each team
in the Nationwide Conference

19 34
5 19

11 19
13 31
17 27
16 21
17 16
15 19
9 21
9 21

24 25
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I N T R O D U C T I O N  T O
E X P E R I M E N T A L  R E S E A R C H

Inferential Statistics

In the previous two chapters we have seen how the sample size, mean and standard
deviation provide a shorthand description of data that is normally distributed. These
descriptive statistics allow comparisons to be made between different sets of data in
terms of their typical scores and how the data is distributed. However, researchers
often not only want to describe differences and similarities between sets of data, but
also want to make inferences. For example, they may wish to test whether any
observed differences reflect the impact of some causal factor or test to see if they can
infer a particular sort of relationship between the variables that have been measured.
To illustrate this, imagine that it is observed that a group of people who undertake a
particular set of exercises have lower mean systolic blood pressure than those who do
not. A researcher may want to know if it can be concluded that this observed differ-
ence is a product of the exercise training rather than just a product of the variability
found in systolic blood pressure within the general population. Or, again, if a
researcher observes that there is a tendency for those who are more perfectionist also
to be more anxious before examinations, the researcher may want to know if this rela-
tionship is due to this personality disposition or just a coincidence. While statistics
can aid in this decision making it is the logic that informs how the data is collected in
conjunction with the statistics that justifies any claim for there being a causal rela-
tionship. This is most simply illustrated in the principles of experimental research.

A Brief Introduction to Experimental Research

To understand what is involved in testing predictions concerning data it is worth
remembering that any human enquiry is concerned with gathering information to
enhance understanding. An experimental approach is just one method, amongst many,
of gathering data. For example, information can also be gathered through surveys, psy-
chometric testing or case studies. However, an understanding of experimental research
highlights both the role of statistics in aiding decision making and their limitations. 

In an experiment the aim is to test a hypothesis. A hypothesis is a testable state-
ment that predicts the relationship between two types of variables. These variables
are termed the independent and the dependent variables. The independent variable

4
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is the one that is manipulated and the dependent variable is the one that is measured.
For example, if it is predicted that a certain nutritional drink influences performance
on an endurance activity, then the consumption of the nutritional drink is the inde-
pendent variable and the participants’ performance is the dependent variable. The
experimenter would then measure the dependent variable (i.e. performance) under at
least two conditions or levels of the independent variable. These two conditions
might comprise a control group (e.g. performing without the nutritional drink), and
an experimental group (e.g. performing with the nutritional drink).

Of course, endurance performance is a product of many variables other than the
type of drink a participant may have consumed. To rule out the effect of these other
variables participants must be tested in a situation where all these other variables,
which are known as irrelevant or extraneous variables, are held constant. These
extraneous variables are most often to do with aspects of the situation or the partici-
pants that have the potential to influence the dependent variable. 

The control of situational variables, such as performance conditions, noise and time
of day, etc., can generally be achieved with careful experimental design. Advertise-
ments for washing powders provide a simple example of this procedure. Advertisers are
usually careful to show that identically soiled clothing is washed in two identical
machines and that the only variable that does differ is the washing powder. Sometimes
extraneous variables can be a product of the testing procedure itself, for in the above
example concerned with a nutritional drink, the testing of the participants has the poten-
tial to produce dehydration. If the control group does not have a drink this effect will
be larger for this group in comparison with the experimental group. Therefore if the
dehydration of the participants in the control group is thought to be a design problem
then this group might be given a volume of water equal to that of the nutritional drink.

The other major type of extraneous variables reflect individual differences in
participants, consequently they are known as participant variables. To illustrate these
let us return to the example with the washing machine advertisement. If two articles of
clothing are of different levels of cleanliness prior to washing, then any difference in
cleanliness after washing may be a product of these original differences rather than the
washing powders being tested. In the washing of clothes a soiled garment can be torn
in half and one half put in each machine but with human participants individual
differences are more difficult to eliminate. The most successful method is to adopt
what is known as a repeated measures design. In this design the same person is
measured on repeated occasions. On each occasion the participant is subjected to a
different level of the independent variable. In the context of the previous athletic exam-
ple concerning the impact of a nutritional drink on endurance performance, this would
mean that participants may first perform after consuming a drink of water and then be
required to perform again after consuming the nutritional drink. Any differences
observed in the dependent variable of performance under the two conditions cannot
then be a product of participant variables as the same individuals have been used in
both of the different conditions.

Unfortunately this strategy can introduce other confounding factors such as order
effects resulting, for example, from participants being exhausted, bored or having learnt
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from engaging in the activity in the previous condition. If these effects are symmetrical
in that they are the same whichever order the individual is tested in, then counter-
balancing may control for them. For example, if there are two conditions then half the
participants are tested in one condition first and the other half in the other condition first.
In the context of the previous example this would mean that half the participants would
first run after consuming the nutritional drink and then run again after the drink of water,
whilst the remaining participants would perform in the opposite order.

If the order effects are not symmetrical then they cannot be effectively counterbal-
anced and a different strategy has to be adopted to control for individual differences.
One such strategy to overcome this problem is to employ a matched pair design. In
this design different participants are selected to perform under the two or more levels
of the independent variable but they are matched in pairs across the conditions on the
important individual difference, for example running ability, or body mass. This does
not mean that the individuals within each group have to be similar, rather each partici-
pant in one condition has to have a matched participant in the other condition. For
example, there can be a fast, medium and slow runner in one condition as long as there
is a fast, medium and slow runner in the other condition(s). This can be a time-
consuming procedure because participants have to be pre-tested on the variables of
interest before they can be matched. Of greater importance is the fact that the assump-
tion regarding the relevant variable(s) for matching the participants may be incorrect.
For example, they may have been matched on skill when physical fitness is the impor-
tant factor upon which matching should take place. Unless the assumption in the match-
ing forms part of the hypothesis, as it does for example in many studies of intelligence
and personality in twins, then the researcher cannot be confident that the correct factor
has been chosen. Later on in this chapter the importance of this will be highlighted. It
will be noted that the statistical tests that are employed to examine differences between
experimental and control groups are exactly the same for data produced by a matched
pair design as those that would be employed to data from a repeated measures design.
These tests assume that any differences in the groups of data are not a product of indi-
vidual differences. Unfortunately, if participants have not been matched on the correct
variable(s) then any observed differences could be the product of individual differences.

An alternative solution is to adopt an independent groups design in which the
participants are randomly allocated to the various levels of the independent variable.
Random assignment means that each participant has an equal chance of entering any
group. The logic of this method accepts that there are individual differences but argues
that these differences are distributed across the two or more groups by chance. This
random allocation means that it is unlikely that there will be any systematic bias in any
group. For example, it is most likely that high- and low-fitness participants will be
more or less evenly split across two groups and very unlikely that all high-fitness
participants will be in one group and low-fitness participants in the other group. The
analysis of data from an independent group design employs different statistical tests to
those employed for data collected by means of repeated measures or matched pair
designs. These tests recognise that the distribution of individual differences such as fit-
ness across the two groups may not be identical and therefore variability within each
group is taken into account in the test design. This will be explained in more detail later.
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Having hypothesised a relationship between the independent and dependent
variables, and chosen a design to control for extraneous factors, the researcher can
now collect the data. The data gathered is then subjected to the appropriate statistical
analysis. As discussed later in this chapter, this analysis measures the precise prob-
ability of getting the observed differences in the dependent variable under the
various levels of the independent variable by chance. If there is a relatively small
probability that the observed differences occurred by chance, usually less than 5%,
then the logic of the experimental design dictates that we attribute the difference to
the independent variable. That is, the decision is that there is a causal relationship
between the independent and dependent variables. To understand this process further
the following section explores the logic of statistical inference in more detail.

The Logic of Statistical Inference

In an experiment, a prediction is tested by manipulating the independent variable and
measuring changes in the dependent variable while attempting to control extraneous
variables. This provides at least two sets of data, one from the control group and one
from the experimental group. The decision to be made is whether there is a signifi-
cant difference in the two sets of results that can be attributed to the influence of the
independent variable, or whether the difference is due to irrelevant extraneous vari-
ables. Thus, statistical testing leads to inferences being made from the data as to the
relationship between the variables.

What is meant by the word ‘significant’ above? To explain this term, imagine that
various weights are put on a mechanical scale and the relationship between the size
of these weights and the movement of the pointer is observed. The causal relation-
ship between these two events can be explained by an understanding of the mechan-
ics of the scales. If such an explanation is insufficient the scales can be opened up
and the physical relationship between the weights and the pointer movement
observed. But in an experiment concerning the effect of a nutritional drink on per-
formance, the human body cannot be ‘opened up’ in the same way as the scales, nor
can a complete explanation of the ‘mechanisms’ at work be given with the same
degree of precision as with the scales. All that can be done is to attempt to keep the
irrelevant variables constant and manipulate the independent variable (e.g. the nutri-
tional drink). If a corresponding change in the dependent variable (e.g. performance)
is now observed then the logic of the experimental design which has controlled for
extraneous variables leads to the inference that a causal relationship exists between
the nutritional drink and performance.

Unfortunately, all the irrelevant variables can never be kept absolutely constant and
thus it can never be proved beyond doubt that chance was not responsible for any
changes in the independent variable. Here the word ‘chance’ is being used as shorthand
for irrelevant or extraneous variables. However, by conducting statistical tests on the
data, the likelihood that any observed difference is due to chance can be measured. For
example, it may be found that the amount of variation in performance between those
ingesting the nutritional drink and those who did not ingest the nutritional drink is
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likely to occur 50 times out of 100 by chance. If this were the case then it would be
difficult to credit the nutritional drink as being responsible for the variation. If,
on the other hand, the probability of the variation being due to chance was 1 in a
100 then the decision might very well be made to attribute the variation to the inde-
pendent variable, namely the nutritional drink, for this explanation would be correct
99 times out of 100. The point at which it is decided to reject the chance explanation
and attribute responsibility for the difference to the independent variable is called the
significance level. The significance level is also known as alpha (α) for reasons
which will become clear later. Most researchers generally choose a significance level
of 0.05. That is, as long as the observed differences would only occur by chance 5
times or less out of 100 then the researcher will reject the chance explanation for the
observed findings. This is because 95 times out of 100 the observed differences
would be due to the experimental manipulation of the independent variable. To some
extent the adoption of an α equal to 0.05 (or 5% significance level) is an arbitrary
matter and in certain cases one might be far more conservative and choose a level of
0.01 where the probability due to chance is 1 in 100.

Hypothesis Testing

This process of rejecting or accepting the chance explanation is known as hypothe-
sis testing. In the process of statistical inference the researcher is deciding whether:

1. the differences arise because of purely chance fluctuations in the two groups of
scores; or

2. the differences are caused, at least in part, by the independent variable.

The first of these is termed the null hypothesis and the second is called the alter-
nate or experimental hypothesis. Thus, in an experiment concerning a nutritional
drink and performance, the null hypothesis would be:

H0 There will be no significant difference between the mean
performance scores of the experimental and control groups.

The alternate hypothesis might state:

H1 There will be a significant difference between the mean
performance scores of the experimental and control groups.

If, as in the above experimental hypothesis, the direction of the difference is not
stated then it is known as a two-tailed hypothesis. However, if the alternate hypothe-
sis states the direction of the difference in the two groups of scores, for example the
experimental group will score less points for their performance than the control
group, then this is known as a one-tailed hypothesis.
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Unless there are good reasons for doing otherwise, a two-tailed hypothesis should
be postulated. One-tailed hypotheses are appropriate when a theoretical perspective
based on previous research would suggest that a particular difference is expected or
when there is no logical way in which a difference could occur in a direction other
than the one predicted.

Type I and Type II Errors

If a significance level of 0.05 is chosen, it is important to realise that on 5% of occa-
sions the observed difference may occur by chance. This means that if the null
hypothesis is rejected then the researcher can be 95% confident that the difference
found is not the product of chance and there is only a 5% probability of making a
mistake. Making the mistake of rejecting the null hypothesis when it is in fact true
is known as committing a Type I error. The probability of making such a mistake
is known as the alpha level and is equal to the significance level adopted. 

An obvious solution to the problem of committing a Type I error is to reduce the
significance value to, say, 0.01. This would mean that a Type I error would be
expected only one time out of a hundred experiments. However, this would result in
an increased number of occasions on which the null hypothesis is accepted when it
is in fact incorrect. This is known as a Type II error. The probability of committing
a Type II error is referred to as the beta level (β) and its probability is much more
difficult to assess than the alpha level. In spite of this difficulty, it can be seen from
the above that a significance level of 0.05 is a compromise that attempts to minimise
the probability of committing either of these two types of errors. Another way of
expressing the connection between these two errors is in the form of the two scales
shown in Figure 4.1.

From these scales it can be seen that in employing a 5% significance level the
researcher is accepting that there is a 5% probability that H0 is correct and a 95%
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Figure 4.1 The relationship between significance level, confidence level
and Type I and II errors

Scale indicates the probability that H0 is correct

Sig. level

100%......................................................................................................5%..................0%

Decreasing probability of committing a Type I error     

Scale indicates the probability that H0 is incorrect

0%........................................................................................................95%..............100%

     Decreasing possibility of committing a Type II error

SKerr04.qxd  2/7/02 12:40 PM  Page 45



probability that H0 is incorrect. It can also be seen that any attempt to reduce the
probability of committing a Type I error by reducing the significance level will result
in an increase in the possibility of committing a Type II error.

Statistical versus Practical Significance

When conducting research that involves statistical testing there is a great temptation
to suggest that statistical significance automatically implies a practical significance.
For example, imagine we found that the mean age at death for those who smoked
30 cigarettes per day was 65 and for those who smoked 40 cigarettes per day it was
63. Also imagine that this difference of two years was statistically significant at the
p < 0.05 level. However, is this a practically significant finding? To answer this ques-
tion this difference needs to be examined in the context of the greatly reduced life
expectancy of both groups compared with non-smokers whose mean age at death
was found to be 78 years. Or, again, imagine that heavy users of digital mobile
phones have a 20% increased probability of developing a brain tumour and that this
increase is statistically significant. This sounds very worrying. However, if the prob-
ability of developing a brain tumour in the wider population is 5 in 100,000 then this
research would suggest that the risk for mobile phone users is raised to 6 in 100,000.
You may feel that the practical implications of this statistically significant increased
risk are not sufficient to deter you from continuing to have the convenience of mobile
telephony. The distinction between practical significance and statistical significance
is very important and the researcher must be very careful to restrict the term signi-
ficance to its statistical denotation when writing up experimental reports.

Hypotheses Concerned with Differences and Relationships

Each of the examples of hypotheses given so far has included the word ‘difference’.
For example, a null hypothesis might state that there will be no significant difference
between the performance scores of the experimental and control groups. This hypo-
thesis predicts that the means of the two groups will not be significantly different.

Sometimes, however, the focus of interest is not in detecting group differences but
rather in identifying relationships between variables. For example, our null hypo-
thesis might predict that there will be no significant relationship between the length
of the training time and the performance scores. This null hypothesis predicts that
knowing how much someone trains will not provide any information about how well
they perform.

The distinction between hypotheses concerned with relationships and hypotheses
concerned with group differences is very important. This is because they reflect the
type of question the researcher asks, which in turn will often influence the way that
data is collected. Questions concerned with differences usually employ data collected
through experimentation involving the manipulation of one or more independent
variables. If through the use of the appropriate statistical tests a significant difference
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is found then the conclusion may be drawn that there is a causal relationship between
the independent and dependent variables.

In contrast, research focusing on relationships often involves data collection
through survey methods in which no manipulation of independent variables and
limited control of extraneous variables have taken place. Attempts to answer ques-
tions concerned with relationships employ different statistical tests to questions
focusing on differences. If through the use of the appropriate statistical tests a sig-
nificant relationship is found then the conclusion that there is a causal relationship
between the variables concerned may not automatically be drawn, for the lack of
control and manipulations of extraneous and independent variables make it difficult
for the researcher to rule out the possibility that some other variable caused the
observed significant relationships. The distinction between questions that focus on
differences and questions that focus on relationships is one very important factor in
determining the type of statistical analysis to be employed and the types of conclu-
sion that can be drawn.

An introduction to statistical tests concerned with relationships between variables
will not be presented until Chapter 10. However, it is important to appreciate that
whenever a significant difference between two variables exists there will always be
a relationship between the two variables.

Samples and Populations

It was stated earlier that the problem facing the researcher when analysing data was
one of deciding whether there is any significant difference in the results that can be
attributed to the influence of the independent variable, or whether any difference is
due to irrelevant variables. Before examining the statistical techniques used to make
these decisions it is necessary to understand some of the constraints within research.

When experiments or surveys are undertaken it is not usually possible to employ
the total population as participants and therefore the researcher relies on data col-
lected from a sample of this population. These two words, population and sample,
represent very important ideas in statistics. The term population refers to all possible
objects of a particular type. Such types might be tennis players, cricket bats or char-
acteristics such as fitness levels. Populations are so large, in fact they may be infi-
nite, that a researcher never has access to them and instead often takes a sample of
observations from the population. Unless the sample is representative of the popula-
tion of interest then findings cannot be extrapolated from the sample and applied to
the larger population.

To illustrate this imagine that a researcher at a university wanted to understand how
first-year undergraduate students perceived and participated in leisure activities. For
obvious practical reasons the questionnaire could not be administered to all under-
graduate students in the country of interest so instead a sample of those students has to
be employed. Unfortunately, were the researcher to take the most convenient course
and administer the questionnaire to all students at his/her own university this would not
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provide a representative sample. This is because students attending any one particular
institution are a self-selecting group that are unlikely to represent a cross-section of the
student population. If, instead, the researcher took a random sample of students from
every institution with undergraduates, then as every undergraduate student in the
country had an equal chance of being selected, this would usually provide a represen-
tative sample. If the researcher found that the mean time spent on leisure activities was
32 hours per month, then he/she would be justified in inferring that this was an accu-
rate estimate of the average amount of leisure time per month engaged in by the
student population. If this process was repeated several times the researcher would
probably find a slightly different mean value each time as a result of random variations
in the process of sample selection. The actual mean of the country’s undergraduate
population would lie somewhere close to the average of this series of sample means.
This is because the means of the samples will be normally distributed around the
population mean. Thus, whenever two samples are taken from the same population
we would expect the means to be different. This is a very important point whose
statistical implications will be explored in more detail in the next chapter.

A clue to this importance can be found by returning to the experiment concerning
a nutritional drink and performance. Here, one might have one set of performance
scores from a control group who just drank water and another set of performance
scores from the experimental group who had taken the nutritional drink. If the means
of these two data sets are different what are the possible explanations? From the
previous discussion on samples it follows that any observed difference in means
could be found because the means from any two samples of a population will often
produce different results. This explanation would suggest that the null hypothesis is
correct. Alternatively it could be that the means are different because the samples are
drawn from two different populations. If this is the case then the experimental
hypothesis is correct. The experimental hypothesis implies that one set of perfor-
mance figures are produced by a population that performs without the nutritional
drink and another set by a population that performs with the nutritional drink and
these two populations have different performance statistics.

Which of these explanations is correct? The various statistical tests outlined later
on in this manual are designed to answer this question. All the tests do this by work-
ing out the probability that the results could be obtained from the same population.
If this probability is equal to or less than 0.05, then there is less than a 5 out of 100
chance that these results could be obtained from the same population. In this case the
researcher would reject the null hypothesis and accept the experimental hypothesis.
Before we attempt to understand how these tests calculate this probability we need
to know first how to select the appropriate test.

Selecting the Appropriate Statistical Test

There are four major factors that determine the correct test for any particular set of
experimental data. These are:
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1. What is the research question? 
2. How many dependent and independent variables are there?
3. Was the data gathered by means of an independent, related or mixed design?
4. What type of scale was used to measure the variables?

In Appendix 2 there are two tables that illustrate how these four factors combine
to determine the correct choice of test. However, this section concentrates on points
3 and 4 above and their implications for choosing among a limited range of statisti-
cal tests. Before examining what this means in detail note that Table 4.1 illustrates
how these two factors influence the choice of two categories of statistical tests.

In looking at this table it is important to remember that the term related samples
refers to repeated measure and matched pair designs and the term independent
samples refers to the independent group design. If you are not clear about these
terms you will find a reference to them in the second section of this chapter.

In the table the terms parametric and non-parametric tests are introduced. These
refer to two basic types of statistical tests that make different assumptions about the
data being examined. All that can be noted at present is that the choice of tests is
determined in part by how the data is collected and what sort of data is collected.

Parametric Tests

Parametric tests make three basic assumptions:

1. It is assumed that each sample of scores has been drawn from a normally
distributed population.

2. These samples are assumed to have the same variance.
3. The dependent variable is assumed to have been measured on an interval scale.

The following section examines each of these assumptions in more detail.

Checking the Assumption of a Normal Distribution

Unfortunately, it is difficult to prove that a particular sample is drawn from a
normally distributed population. Previous research can be examined to see if the data
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Table 4.1

Type of design

Type of test Type of data Related samples Independent design

Parametric Interval t-test for t-test for
paired samples independent samples

Non-parametric Ordinal Wilcoxon test Mann–Whitney test
Nominal Sign test Chi-square test
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previously formed a normal distribution or the existing data could be plotted in the
form a histogram to see if it looks like a normal distribution. However, neither of
these procedures is very precise. Therefore, to have any measured confidence in our
decision we need to look for statistical alternatives. Two measures that are relevant
are the concepts of skewness and kurtosis. You may have noted already from your
printout of Exercise 3.2 that the Explore option provides a measure of these statis-
tics. Each of these concepts will now be dealt with in turn.

Skewness

Skewness reflects the existence of extreme scores at one end of the distribution. A
skewness of zero means that the distribution is symmetrical. Using the z-table (Table 3.1)
it is possible to get an exact measure of skewness and to assess the probability that
the distribution is symmetrical. Whilst SPSS will produce this value it is important
to understand how it was obtained so that its significance can be interpreted.

Skewness is computed by employing the following formula:

Here z refers to the distance of each score from the mean measured in units of
standard deviation. By cubing this value the sign, whether it be positive or negative,
will remain the same but the deviation of extreme scores will greatly increase in
magnitude. For example, 1 cubed is 1, 2 cubed is 8 and 3 cubed is 27. The reason for
dividing by n is to find the average of the cubed deviations and therefore to control
for the sample size.

The larger the value obtained from this calculation the greater the skewness. The
particular meaning of any value obtained by this calculation is not obvious as
theoretically it could be any value between zero and infinity. What is needed is a
scale so that the probability that the distribution is skewed or not can be assessed.
Without wishing to pre-empt a later discussion on sampling error, the estimate of
skewness within the population is based on the sample of data. This sample may not
be representative of the population as it may contain some error. To assess the signi-
ficance of the value of skewness the ratio of the skewness obtained over the error in
its measurement is calculated. This error is known as the standard error for skew-
ness. For moderately large samples this standard error for skewness can be computed
by the following formula:

SEskew =
√

6

n

Skewness =
∑

z3

n
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If the value of skewness is divided by this error the result is a z-value for skewness
that can be interpreted using the standard z-tables:

Note from the z-table (Table 3.1) that with a move of 1.96 standard deviations away
from the mean an area of 2.5% of the normal distribution curve is cut off. To check
that a distribution is neither positively nor negatively significantly skewed (α = 0.05)
both ends of the normal distribution must be examined. Therefore as long as the
value of zskew is less than ±1.96 there is 95% confidence that the population distri-
bution is not positively or negatively skewed. To illustrate what this means in
practice consider an example.

The output from the SPSS exercise in the previous chapter includes the informa-
tion given in Table 4.2. Note that if the standard error for skewness is calculated
according to the previously given formula the value 0.562 will result and not the
value 0.491 shown in Table 4.2. This is because that formula can only be applied to
moderately large samples. Also note that for ‘Professor’s Class’ if the skewnes
statistic is divided by the standard error for skewness the result is 4.64. As this is
much larger than ±1.96 the conclusion is that these ‘Professor’s Class’ scores are
significantly skewed and therefore the distribution significantly deviates from
normal. Is this also true for the ‘Graduate Student’s Class’?

Kurtosis

Kurtosis refers to the peakedness of the curve: that is, is it a flat curve or does it have
a sharp point? The procedure for working out the kurtosis is very similar to that
employed when working out skewness. The formula is as follows:

Kurtosis =
(∑

z4

n

)
− 3

zskew =
∑

z3/n√
(6/n)
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Table 4.2 Descriptives

CLASS Statistic Std. Error

Grades Professor’s Class Skewness 2.276 .491

Graduate Student’s Skewness .270 .491
Class
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Note that here z is raised to the power of 4. This means that, once again, extreme
scores will be greatly increased, but this time the signs will all be positive. For exam-
ple, −1 raised to the power of 4 is 1, −2 raised to the power of 4 is 16, and 3 raised
to the power of 4 is 81. The −3 is included in the above kurtosis equation because
without it, if there were no kurtosis, this formula would produce a value of 3. There-
fore, 3 is subtracted so that if there is no kurtosis a value of zero is produced.

The next step is to work out the likely error in estimating the kurtosis within the
population from the sample and this is done as follows:

Then to compute a z-value for kurtosis we divide the kurtosis score by the above
error term:

As with skewness, a value between ±1.96 suggests with at least 95% confidence that
the distribution is normal. If the value obtained is positive, then it indicates that the
curve is more peaked than normal (i.e. leptokurtic), whilst if it is negative, then the
curve is flatter than normal (i.e. platykurtic). Again, looking at the SPSS exercise in
the previous chapter may be helpful.

Looking at the output in this exercise, note that it includes the information in
Table 4.3. Using the ‘Professor’s Class’ values in the table, the kurtosis statistics
divided by the standard error for kurtosis produce the value 5.93. As this is much
larger than ±1.96 it would be concluded that these ‘Professor’s Class’ scores are sig-
nificantly kurtotic, that is the distribution significantly deviates from normal. Is this
also true for the ‘Graduate Student’s Class’? Now look at the two histograms from
the output of the previous SPSS exercise and see if this graphical representation
concurs with this statistical interpretation.

By using these two measures of skewness and kurtosis the researcher can decide,
with a precise level of confidence, whether the data conforms to the required
assumption of being normally distributed.

zkurt = kurtosis√
24/n

SEkurt =
√

24

n
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Table 4.3 Descriptives

CLASS Statistic Std. Error

Grades Professor’s Class Kurtosis 5.644 .953

Graduate Student’s Kurtosis .236 .953
Class
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Checking the Assumption of Equal Variance

The assumption of equal variance is also known as the homogeneity of variance
assumption. Some indication of the equality of the variances of two sets of data can
be obtained by looking at a graphical representation such as a boxplot, an example of
which was provided in Chapter 2. Although it cannot be proved that two samples have
equal variance, it can be determined whether they are significantly different. SPSS
employs a variety of procedures to test for equivalence of variance and these tests will
be discussed as they become appropriate for particular statistical techniques.

Checking the Assumption of Level of Measurement

In Chapter 2 it was noted that measurement is concerned with assigning numbers to
observations. How numbers are assigned to observations determines the arithmetic
operations that are permissible. The ways in which numbers are assigned in social
research can be classified into three different levels. These are:

1. Nominal data. Nominal means in name only. Here numbers are used simply to
identify the groups or categories to which various objects belong. For example,
the number 1 could be assigned to windsurfing, 2 to dinghy sailing and 3 to land
yachting. No numerical operations can be carried out with these numbers
beyond noting the frequency with which each occurs. These relative frequencies
allow the mode to be identified as an indication of the typical score.

2. Ordinal scale. In an ordinal scale objects are not only in different categories,
but these categories stand in some relation to each other; for example, students
rank their preferences in order for different sorts of leisure activities. However,
there is no reason for assuming that the difference between the items ranked first
and second is the same as that between those ranked second and third etc. As the
data stands in an ordered relationship to one another, the median is used to iden-
tify the typical score.

3. Interval scale. The relationship between the objects is measured on a scale in
which all the intervals are equal. For example, if performance is measured in
terms of time then the difference between 28 seconds and 29 seconds is the same
as that between 34 and 35 seconds, namely 1 second. This system of measure-
ment allows for the mean to be calculated as the indicator of the typical score.

Because parametric tests are used to examine for significant differences between
means, they require that the dependent variable be measured on an interval scale.

Non-parametric Tests

In contrast to parametric tests, non-parametric tests make very few assumptions.
In fact they make few assumptions about the distribution of the data and they do
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not assume homogeneity of variance in the samples. The only assumption that is of
concern here is to do with the scale on which the dependent variable is measured. Look-
ing at Table 4.1 above it can be seen that some non-parametric tests require that the
dependent variable is measured on an ordinal scale whilst others require nominal data.

As non-parametric tests make so few assumptions compared with the correspond-
ing parametric tests then why use parametric tests? The answer is because parametric
tests are more likely to detect a significant difference between two sets of scores than
their non-parametric equivalent. This is because more information is available to
parametric tests than non-parametric tests. For example, whereas a non-parametric
test based on ordinal data takes into account the rankings of the participants’ scores,
a parametric test would not only have this information but also the magnitude of
the intervals between the rankings. It is for this reason that parametric tests are more
powerful than their non-parametric equivalent. Power in this context is defined as
the probability of rejecting the null hypothesis when it is false and is defined in the
following way:

Power = 1 − probability of Type II error = 1 − β

Although parametric tests make the three assumptions listed above, they will still
provide a valid result even when some of these assumptions are not perfectly met.
Tests that possess this characteristic are described as robust and the reason for this
quality will be explained later.

Finally, although non-parametric tests are not as powerful as parametric tests,
increasing the sample size can increase their power to that approaching their para-
metric equivalents.

Summary

Statistics are employed to enable the researcher to draw inferences from samples of
a population about whether there are real differences between sets of scores or real
relationships between variables. In experimental research, as the design should have
controlled for most of the extraneous variables, any observed differences in the
dependent variable may be attributed to either changes in the independent variable
or error in the measurement due to factors such as individual differences. In deciding
whether to attribute these changes to the independent variable statistics are employed
to measure the probability of obtaining the differences by chance. This chance expla-
nation is known as the null hypothesis and it postulates either that no relationship
exists between the variables or that no differences exist between the sets of scores.
If the probability of obtaining the observed differences by chance is equal to or less
than the established significance level (e.g. 0.05) then the decision is made to reject
the chance explanation and accept the alternative that a true difference exists. If a
criterion of 0.05 is employed in rejecting this chance explanation then there is
always a 5% probability that the wrong decision has been made. This is known as a
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Type I error. Alternatively, if the probability was greater than the criterion and the
null hypothesis was accepted by mistake, this is known as a Type II error. Even if the
researcher decides that there is a real statistical difference between sets of scores this
does not mean that this difference is of any practical significance.

The calculation of this probability for accepting or rejecting the null hypothesis
varies depending upon the statistical tests. The appropriate test is determined by the
research question, the number of dependent and independent variables, the experi-
mental design and the type of scale used to measure the variables. All of the tests
covered in this book are known as parametric tests and these tests make three
assumptions. They assume that each sample of scores has been drawn from a normal
population, that these samples have the same variance and that the dependent vari-
able is measured on an interval scale. The concepts of skewness and kurtosis were
introduced as statistical means of evaluating the normality assumption.

Below are listed a series of hypothetical situations. In each case indicate which test
the researcher should use and why. While this task is made easier if you are familiar
with the tests, it is still not that difficult to make the appropriate choice if you ask
yourself two things:

A. What experimental design has been adopted?
B. What sort of data has this research generated?

Having answered these questions use Table 4.1 to identify the appropriate test. To
keep matters simple, assume that the homogeneity of variance assumption is met and
that the data is normally distributed.

1. Which statistical test could be used to test the hypothesis that there is no differ-
ence in the number of goals scored by the top 22 first and second division goal
scorers? Explain your choice.

2. A geographer who was interested in the apparent reduction of rainfall in East
Anglia compared the rainfall in 1991 with that of 2001.

Which statistical test should she use and why?
3. An ecologist predicted that humidity would influence the amount of time spent

foraging by woodlice. He set up an experiment in which a sample of 100
woodlice was randomly assigned to one of two humidity conditions. He then
observed how much time they spent foraging over a 24 hour period. The humid-
ity conditions were then reversed for the two groups and the foraging behaviour
was once again observed for 24 hours.

Which statistical test should he use to test his hypothesis? Explain the reasons
for your choice.
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4. A sociologist was interested in exploring whether there was any association
between political choice and religious affiliations. She set up a survey of a
representative sample, noting on a tally chart respondents’ religion, and which
party they usually voted for.

Which statistical test should she use and why?
5. A psychologist wished to test the hypothesis that the vigorousness of initiation

procedures does not influences the degree of affiliation to a group. He per-
suaded a local employer to assign applicants randomly to one of two methods
in selecting staff. One method lasted 30 minutes and the other lasted one day.
Ten staff were selected from each group of applicants, the actual selection
being based on 30 minutes of testing which was common to both groups. Later
the successful applicants were asked to rate the quality of the organisation’s
work on a scale of 1 to 10.

What statistical test would be used to test this hypothesis and why?
6. A sociologist wanted to compare the career aspirations of children from

working class and professional backgrounds, so 85 ‘working class’ children
and 77 ‘professional’ children were randomly selected from a group of homo-
geneous intellectual capacity. The aspirations of each child were rated by an
independent assessor on a scale of 1 to 10 (1 = unskilled, 10 = high-status
profession).

How would one test the hypothesis that the children of parents from the two
occupational groups do not have different career aspirations?

7. A newly discovered apple is delicious in flavour. It was decided to test its yield-
ing capacity by planting the new apple adjacent to a standard apple in eight
orchards scattered about a region suitable for the cultivation of both apples.

How would one test for a significant difference between the yielding capa-
city of the two varieties of apple trees?

8. An historian was interested in changes in the age distribution of a population as
a consequence of the Black Death. Focusing on two villages that were matched
for size, population structure, etc., before the plague, she noted that one experi-
enced the plague and other did not. She then examined the appropriate census
data to see if there was any difference in the number of people aged over 18.

What test could she use to see if there was a difference in the structure of the
population after the plague? Explain your choice.

9. A film on the hazards of smoking was shown to 800 smokers. One week after
seeing the film 28 out of the 300 women smokers and 32 of the 500 men
smokers were still not smoking.

What statistical test could be used to test the association between the sex of
the participants and giving up smoking?

10. A researcher was interested in whether a particular film on AIDS would influ-
ence attitudes towards ‘safer sex’. The attitude of a representative sample of
students was assessed on a seven-point scale before and after viewing the film.

What test could one use to see if there was a difference in their attitudes on
these two occasions?
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This is another exercise that employs the concepts introduced in Chapters 2 and 3. It
is included here because a sound understanding of descriptive statistics and the
normal distribution is essential for anyone who wishes to employ statistical tests.

1. If the mean amount of beer drunk by male students is 15 pints per week and the
standard deviation is 3 pints, then:
(a) What percentage of students consume more than 22 pints per week?
(b) What amount of beer do more than 75% of students consume per week?
(c) What percentage of students consume less than 7 pints per week?
(d) What percentage of students consume between 10 and 20 pints per week?

2 If 40% of students spend more than 20 hours per week reading and the standard
deviation is 6 hours per week, then:
(a) What is the average amount of time spent reading?
(b) If the university expects students to read for 30 hours per week, what
percentage of students fulfil this requirement?

3 In a population of 230,000 students, the mean debt that they have accumulated
by the time they graduate is £6400 and the standard deviation is £1600.
(a) How many students graduate with a debt greater than £10,000?
(b) How many graduate with a debt of less than £1000?
(c) How many graduate with a debt of between £4000 and £8000?
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S A M P L I N G  E R R O R

In the previous chapter reference was made to parametric and non-parametric tests.
You may be wondering why these two sorts of tests have been given these particu-
lar labels. The answer to this question becomes obvious once two facts are recalled.
Firstly, the descriptive measures of a population, such as the mean and the standard
deviation, are known as parameters, whereas the same measures of a sample are
known as statistics. Secondly, parametric tests are ones that use the sample statis-
tics to make estimates of the population parameters. For example, they estimate the
mean of the population from examining the mean of the sample.

In making these estimations of the population parameters it is assumed, for exam-
ple, that the population’s mean is the same as the sample mean. However, in reality,
the sample mean will not always be exactly the same as the population’s mean. Any
difference between these two reflects the effect of what is termed sampling error.

Sources of Sampling Error

With a little reflection, it is not difficult to identify the potential sources of this sam-
pling error. Imagine two researchers were interested in the achievement motivation of
first-year psychology undergraduates at their respective universities, A and B. To esti-
mate the population parameters, each researcher took a random sample of undergrad-
uates and administered an inventory that purported to measure achievement motivation.
Now add two more facts. The population of undergraduates at A was a very homoge-
neous body who actually all had the same achievement motivation, while those at B
were very heterogeneous and therefore differed widely in achievement motivation.

When the researcher at A estimates the population mean from the sample mean
there cannot be any sampling error as there is no variability in the population. It does
not matter who is sampled from the population as the same achievement motivation
score will be obtained. In contrast the researcher at B is much more likely to have
sampling error in the estimation of the population parameters because of the large
variance within the population. Extrapolating from these two cases, it may be con-
cluded that as the variance increases so the sampling error increases, that is

Sampling error is proportional to the population variance.

It is not inevitable that the estimated population mean of the researcher at B will suffer
from a large sampling error. If the sample is truly representative of the population

5
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then the sampling error can be dramatically reduced. To illustrate this, imagine that
the researcher at B foolishly took a sample of only one. Now while it is possible that
the estimation of the population mean from this sample may provide an accurate
estimation of the actual population mean, it is not likely to do so. Furthermore, if this
researcher was to take another random sample of one, it is quite probable that the
mean of this second sample will be very different from the mean of the first sample.
For example, it is quite possible that by chance the researcher may have selected the
individual with the strongest achievement motivation in the first sample and the weak-
est motivation in the second. In both cases the sample is not large enough to be truly
representative of the population and therefore a large error will occur in the estima-
tion of the population parameters.

Now imagine that the researcher at B was unnecessarily conscientious and took a
sample of 275. On this occasion it is very likely that the mean of the sample is very
similar to the mean of the population as the sample includes over 90% of the popu-
lation. It is therefore very difficult for the sample not to be truly representative of the
population. Also, if this researcher was to take another random sample of 275 it is
most likely that the mean of this second sample will be very similar to the mean of
the first sample. Again, this is because the very size of the sample dictates that some
of the participants must be drawn from most sections of the population.
Extrapolating from these examples, it may be concluded that as the sample size
increases so the sampling error decreases, that is

Sampling error is inversely proportional to the sample size.

Combining both of the above conclusions together suggests that the size of the error in
estimating the population mean from the sampling mean will be directly proportional
to the variance of the sample and inversely proportional to the sample size, that is

Sampling error will be a function of s2

n

where

s2 = variance of the sample
n = number of observations

Why Is Sampling Error Important?

The notion of error in measurement is at the heart of the rationale for statistical
tests. If there were no sampling error there would not be any need for statistical
tests. To illustrate this imagine that a researcher wanted to know if there was a dif-
ference in the typical achievement motivation scores of sociology and psychology
first-year undergraduates at national universities. To answer this question the
researcher simply needs to determine what the typical achievement motivation
scores are for each group of undergraduates. If the researcher was to measure
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each of the many thousands of undergraduates then the typical score could be
determined without any sampling error and the researcher would have an answer
to the question.

In reality both practical and commercial considerations result in the researcher
not measuring all of the individuals but instead relying on samples. Because the use
of samples introduces the potential for sampling error, any observed difference in
the typical achievement motivation score of sociology and psychology undergrad-
uates must be considered within the context of any such error in the measurement.
Statistical tests are simply strategies for determining the probabilities that differ-
ences or relationships occur given the error in the measurement of the dependent
variables.

If this seems rather abstract then consider the following situation. You have been
asked to measure the length of two very similar fields to determine which is the
larger and hence more suitable for an outdoor concert. Equipped with an electronic
measuring device you measure the first field to be 1450 metres long and the second
to be 1475 metres long. As you confidently walk back with the conviction that the
second field is 25 metres longer than the first you read on the back of the measuring
device that it is accurate to ±50 metres. This means that while you have observed a
difference of 25 metres it is less than the potential error in your system of measure-
ment and therefore any difference you have observed may be a consequence of your
measuring device rather than any true difference in the length of the fields. This
process of deciding whether differences between groups’ scores are real differences
or whether they are just a product of chance caused by error in the system of mea-
surement is most clearly illustrated in the paired samples t-test.

Paired Samples t-test

Purpose

The purpose of this technique is to test for significant differences between two
group means from data that has been gathered by means of a related measures
design.

Research Question

t-tests are employed to address research questions that focus on the difference in the
means on one dependent variable produced by one independent variable with two
levels. For example, imagine a researcher was interested in the question: is there a
difference in performance when executing a difficult task alone or with an audience?
Adopting the appropriate counterbalancing procedures, the researcher might test a
group of participants on their ability to perform this task under the alone and audi-
ence conditions. 
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Null Hypothesis Tested

A t-test could be used to test the null hypothesis that there is no significant difference
between the performance means in the alone and audience conditions. If there is no
significant difference then the two samples are drawn from the same population.

Assumptions

The t-test is a parametric test and it makes the following assumptions:

1. The level of measurement of the dependent variable must be at least interval.
2. The dependent variable is normally distributed in the population.
3. The variances of the samples are not significantly different.

When some of these assumptions are not met it is possible to make a statistical cor-
rection. The form that these corrections take depends upon the statistical technique
being employed. For example, with the t-test, when the assumption of homogeneity
of variance is not met (assumption 3) then SPSS will provide an alternative test
statistic that is not based on this assumption. This will be explained in more detail
later in this chapter when discussing the independent t-test.

Principle Behind a Paired Samples t-test

If there is no significant difference in the performance scores in the alone and audi-
ence conditions then it can be concluded that the two samples are drawn from the
same population. Imagine that this is in fact true. Theoretically, if the two sets of
mean performance scores from the alone and audience conditions are drawn from
the same population then they should have the same value. Therefore the difference
between the two sets of scores should equal zero. However, in reality there will
always be differences due to sampling error. These differences will vary from sample
to sample. To illustrate how the magnitudes of these differences are distributed, two
samples of a fixed size may be repeatedly drawn from a population and then the dif-
ferences between each pair of samples plotted on a frequency distribution. Interest-
ingly, for sample sizes greater than 20, the distribution of mean differences is almost
always approximately normal regardless of the population distribution. This is known
as the central limit theorem and is illustrated by the graph in Figure 5.1.

The horizontal axis of this graph presents the differences between the two means,
measured in units of standard deviation. From the graph it can be noted that usually
the difference between the two sample means is very small but occasionally, by
chance, sampling error will produce some very large differences.

The standard deviation of the sampling distribution of the differences is called the
standard error and it will decrease as the sample size increases. If the value of
this standard error is known then any particular observed difference between a pair
of means can be divided by it to produce a z-score. This z-score indicates how many
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standard deviations the observed difference between two means is away from the
middle of the distribution. Knowing this distance in units of standard deviations
allows the z-table to be used to determine the probability of getting the observed
difference by chance.

To carry out the procedure of repeatedly extracting pairs of samples and plotting
the observed differences would be very time consuming. Fortunately this is unnec-
essary as an estimation of the standard error can be obtained by taking the square
root of s2/n of the sample. Note once again that a large variance and a small sample
will produce a large standard error.

If the null hypothesis is incorrect, it would be expected that the difference between
the two means would be larger than the standard error. That is, the average differ-
ence between the participants’ performance scores in the alone and audience condi-
tions would be larger than the error made in accepting that these scores represent the
means of two samples drawn from a single population. If the difference between the
alone group and audience group means is divided by this standard error then as this
value increases, the probability that the observed difference in the two means is a
product of chance diminishes. The difference between the means of two groups
divided by the standard error produces a t-ratio. Therefore

t = mean of the differences

standard error
= d√

s2/(n − 1)

Standard error =
√

variance

n
=

√
s2

n
= s√

n
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Figure 5.1 Sampling distribution of difference means
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Note that in the above formula (n–1) was used instead of ( n) as an estimate of the
error in the population required.

Summary of the Paired Samples t-test

This technique tests the null hypothesis that the two sample means are not signifi-
cantly different. It does this by assuming that, if this was the case, the mean differ-
ence would be zero, and then:

• It calculates the mean difference between pairs of related values.
• It uses the variance of the differences to estimate the standard deviation of a sam-

pling distribution of similar differences.
• It works out the number of standard deviations that the observed mean difference

is from zero. This value is known as t.

Calculating a Paired Samples t-test

Let us return to the hypothetical situation above where the focus of interest was in see-
ing if individuals’ performances are significantly different when performing a difficult
task alone or with an audience. Adopting the appropriate counterbalancing procedures
the researcher tested a group of participants on their ability to perform this task under
the two conditions. The results from this experiment are given in Table 5.1.

Variance (s2) =
∑

d2

n
− d 2

= 10

4
− 1 = 2.5 − 1 = 1.5

tn−1 = d√
s2/(n − 1)

= 1√
1.5/(4 − 1)

= 1√
1.5/3

= 1

0.71
= 1.41
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Table 5.1 Performance scores in the alone and audience conditions

Participant Alone Audience Differences (d) d2

1 5 3 2 4
2 8 6 2 4
3 4 5 −1 1
4 7 6 1 1

Totals (Σ) 24 20 4 10
Means 6 5 1 2.5
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Therefore the observed difference in means is 1.41 standard deviations away from
the mean difference of zero as predicted by the null hypothesis in Figure 5.1 above.

Interpreting the Value of t

As t is simply the ratio of the mean difference divided by the error in the measure-
ment, then the larger the value of t the less likely it is that the difference in means is
the result of chance and the more likely that it is due to the different levels of the
independent variable. However, to know the precise probability of obtaining an
observed value of t its value has to be interpreted using the t-distribution tables. To
do this three things must be known:

1. The degrees of freedom.
2. Whether the hypothesis is one or two tailed.
3. The significance level.

A brief review of each of these concepts may be useful.

Degrees of Freedom

Degrees of freedom refer to how the data is free to vary. To illustrate this, imagine
you have decided to paint your bedroom. If the room has four walls, you have only
three choices to make in terms of which order you paint the walls. By the time you
have made your third choice only one wall is left and therefore there are no more
choices to be made. In other words, there are no more degrees of freedom. In this
example there are three degrees of freedom. In the same way, if three numbers have
a mean of 21, then two of them can be any number but the last one has to make the
total equal to 63 and therefore there are 2 degrees of freedom. You may have noted
that the degrees of freedom in both of these examples are one less than the number
in the sample and hence can be expressed as n – 1.

Types of Hypotheses

In the process of statistical inference a decision has to be made between two com-
peting explanations of why any observed differences in the means have occurred.
One explanation is that the two sets of scores are drawn from the same population
and that any observed differences are a product of error in the measurement. If this
is the decision then the null hypothesis is accepted. The other explanation is that the
two sets of scores are drawn from two distinct populations and that the observed dif-
ferences are a product of the independent variable. If this is the decision then the null
hypothesis is rejected and the alternate, also known as the experimental, hypothesis
is accepted.
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In the above example concerning performance in alone and audience conditions,
the null hypothesis would predict that there would be no significant difference in
the performance of the two groups. In contrast, the alternate hypothesis might state
that there would be a significant difference in the performance of the two groups.
If, as in the above example, the direction of the difference is not stated then this is
known as a two-tailed hypothesis. However, if the alternate hypothesis states the
direction of the difference in the two groups of scores, for example the alone group
will score less points for their performance than the audience group, then this is
known as a one-tailed hypothesis. These hypotheses are often expressed as shown
in Table 5.2.

Whether an alternate hypothesis is one or two tailed will influence the probability
that an observed difference between two means is significant or not. Before
considering this implication we need to be clear about what is meant by the term
significance.

Significance Level

In an experiment all variables are ideally held constant and then the independent
variable is manipulated and changes in the dependent variable are measured.
However, it is not possible to keep all of the irrelevant variables, such as sampling
error, absolutely constant. This means that there is always a probability that any
observed difference in the dependent variable is a product of irrelevant variables and
not the independent variable. The usual convention is that as long as this probability
is less than 5 in 100, which is normally expressed as 5% or 0.05, the researcher
would still accept that any observed difference is not the product of chance. This is
known as adopting a 0.05 significance level. Therefore the term significance level
refers to the point at which it is decided to reject the chance explanation and accept
that the independent variable is responsible for the observed differences. Hence, a
researcher adopting a 0.05 significance level wants to be 95% confident that the dif-
ferences were not the product of chance before the null hypothesis is rejected and
the alternate hypothesis accepted.

It is important to recognise that in adopting a 0.05 significance level the researcher
is accepting that, if the same experiment were conducted in the future, then on 5%
of occasions the observed difference might be expected to occur by chance. This
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Table 5.2

Null hypothesis µAlone = µAudience

Two-tailed experimental hypothesis µAlone ≠ µAudience

One-tailed experimental hypothesis µAlone < µAudience

One-tailed experimental hypothesis µAlone > µAudience

Note: The Greek letter µ stands for the mean of the population. Whenever Greek letters are
used they are referring to some parameter of the population.
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means that if the null hypothesis is rejected, then the researcher can be 95%
confident that the difference found is not the product of chance, and therefore that
there is only a 5% probability that a mistake is being made. As discussed earlier, this
mistake of rejecting the null hypothesis when it is true is known as committing a
Type I error and its probability is known as the alpha level.

The opposite of committing a Type I error is to accept the null hypothesis when
in fact it is false. That is, the experimental hypothesis should have been accepted but
it was not. This mistake is known as a Type II error and its probability is known as
the beta level. The probability of committing a Type I error could be reduced by
changing the significance level from, say, 0.05 to 0.01, but in so doing we increase
the probability of committing a Type II error.

Testing the Null Hypothesis

In testing the null hypothesis the decision has to be made as to whether the two sam-
ples are drawn from the same population, in which case the null hypothesis (H0) is
accepted, or whether the two samples are drawn from two different populations, in
which case H0 is rejected. If the null hypothesis is correct then the relationship
between the samples and the population can be illustrated in a graph such as that
shown in Figure 5.2.

In the figure the control and experimental groups are viewed as two samples of a
particular size, mean and standard deviation that are extracted from a population
with a particular mean and standard deviation. Testing the null hypothesis involves
deciding if this interpretation is correct. This decision as to whether to accept or
reject the null hypothesis is based on the probability of getting two samples with
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these statistics from a population with the above parameters. These probabilities are
contained in what are known as t-tables.

SPSS ‘Sig.’ Values

When using SPSS it is not necessary to look up probabilities in any t-tables as the
exact probabilities associated with observed values of t are printed in the output. In
SPSS these probabilities are labelled as ‘Sig.’ values but they should be interpreted as
the probability that the null hypothesis is correct. For example, if SPSS calculates a
‘Sig.’ value associated with a particular value of t as 0.04, this means that 4 times out
of 100 the observed mean difference would be obtained by chance from two samples
drawn from the same population. Therefore if the alpha level employed is 0.05 then
the null hypothesis would be rejected and the alternate hypothesis accepted. The
conclusion is that the two samples are drawn from two different populations.

Looking up Critical Values from the t-tables

Although SPSS provides the exact probabilities for observed values of t an under-
standing of how to use t-tables is important because it illustrates a number of points
concerned with the process of significance testing (Table 5.3).

There are two important points to note from Table 5.3. Firstly, as the degrees of
freedom increase so the critical value of t decreases. For example, the critical value
of t for a two-tailed hypothesis at 0.05 significance is 12.7 when there is
1 degree of freedom and 3.2 when there are 3 degrees of freedom. The second point
to note is that the critical value of t at 0.10 significance for a two-tailed hypothesis
is the same as the critical value required for 0.05 significance with a one-tailed
hypothesis.

To see how this works in practice consider the previous example concerning
performance under alone and audience conditions. By looking back at page 63 it can
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Table 5.3 Sample of critical values of t

Level of significance for one-tailed hypothesis
0.05 0.025

Level of significance for two-tailed hypothesis
0.10 0.05

Degrees of
freedom (df)
1 6.3 12.7
3 2.3 3.2
10 1.8 2.2
∞ 1.6 1.9
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be noted that the observed value of t = 1.41, the number of degrees of freedom was
3 and the mean difference was 1. From Table 5.3 above it can be noted that the criti-
cal value at 0.05 significance for a two-tailed hypothesis with 3 degrees of freedom
is 3.2. Note that the observed value of t is less than the critical value of t. Therefore,
a mean difference as large as 1 from two samples of four drawn from the same pop-
ulation would occur more than 5 times out of 100 by chance. As this probability is
greater than the criterion of 0.05 it is not possible to be 95% confident that the
observed differences were not a product of error in the measurement of the depen-
dent variable. That is, there is more than a 5% probability that the observed differ-
ences could have been obtained from two samples drawn from the same population.
Therefore the null hypothesis is accepted and consequently the alternate hypothesis
has to be rejected. Finally, it is concluded that there is no significant difference in the
performance of participants in the alone and audience conditions.

Why Does the Critical Value of t Decrease as the Sample
Size Increases?

Looking at Table 5.3 it can be noted that the level of significance decreases as the
sample size increases. To understand the reason why this occurs imagine that
repeated pairs of samples of four people have been drawn from a population, their
heights measured and the mean difference between each pair of samples calculated.
If this is done hundreds of times then a frequency distribution of the mean differ-
ences similar to the one in Figure 5.3 could be produced.

This graph is quite tall and thin compared with the previous examples of a normal
distribution. This is because, as the sample size decreases, it is more likely that a
sample will contain extreme scores. More extreme scores will result in the curve
having fatter tails and consequently it must have a thinner middle section. In testing
the null hypothesis with a 0.05 significance level the critical t-value is the distance
away from the mean measured in units of standard deviation that cuts off the last 5%
of the distribution. If the distribution has fat tails then to cut off the last 5% the line
has to be drawn further away from the mean than on a distribution produced by
larger samples which will have relatively thin tails. It is for this reason that the
critical value of t decreases as the sample size increases. 

As the sample size becomes larger so the t-distribution more closely approximates a
z-distribution and the critical value of t will be the same as the z-value required to cut
off the appropriate percentage. This can be illustrated by comparing values from both
t-tables and z-tables with relatively large degrees of freedom as shown in Table 5.4.

From this table it can be noted that the critical value of t at 5% significance with
a one-tailed hypothesis when the degrees of freedom are 120 is 1.658. This value
is almost identical to the z-value of 1.645 that is required to cut off the last 5% of a
normal distribution.
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Why Is the Significance Level for a Two-tailed Hypothesis
Half that for a One-tailed Hypothesis?

Looking back to Table 5.3 it can be noted that the significance level for a two-tailed
hypothesis is twice as large as that for a one-tailed hypothesis. For example, with
10 degrees of freedom a t-value of 1.8 has a significance value of 0.05 for a one-tailed
hypothesis and 0.10 for a two-tailed hypothesis. The reason for this can also be
gleaned from Table 5.4. From this table it can be noted that with 120 degrees of free-
dom the critical value of t for a two-tailed hypothesis at 5% significance is 1.98. This
is almost the same value as the z-value of 1.96 that is required to cut off the last 2.5%
of a normal distribution. This similarity in value provides a clue as to why the signi-
ficance level for a two-tailed hypothesis is half that for a one-tailed hypothesis. 

In a two-tailed hypothesis it is not specified whether one group is going to score
more or less than the other; therefore the 5% area to be cut off has to be divided
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Figure 5.3 Graph showing hypothetical frequency distribution of means
(t-curve) when sample size is small 

Table 5.4 A sample of t- and z-values

Significance level (3 df) 5% 2.5%
Critical values of t (one tailed) 2.35 3.18
Critical values of t (two tailed) 3.18

Significance level (120 df) 5% 2.5%
Critical values of t (one tailed) 1.658 1.98
Critical values of t (two tailed) 1.98

Area under a normal curve (z-tables) 5% 2.5%
Units of standard deviation from (z-tables) 1.645 1.96
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between both extremes of the distribution. Hence, if a 5% significance level with a
two-tailed hypothesis is employed then the statistics must test to see if it lies in the
last 2.5% at each end of the distribution. As the last 2.5% is further from the mean
than the last 5%, so the critical value is greater for a two-tailed hypothesis than its
one-tailed equivalent. This can be confirmed by an examination of Table 3.1 where
it can be seen that to cut off 5% the distance in units of standard deviation is 1.645,
whilst to cut off 2.5% this distance increases to 1.96 units of standard deviation.

Independent t-test

In the previous example the same participants were employed in both the alone and
audience conditions. This is known as a repeated measures design. If the participants
had been randomly assigned to the two conditions then this would be an independent
group design. If an independent group design is employed rather than a repeated
measures design the logic behind the t-test remains the same in that t is still the ratio
of the mean differences divided by the error in the measurement. However, as there
are two groups of different individuals with possibly different variances and sample
sizes, the standard error has to take into account the sampling error from both these
groups. As a consequence, the formula is slightly different:

Although this formula looks complicated it contains nothing that has not been intro-
duced before. The numerator is concerned with the mean differences between groups
1 and 2 and the denominator is concerned with the standard error. On page 62 it was
noted that the standard error was simply the square root of the variance over the
degrees of freedom. In an independent t-test the variances and samples sizes of both
groups have to be taken into account in calculating the standard error. 

From this formula it can be deduced that this test examines the differences
between two means from two sets of unrelated values. It estimates, using the vari-
ance of both sets, the likely standard error of a sampling distribution of differences
between two means drawn from the hypothetical single distribution. The null
hypothesis predicts that the mean of this distribution is zero. It is the number of stan-
dard errors away from zero that provides the value of t.

While this sounds complex it makes no practical difference, as our task is simply
to choose which test to employ and then have the computer carry out the analysis.
Our interpretation of this analysis is exactly the same as for the related t-test with the
exception of one small complication.

As a parametric test, the t-test assumes that the variances of the samples are not
significantly different. In a paired samples t-test there is only one set of differences

t(n1−1)+(n2−1) = (x1 − x2)√
(s2

1/n1 − 1) + (s2
2/n2 − 1)
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and hence only one value for the variance. Therefore the assumption of homogene-
ity of variance is not relevant to a paired samples t-test. However, when employing
an independent t-test there are two sets of variances and the assumption is that these
are not significantly different. When SPSS executes an independent samples t-test it
will display the results from Levene’s test of equality of variance. This technique is
used to test the null hypothesis that there is no significant difference in the two vari-
ances. If the value in the ‘Sig.’ column, third column from left, is greater than 0.05
then the null hypothesis is accepted and the conclusion is that the homogeneity of
variance assumption is met. In this case the results of the t-test displayed in the
‘Equal variances assumed’ row as shown in Table 5.5 should be examined. If, on
the other hand the result is significant as the ‘Sig.’ value is 0.05 or less, then the
conclusion is that the variances are significantly different. Thus, the t-test results
displayed in the ‘Equal variances not assumed’ row should be examined.

In this particular example although the t-values and their associated probabilities,
shown in the column headed ‘Sig. (2-tailed)’, are identical in both rows, this will not
always be the case. The value of t in the table is calculated by dividing the mean dif-
ference by the standard error value. Hence

The fact that the t-value is negative is ignored as it simply means that the larger mean
was subtracted from the smaller mean. The observation that this t-value is less than
1 immediately points to the fact that the observed difference in means is smaller than
the error in the measurement. The two-tailed probability associated with this value
of t is 0.430. This indicates that 43 times out of 100 a mean difference as large as
2.1818 would be obtained by chance from two groups drawn from the same popula-
tion. Therefore, the null hypothesis that there is no significant difference in the
means of the two groups is accepted.
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Levene´s Test t-test for
for Equality Equality of 
of Variances Means

F Sig. t df Sig. (2- Mean Std. Error
tailed) Difference Difference

Equal .370 .546 -.797 42 .430 -2.1818 2.7392
variances
assumed

Equal vari- -.797 36.20 .431 -2.1818 2.7392
ances not
assumed

Table 5.5 Part of the independent samples t-test output from SPSS

mean of the differences −2.1818
t = = = − 0.797

standard error 2.7392
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Had the researcher postulated a one-tailed hypothesis then the significance value
of 0.43 would be divided by 2 to produce a new significance of 0.215. In this case
the interpretation is that 21.5 times out of 100 two samples would produce a mean
difference of 2.1818 by chance. The conclusion again is that chance brought about
the observed differences in means and the null hypothesis is accepted.

Example 5.1 A Paired Samples t-test Using SPSS

To illustrate parts of the output from SPSS and to allow a comparison of the
results with the calculations by hand on page 63 the same data has been
analysed using SPSS. Remember that in this example the experimental
hypothesis is that there will be a difference in the scores obtained by partici-
pants in the alone and audience conditions.

The first part of the output (Table 5.6) provides the descriptive statistics for
the two groups.

Earlier it was noted that
Standard error = Variance/n = s2/n = s/√n

Therefore for the alone group
Standard error = 1.8257/2 = 0.9129

and for the audience group
Standard error = 1.4142/2 = 0.7071

The next part of the output (Table 5.7) presents the t-value and its associated
significance.

From this table note that the t-value, printed in the third column from the
right, is obtained by dividing the difference between the two means (1.0000) by
the standard error (0.707). SPSS defaults to provide a two-tailed probability. In
this case the value 0.252 indicates that there is a 25.2% probability that a
difference as large as 1.0000 would be obtained by chance if two samples of
four were taken from a single population. The null hypothesis that there is no
significant difference between the two means is therefore accepted.
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Mean N Std. Deviation Std. Error Mean

Pair 1 ALONE 6.0000 4 1.8257 .9129

AUDIENCE 5.0000 4 1.4142 .7071

Table 5.6 Paired samples statistics

√ √
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Paired Differences t df Sig.

(2-tailed)

Mean Std. Std. Error 95%
Deviation Mean Confidence

Interval of the
Difference

Lower Upper

1.0000 1.4142 .7071 -1.2503 3.2503 1.414 3 .252

Summary

Parametric tests use the sample statistics to make estimates of the population’s para-
meters. Any difference between the statistics and parameters is due to sampling
error, which is a function of the sample size and variability in the population. This
concept of error is used in statistical testing to measure the probability that any
observed differences or relationships between sets of scores reflect real differences
or relationships in the population(s).

This is illustrated in the paired samples t-test which tests for significant differ-
ences between two group means from data that has been gathered by way of a related
measures design. The test statistic t is the ratio of the differences between the sam-
ple means divided by the standard error in the measurement. Taking into account the
degress of freedom, SPSS calculates the probability that a real difference exists.
How the researcher interprets this will depend upon whether the hypothesis is one or
two tailed and the significance level being employed.

If an independent group design is used to collect the data then an independent
samples t-test is employed. Although the formula is different to that for a paired sam-
ples t-test the resulting t-value is still the ratio of the mean differences divided by the
error in the measurement. SPSS will provide probabilities based on both the homo-
geneity of variance assumption being met and not met (i.e. ‘Equal variance assumed’
and ‘Equal variance not assumed’). To determine which probability to employ the
results of Levene’s test of equality of variance should be examined.

As part of a research project in sports psychology you have decided to investigate the
sources of pre-performance anxiety in scuba diving. After reading the extant literature
on this topic, you feel that one factor which may affect cognitive anxiety prior to
performance is the level of experience of the diver. Your research question becomes
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Table 5.7 Paired samples test

E X E R C I S E  5 . 1  I N D E P E N D E N T  t - T E S T S
U S I N G  S P S S  F O R  W I N D O W S
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What is the effect of experience on pre-performance anxiety in scuba diving?

Through your local scuba club, you are able to identify two groups of divers: those
with less than one year of experience (Beginners) and those with more than three
years of experience (Intermediates).

Write a research hypothesis that relates to the research question stated above.

Prior to their next dive, you assess the divers’ cognitive state anxiety using the
Competitive State Anxiety Inventory (CSAI-2), and obtain the following data:

1. Start SPSS by clicking on the SPSS icon. If a window opens with the option
Type in data then select it and click on OK, otherwise just proceed to the
next step.

2. Make sure that the Data View window is open so that the screen is displaying a
series of empty cells in the form of a spreadsheet. If this is not the case then click
on the tab Data View in the bottom left-hand corner of your screen. Enter the
data in exactly the same manner as for the previous descriptive statistics exercise.
Remember that in SPSS each participant must have their own row. As there are
40 participants you will require 40 rows. In addition, you will require two
columns. Use the first column to identify whether the participant is a beginner or
intermediate scuba diver and the second column to enter the participant’s anxiety
score. An example of how this should appear is shown above.
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Beginners Intermediate

10 09

18 10

22 25

19 25

16 17

14 21

16 11

19 12

18 27

12 16

17 14

22 22

26 26

18 16

27 17

10 22

24 15

21 11

11 09

23 09

Exp Anxiety

1 10

1 18

1 22

etc. etc.

2 9

2 10

2 25

etc. etc.

Table to show how the data
should appear in SPSS, after
following the instructions
below.
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You now need to label the variables. Click on the tab Variable View in the
bottom left-hand corner of your screen. In the Name column double click on
the first variable and replace var00001 with the name Exp. Move along to the
sixth column which is headed Values and click on where the word None is
written in the first row. A shaded box with three dots will appear at the right-
hand end of this cell. Click on this shaded area and a Variable Labels window
will open. Click on the Value box and type in the number 1, then click on the
Value Label box and type in ‘Beginners’. Now click on the Add box. The cur-
sor will now flash in the Value box. Type in the number 2, click on the Value
Label box and type in ‘Intermediate’, then click on the Add box. Finally, click
on the Continue box and then on OK.

In the Name column double click on the second variable and replace
var00002 with the name Anxiety. Click on the tab Data View in the bottom
left-hand corner of your screen and you should return to the spreadsheet of your
data. The names you have written should appear at the top of the two columns
of data. In the first column the numbers you entered should now display the
labels Beginners and Intermediate. If they do not then click on the View
menu at the top of the screen and click on Value Labels.

3. Use the instructions from the previous SPSS exercise in Chapter 3 to use the
Explore option, that is

Analyze
Descriptive Statistics

Explore
Enter ‘Anxiety’ in the Dependent List and ‘Exp’ in the Factor List

Click on the Plots box
Deselect Stem-and-leaf and select Histogram

Continue
OK

4. Go to the Analyze menu and open the sub-menu Compare Means. Click on
the independent sample t-test. The t-test will determine whether there are
differences between beginning and intermediate divers in pre-performance cog-
nitive state anxiety. Therefore, the test variable is anxiety, and the grouping vari-
able is experience (Exp). Before you can proceed, you must indicate how many
groups you have by clicking on the define groups dialogue box and inserting
the numerical code that identifies beginning and intermediate divers. Once you
have done this, run the analysis by clicking on OK.

5. The Output window should be displayed. If it is not then click on the Window
menu at the top of the screen and select Output1 - SPSS Viewer. Print out
the results by either clicking on the print icon and then click on OK in the Print
window that opens. Alternatively go to the File menu and select Print.

6. Close down SPSS by selecting Exit from the File menu. When you are asked if
you want to save the output select No as you can easily reproduce this. However,
when you are asked if you want to save the data select Yes, as you will use this
again in a later exercise. 

7. Examine the descriptive statistics output and enter the appropriate values in the
spaces below.
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Descriptive Statistics
Beginners Intermediate
Median ................ Median ................
Mean ................ Mean ................
Standard Deviation ................ Standard Deviation ................
Skewness ................ Skewness ................
Std Err. Skewness ................ Std Err. Skewness ................
Skewness/Std Err ................ Skewness/Std Err ................
Kurtosis ................ Kurtosis ................
Std Err. Kurtosis ................ Std Err. Kurtosis ................
Kurtosis/Std Err ................ Kurtosis/Std Err ................

What do you conclude about the normality of the distributions of each set of
scores from the skewness and kurtosis statistics?

Beginners: .......................................................................................................

Intermediate: .......................................................................................................

Boxplot
Is the median in the
middle of the box? Yes/No Yes/No
Are the whiskers the
same length? Yes/No Yes/No
Are there any outliers? Yes/No Yes/No

What do you conclude about the normality of the distributions of each set of
scores from the boxplots?

Beginners: .......................................................................................................

Intermediate: .......................................................................................................

Is this interpretation supported by the histograms for the following?

Beginners: .......................................................................................................

Intermediate: .......................................................................................................

8. From comparing the means in the context of the standard deviations and
looking at the boxplots, do you think there is a practical difference in the
anxiety levels of beginners and intermediate scuba divers?

...............................................................................................................................

...............................................................................................................................

...............................................................................................................................
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9. Next look at the ‘Independent Samples Test’ table and explain the results of
Levene’s test and then the t-test.

.............................................................................................................................

.............................................................................................................................

.............................................................................................................................

10. State whether your experimental hypothesis was supported or refuted. What
conclusions would you draw from the results of this analysis?

.............................................................................................................................

.............................................................................................................................

.............................................................................................................................

The concepts introduced so far underpin all the subsequent chapters in this book. To
ensure that you have a sound understanding of the terms and what they mean make
sure you can answer the following questions.

What is meant by:

• Descriptive statistics?
• Parameters of a population?

What do the following symbols denote?

K f n F ∑ s s2 σ

What is the difference between a histogram and a barchart?

What does a measure of central tendency aim to provide?

Define three measures of central tendency.
Where does each measure fall on a symmetrical distribution?
What does the term skewed refer to?
On a positively skewed distribution where does each measure of
central tendency fall?

What is meant by ‘levels of data’?
Give an example of each level of data.

What is meant by measure of dispersion?
What does the term sum of squares (SS) refer to?
What is meant by the terms variance and standard deviation?
What is the relationship between the variance and the standard
deviation?
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What shape is a normal distribution?
What phenomena are normally distributed?
What are the properties of a normal distribution?
What does the term z-score refer to?

What is a hypothesis?
What do the terms independent and dependent variable refer to?
What is meant by irrelevant and extraneous variables?

What is meant by the term related design?
What is meant by confounding factors?
What are order effects?
What is an independent group design?

What factors does one have to take into account in selecting a
statistical test?

What is:

• a null hypothesis?
• an alternate hypothesis?
• a one-tailed hypothesis?
• a two-tailed hypothesis?

What is meant by:

• significance?
• Type I and Type II errors?
• samples and populations?
• representative and random samples?
• sampling error and standard error?
• degrees of freedom?

When we employ a statistical test, which type of hypothesis do we
test?
What is meant by the terms parametric and non-parametric?
In the context of statistical tests what is meant by the terms robust
and powerful?

When is it appropriate to use a t-test?
What is t a ratio of?
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B E T W E E N - G R O U P S  O N E - W AY
A N A LY S I S  O F  V A R I A N C E

Purpose

The purpose of this technique is similar to that of an independent t-test in that it tests
for significant differences between group means from data that has been gathered by
an independent group design. It is different from a t-test in that instead of being
restricted to an examination of the difference between two means a between-groups
one-way ANOVA can examine the difference between two or more group means.

Research Question

One-way ANOVAs are employed to address research questions that focus on the dif-
ference in the means of one dependent variable and one independent variable with
two or more levels. For example, the independent variable gender has two levels:
male and female. To illustrate the point about levels  let us imagine that a researcher
was interested in the research question: is there a difference in the performance of
three groups of athletes who have each undergone one of three distinct training
schedules? In this case there is one dependent variable (i.e. performance), and three
levels of the independent variable (i.e. the three training schedules). This experiment
used three groups of three participants; therefore N = 9 (Table 6.1).

Null Hypothesis

In a one-way ANOVA the null hypothesis that is tested predicts that the means of
the dependent variable scores for each level of the independent variable will not be

6

Table 6.1 Performance scores obtained from three
training schedules (N == 9)

A B C

1 3 7
0 5 8
2 4 6

x
_

1 4 7
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significantly different. So in the above example the appropriate null hypothesis would
predict that the performance scores of groups A, B and C would not be significantly
different from each other. If these three sample means are not significantly different
then the three samples are drawn from populations that have the same mean, namely
µA = µB = µC, and therefore the three samples are drawn from the same population.

Why Not Use Multiple t-tests?

To test the null hypothesis that µA = µB = µC, multiple t-tests could be employed. This
would involve testing that µA = µB, that µA = µC and that µB = µC. Unfortunately
carrying out three t-tests would involve reanalysing the same data three times and this
would increase the probability of committing a Type I error, that is the null hypothesis
is rejected when it is in fact true.

To understand why the use of multiple t-tests increases the risk of committing a
Type I error it is useful to recall that the probability of committing a Type I error is
equal to the significance level. So, if a significance level of 0.05 is employed, then
each time a t-test is carried out there is a 1 in 20 chance that a Type I error will be
committed. It follows that the more t-tests are carried out on the same data, the more
likely it is that a Type I error will be committed. Employing a single one-way
ANOVA circumvents this problem as it analyses the data only once.

Assumptions

As a one-way ANOVA is a parametric test it shares similar assumptions to a t-test.
These are that the dependent variable has been measured on an interval scale, that
the variances of the groups based on the levels of the independent variable are equal
and that the distribution of scores in each group does not significantly deviate from
normal. These assumptions will be discussed in more detail later on in this chapter.

Principles Behind a One-way ANOVA

ANOVA, as its name implies, is concerned with the analysis of variance. In a
between-groups ANOVA the focus of interest is on the variance between the groups.
However, this between-groups variance can only be understood in the context of the
variance that occurs within each of the three groups.

To illustrate the principles behind a one-way ANOVA the data shown in Table 6.1
will be used. Table 6.1 displays the performance data from nine participants who
have been randomly assigned to one of three training schedules A, B and C.

Within-groups Variance

Consider the dispersion of scores within group A in Table 6.1. The values 1, 0, 2 are
a product of three factors. These factors are:
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1. Inter-individual variability. The three scores, 1, 0, 2, are different in part
because they are produced by three different people and therefore they reflect
individual differences.

2. Intra-individual variability. This refers to the potential variability within each
person’s score. Whenever an individual does something twice there will always
be some difference in their behaviour on the two occasions. This difference
reflects the variability in the behaviour of individuals. For example, the individ-
ual in group A who scored zero on this particular occasion might not score zero
if they were to be tested on some other occasion.

3. Random fluctuations. By this is meant the extraneous variables, such as situa-
tional variables, that cannot be controlled. These variables were discussed at the
beginning of Chapter 4.

These three sources of variance in group A also apply to the dispersion of scores
within groups B and C. Now consider the dispersion that exists not within any one
group but across the groups.

Between-groups Variance

The dispersion of scores between the groups A, B and C, for example 2, 4 and 6, is
due to all of the above three sources of variance plus one other which is the differ-
ent levels of the independent variable. This source of dispersion is:

4. Treatment variability. This refers to the effect of the independent variable, for
example training schedule, on each of the participants.

Error

All of the three sources of within-groups variance, that is inter-individual variability,
intra-individual variability and random fluctuations, are considered to represent errors
in the measurement of the dependent variable. As these errors occur within all three
groups A, B and C then the total error in the measurement will be the variance within
group A plus the variance within group B plus the variance within group C. This pro-
duct will reflect the overall error in the measurement of the dependent variable.

You might be wondering why these sources of within-groups variance are termed
error. This is not difficult to understand if one imagines that these sources of vari-
ability could be controlled. This would mean that there would be no variability within
each of the three groups A, B and C, hence all of the scores within each of the groups
would be the same. Now consider the between-groups variance. Any variance that
occurs between the groups A, B and C can only be a product of one factor, the treat-
ment variable. If the sources of within-groups variance could be removed then there
would be no need for any inferential statistics, as any observed differences between
the groups would not be confounded by error and could only be attributed to the
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treatment effect. In one sense all inferential statistics are strategies for dealing with
errors in measurement and because the social sciences have lots of errors in their data
so they have to employ sophisticated statistics in an attempt to control for their effects.

F-ratio

Unfortunately the three sources of error cannot be completely controlled. Therefore
the within-groups variance reflects these sources of error in the measurement and a
between-groups variance reflects both these errors and any treatment effects due to
the different levels of the independent variable. It follows that if the independent
variable, for example the training schedule, has any effect on the dependent variable,
for example the performance, then it would be expected that the dispersion of
scores between the groups would be greater than the dispersion of scores within the
groups. That is, the effect of error and treatment would result in a greater variance
than error alone. The test statistic F for ANOVA is simply the ratio of this between-
groups variance to the within-groups variance:

If the independent variable has no effect then the dispersion of scores between the
groups will be very similar to the dispersion of scores within the groups and hence
F will tend towards unity. On the other hand, the more the independent variable has
an effect, the more the dispersion between the groups will increase and F corres-
pondingly becomes greater than 1.

It is important to note that we do not know what the value of the error component
is in the between-groups variance. All we can do is estimate its value based on the
within-groups variance. Together these between- and within-groups variances repre-
sent the total variance of the whole set of scores. This may be expressed as

Total variance = between-groups variance + within-groups variance

Calculating the Variances

Before the value of F can be calculated the between- and within-groups variances
need to be determined. The procedure for calculating variance was discussed in
Chapter 2. In that chapter the first stage involved subtracting the mean from each
score, squaring the result to get rid of the minus values, and summing the total for
all the scores included. This process was expressed in the following formula:

∑
(x − x)2

F = between-groups variance
within-groups variance

error + treatment
error

=

Skerr06.qxd  2/7/02 12:42 PM  Page 82



This procedure produces what is known as the sum of the squares (SS). This label is
intuitively meaningful, as the product of this equation is the sum of the squared dif-
ference between each score and the mean.

We noted earlier that if the treatment has any effect, then we would expect the dis-
persion of scores between the groups to be greater than the dispersion of scores
within the groups. We can now employ the sum of the squares outlined above as the
first step in working out the dispersion within and between the groups.

Working out the Within-groups Sum of Squares

Let’s consider the within-groups sum of squares first. Here we are interested in how
far each score is dispersed from its group mean.

For groups A, B and C the total sum of the squares within the three groups is

SSwithin-groups =
∑

(each score in that group – mean of each group) 2

= (1 − 1)2 + (0 − 1)2 + (2 − 1)2 + (3 − 4)2 + (5 − 4)2

+ (4 − 4)2 + (7 − 7)2 + (8 − 7)2 + (6 − 7)2

= 6

Working out the Between-groups Sum of Squares

Now let’s consider between-groups sum of squares. Here we are interested in how
far the means of each group are dispersed around the grand mean. That is, the mean
of the scores contained in all of the groups. To calculate the between-groups sum of
squares the grand mean is subtracted from the mean of a group and the result is
squared and then multiplied by the number of scores in that group. This process is
repeated for each of the groups and the results are summed.

SSbetween-groups =
∑

n(mean of each group − mean of all the scores)2

SSbetween-groups =
∑

n( x– − X
–

)2

= n(1 − 4)2 + n(4 − 4)2 + n(7 − 4)2

= 3(−3 × −3) + 3(0 − 0) + 3(3 × 3)

= 3(9) + 3(0) + 3(9)

= 54

Working out the Total Sum of Squares

Finally, consider the total sum of squares. Here we are interested in how far the
scores are dispersed around the grand mean X

–
.
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SStotal group =
∑

(each individual score − mean of all the scores)2

SStotal group = (1 − 4)2 + (0 − 4)2 + (2 − 4)2 + (3 − 4)2 + (5 − 4)2

+ (4 − 4)2 + (7 − 4)2 + (8 − 4)2 + (6 − 4)2

= 60

You may have noticed that the total sum of the squares is equal to the sum of the
between-groups and within-groups sum of squares, that is

SStotal group = SSbetween-groups + SSwithin-groups

60 = 54 + 6

Calculating F

We previously observed that F can be defined as follows:

But this cannot mean that

as each sum of the squares is influenced by the number of observations. You may
have noticed that this is exactly the same argument as that employed in Chapter 2
when the formula for the variance was developed. If the sum of the squares is
divided by the number of observations then the average sum of squares would be cal-
culated. This was how the sample variance was defined in Chapter 2. However, here
the interest is in what is termed the mean square (MS), which is the sum of squares
divided by the appropriate degrees of freedom. Again this label should seem intu-
itively meaningful, as the mean square is the mean of the sum of squares.

Degrees of Freedom

SSwithin-groups was calculated by taking the square of the deviation of each score in a group
from the mean of that group, summing these values together and repeating this process
for every group. As each group has a degree of freedom equal to (n − 1) and as there
were k groups, df = k(n − 1). For example, if there are three groups with three subjects
in each group then the degrees of freedom will equal 3(3 − 1) which  equals 6.

SSbetween-groups was calculated by summing the square of the deviation of each group
mean from the grand mean. As there were k observations contributing to the final
value df = (k − 1). Therefore, if there are three groups then the number of degrees
of freedom will equal 2.

F = between-groups variance
within-groups variance

error + treatment
error

=

F = SSbetween-groups

SSwithin-groups

Skerr06.qxd  2/7/02 12:42 PM  Page 84



Therefore to calculate the two variances the sum of the squares must be divided
by the appropriate degrees of freedom:

So in our example

The researcher can now look up the critical value in what are known as F-tables
using the appropriate degrees of freedom which are:

(k − 1) for the numerator
k(n − 1) for the denominator

If the observed value exceeds the critical value then the null hypothesis is rejected.
Fortunately, using SPSS makes the use of such tables redundant as it prints out the
probability of obtaining the observed value of F by chance.

Being aware of how a one-way ANOVA is calculated by hand is useful because it illus-
trates, for example, why the particular degrees of freedom are employed in the within-
and between-groups variances.  To make this manual calculation less tedious a number
of shortcuts can be employed. These are shown below. However, if you have a limited
interest in the ‘nuts and bolts’ of ANOVA analysis then jump to the next section.

Calculating a Between-groups One-way ANOVA by Hand

Results of analyses of variance are often set out in the format below.

SOURCE SUM OF SQUARES df MEAN SQ. = SS/df F

BG

∑
t2

n
− T 2

N
k − 1

∑
t2

n
− T 2

N
÷ (k − 1)

MSBG

MSWG

WG
∑

x2 −
∑

(t2 ÷ n) k(n − 1)
∑

x2 −
∑

(t2 ÷ n)

÷ k(n − 1)

Total
∑

x2 − T 2

N
k(N − 1)

variance
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F = ÷SSbetween-groups

(k − 1)

SSwithin-groups

k(n − 1)

= MSbetween-groups ÷ MSwithin-groups

F = 54

2
÷ 6

6
= 27

1

= 27
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where

t = group total
T = grand total
n = number of scores in a group
N = total number of scores

k = number of groups

To illustrate the validity of the formula in this box let’s return to the previous
example (Table 6.2).

Here

Therefore

SSWG = SStotal − SSBG = 60 − 54 = 6

Alternatively

SSWG =
∑

x2 −
∑

(t2 ÷ n) = 204 − 198 = 6

Mean squareBG

= 27

k(number of groups) = 3

n(observations per group) = 3

SSBG =
∑

t2

n
− T 2

N
= (3 + 48 + 147) − 1296/9

= 198 − 144 = 54

SStotal =
∑

x2 − T 2

N
= 204 − 144 = 60
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Table 6.2 Performance scores obtained from three
training schedules

A B C

1 3 7
0 5 8
2 4 6

t 3 12 21

Σx/n 1 4 7

SSBG 54 54= = =
k − 1 (3 − 1) 2
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Mean squareWG

= 1

Therefore

F = 27 ÷ 1

= 27

Looking up ‘Numerator/Denominator df 2df/6df’ in F-tables we find that

Critical value of F = 5.14 at 5% significance level

Therefore, as the observed value of F is greater than the critical value the null
hypothesis is rejected. That is, the three group means are significantly different from
each other and the conclusion is that the type of training schedule influenced per-
formance. However, it is important to note that in rejecting the null hypothesis we
cannot conclude that all three means are significantly different; all we can conclude
is that at least one mean is significantly different from one of the other two.

Example of How to Use SPSS to Undertake a
Between-groups One-way ANOVA

In the following the data used in this chapter has been analysed using SPSS. Work
through this example, compare your results with those provided by the manual calcu-
lation above and answer the questions that accompany the extracts from SPSS output.

A researcher wanted to test the null hypothesis that there was no difference in the
relative effectiveness of three distinct training schedules on performance (Table 6.3).
In this case we have one dependent variable, namely performance, and three levels
of the independent variable, the training schedules. This experiment used three
groups of three participants (i.e. N = 9).

Call up SPSS for Windows and enter the above data in the same way as you did
for the descriptive statistics exercise. Remember that columns represent variables

SS
WG

6 6= = =
k(n − 1) 3(3 − 1) 6

Table 6.3 Performance scores obtained from three
training schedules

A B C

1 3 7
0 5 8
2 4 6
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and rows represent the participants. Therefore, in addition to the column needed to
contain the performance scores, a second column is needed to identify which of the
three groups produced the scores. As each participant requires their own row and as
there are nine participants, then nine rows are required.

Typically before an ANOVA is executed the Explore option ought to be used to
check that the data for the three groups does not significantly deviate from normal
in terms of skewness and kurtosis. However, as there are only three participants in
each group it is not possible to complete this process.

To analyse the data click on Analyze, then Compare Means and then One-
way ANOVA.

Enter the dependent variable into the Dependent list and then enter the variable
that identifies which group the scores come from into the Factor list.

Click on the Options box and then select Descriptives and Homogeneity of
variance. Both of these options should have an x in their boxes; if they do not click
on the box. Now click on Continue and then on OK to execute the analysis.

To get a graphical illustration of the distribution and overlap in the three sets of
scores select Graphs then Boxplot. Make sure Simple and Summaries for
groups of cases are selected and then click on Define. Enter the names of three
groups into the Boxes Represent box and click on OK.

Now get a printout of the results by selecting the File menu and then selecting
Print. This should produce something similar to the following.

1. Do the means and standard deviations of the three groups (Table 6.4) suggest
support for the null hypothesis? That is, do they suggest significant differences
in the outcomes of the three training programmes?

2. What does the boxplot in Figure 6.1 suggest about:

(a) the normality of the distribution of scores in the three groups?
(b) differences in the outcomes of the three training programmes? 
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Table 6.4

SCORE Descriptives

N Mean Std. Std. Error 95% Minimum Maximum
Deviation Confidence

Interval for
Mean

Lower Bound Upper Bound

A 3 1.00 1.00 .58 -1.48 3.48 0 2

B 3 4.00 1.00 .58 1.52 6.48 3 5

C 3 7.00 1.00 .58 4.52 9.48 6 8

Total 9 4.00 2.74 .91 1.89 6.11 0 8
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3. Parametric tests assume that the variances in the groups are homogeneous. The
following test is used to test the null hypothesis that there is no significant
difference in the variances of the three training schedule groups. If the parametric
assumption is to be met then this null hypothesis needs to be accepted. On pages
91–92 you will find a section on checking the assumption of equal variance. You
may find it helpful to read that section before answering the following question.

What do you interpret from Table 6.5? 

4. In looking at Table 6.6 remember that SS divided by df produces the MS. So,
for example, 54/2 results in 27. Also remember that F = MSBG/MSWG, so 27/1
produces an F-value of 27.

Does the following table lead you to reject or accept the null hypothesis? 
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Figure 6.1 Boxplot showing actual distribution of performance scores
obtained from three training schedules

Table 6.5

Test of Homogeneity of Variances

Levene Statistic df1 df2 Sig.

.000 2 6 1.000
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Assumptions of ANOVA

In Chapter 4 it was pointed out that parametric tests make three assumptions. These
were:

1. That each sample of scores has been drawn from a normal population.
2. These samples have equal variance.
3. The dependent variable is measured on at least an interval scale.

In fact there is a fourth assumption which must also hold true. This is:

4. Independence of observations.

This fourth assumption requires that the scores one individual gives are not influ-
enced by other participants, as might happen if participants are tested in small
groups rather than individually. However, it is on the first two assumptions that the
next section will focus.

Checking the Assumption of a Normal Distribution

In Chapter 4 it was noted that unfortunately it is not possible to prove that a parti-
cular sample is drawn from a normally distributed population. What can be done is
to refer to previous research to see if the data has previously been found to form a
normal distribution, or to have SPSS construct a histogram of the data to see if it
looks like a normal distribution.

It was also noted that neither of these procedures is very precise. Therefore, to
have any measured confidence in the decision concerning the normality of the dis-
tribution statistical alternatives need to be explored. Two measures that were intro-
duced were the concepts of skewness and kurtosis. Skewness reflects the existence
of extreme scores such that a skewness of zero means that the distribution is sym-
metrical. Kurtosis refers to the peakedness of the curve: that is, is it a flat curve or
does it have a sharp point? If you cannot recall these concepts then reread the appro-
priate section in Chapter 4.

Table 6.6

SCORE ANOVA

Sum of Squares df Mean Square F Sig.

Between Groups 54.000 2 27.000 27.000 .001

Within Groups 6.000 6 1.000

Total 60.000 8
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Consequences of Violating Assumption of Normality

It is generally held that ANOVA is not greatly influenced if the distribution is not
normal as long as the scores are symmetrically distributed and the sample sizes are
equal and greater than 12 (Keppel 1991). If these conditions do not hold true then
there is an inflated risk of committing a Type I error. To overcome this problem the
significance level should be reduced, for example from 0.05 to 0.025. However,
there is no absolute guidance on when a correction is necessary and how much cor-
rection is required. Therefore the normality assumption should be checked and any
violations that are observed should be reported.

Checking the Assumption of Equal Variance

Again, it cannot be proved that two or more samples have homogeneity of variance.
But as with the question of normality, the spread in the two sets of data may be
examined to see if they look similar and the magnitude of the variances of the data
for each group may be noted. Keppel (1991) reports that it is commonly held that
‘the F test was relatively insensitive to the presence of variance heterogeneity, except
when unequal sample sizes were involved’ (page 98). However, he suggests that
work by Wilcox (1987) demonstrates that this is not the case and that the F-test can
become seriously biased with heterogeneous variance.

There are a variety of techniques available for testing for homogeneity of vari-
ance. One was displayed in the output of the exercise at the end of Chapter 5 in order
to test this assumption when employing an independent t-test. The method that was
employed was Levene’s test for equality of variance. In the one-way ANOVA
procedure employed by SPSS this test is also available by selecting the Options
box in the One-way ANOVA window and then selecting the Homogeneity-of-
variance box. (We also suggest that you select the Descriptive box for reasons
that will become apparent in a moment.) It is important to remember that in testing
the homogeneity of variance assumption researchers hope that the probability will
be greater than 0.05 as they want to accept the null hypothesis that the variances are
not significantly different, for if the null hypothesis is accepted then the conclusion
may be drawn that the homogeneity of variance assumption is met.

Unfortunately a test such as Levene’s – and there are at least 56 of them – is influ-
enced by departures from normality as well as inequality between the variances. For
this reason amongst others Keppel (1991) is reluctant to recommend any of them and
instead suggests that one looks at the ratio of the largest within-groups variance to
the smallest. This ratio he calls Fmax. When this ratio is 9 or greater then the effect is
to inflate the alpha level, for example from 0.05 to 0.08. How much the alpha is
inflated is inversely related to the sample size and directly related to the degree of
heterogeneity. In addition if this heterogeneity is not evenly distributed, for instance
there is only one deviant group, then this will again inflate the alpha level. Tabachnick
and Fidell (1989) point out that this effect is further complicated because: ‘If the
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group with the smaller n has the larger variance, the F test is too liberal, leading to
increased Type I error rate and an inflated α level’ (page 48).

To overcome this problem one can reduce the alpha level, but unfortunately, as
with the assumption of normality, there is no clear guidance as to how much cor-
rection is required. Keppel (1991) demonstrates that if Fmax is equal to 9 then reduc-
ing the alpha to 0.01 would mean that the actual significance would never exceed
0.05. He goes on to note that as this produces an overcorrection then adopting an
alpha of 0.025 might be a more valid procedure. He also points out that the influ-
ence of heterogeneity on alpha levels reinforces the importance of reporting group
standard deviations and that corrections should be introduced once Fmax is equal to
or greater than 3.

Summary

Before we move on to a more detailed examination of the output from SPSS it might
be useful to summarise what has been stated so far. A one-way ANOVA is used to
test the significance of group differences when there is one dependent variable and
one independent variable. This can be seen from the tables in Appendix 2.

Whereas a t-test can only test the differences between the means of two groups,
there is no restriction on the number of groups a one-way ANOVA can test. There-
fore, when we have more than two groups a one-way ANOVA is used in preference
to multiple t-tests because it does not increase the risk of committing a Type I error.

A one-way ANOVA tests the null hypothesis that all the means of the groups are
equal. If the probability associated with the value of F is less that the significance
level we reject the null hypothesis.

A one-way ANOVA can be applied to almost any situation in which the t-test can
be used. In fact the t-test is a special case of the F-test and the two are related in the
following manner:

F = (t)2 and hence t = F

You can convince yourself that this is the case by reanalysing the data on page 74
using a one-way ANOVA, and comparing the value of F obtained with the previously
computed value of t.

It is important in ANOVA that the assumptions of normality and heterogeneity are
met. To test the former the Explore option should be used to see if the z-values for
skewness and kurtosis are larger than ±1.96. To test for heterogeneity of variance,
Levene’s test should be used. However, if the normality assumption is not met then
the values of Fmax should be established from the descriptive statistics. If any values
are equal to or greater than 3 then a reduction in the alpha level should be made to
avoid any increase in the risk of committing a Type I error.

To illustrate what this means and to provide a model for you to refer to in the
future, an example is provided next. This example displays edited sections of SPSS
output and explains what should be interpreted from each section.

√
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Example 6.1 A Between-groups One-way ANOVA

A researcher was interested in the scores of gymnasts on two constructs. The first
was socially prescribed perfectionism (SPP), which is the tendency to employ
excessively high standards. The second was emotionally focused coping, which
refers to the tendency to employ emotional rather than problem-focused coping
strategies. The researcher created three groups based on participants’ perfection-
ism scores. One group was based on those who scored one standard deviation or
more above the mean. A second groups was based on those who scored one stan-
dard deviation or more below the mean, and the third was the middle group.

The null hypothesis was that there would be no difference in the mean
coping scores of the three groups of gymnasts.

From the Explore option the researcher’s results included the information in
Table 6.7.

The researcher noted that all three means were different and that when these
differences were examined in the context of their standard deviations this sug-
gested that there would be little overlap in the distribution of the three sets of
scores.

The researcher also calculated that when the skewness and kurtosis values
were divided by their respective standard errors the resulting values would all
be less than ±1.96, which suggested that none of the three groups would have
scores that significantly deviated from normal.

Both these interpretations were supported by the boxplot in Figure 6.2 from
the Explore option.

Table 6.7

Descriptives

HILO_SPP Statistic Std. Error

EMOTION High Mean 2.4107 .1385

Std. Deviation .5365

Skewness .590 .580

Kurtosis -.351 1.121

Middle Mean 3.0800 .1020

Std. Deviation .6451

Skewness -.158 .374

Kurtosis 1.007 .733

Low Mean 3.5733 .1142

Std. Deviation .4422

Skewness -.471 .580

Kurtosis -.855 1.121

B E T W E E N - G R O U P S  O N E - W A Y  A N A LY S I S  O F  V A R I A N C E 93

Skerr06.qxd  2/7/02 12:42 PM  Page 93



94 D O I N G  S T A T I S T I C S  W I T H  S P S S

The researcher observed from the boxplots for all three groups that the medi-
ans were approximately in the middle of each of their boxes and there was very
little overlap between the three boxes. This suggested support for the alternate
rather than the null hypothesis. The researcher also noted that although the
whiskers for each box were uneven, these differences were not sufficiently large
to suggest that the data was significantly skewed. However, the researcher did
notice the outlier in group 2.

From the one-way ANOVA analysis the results included the following.
From Table 6.8 the researcher interpreted that the homogeneity of variance

assumption was met as the results suggested that 40 times out of 100 variances
as different as those observed in the three groups would be obtained by chance.
The researcher therefore went on to examine the results of the ANOVA analysis
given in Table 6.9.

As the alpha level (‘Sig.’) associated with the observed value of F was less
than 0.05 the researcher rejected the null hypothesis and concluded that at least
one of the three means was significantly different from the other two.

15
3.00

40
2.00

HILOSPP

15
High

N =

E
M

O
T

IO
N

1

2

3

4

5

19

Table 6.8 Test of homogeneity of variances

EMOTION

Levene Statistic df1 df2 Sig.

.924 2 67 .402

Figure 6.2
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In a previous independent t-test exercise you investigated the amount of pre-
performance anxiety in beginners and intermediate scuba divers. You are now going
to extend that research to include novice and expert divers.

While conducting the investigation, you are able to obtain access to a group of
novice divers who have never been diving before and a group of expert divers. You
assess the pre-performance cognitive state anxiety of both these groups and obtain the
data listed below. You then combine this additional data with the previous data from
beginners and intermediate scuba divers. This means that you now have four groups:
novices, beginners, intermediates and experts. Your research question remains

What is the effect of experience on pre-performance anxiety in
scuba diving?

But now you need to write one or more research hypotheses for four groups rather
than the previous two.

Hypothesis

......................................................................................................................................

......................................................................................................................................

.....................................................................................................................................

1. Enter the additional data. Add the data below to the previous example in which
you analysed the results of 40 beginners and intermediate scuba divers using a
t-test. In total you should now have 80 participants so you should have used 80
rows. Don’t forget to add additional value labels to the variable you labelled
Exp. You could use the value 3 for novice and the value 4 for expert.

2. Check that the data in each group is normally distributed. You will need to
check that the data is normally distributed so follow the instructions from the
previous SPSS exercise in Chapter 5 to use the Explore option, that is

E X E R C I S E  6 . 1  B E T W E E N - G R O U P S  O N E - W AY
A N O V A  U S I N G  S P S S

Table 6.9 ANOVA

EMOTION 

Sum of Squares df Mean Square F Sig.

Between Groups 10.271 2 5.136 14.961 .000

Within Groups 22.999 67 .343

Total 33.270 69
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Analyze
Descriptive Statistics

Explore
Enter ‘Anxiety’ in the Dependent List and ‘Exp’ in the Factor List

Click on the Plots box
Deselect Stem-and-leaf and select Histogram

Continue
OK

3. Test the null hypothesis using a between-groups one-way ANOVA. Go to the
Analyze menu and open the sub-menu Compare Means. Because you are
now comparing four means on one variable of interest (anxiety), you need to
select a One-way ANOVA (analysis of variance). Anxiety is the dependent
measure and experience is the factor.

Click on the Post-Hoc dialog box, select the Least-significant differ-
ence test, the Tukey´s b test, the Scheffe test and then Continue. Please
note that the output this selection produces is explained in the following chapter
on analytical comparisons.

Click on the Options box, and select Descriptive Statistics and
Homogeneity-of-variance.

Run the analysis and then print the results.
Examine the skewness and kurtosis statistics and explain whether any of the

four groups significantly deviate from normal:
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Novice Expert

22 13

25 09

24 11

18 13

23 17

29 12

23 06

24 04

20 12

31 07

16 08

18 15

32 16

21 09

23 09

13 11

27 10

26 09

27 14

35 8

Table to show how the data
should appear in SPSS,
after following the
instructions below.

Exp Anxiety

1 10

1 18

etc. etc.

2 9

2 10

etc. etc.

3 22

3 25

3 24

etc. etc.

4 13

4 9

4 11

etc. etc.
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Novice ........................................................................................................

Beginners ........................................................................................................

Intermediate ........................................................................................................

Expert ........................................................................................................

Examine the boxplots and explain whether these suggest:

(a) That any of the four groups significantly deviate from normal:

Novice ................................................................................................

Beginners ................................................................................................

Intermediate ................................................................................................

Expert ................................................................................................

(b) Support for the null or alternate hypothesis.

.......................................................................................................................

.......................................................................................................................

Look at the means and standard deviations in the table of descriptive sta-
tistics and explain whether these suggest support for the null or alternate
hypothesis.

.......................................................................................................................

.......................................................................................................................

Describe the results of the ANOVA test (i.e. SS, df, MS, F and Sig. F), and
explain whether you are going to accept or reject the null hypothesis.

.......................................................................................................................

.......................................................................................................................

To determine which if any of the individual groups differ from any other
group look at the results of the post-hoc tests you have carried out. Read
the first two pages of the next chapter and then explain why these post-hoc
tests produce different results.

Novice ................................................................................................

Beginners ................................................................................................

Intermediate ................................................................................................

Expert ................................................................................................
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Write down what you conclude from this analysis.

.......................................................................................................................

.......................................................................................................................
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Purpose

The purpose of the techniques known as analytical comparisons is to determine
which group means are significantly different from each other. In a one-way
ANOVA the null hypothesis that is tested predicts that the means of the dependent
variable scores for each level of the independent variable will not be significantly
different. So if, as in the previous chapter, there are three groups A, B and C, then
the null hypothesis would predict that the performance scores of the three groups
would not be significantly different from each other, that is

H0 states that µA = µB = µC

If the significance level associated with testing this null hypothesis is less than the
alpha level, for example 0.05, then the null hypothesis is rejected. Therefore the
decision is made, with a precise level of confidence, that all three means are not
equal and as an alternative the experimental hypothesis is accepted. However, for the
null hypothesis to be incorrect it is not necessary that all three group means are dif-
ferent from each other; it is only necessary that one group mean be significantly dif-
ferent from one of the other group means. So the researcher is in the position of
knowing that all of the group means are not equal but not knowing which of the
group means are significantly different from each other. To enable the identification
of which means are significantly different analytical comparisons need to be
employed. These comparisons can be either unplanned or planned.

Unplanned Comparisons: Post-hoc Tests (Data Snooping)

Unplanned comparisons are comparisons that are conducted after the data is exam-
ined. That is, they are not specifically predicted before the start of an investigation.
They are used in preference to doing multiple t-tests on various combinations of
means because in general they make corrections to avoid increasing the risk of com-
mitting a Type I error. These tests differ in how cautious they are in making these cor-
rections. For example, the one termed least significant difference (LSD) is equivalent
to executing multiple t-tests across all combinations of pairs of group means without
making any correction for the inevitable increased risk of committing a Type I error.

7
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In contrast, Scheffe’s test, which can be used for the same purpose as the LSD test,
makes corrections of sufficient magnitude that it becomes more difficult for the
researcher to reject the null hypothesis.

SPSS includes, for example, the alternative comparisons in the Post Hoc options
of the One-Way ANOVA window (Table 7.1).

The power of a test is inversely related to how conservative it is. Power, you may
recall from Chapter 4, refers to a test’s ability to detect a significant difference when
one truly exists. Therefore, Scheffe’s test, being the most conservative, requires
larger differences in the means before significance is achieved. If you examine your
output from the previous one-way ANOVA exercise you may note that they produce
different results. The LSD identifies the most number of significant differences and
Scheffe’s test the least. Never use the LSD test unless you are going to make a cor-
rection for the increased risk of a Type I error. How such a correction can be made
is explained later in this chapter. To carry out one of the above post-hoc tests click
on the Post Hoc box in the One-Way ANOVA window and make sure there is a
cross in the box of the test you want, and then click on Continue.

Each of the above tests is conceptually similar to a t-test in that they identify which
groups differ from each other but they are calculated in different ways. To illustrate the
logic behind them the formula for Scheffe’s test is given below. Omit this section if
formulae confuse you and turn to example 6.1.

Scheffe’s Confidence Interval

If you want to compare all the possible means or groups of means this is the test you
should use. It computes an interval size (I) which is the minimum difference in
means that must exist before significance can be declared. To this end it uses the
following formula:

I =
√

(k − 1)(Fα)(MSE)

(
1

n1
+ 1

n2

)
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Table 7.1

Examples of post-hoc tests Power When to use

Least significant difference Same as multiple t-test Don’t as no 
correction is made

Duncan’s multiple range test (Least conservative)
Student–Newman–Keul’s test (In between)
Tukey’s HSD test Pairwise comparisons
Tukey’s (b) test
Scheffe’s test (Most conservative) Compare all groups
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where

k = number of groups
Fα = F-value for chosen alpha level with the

appropriate degrees of freedom
MSE = Mean square error from ANOVA

n = Number of participants in each group

Scheffe’s test makes a conservative correction for increases in Type I error. This
results in it calculating an increased probability that the results are due to chance.
The consequence of this is that it becomes more difficult for the researcher to reject
the null hypothesis.

Applying a Post-hoc Analysis to Example 6.1

In this example of a between-groups one-way ANOVA the researcher was inter-
ested in testing the null hypothesis that there would be no difference in the
mean coping scores of the three groups of gymnasts.

If you look back to Table 6.9 you will note that as the alpha level (‘Sig.’)
associated with the observed value of F was less than 0.05 the researcher
rejected the null hypothesis and concluded that at least one of the three means
was significantly different from the other two. However, the researcher did not
know where these differences lay so went on to execute a Scheffe post-hoc test.
The results of this analysis are shown in Table 7.2.
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Mean Std. Error Sig. 95%  
Difference Confidence

(I-J) Interval

(I) (J) Lower Upper
HILOSPP HILOSPP Bound Bound

High = 1.00 2.00 -.6693* .1774 .002 -1.1134 -.2252

3.00 -1.1627* .2139 .000 -1.6983 -.6271

Middle = 2.00 1.00 .6693* .1774 .002 .2252 1.1134

3.00 -.4933* .1774 .026 -.9374 -4.9245E-02

Low = 3.00 1.00 1.1627* .2139 .000 .6271 1.6983

2.00 .4933* .1774 .026 4.925E-02 .9374

Table 7.2 Multiple comparisons

Dependent Variable: EMOTION 
Scheffe

* The mean difference is significant at the .05 level.
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As all of the alpha levels (‘Sig.’) in this table were below 0.05 the researcher
could conclude not only that the null hypothesis should be rejected but also that
all three group means were significantly different from each other.

To see if you can execute and interpret such an output work through the fol-
lowing exercise.

A researcher wanted to evaluate the effectiveness of three different teaching methods.
The researcher randomly allocated the 15 participants to the three groups where they
were taught by one of the three methods. The performance of the participants was
then measured by means of a multiple choice examination (Table 7.3).

To use SPSS select Statistics, Compare Means, One-Way ANOVA, and
then enter the dependent variable into the Dependent List box and the grouping
variable into the Factor box. Click on the Post Hoc box and select Scheffe test,
then click on Continue and OK.

Your results will include an additional table (Table 7.4).
Having carried out this analysis write down what you can conclude from its results.
Repeat the above exercise but this time, in addition to a Scheffe test, select a Tukey’s

b test and an LSD. Compare the outputs and consider why they give different results.

A Priori Tests (Planned Comparisons)

Whereas post-hoc tests are carried out after finding a significant F-ratio, a priori tests
are ‘planned’ prior to the experiment. Which group means you compare will depend
upon the predictions you have made in your hypotheses. You need to be aware that
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E X E R C I S E  7 . 1  B E T W E E N - G R O U P S  O N E - W AY
A N O V A

Table 7.3 Effects of teaching strategy on performance on a multiple
choice test

Group 1 Group 2 Group 3

Exam 12 9 6
scores 10 7 7

11 6 2
7 9 3

10 4 2
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in a one-way analysis for k groups, k −1 independent group-mean comparisons can
be made. This means that if there are four groups then three independent group-mean
comparisons can be made.

By independent group-mean comparisons we mean that the answer you get to one
comparison has no bearing on the answer you get to any other comparison(s) you
make. For example, imagine you wanted to carry out a comparison on the amount of
leisure time three different age groups (A, B and C) spent playing computer games.
If you discovered that group A spends more time than group B, and group B spends
more time that group C, then you know that group A spends more time than group C.
Thus, we can see that the comparison of group A with group C is not independent of
the comparison of A with B, and B with C. You can of course carry out whatever
comparisons you like but if they are not independent then this will increase the risk
of committing a Type I error. This increased risk will have implications for the sig-
nificance level that you adopt. We shall return to this point later when we discuss
orthogonal and non-orthogonal comparisons in more detail.

Principle

The way that we actually execute a planned comparison might seem a little obscure.
Let us return to the above example concerning groups A, B and C, and imagine that
we are interested in testing to see if the mean of group A is different from the mean
of group B. If these two means are the same, that is the null hypothesis is correct,
then if we subtract the mean of B from the mean of A the product ought to be zero.
Of course, we would not expect it to be exactly zero as there will always be a sam-
pling error. This was discussed at the beginning of Chapter 5. You may recall from
that chapter that whenever we measure the means of two samples from a single
population we will almost always get slightly different values. Therefore, when the
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Mean Std. Error Sig. 95%  
Difference Confidence

(I-J) Interval

(I) GROUP (J) GROUP -ower Upper
Bound Bound

1 2 3.00 1.342 .124 -.74 6.74

3 6.00* 1.342 .003 2.26 9.74

2 1 -3.00 1.342 .124 -6.74 .74

3 3.00 1.342 .124 -.74 6.74

3 1 -6.00* 1.342 .003 -9.74 -2.26

2 -3.00 1.342 .124 -6.74 .74

Table 7.4 Multiple comparisons

Dependent Variable: SCORE
Scheffe

* The mean difference is significant at the .05 level.

SKerr07.qxd  2/7/02 12:43 PM  Page 103



mean of B is subtracted from the mean of A the product will deviate from zero. What
the planned comparison computes is whether the observed deviation from zero is
sufficiently great for us to reject the null hypothesis and accept that the two means
are drawn from different populations.

In a paired samples t-test we simply took one mean from the other and divided by
the error term. In this example, however, we have three groups, A, B and C, and
imagine that we only want to contrast the mean of group A with that of B. We there-
fore have to think of a way of including all three groups while only comparing
groups A and B. To do this we need to recall two simple rules from algebra. The first
of these is that if we multiply a number by minus one we simply change its sign from
positive to negative or negative to positive. So, for example, minus three times minus
one become plus three. The second rule we have to recall is that whenever we mul-
tiply any number by zero the product is zero. Now if we want to take the mean of
group B from the mean of group A and ignore the mean of group C we could do the
following. Multiply the mean of A by 1, multiply the mean of B by −1, multiply the
mean of C by 0 and then add them all up. This is expressed algebraically in
equation (7.1) below:

Difference between X−A and X−B = [
1

(
X−A

)] + [
−1

(
X−B

)] + [
0

(
X−C

)]
(7.1) 

The mean of group C is now ignored, because whatever its original value, it now equals
zero, and the mean of Group B has had its sign reversed. If the product of this equation
is zero then the means of A and B are identical and therefore the null hypothesis is cor-
rect. The more the product of this equation tends away from zero the more likely it is
that the null hypothesis is incorrect and that the group means are significantly different.
The values 1, −1 and 0 that we have multiplied the three group means by are known as
weights. If you add these weights together you will note that they sum to zero:

(1) + (−1) + (0) = 0

If you have understood the argument so far then you will appreciate that if the null
hypothesis is to be tested by how far the product of the equation deviates from zero
then the weights must also sum to zero. To explain this, imagine that in fact the
means of each group were identical and each had a value of 5. Then if we substitute
this value into equation (7.1) we get

[
1

(
5

)] + [
−1

(
5

)] + [
0

(
5

)] = 0

As the product of this equation is zero we accept the null hypothesis. Now let’s
change the weightings to 1, 1, 0. If we add them up, they sum to 2, and if we sub-
stitute them into equation (7.1), we find that the result is no longer zero:

[
1

(
5

)] + [
1

(
5

)] + [
0

(
5

)] = 10
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Given that we test the null hypothesis by seeing if the product of this equation is
zero, we can see that even though the means are in fact equal the product of the equa-
tion will not equal zero unless the weights sum to zero.

Let’s sum up what we have said so far. To compare treatment means one first
assigns a weighting factor (ω) to each mean. Weights of zero are assigned to means
that are left out of the comparison, whilst weights with opposite signs (positive and
negative) are assigned to means that are to be contrasted. So, for example, if there
are four groups and one wants to contrast the first and the third groups one would
assign the following weights:

1 0 −1 0

(Note that if you add these all together the answer is zero.) Planned contrasts assume
that the sum of the weighted group means is equal to zero when the null hypothesis
is correct. Hence, the sum of the weights you assign to group means must also sum
to zero to allow the null hypothesis to be correct.

To obtain a comparison we multiply the group means by the coefficients, for
example

Comparison of group means =

In this comparison the second and fourth means are ignored because they are both
multiplied by zero. We are left with simply taking the third mean away from the first.
If these two means are equal, that is the null hypothesis is correct, then the result will
tend towards zero. The more the result deviates from zero the more confidence one
has in rejecting the null hypothesis.

Orthogonal and Non-orthogonal Comparisons

Orthogonal contrasts refer to group-mean comparisons where the answer you get to
one comparison has no bearing on the answer you get to any other comparison(s) you
make. This is also expressed as the contrasts being independent of one another. Non-
orthogonal simply means the opposite of this. That is, it refers to group-mean com-
parisons where the answer you get to one comparison has some bearing on the answer
you get to any other comparison(s) you make, that is the contrasts are not indepen-
dent of one another. For example, if Lisa is taller than Lucy, and Lucy is taller than
Hamish, then these two contrasts tell you something about a third potential contrast
between Lisa and Hamish: that is, we already know that Lisa is taller than Hamish.

To explore this in more detail let’s imagine that we have four groups and we want
to undertake three contrasts. We want to contrast the first and third groups, the
second and fourth groups, and the average of the first and the third with the average
of the second and fourth groups. The appropriate weightings to employ in these
planned contrasts are shown in Table 7.5.
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[
1

(
x−1

)] + [
0

(
x−2

)] + [
−1

(
x−3

)] + [
0

(
x−4

)]
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First of all note that if you sum the weights for any of the three contrasts the total
will be zero. Remember that this has to be the case if we are going to test the null
hypothesis by measuring how far the differences between the means deviate from zero.

Now notice that if you multiply the corresponding weights for any pair of
comparisons you will find they sum to zero. For example,

‘1 vs 3’ and ‘2 vs 4’ (1)(0) + (0)(−1) + (−1)(0) + (0)(1) = 0
‘1 vs 3’ and ‘1 and 3 vs 2 and 4’ (1)( −1) + (0)(1) + (−1)(−1) + (0)(1) = 0

This observation is very important because if the sum of the cross-multiplication of the
relevant weights equals zero then the comparisons are all orthogonal or, as we termed
it earlier, independent of each other. For example, if one of two contrasts demonstrates
a significant difference between the relevant group means, then this conclusion has no
bearing on whether the other contrast is significant. In fact the number of orthogonal
comparisons is the same as the degrees of freedom, that is (k − 1). Therefore, if there
are four groups then there are three possible independent planned contrasts.

Of course, there are other comparisons we could have included. For example, we
could have compared the mean of the second group with the mean of the third. Here
the weights would be as in Table 7.6.

However, if we sum the cross-products of this contrast with any of the others, for
example the means of the first group against the mean of the third group (Table 7.7),
we find the sum is not equal to zero. For example,

(0)(1) + (−1)(0) + (1)(−1) + (0)(0) = −1
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Table 7.5 A set of orthogonal comparisons and coefficients for K == 4
groups

Values of coefficients (ωω)

Comparison X1 X2 X3 X4

1 vs 3 1 0 −1 0
2 vs 4 0 −1 0 1
1 and 3 vs 2 and 4 −1 1 −1 1

Table 7.6

Comparison Values of coefficients (ωω)

2 vs 3 0 −1 1 0

Table 7.7

Comparison Values of coefficients (ϖϖ)

2 vs 3 0 −1 1 0
1 vs 3 1 0 −1 0
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This means that the question of whether the mean of the second group differs from
that of the third group has some bearing on whether the mean of the first group dif-
fers from that of the third group.

Non-orthogonal Comparisons and Type I Error

If one employs only orthogonal comparisons then there is no increase in the
risk of committing a Type I error and so the critical F remains the same as for the
omnibus ANOVA, that is 0.05. However, if one uses non-orthogonal comparisons,
for example more than (k − 1) comparisons, then the probability of committing a
Type 1 error will be increased. To understand why this is the case you simply have
to recall that a Type 1 error is where you reject the chance explanation when it is
in fact correct, and that the probability of doing so will equal the significance level.
For example, with a 5% significance level one is prepared to reject the null hypo-
thesis even though 1 time out of 20 it will be correct. So, if you carry out 20 non-
orthogonal comparisons on the same sample of data, the probability is that one of
them is simply significant as a result of chance. Unfortunately, you will not know
which one. 

The probability of committing a Type I error is equal to the alpha level. Therefore,
to avoid an increased risk of rejecting the null hypothesis when it is in fact true, the
size of the significance level on each comparison may be reduced in such a way that
the overall alpha will remain at whatever level we want, for example 5%. Usually
this is done by employing a Bonferroni-type adjustment that determines the size of
the more stringent alpha level to be employed for each of the contrasts. One rather
simple but conservative form of this adjustment appropriate for a between-groups
design is to divide the required alpha level by the number of contrasts. So, for exam-
ple, if one has five non-orthogonal contrasts and one desires a 0.05 alpha level, then
this can be achieved by dividing the alpha by 5, that is the new alpha level for each
comparison is 0.01. If you are quite content to employ this principle with no further
explanation then you may skip the next section.

Bonferroni-type Adjustment for Inflated Type I Error
on Univariate F-tests

The use of non-orthogonal contrasts will inflate the probability of committing a Type I
error for the reason outlined above. To control for this inflated Type I error one
should adjust the alpha for each contrast so that the final alpha for the complete set
of contrasts does not exceed the significance level one wishes to employ. This can
be done by employing the following equation:

α = 1 − (1 − α1)(1 − α2)…(1 − α p) (7.2)
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From the following equation we can see that this means that if a significance level
of 0.05 was employed for an analysis containing six non-orthogonal comparisons,
the Type I error rate (α) would be 0.265:

α = 1 − (0.95)6 = 1 − 0.735
= 0.265

This means that if there are p contrasts and one wishes to employ the same signifi-
cance criterion for each comparison, then the individual value of alpha for each com-
parison (αc) can be obtained by solving the following equation:

α = 1 − (1 − αc)
p

α − 1 = − (1 − αc)
p

If we now multiply both sides by minus one we get

1 − α = (1 − αc)
p

(1 − α) = 1 − αc

(1 − α) −1 = − αc (7.3)

So, for example, if there are six comparisons and one wants to employ a common
alpha level for each, such that the final decision does not exceed 0.05 significance,
then substituting these values into equation (7.3) we find that

This means that when interpreting the significance of any univariate effect for a parti-
cular comparison we should employ a significance level of 0.0085 rather than 0.05.

The alpha level does not have to be set at the same level for each comparison.
However, when the chosen significance levels are substituted in equation (7.2) the
end product must not be greater than the Type I error rate one is prepared to accept.

SPSS Contrast Command

SPSS uses the Contrast subcommand to test a priori contrasts using the t-statistic.
To select this command click on the Contrast box in the One-Way ANOVA

6
√

(1 − 0.05) − 1 = −αc

6
√

(0.95) − 1 = −αc

0.9915 − 1 = −αc

−0.0085 = −αc

αc = 0.0085
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window, then use the Coefficients box to specify the values for the coefficients.
For example, if you enter the coefficients 

−1 0 1

this contrasts the first group with the third group, and

0.5 0.5 −1

contrasts the average of the first and second groups with the third group. Enter each
coefficient in turn (e.g. −1) and then click on the Add box. When you have entered
all the coefficients for one comparison, and if you want to carry out a further com-
parison, then click on the Next box and enter the second set of coefficients.

Remember that the coefficients, such as −1, for each comparison should sum to
zero. SPSS automatically adds the weights of your coefficients for you and displays
the sum on the bottom line. Multiply the corresponding weights for the above pair
of comparisons and determine if these two contrasts are orthogonal. To illustrate how
this works in practice, Example 7.1 below shows a planned contrast of the data
contained on page 102.

Summary

Analytical comparisons are used in conjunction with ANOVA techniques when there
are more than two levels of the independent variable to determine which group
means are significantly different. There are two sorts of comparisons: those known
as post-hoc tests, which are undertaken after the omnibus F-value has led to the
rejection of the null hypothesis; and those known as a priori which, as they are speci-
fied before any analysis is undertaken, are known as planned contrasts.

To employ a post-hoc test simply click on the Post Hoc box in the ANOVA
window and select the test you want to use. If in doubt about which test to use then
select Scheffe’s test as it allows you to compare all group means and makes a con-
servative correction for Type I errors.

Use planned contrasts when you want to test specific null hypotheses that are speci-
fied before any analysis is undertaken. Check to see if any contrasts you plan are non-
orthogonal. If they are non-othogonal then divide your alpha by the number of planned
contrasts and use this new alpha in deciding whether to reject or accept the null hypo-
thesis. Instructions on how to execute a planned contrast are specified in the previous
section.

Example 7.1 Output from SPSS for Windows for a
Planned Comparison

In this example we are going to look at the output when two planned contrasts
have been undertaken. The first contrasts the first group with the second and the
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second contrasts the average of the first two groups with the third group. The
weights for these two contrasts are shown in Table 7.8.

Before we can interpret the output we must know if these two contrasts are
orthogonal. If they are not a Bonferroni adjustment will have to be made for the
increased risk of committing a Type I error. To see if the contrasts are orthogo-
nal we cross-multiply the relevant weights:

(1 × 0.5) + (−1 × 0.5) + (0 × −1) = 0.5 − 0.5 + 0 = 0

As the product of this cross-multiplication is zero we conclude that the two
contrasts are orthogonal.

As with an independent t-test, SPSS will produce one set of results based on the
homogeneity of variance assumption being met and another set based on the
assumption that it is not met. To determine which set of results to look at, Levene’s
test is used. This tests the null hypothesis that the variances of the three groups are
not significantly different. As the ‘Sig.’ value from this test is greater than 0.05
(Table 7.9) the null hypothesis is accepted and equal variance is assumed.

The contrast table (Table 7.10) is interpreted in the same way as the results
from the previously discussed t-test. As with the t-test, which row you use will
depend upon the similarity of the variances of the group means. As the homo-
geneity of variance assumption was met the row ‘Assume equal variances’
should be examined.

As the contrasts are orthogonal no correction has to be made for an increased
risk of committing a Type I error. Therefore this table tells us that:

1. There is a significant difference between the means of group 1 and group 2
(α = 0.045).

2. There is a significant difference between the average of the means of group
1 and group 2 and the mean of group 3 (α = 0.002).
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Group

Contrast 1 2 3

1 1 -1 0 The means of group 1 & group 2 will be contrasted

2 .5 .5 -1 The average of the means of group 1 & group 2 will 
be contrasted with the mean of group 3

Table 7.8 Contrast coefficients

Table 7.9 Test of homogeneity of variances

Levene Statistic df1 df2 Sig.

.686 2 12 .522
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1. What is meant by orthogonal contrasts?

2. Why is it important that a researcher knows if contrasts are orthogonal?

3. If you have four groups, A, B, C and D, write in the weights required to execute
the following two contrasts:

A B C D Sum of weights
A vs B … … … ... ...
A vs BC … … … ... ...

Show how to determine if these two contrasts are orthogonal.

4. If you have four groups, A, B, C and D, write in the weights required to execute
the following three contrasts:

A B C D Sum of weights
A vs BCD … … … ... ...
B vs CD … … … ... ...
C vs D … … … ... ...

Show how to determine which of these contrasts are orthogonal.

5. If you wish to adopt an alpha level of 0.05 but the three contrasts that you exe-
cute are not orthogonal, what should you do?

You have been employed as a research assistant in the Sport Studies Department at
a prestigious institution. You have been asked to help with the data analysis on one
of the following three projects. 
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Contrast Value of Std. Error t df Sig. (2-tailed)
Contrast

SCORE Assume equal 1 3.00 1.34 2.236 12 .045
variances

2 4.50 1.16 3.873 12 .002

Does not assume 1 3.00 1.26 2.372 7.877 .046
equal variances

2 4.50 1.22 3.674 6.970 .008

Table 7.10 Contrast tests

E X E R C I S E  7 . 2  P L A N N E D  C O M P A R I S O N S

E X E R C I S E  7 . 3  O N E - W AY  A N O V A
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Project One. This project investigated baseball pitching and attempted to determine
the effects of baseball experience on the speed that pitchers can throw a fast-ball
pitch. Fifty participants from three separate samples of pitchers (high school, colle-
giate and major league) were asked to throw 10 fast-ball pitches from the pitcher’s
mound to a catcher located in the usual position behind home plate. Only the fastest
pitch was recorded. The speed of the pitch was measured by a radar gun located
behind home plate. The experience level and pitching speed of each athlete were
recorded in the second and third columns on the data sheet (Table 7.11).

Project Two. This project investigated individuals’ cardio-respiratory fitness and
attempted to determine the effects of activity status on VO2 max (maximum oxygen
uptake). Fifty participants were selected, representing five different fitness status
groups. These were (1) distance runners, (2) physically active adults, (3) sedentary
adults, (4) recovered coronary heart disease patients, (5) current coronary heart dis-
ease patients. All 50 patients were given a graded exercise test on a treadmill to
determine cardio-respiratory fitness, and their VO2 max was recorded. The fitness
status and VO2 max of each participant was recorded in the fourth and fifth columns
of the data sheet. 

Project Three. This project investigated athletes’ percentage body fat, and attempted
to determine whether male athletes who compete in different sports differ in their
percentage body fat. Fifty athletes were selected, representing four different sports
(marathon runners, soccer players, rugby players and sumo wrestlers). All athletes’
percentage body fat was measured by hydrostatic weighing. The sport and percent-
age body fat of each athlete were recorded in the sixth and seventh columns of the
data sheet. 

1. Select one project and identify the research question. Write a brief hypothesis
that you can test. Your hypothesis should reflect the expected results of the
analysis.

2. Decide upon an appropriate statistical test to answer the research question.
3. Input the data that is printed in Table 7.11, taking care to input the correct data

set. Use the previous exercises as a guideline to help set up your data file
correctly. 

4. Analyse the data. Carry out two planned contrasts and note whether they are
orthogonal or not. Don’t forget to compute the appropriate descriptive statistics
and check that the test’s assumptions are met.

5. Write a paragraph explaining the descriptive statistics and outlining your con-
clusions from the tests employed.
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Table 7.11 Data sheet

Experience Ball speed Fitness status V02 max Sport % body fat

1 High school 87 Distance run 59 Marathon 6
2 High school 82 Distance run 54 Marathon 7
3 High school 76 Distance run 52 Marathon 9
4 High school 91 Distance run 54 Marathon 6
5 High school 85 Distance run 56 Marathon 7
6 High school 77 Distance run 55 Marathon 7
7 High school 81 Distance run 62 Marathon 7
8 High school 76 Distance run 48 Marathon 5
9 High school 95 Distance run 56 Marathon 7
10 High school 72 Distance run 59 Marathon 8
11 High school 82 Physically active 38 Marathon 8
12 High school 83 Physically active 44 Marathon 6
13 High school 82 Physically active 48 Soccer player 1
14 High school 84 Physically active 32 Soccer player 9
15 High school 80 Physically active 35 Soccer player 11
16 High school 80 Physically active 44 Soccer player 12
17 Collegiate 99 Physically active 46 Soccer player 15
18 Collegiate 98 Physically active 48 Soccer player 8
19 Collegiate 81 Physically active 37 Soccer player 8
20 Collegiate 82 Physically active 38 Soccer player 9
21 Collegiate 95 Sedentary 29 Soccer player 11
22 Collegiate 96 Sedentary 34 Soccer player 11
23 Collegiate 94 Sedentary 32 Soccer player 12
24 Collegiate 97 Sedentary 29 Soccer player 8
25 Collegiate 98 Sedentary 30 Rugby player 14
26 Collegiate 94 Sedentary 31 Rugby player 27
27 Collegiate 92 Sedentary 32 Rugby player 11
28 Collegiate 95 Sedentary 27 Rugby player 8
29 Collegiate 91 Sedentary 31 Rugby player 12
30 Collegiate 96 Sedentary 32 Rugby player 12
31 Collegiate 94 Recovered CHD 21 Rugby player 14
32 Collegiate 88 Recovered CHD 22 Rugby player 16
33 Collegiate 83 Recovered CHD 24 Rugby player 8
34 Major league 99 Recovered CHD 18 Rugby player 18
35 Major league 97 Recovered CHD 19 Rugby player 9
36 Major league 104 Recovered CHD 21 Rugby player 9
37 Major league 101 Recovered CHD 21 Rugby player 21
38 Major league 100 Recovered CHD 28 Sumo wrestler 22
39 Major league 90 Recovered CHD 21 Sumo wrestler 34
40 Major league 88 Recovered CHD 21 Sumo wrestler 22
41 Major league 85 Current CHD 17 Sumo wrestler 23
42 Major league 94 Current CHD 19 Sumo wrestler 25
43 Major league 93 Current CHD 19 Sumo wrestler 26
44 Major league 91 Current CHD 17 Sumo wrestler 36
45 Major league 95 Current CHD 17 Sumo wrestler 32
46 Major league 95 Current CHD 15 Sumo wrestler 31
47 Major league 99 Current CHD 19 Sumo wrestler 38
48 Major league 96 Current CHD 17 Sumo wrestler 24
49 Major league 98 Current CHD 18 Sumo wrestler 26
50 Major league 98 Current CHD 21 Sumo wrestler 26
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W I T H I N - G R O U P S  O N E - W AY
A N O V A

Purpose

The purpose of within-groups one-way ANOVA is the same as that of between-groups
one-way ANOVA except that the data is obtained by repeatedly measuring the same
participants across the different treatment conditions. The previous ANOVA examples
in Chapters 6 and 7 have all employed an independent group design, that is the dif-
ferent treatment groups have been composed of different individuals. Often, however,
researchers choose to employ the same participants in the different treatment groups
as this is a more effective way of controlling for any individual differences that might
confound the results and is more economical in its use of participants. Therefore, the
purpose of a within-groups one-way ANOVA is also similar to that of a paired t-test,
except that it can examine the differences between the means of more than two treat-
ment groups. Because of these similarities with tests that have been previously
discussed, you will find that much of the content on this and the following pages is
very similar to material introduced earlier.

Research Question

As with a between-groups one-way ANOVA, a within-groups one-way ANOVA is
employed to address research questions that focus on the difference in the means of
one dependent variable and one independent variable with two or more levels. To
illustrate this we will use the same example that was employed in Chapter 6 and then
you can compare the differences between the two techniques. Let’s imagine that a
researcher was interested in the research question: is there a difference in the per-
formance of a group of athletes who have each undergone three distinct training
schedules? In this case we have one dependent variable (i.e. performance), and three
levels of the independent variable (i.e. training schedules). This experiment used one
group of three participants, that is N = 3 (Table 8.1).

Null Hypothesis

In a one-way ANOVA the null hypothesis that is tested predicts that the means of
the dependent variable scores for each level of the independent variable will not be

8
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significantly different. So in the above example this means that the null hypothesis
would predict that the performance scores of the group in treatment conditions A, B
and C would not be significantly different from each other. If these three sample
means are not significantly different then the three samples are drawn from popula-
tions that have the same mean, that is µA = µB = µC, and therefore the three samples
are drawn from the same population.

Why Not Use Multiple t-tests?

To test the null hypothesis that µA = µB = µC, multiple t-tests could be employed.
This would involve testing that µA = µΒ, that µA = µC and that µB = µC. However, in
carrying out three t-tests we would be reanalysing the same data three times, which
would increase the probability of committing a Type I error.

To understand why the use of multiple t-tests increases the risk of committing a
Type I error you simply have to recall that the probability of committing a Type I
error is equal to the significance level. So, if a significance level of 0.05 is employed,
this means that each time a t-test is carried out there is a 1 in 20 chance that a Type I
error will be committed. It follows that the more t-tests are carried out on the same
data, the more likely it is that a Type I error will be committed; that is, that the null
hypothesis is rejected when it is in fact true. Employing a single one-way ANOVA
circumvents this problem as it only analyses the data once.

Assumptions

As a one-way ANOVA is a parametric test it shares similar assumptions to a t-test.
These are that the dependent variable has been measured on an interval scale, that
the variances of the groups based on the levels of the independent variable are equal
and that the distribution in each group does not significantly deviate from normal.
These assumptions were discussed in more detail in Chapter 6.

In addition to the assumptions common to all parametric tests a within-groups
design ANOVA makes one additional assumption that is known as the sphericity
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Table 8.1 Performance scores obtained from three training
schedules (N == 3)

Training schedules

Partcipant code A B C

f 1 3 7
g 0 5 8
h 2 4 6

x– 1 4 7
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assumption or the circularity assumption. A discussion of this assumption will be
presented later in this chapter.

Principles behind a Within-groups One-way ANOVA

When the same participants are repeatedly measured this is known as a repeated
measures or related measures design. The logic of a related design ANOVA is simi-
lar to that of an independent design (see Chapter 6). In practice, however, there is a
difference in how we compute the value of the F-statistic as we have to make a
change to the error term. To understand why this is the case, recall that in an
independent design the within-groups variance was used to estimate the degree to
which experimental error was responsible for the observed differences among the
treatment means:

The within-groups variance is used to estimate what proportion of the between-
groups variance is due to error and the rest is then attributed to the treatment effects.
You may recall that the error component was considered to be a function of inter-
individual variability, intra-individual variability and random fluctuations.

Intra-individual variability and random fluctuations will occur as a source of error
for every participant in all conditions. Therefore these sources of error will occur at
every point at which data is collected irrespective of the number of participants. For
example, in Table 8.1 as there are three participants measured at three different levels
of the independent variable, then there will be nine data collection points and hence
nine occasions on which these two sources of variance will produce error. This is
exactly the same number as in the example from Table 6.1. There nine participants
were split into three treatment groups and hence nine data collection points.

Inter-individual variability, on the other hand, is limited by the number of partici-
pants. To illustrate this point consider the scores of participant f from Table 8.1. Note
that participant f had a performance score of 1 in condition A and 3 in condition B.
These differences in scores reflect the effects of treatment and error. However, the
error on this occasion is a function of intra-individual variability and random fluctu-
ations. In a within-groups design the differences between these two scores cannot be
due to individual differences as they are both the product of the same participant. The
same holds true for the typical scores. The differences between the mean scores in
the three conditions A, B and C, namely 1, 4 and 7, are not confounded by individual
differences as they are the average of the same three participants.

If individual differences do not confound the scores in a within-groups design
then it follows that the error term adopted in a between-subjects designs, which
would include inter-individual differences, will overestimate the extent to which
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F = between-groups variance
Within groups variance

error + treatment
error

=
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experimental error influences the performance scores across the three treatment
conditions. This is because the sum of the within-groups variances (error) was used
to estimate the error variance component of the between-groups variance (error +
treatment). Therefore what is needed is a measure of the error variance that does not
include any variance due to individual differences. Given that this within-groups
variance is a product of intra-individual variability, random fluctuations and indi-
vidual differences, this means that the component of variance due to individual dif-
ferences has to be removed from the within-groups variance. When this is done the
variance that is left, known as the residual variance, can be used as the estimate of
the error in the between-groups variance.

In Chapter 6 it was noted that the within-groups variance was calculated by divid-
ing the sum of squares by the appropriate degrees of freedom. Therefore, the error
term SSwithin-groups can be divided into one portion that reflects individual differences
due to participants (SSsubjects) and another portion due to the interaction of the
individual differences with the treatment (SSresidual), that is

SSwithin-groups = SSsubjects + SSresidual

This sum of squares, known as the residual sum of squares (SSresidual), reflects the
influence of intra-individual variability and random fluctuations. It is computed by
taking the sum of squares for each individual participant (SSsubjects) away from the
within-groups sum of squares. When the SSresidual is divided by the appropriate degree
of freedom it will produce the MSresidual which will be the error term for a within-
groups one-way ANOVA:

We will now look at how the SSresidual is calculated.

Calculating the SSresidual

To work out the SSresidual first compute a value for [S] where this value is the sum of
all the squared totals for each participant across the conditions in the experiment
divided by the number of treatments, that is
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MSbetween-groups

MSresidual

[S] �
∑

(s) 2

k

F =
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Using the example from Table 8.1 we may construct the results in Table 8.2, where
(s) is the sum of the scores in the three groups A, B and C

Therefore

Next we compute the subject sum of squares SSsubjects by using the formula

where

and

Thus

Therefore
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Table 8.2

A B C (s) s2

Performance 1 3 7 11 121
Score 0 5 8 13 169

2 4 6 12 144
Σ 3 12 21 36 434
X 1 4 7

[S] � 434 � 144.7
3

SSsubjects � [S]− [T ]

[T] � (T)2

k(n)

T � total of all scores
k � number of conditions
n � number of participants in each group

[T] � 362

� 1296 � 144
3(3) 9

SSsubjects � 144.7 − 144 � 0.7

SSresidual � SSwithin-groups − SSsubjects
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Looking back to p. 83 we can note that the SPSSwithin-groups was calculated to be 6

Therefore

SSresidual � 6−0.7 � 5.3

The degrees of freedom for the residual source is obtained by multiplying the
degrees of freedom for treatment and participants, that is

Therefore

If we compare the within-subjects error term with that produced by the between-
subjects design on page 85 we can produce Table 8.3.

Note from this table that in this example SSresidual (5.3) is smaller than the sum of
the squares in the previous between-subjects design, namely SSwithin-groups (6), and also
the degrees of freedom in the within-subjects design (k – 1)( n – 1) gave us the value 4,
which is smaller than that for a between-subjects design k(n – 1) produced the value 6.
Therefore, in the within-subjects design, we find that both the sum of squares and
the degrees of freedom are smaller than in the between-groups design. However, if
we examine these more closely, we can see that while the degree of freedom is
smaller by 30% the corresponding change in the sum of squares is only 11.7%. This
means that the error term (i.e. the mean square) is larger for the within-subjects
design (1.3) than for the between-subjects design (1). So we find in this example that
a between-subjects design produces a value of F equal to 27 whilst a within-subjects
design produces a value of F equal to 20.4.
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dfkn � (dfk) (dfn)
� (k − 1) (n − 1)
� (3 − 1) (3 − 1)
� 4

F = MSbetween-groups

MSresidual

=

27

5.3/4
=

20.4

Table 8.3 Comparing error terms and F in between- and within-
subjects design

Design SS df MS F

Between-subjects 6 6 1 27
Within-subjects 5.3 4 1.3 20.4
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A within-subjects ANOVA will always be more conservative; that is, it becomes
more difficult to reject H0 when there are no consistent individual differences in
scores or if there is an interaction between subjects and treatment, where participants
respond differently to the treatment.

If we analyse this data using SPSS for Windows then we find it produces the
results as shown in Example 8.1 on page 121.

Remember that if we have employed a repeated measures design in collecting the
data then we are interested in looking at differences across the conditions within
subjects. Examine the results from both designs and compare the values obtained
with those worked out previously in this textbook.

Additional Assumptions of a Within-subjects Design ANOVA

In the previous chapter it was noted that when undertaking a between-groups design
ANOVA it is important to check the assumptions that the data is normally distrib-
uted and that the within-groups variances are equal. In undertaking a within-groups
design ANOVA one is making an additional assumption that is known as the spheric-
ity assumption or the circularity assumption.

To understand what this involves consider the previous example where we have
sets of scores from participants operating under three conditions termed A, B and
C. This provides three potential contrasts between pairs of scores, namely AB, AC
and BC. Now for each participant find the difference between each pair and then
work out the variances of these three sets of differences. The sphericity assump-
tion is that these variances are not significantly different. If this assumption is not
met then this can greatly increase the risk of committing a Type I error (Keppel
1991, p. 351). 

To see how this works out in practice Table 8.4 displays the variances of the dif-
ferences between the three conditions in the previous example. The values of 11, 38.7
and 9.7 in this table suggests that the sphericity assumption may not be met. SPSS
automatically executes a test known as Mauchly’s test when a repeated measures
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Table 8.4 Variances of the differences between the conditions A, B and C

Groups Contrasts between pairs of scores

A B C A−−B (A−−B)2 A−−C (A−−C)2 B−−C (B−−C)2

1 3 7 − 2 4 − 6 36 − 4 16
0 5 8 − 5 25 − 8 64 − 3 9
2 4 6 − 2 4 − 4 16 − 2 4

Σ 3 12 21 33 116 29
X 1 4 7 s2 11 38.7 9.7
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analysis is undertaken. This tests the sphericity assumption and its output for the data
in Table 8.1 is shown in Table 8.5.

As the significance value is greater then 0.05 the null hypothesis is accepted and
it is concluded that the spericity assumption is met. Had this not been the case then
there are a variety of strategies open to the researcher, but the simplest is to take
advantage of the fact that SPSS not only provides a significance value when sphericity
is assumed but also provides a value based on the Greenhouse–Geisser correction. 

This correction assumes that the variances are as different as they can be and
therefore it provides a very conservative significance value. So if the significance
associated with Mauchly’s test is less than 0.05 examine the row headed ‘Greenhouse-
Geisser’ in the output headed ‘Tests of Within-subjects Effects’. An example of this
output is shown below in Table 8.6.
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Table 8.5 Mauchly’s test of sphericity

Mauchly’s W Approx. Chi- df Sig. Epsilon
Square

Within Greenhouse- Huynh- Lower-
Subjects Geisser Feldt bound
Effect

TREATMEN .563 .575 2 .750 .696 1.000 .500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed
dependent variables is proportional to an identity matrix.
a May be used to adjust the degrees of freedom for the averaged tests of significance.
Corrected tests are displayed in the Tests of Within-Subjects Effects table.
b Design: Intercept Within Subjects Design: TREATMEN

Table 8.6 Tests of Within-subjects Effects

Source Type III Sum of df Mean Square F Sig.

Squares

FACTOR1 Sphericity 54.000 2 27.000 20.250 .008
Assumed

Greenhouse- 54.000 1.391 38.812 20.250 .023
Geisser

Huynh-Feldt 54.000 2.000 27.000 20.250 .008

Lower-bound 54.000 1.000 54.000 20.250 .046

Error Sphericity 5.333 4 1.333
(FACTOR1) Assumed

Greenhouse- 5.333 2.783 1.917
Geisser

Huynh-Feldt 5.333 4.000 1.333

Lower-bound 5.333 2.000 2.667
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Output from a Within-subjects Design

The ‘Sphericity Assumed’ row in Table 8.6 provides the least conservative interpre-
tation and therefore will produce the lowest significance value. The F-value is
obtained by dividing the mean square value of 27.00 by the appropriate error mean
square value of 1.333. (Note that if the sphericity assumption had not been met the
‘Greenhouse-Geisser’ row ought to be examined. This indicates that the probability
that the null hypothesis is correct is 0.023.) If you contrast this value of 0.008 with
the value of 0.001 below you can see that the within-groups design has provided the
more cautious significance value.

Comparing the Results from a Within- and Between-groups Design

Comparing the results of a within-subjects design shown in Table 8.6 and the
between-subjects design shown in Table 8.7 it can been seen that the significance
values differ. The ‘Sig.’ value from the within-subjects design gives a probability of
8 in 1000 while the between-subjects design calculates the significance to be 1 in
1000. In both cases the null hypothesis would be rejected.

Summary

A within-groups one-way ANOVA is used to test the significance of group differ-
ences when there is one dependent variable and one independent variable and the
data was collected by means of a repeated measures design.

Whereas a t-test can only test the differences between the means of two groups,
there is no restriction on the number of groups a within-groups one-way ANOVA can
test. Therefore, when we have more than two groups a one-way ANOVA is used in
preference to multiple t-tests because it does not increase the risk of committing a
Type I error.

A within-groups one-way ANOVA tests the null hypothesis that all the means of
the treatment group scores are equal. In computing the value of F an error term
known as the mean square residual is used. If the probability associated with the
value of F is less than the significance level the null hypothesis is rejected.
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Table 8.7

Sum of Squares df Mean Square F Sig.

Between Groups 54.000 2 27.000 27.000 .001

Within Groups 6.000 6 1.000

Total 60.000 8
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In addition to the three assumptions of all parametric tests, a within-subjects
design also makes an additional assumption that is known as the sphericity assump-
tion or the circularity assumption. This assumption is automatically tested by SPSS
using Mauchly’s test of sphericity. If the significance associated with Mauchly’s test
is less than 0.05 then examine the row headed ‘Greenhouse-Geisser’ in the output
headed ‘Tests of Within-Subjects Effects’.

Skilled judges rated the performance of five gymnasts on three particular sets of
movements (Table 8.8). The gymnasts had been taught each set of movements in a
different way. The order in which the gymnasts were taught these sets was varied so
as to counterbalance any order effects.

1. Write out a two-tailed hypothesis for this investigation.
2. Enter the data remembering that this is a repeated measures design and that

each row is to contain the data from one participant and each column is for a
different variable. Thus you will have five rows and three columns, one for each
method.

3. Having entered the data, then as in the previous examples use the Explore
option to test the assumption that the data is normally distributed. As this is
a within-groups design each of the three methods will be entered into
the Dependent list and as there is no between-subjects effect then no vari-
able will be entered into the Factor list. Before you run the Explore option
click on
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Table 8.8  Movement scores for five gymnasts taught by
three different methods

Participant Method 1 Method 2 Method 3

1 12 09 06
2 10 07 07
3 11 06 02
4 07 09 03
5 10 04 02
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Plots
Then in the Boxplots section select Dependents together

Continue
OK

This will produce one graph with three boxplots. This makes it much easier to
compare than having three individual boxplots.

4. To carry out a within-groups one-way ANOVA, click on Analyze, General
Linear Model, and then Repeated Measures.

5. In the Within Subject Factor Name box enter an appropriate name such as
‘method’, then click on the Number of Levels box and enter the number of
groups. Click on Add and then on Define.

6. Enter the three within-subjects variables by highlighting them and click on the
appropriate arrow. Next click on the Options box and in the Display area
select Descriptive Statistics and then click on Continue and finally on OK.

7. Examine the skewness and kurtosis statistics and explain whether any of the
three groups significantly deviate from normal.

Method 1 .........................................................................................................

Method 2 .........................................................................................................

Method 3 .........................................................................................................

8. Examine the boxplots and explain whether these suggest that any of the three
groups significantly deviate from normal.

Method 1 .........................................................................................................

Method 2 .........................................................................................................

Method 3 .........................................................................................................

9. Examine the boxplots and explain whether these suggest support for the null
or alternate hypothesis.
.............................................................................................................................

10. Look at the means and standard deviations in the table of descriptive statistics
and explain whether these suggest support for the null or alternate hypothesis.

.............................................................................................................................

.............................................................................................................................

11. Next examine the ‘Mauchly’s Test of Sphericity’ and explain whether the
sphericity assumption is met.

12. Now look at the ‘Test of Within-Subjects Effects’. If you previously decided
that the sphericity assumption is met then look at the ‘Sphericity Assumed’
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the assumption is not met then look at the ‘Greenhouse–Geisser’ row. Describe
the results of the ANOVA test (i.e. SS, df, MS, F and Sig. F), and explain
whether you are going to accept or reject the null hypothesis.

.............................................................................................................................

13. Write down what you conclude from this analysis.

.............................................................................................................................

.............................................................................................................................

Analytical Comparisons for Within-groups ANOVA

You may find it useful to re-read the section on a priori tests in Chapter 7 before
continuing with this section.

When discussing analytical comparisons we noted that if the value of F leads us
to reject the null hypothesis that all the means are equal, it does not tell us which
particular means are significantly different from each other. To address this problem
we employed analytical comparisons and we noted that these could be either
planned or unplanned.

In a within-groups design ANOVA, the unplanned or post-hoc tests are not avail-
able to us and, therefore, we have to rely on planned contrasts. SPSS can execute
such comparisons in a number of different ways. To illustrate the simplest of these
we will return to the data set in the previous exercise.

The sixth instruction told you to click on the Options box and in the Display area
select Descriptive Statistics. Now what you need to do is select the name you
gave for the within-groups factor and move into the box headed Displays means
for by means of the little arrowhead pointing to the right. Now select Compare
main effects. This causes a tick to appear in this little box and the box that displays
LSD (none) to turn white. Click on the downward-pointing arrowhead to the right
of LSD (none) and select Bonferroni. Finally click on Continue and then on OK.

The output you produce should now include the details in Table 8.9
The numbers in the first two columns refer to group numbers. These two columns

represent the pairs that are being contrasted. Therefore if there is a one in the first
column and a two in the second column then the difference between the means of
groups 1 and 2 is being tested. The column headed ‘Sig.’ provides the probability of
getting means as different as the observed means by chance. The note at the bottom
of the table tells us that a Bonferroni adjustment for multiple comparisons has been
made. This adjustment has to be made to avoid increasing the risk of committing a
Type I error because these contrasts are not orthogonal. Look at the section on
orthogonal and non-orthogonal contrasts in the previous chapter if you are unclear
about this point. In this example it appears that the only significant difference lies
between groups 1 and 3.
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As there are three groups this Bonferroni adjustment has taken the form of multi-
plying the observed probability by approximately 3. This means that the non-
adjusted probability associated with the contrast between groups 1 and 2 would have
been 0.285 divided by 3, or 0.095. (You can check this by carrying out a paired sam-
ples t-test on the two groups concerned.) This means that there will be occasions
when you find that the F-value in the ‘Test of Within-Subjects Effects’ table leads
you to reject the null hypothesis but that the above procedure fails to find a signifi-
cant difference between any pair of groups. To overcome this problem you can
always resort to using some of the pre-set orthogonal contrast available in SPSS.

A list and explanation of what each of these do can be found in the Help option
of SPSS. The following instructions tell you how to select and execute one such con-
trast in SPSS known as a Helmert comparison. In this contrast ‘Each category of the
factor, except the last category, is compared to the mean effect of subsequent cate-
gories’ (SPSS help file). To explain this imagine that we have four groups A, B,
C and D. If you carried out a Helmert comparison on these four groups it would be
equivalent to adopting the coefficients in Table 8.10.

If you multiply the corresponding weights for any pair of these comparisons you
will find that they sum to zero, that is they are all orthogonal.
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Table 8.9  Pairwise comparisons

(I) FACTOR1 (J) FACTOR1 Mean Difference (I-J) Std. Error Sig.

a

1 2 3.000 1.378 .285

3 6.000 1.140 .019

2 1 - 3.000 1.378 .285

3 3.000 1.000 .120

3 1 - 6.000 1.140 .019

2 - 3.000 1.000 .120

Based on estimated marginal means
* The mean difference is significant at the .05 level.
a Adjustment for multiple comparisons: Bonferroni.

Table 8.10

Comparison X
−−

A X
−−

B X
−−

C X
−−

D

1 vs 2, 3, 4 −3 1 1 1
2 vs 3, 4 0 −2 1 1
3 vs 4 0 0 −1 1
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To illustrate how this works, let us return to Exercise 8.1. After you have
completed the fifth instruction click on the Contrasts box. Click on the downward-
facing arrowhead to the right of the word None and select Helmert. Now click on
Change, Continue and then on OK.

These instructions will add Table 8.11 to your output.

The row which has ‘Level 1 vs. Later’ in the second column tests that the mean of
the first group is equal to the average of the means of the second and third group. In
this case, as the ‘Sig.’ is less than 0.05, the null hypothesis is rejected. The weight-
ings for this contrast would be

1 −0.5 −0.5

The row which has ‘Level 2 vs. Level 3’ in the second column tests that the mean
of the second group is the same as the mean of the third group. In this case, as the
‘Sig.’ is again less than 0.05, the null hypothesis is rejected. The weightings for this
contrast would be

0 1 −1

Summary

Once the significance value associated with the omnibus F has led to rejection of the
null hypothesis you can determine which means are significantly different from each
other by two methods. The first of these is to employ a set of pairwise comparisons.
However, as these contrasts are not orthogonal they will increase the risk of
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Source FACTOR1 Type III Sum of df Mean Square F Sig.
Squares

FACTOR1 Level 1 vs. Later 101.250 1 101.250 15.000 .018

FACTOR1 Level 2 vs. Level 3 45.000 1 45.000 9.000 .040

Error(FACTOR1) Level 1 vs. Later 27.000 4 6.750

Level 2 vs. Level 3 20.000 4 5.000

Table 8.11

Tests of Within-Subjects Contrasts
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committing a Type I error unless a Bonferroni-type correction is made. This can
result in a situation where the omnibus F leads to the rejection of the null hypothesis
but no significant difference can be determined between any of the groups contrasted.
The second method, which may overcome this problem, is to employ the pre-set
orthogonal contrasts.
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F A C T O R I A L  A N O V A

Purpose

The purpose of this technique is to test for group-mean differences when there are
two or more independent variables. In the previous chapters on ANOVA we have
looked at the effect of one independent variable, known as a factor, on one depen-
dent variable. However, researchers may be interested in the effects of more than one
independent variable. For example, they may expect that not only will participants
who fall into different age groups display different fitness levels, but also males and
females will display different fitness levels. In this example there are two factors, age
and gender.

Research Question

Thus factorial ANOVA is employed to address research questions that focus on the
difference in the means of one dependent variable when there are two or more inde-
pendent variables. For example, consider the following research question: is there a
difference in the fitness levels of men and women who fall into one of three differ-
ent age groups? In this case we have one dependent variable (i.e. fitness) and two
independent variables (i.e. gender and age). The first of these, gender, has two
levels (i.e. men and women), and the second, age, has three levels. The appropriate
statistical test to address this question is known as 2 by 3 factorial ANOVA, where
the numbers 2 and 3 refer to the number of levels in the two independent variables.

Null Hypothesis for Main Effects

Examining the research question in more detail we can see that it has two parts that
are each a product of the two independent variables. These are:

Is there a difference in the fitness levels of men and women? 
Is there a difference in the fitness levels of the three different age groups? 

As it is quite possible that the answer to one of these questions is ‘yes’ and the
answer to the other question is ‘no’, we require a null hypothesis to test each part
independently. Each of these null hypotheses will predict that the means of the

9
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scores on the dependent variable for each level of the independent variable will not
be significantly different. So in the above example this means that one null hypo-
thesis would predict that the fitness scores of men and women would not be signifi-
cantly different from each other. The other null hypothesis would predict that the
fitness scores of the three age groups would not be significantly different from each
other. These two null hypotheses may take the form of the following:

There is no significant difference in the fitness level of men and women.
There is no significant difference in the fitness level of the three different
age groups.

Each of the above two hypotheses are concerned with testing what are known as the
main effects. There is always one main effect for each independent variable. 

Null Hypothesis for Interaction Effects 

In addition to each of these main effects there is a third possible effect, for it is con-
ceivable that whatever the effect of age on fitness it may not be the same for men and
women. For example, if fitness tends to decrease with age, it may not do so at the
same rate for men and women. Another way of expressing this is to say that there is
an interaction between the independent variables in terms of their influence on the
dependent variable. To test for such an effect an appropriate null hypothesis needs to
be postulated. This might take the form of the following:

There will be no significant interaction between age and gender on
fitness levels.

If there are more than two independent variables then the number of possible inter-
actions can increase dramatically. For example, if a third factor of social class were
added to the example above then the four possible interactions would be:

1. age ∗ gender
2. age ∗ social class
3. gender ∗ social class
4. age ∗ gender ∗ social class.

Why Not Use Multiple One-way ANOVAs?

It would be quite possible to get an answer to the two main questions in the above
example by carrying out two one-way ANOVAs. One reason that we do not do this
is exactly the same as the reason that was given in Chapter 6 for carrying out a
one-way ANOVA rather than employing multiple t-tests, for to do so would involve
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analysing in part the same data twice and therefore there may be an increased risk of
committing a Type I error. However, there is one additional and very important
reason for carrying out a factorial ANOVA in preference to executing multiple one-
way ANOVA tests. This reason is that carrying out multiple one-way ANOVAs
would not enable the researcher to test for any interactions between the independent
variables. Therefore a factorial ANOVA is carried out in preference to multiple one-
way ANOVAs to avoid any increased risk in committing a Type I error and to enable
both main and interaction effects to be tested.

Assumptions

As a factorial ANOVA is a parametric test it shares similar assumptions to all other
parametric tests. These are that the dependent variable has been measured on an
interval scale, that the variances of the groups based on the levels of the independent
variable are equal and that the distribution in each group does not significantly deviate
from normal. These assumptions were discussed in more detail in Chapter 6.

Principle behind a Factorial ANOVA

To illustrate the principle behind this technique consider the data in Table 9.1 in
which the letters A, B, C, D, E, F are simply used to identify cells, whilst the num-
bers in each cell (e.g. 0, 1 and 2 in cell A) are some measure of the dependent
variable fitness.

To understand the principles behind a factorial ANOVA it is helpful to reflect on
the sources of variance in the scores in the above cells.

Cell A

The variability in the scores in cell A reflects error in our measurement. In Chapter 6
we noted that there were three sources of this error. These were:

F A C T O R I A L  A N O V A 131

Table 9.1 Fitness scores of men and women in three
age categories (high score == low fitness)

Age categories

20–29 30–39 40–49

Male 0,1,2 5,4,6 9,9,9
A B C

Female 2,3,4 8,7,9 9,8,8
D E F
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1. Inter-individual variability. The three scores, 0, 1, 2, are different because they
are produced by three different people, that is they reflect individual differences.

2. Intra-individual variability. This refers to the potential variability within each
person’s score. Whenever an individual engages in some behaviour in exactly
the same situation on a different occasion there will always be some degree of
variability in their behaviour. The individual in group A who scored 0 on this
particular occasion might not score 0 if they were to be tested on some other
occasion.

3. Random fluctuations. By this is meant extraneous variables, such as situational
variables, that cannot be controlled.

Cells A and D

The variability in the scores contained across both cells A and D reflects error in our
measurement and the effect of the independent variable gender. For example, the dif-
ference between the score of 1 in cell A and 3 in cell D is due to all of the above
three sources of error plus one other factor which is the effect of gender.

Cells A and B

The variability in the scores contained across both cells A and B reflects error in our
measurement and the effect of the independent variable age. For example, the dif-
ference between the score of 1 in cell A and 4 in cell B is due to all of the above three
sources of error plus one other factor which is the effect of age.

Cells A and E

Here variability in the scores contained across both cells reflects error in our measure-
ment and the effect of both of the independent variables gender and age. For example,
the difference between the score of 1 in cell A and 7 in cell E is due to all of the above
three sources of error plus two other factors which are the effects of gender and age.

Plotting the Main and Interaction Effects

While the above examination of the sources of variances shows how the independent
factors might influence the variance of the scores across the levels of the factors of
age and gender, it does not illustrate the effects of any interaction between the two
factors. Any such interaction can, however, be illustrated by plotting the mean val-
ues for each cell. These values are shown in Table 9.2.

These mean values can now be plotted on a multiple line graph as shown in
Figure 9.1. On this graph a line is drawn for each gender group and its mean fitness
scores are plotted for each of the three age groups.
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Looking at the graph we can now consider each of the effects in turn.

Main Effect: age

If the fitness for women or men did not change as a consequence of age then the lines
would be horizontal. The fact that the two lines are not horizontal suggests that age
does influence fitness for both gender groups.

Main Effect: gender

If gender did not influence fitness then the lines for men and women would
not be separated. The fact that the two lines are apart suggests that gender influences
fitness.
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Table 9.2 Mean fitness scores of men and women in
three age categories where high scores equal low fitness

Age categories

20–29 30–39 40–49

Male 1 5 9
Female 3 8 8.3

40–4930–39
Mean age of participants

Gender

20–29

M
ea

n
 f

it
n

es
s

0High

Male

Female

2

4

6

8

10Low

Figure 9.1   Graph showing mean fitness levels of men and women
in three different age groups
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Interaction Effect: age * gender

If the effect of age on fitness is the same for both genders then the two lines will be par-
allel. The fact that the lines are not parallel suggests that there is an interaction effect.

Although this graph suggests that both main effects and the interaction influence fit-
ness levels of the participants a factorial ANOVA needs to be carried out to test each
of the three null hypotheses. The principle behind the calculation of the F-statistic in
executing a factorial ANOVA is exactly the same as that in a one-way ANOVA, that is

How this works out in practice is best illustrated by working through the example
in this chapter. Follow the instructions in the next section and then compare your
output with that given below.

Instructions to Execute a Factorial ANOVA Using SPSS

Enter the data in Table 9.1 in the manner shown in Table 9.3. Note that one column
must be used to identify the age group of the participant, one column must be used
to identify the gender group of the participant, and one column must be used to enter
the fitness level of the participant.
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F = error + treatment
error

Table 9.3

Gender Age Fitness

1 1 0

1 1 1

1 1 2

1 2 5

1 2 4

1 2 6

1 3 9

1 3 9

1 3 9

2 1 2

2 1 3

2 1 4

2 2 8

2 2 7

2 2 9

2 3 9

2 3 8

2 3 8

Note:

Gender:
1 = male 
2 = female

Age
1 = 20–29 age group
2 = 30–39 age group
3 = 40–49 age group
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Use the Explore option to test that the data is normally distributed. Then, from
the Analyze menu select General Linear Model and then Univariate. Enter the
name you gave the dependent variable, for example fitness, in the Dependent box
and both of the independent variables into the Fixed Factor(s) box. Click on the
Options box and select Homogeneity tests and then click on Continue. Click
on the Plots box and then enter gender into the separate lines space and age into
the Horizontal Axis space. Click on Add and then on Continue. Next click on
the Post Box and select age from the Factors box and click on the arrow to enter
them in the Post Hoc tests for window. From the Equal variance assumed
selection choose Bonferroni. Finally click on Continue and then OK and this
should produce results that include the following.

Edited Output from SPSS

Before carrying out the factorial analysis it is important to check the descriptive sta-
tistics (Table 9.4) to see if a one-tailed hypothesis has been postulated that the data
is in the predicted direction and to check that the data does not significantly deviate
from normal. The descriptive statistics by gender are provided in Table 9.4 and the
statistics by age are provided in Table 9.5.

N O R M A L I T Y

If the kurtosis and skewness values are divided by their standard errors it can be seen
that none of the values will be greater than ±1.96. The data therefore does not sig-
nificantly deviate from a normal distribution.

D I F F E R E N C E S

This data is concerned with testing the following null hypothesis:

There is no significant difference in the fitness level of men and women.

Although there is a difference in mean scores this difference is quite small in the
context of the standard deviations suggesting that there will be a large overlap in the
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Table 9.4   Descriptives 

GENDER Statistic Std. Error

FITNESS male Mean 5.00 1.18

Std. Deviation 3.54

Skewness - .087 .717

Kurtosis -1.602 1.400

female Mean 6.44 .90

Std. Deviation 2.70

Skewness - .806 .717

Kurtosis -1.185 1.400
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two sets of scores. This is confirmed by the boxplot in Figure 9.2 which tends to
support the null hypothesis.

N O R M A L I T Y

If the kurtosis and skewness values are divided by their standard errors it can be seen
that none of the values will be greater than ±1.96. The data therefore does not
significantly deviate from a normal distribution.
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Table 9.5 Descriptives 

AGE Statistic Std. Error

FITNESS 20 - 29 Mean 2.00 .58

Std. Deviation 1.41

Skewness .000 .845

Kurtosis - .300 1.741

30 - 39 Mean 6.50 .76

Std. Deviation 1.87

Skewness .000 .845

Kurtosis -1.200 1.741

40 - 49 Mean 8.67 .21

Std. Deviation .52

Skewness - .968 .845

Kurtosis -1.875 1.741

GENDER

9
Male

N =

FI
T

N
E

S
S

-2

2

4

0

6

8

10

High

Low

9
Female

Figure 9.2
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D I F F E R E N C E S

This data is concerned with testing the following null hypothesis:

There is no significant difference in the fitness level of the three different
age groups.

The differences in mean scores are quite large in the context of the standard devia-
tions suggesting that there will be little overlap in the two sets of scores. This is con-
firmed by the boxplot in Figure 9.3 which suggests that the null hypothesis will be
rejected.

Checking the Homogeneity of Variance Assumption

The significance value from Levene’s test shown in Table 9.6 is greater than 0.05.
Therefore the null hypothesis should be accepted.
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Table 9.6 Levene’s test of equality of error variances

Dependent Variable: FITNESS

F df1 df2 Sig.

.951 5 12 .484

AGE

6
20 - 29

N =

FI
T

N
E

S
S

-2

6
30 - 39

2

4

0

6

8

10

High

Low

6
40 - 49

Figure 9.3

Tests the null hypothesis that the error variance of the dependent
variable is equal across groups.
a Design: Intercept +GENDER +AGE +GENDER * AGE
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As the homogeneity of variance assumption was met the results of the factorial
ANOVA can be examined without concern for their validity.

Factorial ANOVA

The output from a factorial ANOVA is very similar to that from a one-way ANOVA.
Before looking at Table 9.7 it is useful to recall from Chapter 6 that

= MSbetween-groups ÷ MSwithin-groups

So, for example, if you look at the row with ‘AGE’ in the first column you may note
that when the corresponding sum of squares value of 138.778 is divided by the
2 degrees of freedom this produces a mean square value of 69.389.

Now look at the row with ‘Error’ in the first column and note that when the corres-
ponding sum of squares value of 8.667 is divided by the 12 degrees of freedom this pro-
duces a mean square value of 0.722. Note that when the mean square for age (69.389)
is divided by the mean square error (0.722) this produces an F-value of 96.077.

Main Effect: ‘AGE’

This effect is testing the null hypothesis that there is no significant difference in the
mean fitness score of the three age groups. It is important that you understand that
in testing this hypothesis the men and women fitness scores are combined in each of
the three age groups. So from Table 9.5 above we can see that the question being
addressed is: are the means of 2.0, 6.5 and 8.67 significantly different?
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F = SSbetween-groups

(k − 1)
÷ SSwithin-groups

k(n − 1)

Table 9.7 Tests of between-subjects effects

Dependent Variable: FITNESS 

Source Type III Sum of Squares df Mean Square F Sig.

Corrected Model 158.944 5 31.789 44.015 .000

Intercept 589.389 1 589.389 816.077 .000

AGE 138.778 2 69.389 96.077 .000

GENDER 9.389 1 9.389 13.000 .004

AGE * GENDER 10.778 2 5.389 7.462 .008

Error 8.667 12 .722

Total 757.000 18

Corrected Total 167.611 17

a R Squared = .948 (Adjusted R Squared = .927)
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Returning to examine the row with ‘AGE’ in the first column we can note that in
the last column the significance is given as ‘.000’. This means that there is close to
zero probability that the overall means of the three age groups are equal; therefore
the null hypothesis is rejected, that is the average fitness scores of the three age
groups are different.

Main Effect: ‘GENDER’

This effect is testing the null hypothesis that there is no significant difference in the
mean fitness score of the two gender age groups. Again, it is important that you
understand that in testing this hypothesis the three age group fitness scores are com-
bined in each of the two gender groups. So from Table 9.4 we can see that the ques-
tion being addressed is: are the means of 5.00 and 6.44 significantly different?

Looking at the row with ‘GENDER’ in the first column note that in the last col-
umn the significance is given as ‘.004’. This means that there is only a 4 in 1000
chance that the overall means of the two gender groups are equal; therefore the null
hypothesis is rejected, that is men and women have different mean fitness scores.

Interaction Effect: ‘AGE ∗∗  GENDER’

Looking at the row with ‘AGE*GENDER’ in the first column note that in the last
column the significance is given as ‘.008’. This means that there is only 8 in 1000
chance that there is no interaction; therefore the null hypothesis is rejected, that is
age shows a differential effect on the fitness of men and women.

POST-HOC Tests

While the main effect on ‘AGE’ led to the rejection of the null hypothesis that there
is no significant difference in the mean fitness score of the three age groups, it did
not provide any information as to which of the three groups were significantly dif-
ferent. Following the advice in Chapter 7 we can see from Table 9.8 that in fact all
three groups are significantly different from each other.
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Table 9.8 Multiple comparisons

Mean Std. Error Sig. 95%
Difference (I-J) Confidence

Interval

(I) AGE (J) AGE Lower Bound Upper Bound

20 - 29 30 - 39 -4.50 .49 .000 -5.86 -3.14

40 - 49 -6.67 .49 .000 -8.03 -5.30

30 - 39 20 - 29 4.50 .49 .000 3.14 5.86

40 - 49 -2.17 .49 .003 -3.53 - .80

40 - 49 20 - 29 6.67 .49 .000 5.30 8.03

30 - 39 2.17 .49 .003 .80 3.53
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Summary

A factorial ANOVA is used to test the significance of group differences when there
is one dependent variable and two or more independent variables. This can be seen
from the tables in Appendix 2.

This technique tests the null hypothesis that all the means of the groups are equal
for each main effect. There is always one main effect for each independent variable.
In addition, this technique tests for all combinations of interactions between the
independent variables. This means that it tests to see if the effect of one independent
variable on the dependent variable is dependent upon the level of one or more of the
other independent variables. If the probability associated with the value of F for any
effect is less than the significance level the null hypothesis is rejected.

A factorial ANOVA is carried out in preference to multiple one-way ANOVAs to
avoid any increased risk of committing a Type I error and to enable both main and
interaction effects to be tested. Like all parametric tests it assumes that the depen-
dent variable has been measured on an interval scale, that the variances of the groups
based on the levels of the independent variable are equal and that the distribution in
each group does not significantly deviate from normal. 

The data employed in the examples so far has come from an independent groups
design and therefore we have carried out a between-groups ANOVA. The principles
in testing the main effects are therefore exactly the same as those that were discussed
in Chapter 6 on between-groups one-way ANOVA. In Chapter 8 we discussed a
within-groups one-way ANOVA design, where the data has been collected by means
of a repeated measures design and all that was written there applies to a repeated
measures factorial ANOVA. However, factorial ANOVA is not limited to either a
within-groups or between-groups design as it is quite possible that one independent
variable reflects different groups whilst another reflects different measures of the
same participants. This is known as a mixed design and an example is given at the
end of this chapter.

You have decided to investigate factors underlying performance satisfaction in
competitive sport. After reading some literature on motivation, you decide to look at
the effects of motivational orientation and performance outcome on post-game
satisfaction in squash players. You first select a sample of competitive squash play-
ers from a local club. As luck would have it, when you measure the motivational
orientation of your sample, you find that half your sample is task oriented (defines
success in terms of personal improvement) and half is ego oriented (defines success
in terms of demonstrating greater ability than others).

Your sample of players then engages in a competitive squash match against
opponents of equal ability. Once again, as luck would have it, winners and losers are
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evenly split between task- and ego-oriented players. After recording the outcome of
the game, you assess post-game satisfaction utilising a self-report scale. This scale
has a maximum possible score of 50 (high satisfaction), and a minimum possible
score of 10 (low satisfaction). The data you have obtained is listed in Table 9.9.

The research question you are attempting to answer asks:

Are there differences in performance-related satisfaction as a function of
motivational orientation and performance outcome?

1. Enter the data in the following manner. Remember: as you have 40 participants
you should use 40 rows. Don’t forget to provide value labels for the orientation
and outcome variables.

2. Use the Explore option to obtain skewness and kurtosis values for each main
effect and to obtain boxplots for each effect.

3. From the Statistics menu select General Linear Model and then Univari-
ate. Enter the name you gave the dependent variable in the Dependent box
and both of the independent variables into the Fixed Factor(s) box.

4. Click on the Options box, and in the Display area select Descriptive
statistics, then select Homogeneity test and click on Continue.

5. Click on Plots, enter one factor into the Horizontal axis box and the other
factor into the Separate Lines box, then click on Add, Continue and finally
on OK.

6. Examine the output from Explore to test for assumptions of normality and to
look for support for the null or alternate hypothesis for each main effect.
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Table 9.9 Satisfaction scores

Task orientation Ego orientation

Winners Losers Winners Losers

35 31 37 15
45 37 21 16
30 31 44 32
32 21 29 18
21 26 37 22
27 31 32 10
29 22 26 15
34 23 34 22
21 26 17 21
25 24 40 18

Orient Outcome Satisfaction

1 1 35

1 2 31

2 1 37

2 2 15

SKerr09.qxd  2/7/02  12:30 PM  Page 141



7. Examine the descriptive statistics and line graph and comment on what they
suggest with respect to the research question.

8. Look at the ‘Levene’s test of Equality of Variances’ table and state whether the
assumption of homogeneity of variance is met. (You may find it useful to refer
to the section beginning on page 91.)

9. Examine the ‘Tests of Between Subjects Effects’ and comment on the main
effects and interaction.

10. Finally, comment on what you conclude with respect to the research question.

The data that you analysed in the previous exercise was treated as if it came from a
random or independent design, that is different participants were used in all four
conditions. However, imagine that the data was drawn from only two groups of par-
ticipants who differed in their motivational orientation. These participants were then
measured for the degree of satisfaction they felt after both losing and winning a
game. This means that we now have what is termed a mixed design, for we have a
between-groups design that reflects motivational orientation and a within-groups
design that reflects the outcome of winning and losing.

By using the options in the Edit menu, copy and paste the data such that it is
displayed in three columns as shown below.

Don’t forget to rename the dependent variables to something such as SatWin and
SatLose, and delete the column variable that had previously identified the outcome.

1. Having entered the data you don’t need to use the Explore option as you can
use the output from the previous between-groups design exercise.

2. Click on Analyze, General Linear Model, and then Repeated Measures. 
3. In the Within Subject Factor Name box enter an appropriate name such as

‘outcome’, then click on the Number of Levels box and enter the number of
groups, that is 2. Click on Add and then on Define.
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Orientation Satisfaction after Winning Satisfaction after Losing

1 35 31
1 45 37
1 30 31
1 32 21

etc.
2 37 15
2 21 16
2 29 18
2 21 26

etc.
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4. Enter the two within-subjects variables, winning and losing, by highlighting
them and click on the appropriate arrow. Then enter the independent variable
labelled ‘orientation’ on the previous page into the Between Subjects Fac-
tor(s) box.

5. Click on the Options box, and in the Display area select Descriptive sta-
tistics, then select Homogeneity test and click on Continue. 

6. Click on Plots, enter one factor into the Horizontal axis box and the other
factor into the Separate Lines box, then click on Add, Continue and
finally on OK.

7. At this point you should examine the output from Explore to test for assump-
tions of normality, but you have already done this in the previous exercise.

8. Examine the ‘Descriptive Statistics’ table and the line graph and explain what
implications the means and standard deviation values have for the acceptance
of the null hypothesis.

9. Next examine the ‘Mauchly’s Test of Sphericity’ and explain whether the
sphericity assumption is met.

10. Now look at the ‘Test of Within-Subjects Effects’. If you previously decided
that the sphericity assumption is met then look at the ‘Sphericity Assumed’
row; if the assumption is not met then look at the ‘Greenhouse-Geisser’ row.
Based on the appropriate significant values explain whether you are going to
accept or reject the null hypothesis.

11. Look at the ‘Levene’s Test of Equality of error Variances’ table and explain
what it is examining and what conclusions you draw from it.

12. Explain what you interpret from the table of ‘Tests of Between Subjects
Effects’.

13. Write a summary of your findings explaining what you conclude from this
analysis.

14. Complete Table 9.10.

15. How do you account for the differences in the significance of F-values pro-
duced by the two designs? (You may find it helpful to refer to the last part of
the section on repeated measures one-way ANOVA and to compare the relative
sum of squares and degrees of freedom values.)
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Table 9.10

Experimental design F Sig. of F

Independent Orientation
Mixed Orientation

Independent Outcome
Mixed Outcome

Independent Orientation by outcome
Mixed Orientation by outcome
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M O R E  A D V A N C E D
A P P L I C A T I O N S  I N  A N O V A

Testing Simple Effects in Factorial ANOVA

Main Effects and Simple Effects

In Chapter 9 it was explained that a factorial ANOVA is concerned with testing main
effects and interactions. Main effects are concerned with testing the null hypotheses
that there is no significant difference between the mean scores of the various levels of
one independent variable when the scores at the different levels of other independent
variables are combined into one group. However, researchers often want to test for
significant differences between the various levels of one independent variable for a
particular level of the other independent variables. These are known as simple effects.

To illustrate what this means, consider the situation where a researcher has mea-
sured the performance of male and female participants before and after some treat-
ment. The structure of the results is shown in Table 10.1. The letter A designates a
cell of male performance scores in the pre-test trial, the letter D the female perfor-
mance scores in the post-test trial, the letter H the mean of males and females in the
post-test trial and so on.

Main Effects

The experimental design that would produce data to fit into Table 10.1 would be a
mixed design. This is exactly the same design as in the last exercise from the previ-
ous chapter. It is called a mixed design because it has both an independent groups
component and a related measures design component. In the language of ANOVA
this translates into the independent variable gender being the between-groups design
component and trials being the within-groups design component.

10

Table 10.1

Trials

Pre-test Post-test Row means

Male (1) A B E
Female (2) C D F
Column Mean G H
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In a mixed design factorial ANOVA the main effects test for significance
differences in the following manner:

Between groups Compares row mean E with mean F
Within groups Compares column mean G with mean H

These main effects test, for example, that there is no significant within-groups dif-
ference in the combined means of men’s and women’s scores in the pre- and post-
tests; that is, that the means of cells G and H are not significantly different? However,
main effects will not test if there is a significant difference for just the men or for just
the women across these two conditions; that is, they will not compare cells A and B
or cells C and D. To answer these sorts of questions we need to look at what are
termed simple effects. The analysis of simple effects with SPSS requires a different
approach to that which we have previously adopted.

SPSS Syntax Window

In our use of SPSS to date we have selected the analysis we wanted to execute
through the menu system and then clicked on the OK button to carry out this analy-
sis. In making these selections what we are actually doing is constructing a small
batch of instructions from the menu of instructions available. Then, by clicking on
the OK button, we command the SPSS program to run this batch of instructions; that
is, to execute this set of instructions. Unfortunately, simple effects are not available
from the menu system in SPSS. Instead, instructions have to be written in what is
known as the syntax window of SPSS and then SPSS is told to run these commands.

This syntax window is nothing more than a simple text editing program that is
used to write and edit a batch of instructions. In this window you can still run your
batch by simply highlighting the instructions you want SPSS to execute and click-
ing on the run symbol or choosing RUN from the menu available in this window.
Instructions written in the syntax window can be saved like any other file by choos-
ing Save from the File menu.

Example 10.1 An Illustration of Simple Effects

To illustrate what is involved in executing a simple effects analysis using the
syntax window imagine the following scenario. A researcher was interested in
manipulating the optimism of participants by means of a course of reading. The
researcher measured participants’ optimism by means of an optimism scale
before and after the 12 week reading course. The scores are shown in Table 10.2
so that you can enter the data into SPSS and experiment with the analysis.
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Once the data has been entered exactly as it is shown in Table 10.2, then from
the Analyze menu click on Compare Means and then Means. Enter ‘Gen-
der’ in the Independent List and the two other variables in the Dependent
List. The SPSS output is as shown in Table 10.3.

From these results construct by hand Table 10.4.

Examine the means in this table and write down what they suggest to you.
Then, from the Analyze menu select General Linear Model and then the
Repeated Measures option. Use the Plots option to produce the graph
shown in Figure 10.1.
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Table 10.2

Gender Pre-test Post-test

Male 1.00 2.00
Male 1.50 1.00
Male 2.00 1.50
Male 2.50 3.00
Male 3.00 3.50
Male 3.50 2.50
Female 1.00 3.00
Female 1.00 3.50
Female 1.50 3.50
Female 2.00 4.00
Female 2.50 4.00
Female 3.00 4.00

Table 10.3 Report

GENDER PRE_TEST POST_TES

Male Mean 2.2500 2.2500

Std. Deviation .9354 .9354

Female Mean 1.8333 3.6667

Std. Deviation .8165 .4082

Total Mean 2.0417 2.9583

Std. Deviation .8649 1.0104

Table 10.4 Mean pre- and post-test optimism scores for six
male and six female participants

Pre-test Post-test Row means

Male (1) 2.25 2.25 2.25
Female (2) 1.83 3.67 2.75
Column means 2.04 2.96
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This graph ought to represent visually what you concluded from examining
the means in Table 10.4. That is, while there is no difference in the pre- and
post-test scores for males the scores for females do differ. It also suggests one
additional interpretation, which is that there is an interaction between the two
dependent variables, gender and trials, in their effects on the dependent variable.

FIRST SYNTAX INSTRUCTIONS

Now enter the following commands into the SPSS syntax window and run the
analysis. To open a syntax window make the following selection: File, New,
Syntax. Enter the following commands exactly, including the full stop:

MANOVA
pre_test post_tes BY gender(1,2)

/WSFACTORS trials(2)
/design=mwithin gender(1) mwithin gender(2)

/ERROR WITHIN+RESIDUAL
/PRINT
SIGNIF(MULT AVERF)

/NOPRINT PARAM(ESTIM).

The line /design==mwithin gender(1) mwithin gender(2) will test trials
within gender. This means that it will test for differences between the pre- and
post-test scores for men and then again for women. When you have entered this
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Post-test
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Figure 10.1 Graph showing change in optimism score
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text, highlight it and click on RUN or choose RUN from the menu available in
this window. This analysis will produce the output in Table 10.5. Note that the
explanation in italics is not part of the SPSS output.

From Table 10.5 it can be noted that for men (Gender 1) there is no signi-
ficant difference in their pre- and post-test scores. However, for women
(Gender 2) these scores are significantly different. These values of F are
smaller than those obtained from carrying out a within-groups one-way
ANOVA, where, for example, Gender 2 would compute F as 75.625 rather than
the value of 46.54 shown in Table 10.5. To check to see that the appropriate
analysis is being executed a paired samples t-test could be executed. This
analysis would produce a value of t that is the square root of the above 
F-value of 75.625, that is t would equal 8.7.

The output from the above syntax instructions also includes a test of the
between-subjects main effect for gender. From Table 10.4 it can be noted that
the mean scores for men were 2.25 and for women 2.75. Table 10.6 shows
the probability that means as different as these two values would be obtained
by chance.

From Table 10.6 it can be noted that 26.5 times out of 100 we would get
means as different as 2.25 and 2.75. As this value is greater than 0.05 the null
hypothesis is accepted.

The output from the first syntax instructions above also includes a test of the
within-subjects main effect of trials and the interaction of gender with trials.
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Tests involving ‘TRIALS’ Within-Subject Effect.
Tests of Significance for T2 using UNIQUE sums of squares Simple Effects

being tested
Source of Variation SS DF MS F Sig. of F
WITHIN + RESIDUAL 2.17 10 .22
MWITHIN GENDER(1) BY .00 1 .00 .00 1.000 2.25 v 2.25

TRIALS
MWITHIN GENDER(2) BY 10.08 1 10.08 46.54 .000 1.83 v 3.67

TRIALS

Table 10.5

******Analysis of Variance - design 2******

Tests of Between-Subjects Effects.

Tests of Significance for T1 using UNIQUE sums of squares
Source of Variation SS DF MS F Sig. of F

WITHIN+RESIDUAL 10.75 10 1.07
GENDER 1.50 1 1.50 1.40 .265

Table 10.6
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From Table 10.4 it can be noted that the mean scores for pre-test were 2.04 and
for post-test 2.96. Table 10.7 shows the probability that means as different as
these two values would be obtained by chance.

From Table 10.7 it can be noted that one time in 1000 we would get means
as different as 2.04 and 2.96. As this value is less than 0.05 the null hypothesis
is rejected. The significance of F associated with the interaction is also 0.001,
meaning that there is a significant interaction between gender and trials thus
confirming the observation from Figure 10.1.

SECOND SYNTAX INSTRUCTIONS

It is crucially important that syntax instructions are entered in the appropriate
manner for the question one wants to answer. To illustrate this enter the fol-
lowing instructions into the SPSS syntax window and run the analysis.  You can
either add these commands to the existing syntax window or open a new win-
dow by making the following selection: File, New, Syntax. The commands
must be entered exactly as they are written below including the full stop.

MANOVA
pre_test post_tes BY gender(1,2)
/WSFACTORS trials(2)
/wsdesign ==mwithin trials(1) mwithin trials(2)

/ERROR WITHIN++RESIDUAL
/PRINT
SIGNIF(MULT AVERF)

/NOPRINT PARAM(ESTIM).

The line /wsdesign==mwithin trials(1) mwithin trials(2) will test gender
within trials. This means that it will test for differences between the pre-test
scores for men and women and then again test the post-test scores for both
genders.  This is different to the first instructions which tested trials within
gender, that is pre- against post-test scores for men and then for women.
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******Analysis of Variance - design 2******

Tests involving ‘TRIALS’ Within-Subject Effect.

Tests of Significance for T2 using UNIQUE sums of squares
Source of Variation SS DF MS F Sig. of F

WITHIN+RESIDUAL 2.17 10 .22
TRIALS 5.04 1 5.04 23.27 .001
GENDER BY TRIALS 5.04 1 5.04 23.27 .001

Table 10.7
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This analysis will produce the output in Table 10.8. Note that the explanation
in italics is not part of the SPSS output. Examine the output and focus on which
means are being compared and what you can conclude from this analysis.

The value of F for the simple effect (F = 0.68) is the same as that obtained
from carrying out a between-groups one-way ANOVA, where, for example,
Trial 1 would compute F as 0.6757. You could also check to see that the appro-
priate analysis is being executed by carrying out an independent samples t-test
which would produce a value of t that was the square root of the above F, that
is t would equal 0.82. Based on this analysis the conclusion is that there is no
significant difference between men’s and women’s optimism scores of 2.25 and
1.83 during the pre-test as differences as large as these would be found 43 times
out of 100 by chance.

The output from these instructions also tests the null hypothesis that there is
no significant difference between men’s and women’s optimism scores during
the post-test. The results of this analysis are show in Table 10.9.

The values of F for the simple effect (F = 11.56) is the same as that obtained
from carrying out a between-groups one-way ANOVA, where, for example,
Trial 2 would compute F as 11.56. You could also check to see that the appro-
priate analysis is being executed by carrying out an independent samples t-test
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******Analysis of Variance - design 1******

Tests involving ‘MWITHIN TRIALS(1)’ Within-Subject Effect. (Simple Effects)
Tests of Significance for T1 using UNIQUE sums of squares
Source of Variation SS DF MS F Sig. of F

WITHIN+RESIDUAL 7.71 10 .77
MWITHIN TRIALS(1) 50.02 1 50.02 64.89 .000
GENDER BY MWITHIN .52 1 .52 .68 .430 2.25 against 1.83
TRIALS(1)

Table 10.8

******Analysis of Variance - design 1******

Tests involving ‘MWITHIN TRIALS(2)’ Within-Subject Effect. (Simple Effects)

Tests of Significance for T2 using UNIQUE sums of squares
Source of Variation SS DF MS F Sig. of F

WITHIN+RESIDUAL 5.21 10 .52
MWITHIN TRIALS(2) 105.02 1 105.02 201.64 .000
GENDER BY MWITHIN 6.02 1 6.02 11.56 .007 2.25 against 3.667
TRIALS(2)

Table 10.9
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which would produce a value of t that was the square root of the above F, that
is t would equal 3.4. Based on this analysis the conclusion is that there is a sig-
nificant difference between men’s and women’s optimism scores of 2.25 and
3.667 during the post-test as means as different as these would only be found
7 times in 1000 by chance.

The differences in the analyses produced by the two sets of instructions can be
illustrated by Table 10.10. Remember that the first instructions tested trials
within gender and the second instructions tested gender within trials.

You may find it useful in the future when carrying out a simple effects analy-
sis to identify the variables whose means you want to compare and then mod-
ify the appropriate instructional set given in this example.

When writing the syntax commands you may have noted that the first com-
mand was MANOVA, which stands for multivariate analysis of variance.
MANOVA, as can be seen from Appendix 2, is used to address the same sorts
of research questions as ANOVA but it can be used when there is more than one
dependent variable. Because MANOVA makes quite stringent assumptions
about the data, it is difficult to interpret, and in most cases is less powerful than
ANOVA, Tabachnick and Fidell (1989) recommend that MANOVA be avoided
except when there is a compelling need to measure several dependent variables.

However, it is very common to test participants on more than one variable
and on more than one occasion. This is known as a doubly multivariate repeated
measures design and an example of this type of analysis is outlined in the next
section.

Summary on Simple Effects Analysis

Simple effects are concerned with testing for significant differences between various
levels of one independent variable for a particular level of another independent vari-
able. Tests for simple effects may be employed in a within-groups, between-groups
or mixed design factorial ANOVA. For example, in a pre–post design with male and
female participants this analysis allows the researcher to test if men and women
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Table 10.10 Mean pre- and post-test optimism scores for six male
and six female participants

Pre-test Post-test Grand means

Male (1) 2.25 ←trials within gender 1→ 2.25 2.25
↑ ↑

gender within trial 1 gender within trial 2
↓ ↓

Female (2) 1.83 ←trials with gender 2→ 3.67 2.75

Grand means 2.04 2.96
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differ at the pre-treatment stage or the post-treatment stage. It also allows the
researcher to determine if either gender differ in their pre- or post-treatment scores.

To analyse simple effects in SPSS the MANOVA command is used. This com-
mand is accessed through writing a set of commands using the SPSS syntax option.
The values of F obtained for the simple effects will be the same as that produced by
carrying out a one-way ANOVA. Therefore appropriate Bonferroni-type corrections,
such as those described in Chapter 7, need to be made to adjust for any increased risk
of committing a Type I error.

Doubly Multivariate Repeated Measures Design

Doubly multivariate repeated measures design is so called because each subject has
multiple variables measured at multiple times. For example, this would be the case if
one has a repeated measures design in which there is one or more independent vari-
ables and multiple dependent variables. Consider the following example (Table 10.11)
where a researcher has measured the anxiety and the confidence levels of 12 partici-
pants at two time periods.

To analyse this data, click on Analyze, General Linear Model, and then
Repeated Measures. 

In the Within Subject Factor Name box enter an appropriate name such as
‘Trials’, then click on the Number of Levels box and enter the number of trials,
that is 2. Click on Add and then on Measures.

For each dependent variable enter a name up to eight letters that is not identical to
any variable name, for example ‘Anx’. Click on Add. Repeat this procedure for the
other dependent variable using a name such as ‘Conf’ and then click on Define.

Enter the within-subjects variables into their appropriate positions by highlighting
them and clicking on the arrowhead pointing towards the right.

152 D O I N G  S T A T I S T I C S  W I T H  S P S S

Table 10.11 Anxiety and confidence scores measured at
two time periods (T1 and T2)

Anx_T1 Anx_T2 Conf_T1 Conf_T2

1 53.00 59.00 56.00 37.00
2 74.00 81.00 58.00 45.00
3 38.00 35.00 47.00 33.00
4 61.00 58.00 50.00 40.00
5 84.00 63.00 46.00 49.00
6 56.00 52.00 48.00 35.00
7 76.00 74.00 34.00 40.00
8 33.00 53.00 46.00 35.00
9 57.00 49.00 42.00 40.00
10 53.00 58.00 38.00 30.00
11 49.00 34.00 45.00 33.00
12 61.00 56.00 35.00 37.00
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Next click on the Options box and in the Display area select Descriptive
Statistics. Now select the name you gave for the within-groups factor and move
it into the box headed Displays means for by means of the little arrowhead
pointing to the right. Then select Compare main effects. This causes a tick to
appear in this little box and the box that displays LSD (none) to turn white. Click
on the downward-pointing arrowhead to the right of LSD (none) and select
Bonferroni. Finally click on Continue and then on OK.

This analysis will address one multivariate and two univariate questions.
(Multivariate just means that there is more than one dependent variable.) These ques-
tions are:

1. Is there a difference in a linear combination of the two dependent variables,
anxiety and confidence, across the two time periods?

2. Is there a difference in anxiety scores across the two time periods?
3. Is there a difference in confidence scores across the two time periods?

The output from SPSS includes the following tables.
The first table (Table 10.12) simply summarises the design of the analysis.

The table of descriptive statistics (Table 10.13) allows us to see that question 2
above is asking if 57.9167 is significantly different from 56.0000, while question 3
is asking if 45.4167 is significantly different from 37.8333.
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Table 10.12

Within-Subjects Factors

Measure TRIALS Dependent Variable

ANX 1 ANX_T1

2 ANX_T2

CONF 1 CONF_T1

2 CONF_T2

Table 10.13

Descriptive Statistics

Mean Std. Deviation N

ANX_T1 57.9167 14.8780 12

ANX_T2 56.0000 13.5311 12

CONF_T1 45.4167 7.4279 12

CONF_T2 37.8333 5.3570 12
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The multivariate test table (Table 10.14) provides an answer to question 1. As the
significance value is less than 0.05 we conclude that there is a difference in a linear
combination of the two dependent variables across the two time periods.

Because this design involves a repeated measures component the analysis makes
the assumption of sphericity. In Chapter 8 it was explained that this assumption is
that the variances of the differences between each level of the independent variable
are not significantly different. However, as there are only two levels in this example
this assumption cannot be tested as there are no degrees of freedom. SPSS will report
that as there are no degrees of freedom the sphericity cannot be tested and it will pro-
duce the output shown in Table 10.15.

If the sphericity assumption was not met then the Greenhouse–Geisser statistics
should be examined as in Table 10.16. As the significance value for anxiety is 0.547
this table suggests that the null hypothesis should be accepted for question 2.  How-
ever, for confidence the corresponding value is 0.007 which indicates that the null
hypothesis should be rejected for question 3. Therefore it should be concluded that
there is not a significant difference in anxiety scores across the two time periods but
that there is a significant difference in confidence scores across the two time periods.

154 D O I N G  S T A T I S T I C S  W I T H  S P S S

Table 10.14

Multivariate Tests

Value F Hypothesis df Error df Sig.

Pillai's trace .597 7.416 2.000 10.000 .011

Wilks' lambda .403 7.416 2.000 10.000 .011

Hotelling's trace 1.483 7.416 2.000 10.000 .011

Roy's largest root 1.483 7.416 2.000 10.000 .011

Table 10.15

Mauchly's Test of Sphericity

Mauchly's Approx. df Sig. Epsilon
W Chi-Square

Within Measure Greenhouse- Huynh- Lower-
Subjects Geisser Feldt bound
Effect

TRIALS ANX 1.000 .000 0 . 1.000 1.000 1.000

CONF 1.000 .000 0 . 1.000 1.000 1.000

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed
dependent variables is proportional to an identity matrix.
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The next two tables (Tables 10.17 and 10.18) repeat the results from the previous
tables. They are produced because Compare main effects was selected in the
instructions. While this does not make any sense if one only has two conditions, they
are included because they would be very useful if there were more than two levels
to an independent variable.

These results are the same as would be gained by analysing each dependent
variable separately as no adjustment has been made for the fact that two contrasts
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Table 10.16

Univariate Tests 

Source Measure Type III Sum of df Mean Square F Sig.
Squares

TRIALS ANX Sphericity 22.042 1 22.042 .385 .547
Assumed

Greenhouse- 22.042 1.000 22.042 .385 .547

Geisser

Huynh-Feldt 22.042 1.000 22.042 .385 .547

Lower-bound 22.042 1.000 22.042 .385 .547

CONF Sphericity 345.042 1 345.042 11.051 .007
Assumed

Greenhouse- 345.042 1.000 345.042 11.051 .007
Geisser

Huynh-Feldt 345.042 1.000 345.042 11.051 .007

Lower-bound 345.042 1.000 345.042 11.051 .007

Error(TRIALS) ANX Sphericity 629.458 11 57.223
Assumed

Greenhouse- 629.458 11.000 57.223
Geisser

Huynh-Feldt 629.458 11.000 57.223

Lower-bound 629.458 11.000 57.223

CONF Sphericity 343.458 11 31.223
Assumed

Greenhouse- 343.458 11.000 31.223
Geisser

Huynh-Feldt 343.458 11.000 31.223

Lower-bound 343.458 11.000 31.223

Table 10.17

Tests of Within-Subjects Contrasts

Source Measure TRIALS Type III Sum of Squares df Mean Square F Sig.

TRIALS ANX Linear 22.042 1 22.042 .385 .547

CONF Linear 345.042 1 345.042 11.051 .007

Error(TRIALS) ANX Linear 629.458 11 57.223

CONF Linear 343.458 11 31.223
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have been made. The need to make adjustments for increased risks to committing a
Type I error was explained in Chapter 7. To make the appropriate correction, simply
divide the significance level by the number of contrasts. In this case the significance
level of 0.05 should be divided by 2 and therefore an alpha level of 0.025 should be
employed in evaluating the significance of the observed differences.

Summary on Doubly Multivariate
Repeated Measures Design

Doubly multivariate repeated measures design is so called because each participant
has multiple variables measured at multiple times. For example, this would be the
case if one has a repeated measures design in which there is one or more indepen-
dent variables and multiple dependent variables.

This analysis will address multivariate and univariate questions. These questions are:

1. Is there a difference in a linear combination of the dependent variables across
the time periods?

2. Is there a difference in each of the dependent variables across the time periods?

Because this design involves a repeated measures component the analysis makes
the assumption of sphericity which was explained in Chapter 8. If the sphericity
assumption was not met then the Greenhouse–Geisser statistics should be examined
to determine the significance associated with the multivariate null hypothesis. 

The results from the univariate analysis are the same as would be gained by
analysing each dependent variable separately as no adjustment has been made for the
fact that two contrasts have been made. The need to make adjustments for increased
risks to committng a Type I error was explained in Chapter 7. To make the appro-
priate correction, simply divide the significance level by the number of contrasts.
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Table 10.18

Pairwise Comparisons

Mean Std. Error Sig. 95%
Difference Confidence

(I-J) Interval for
Difference

Measure (I) TRIALS (J) TRIALS Lower Bound Upper Bound

ANX 1 2 1.917 3.088 .547 -4.881 8.714

2 1 -1.917 3.088 .547 -8.714 4.881

CONF 1 2 7.583 2.281 .007 2.562 12.604

2 1 -7.583 2.281 .007 -12.604 -2.562

Based on estimated marginal means
* The mean difference is significant at the .05 level.
a Adjustment for multiple comparisons: Bonferroni.
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Test for Linear Trend in One-way ANOVA

In the next two chapters the focus will change from statistical techniques that
address research questions that focus on differences to techniques that address
research questions that focus on relationships. Before that transition is made it is
useful to know that the ANOVA that forms the basis of last four chapters can also be
employed to look at trends.

To illustrate how ANOVA achieves this, imagine that a leisure researcher won-
dered whether visitors who travelled different distances to a country park spent dif-
ferent amounts of time visiting the park. To explore this question, the researcher
carried out a survey and Table 10.19 shows the results of this survey.

The researcher subjected this data to a one-way ANOVA and found that all the
groups differed significantly from each other. The researcher then drew the graph in
Figure 10.2.

What struck the researcher about this graph was that there appeared to be a linear
relationship between the dependent and independent variables, namely time and dis-
tance. Therefore, the researcher decided to test for a linear trend. To do this, the
researcher first had to measure the probability that a linear trend existed and then
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Table 10.19 Mean time visitors spent at country park

Distance travelled Mean duration of visit (hours)

Up to 5 km 2.1
5 to 10 km 3.2
10 to 15 km 3.9
15 to 20 km 5.0
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Figure 10.2 Graph showing mean duration time of visit
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measure the significance of any deviation from a linear trend not accounted for by
the linear component.

This analysis for linear trend is relatively simple to carry out if the levels of the
independent variable form a series of equal steps along an ordered scale, such as dis-
tance in this example. If the conditions are not equally spaced, then regression analy-
sis must be employed, which will be discussed in the next chapter.

To illustrate the principles involved, let’s consider a design in which n different
subjects are tested under each of the equally spaced c levels of the variable.

First of all we need to calculate the linear component. This is assessed by the
sums of squares for linear trend: that is, that part of the variability due to the linear
trend. If the condition means lie exactly on a straight line then this component will
account for all the between-conditions variation.

where

Tc
= sum of scores in condition c

n = number of scores in each condition (assumed equal here)
W1

= coefficient for first condition (taken from Table 10.20)

Next we need to calculate the mean square for linear trend

where df (degrees of freedom) = 1 (this is always 1).

MSlinear trend = SSlinear trend

df

SSlinear trend = (W1T1 + W2T2 + · · · + WcTc)
2

n(W 2
1 + W 2

2 + · · · + W 2
c )
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Table 10.20 Linear coefficients of orthogonal polynomials
for equally spaced intervals

Number of
conditions W1 W2 W3 W4 W5 W6

3 −1 0 1
4 −3 −1 1 3
5 −2 −1 0 1 2
6 −5 −3 −1 1 3 5
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Finally, we need to compute a value of F for linear trend by dividing MSlinear trend
by the error term MSwithin-groups:

where

k = df associated with MSwithin-groups

Using the F-tables, the results of this analysis will allow the probability that the data
follows a linear trend to be determined. However, even if this result is significant,
there will be deviations from the linear trend because all of the scores will not fall
on a straight line. It is important to check that these deviations themselves are not
significant because it is also possible that the data we have sampled represents part
of a quadratic or cubic trend. Tests for quadratic and cubic trends can be carried out
by using a different set of coefficients. Examples of these are provided at the end of
this chapter (see Table 10.22).

To compute a value of F for significance of deviations from linear trend the
sum of squares deviations from linearity (SSdeviation from linear) has to be calculated.
This is obtained by taking the linear sum of squares away from the between-groups
sum of squares:

SSdeviation from linear = SSbetween-conditions − SSlinear trend

MSdeviation from linear = SSdeviation from linear/df

where

df = number of conditions − 2 = c − 2

F(c−2,k) = MSdeviation from linear

MSwithin-groups

Before testing for a linear trend construct a line graph by making the following
selections. Click on Graph, then Line and make sure that Summaries of groups
of cases is selected and then click on Define. In the Line Represents section
select Other summary function and enter the dependent variable in the Variable
box and the independent variable in the Category Axis box and then click on OK.
This graph should provide an indication of any trend in the data.

To test for a linear trend in SPSS for Windows click on the Contrast box in the
One-Way ANOVA window. Make sure a cross is showing in the Polynomial box

F(1,k)df = MSlinear trend

MSwithin-groups
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and that the appropriate sort of trend (e.g. Linear) is showing in the Degree box.
Now enter the appropriate coefficients for the type of trend analysis you want to
carry out for the number of groups that you have. A table of coefficients is given in
Table 10.22.

To illustrate how this analysis works the following shows the results from employ-
ing the above instructions on the data contained in Table 6.3. In using this data it is
recognised that although the weights employed of −1, 0 and 1 assume that the levels
of the independent variable form a series of equal steps along an ordered scale, this
assumption does not hold for this data.

From the graph in Figure 10.3 the data appears to display a clear linear trend. To
confirm this the results displayed in Table 10.21 need to be examined.
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Figure 10.3 Line graph displaying mean performance scores for three
training groups

Table 10.21 Oneway

Sum of df Mean Square F Sig.
Squares

Between (Combined) 54.000 2 27.000 27.000 .001 A
Groups

Linear Term Contrast 54.000 1 54.000 54.000 .0003 B

Deviation .000 1 .000 .000 1.000 C

Within Groups 6.000 6 1.000

Total 60.000 8
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In Table 10.22 the ‘Sig.’ column indicates that:

A There is only a 1 in 1000 chance that H0 is correct, that is µ1 = µ2 = µ3. We there-
fore reject the null hypothesis and accept that all the means are not equal.

B We would get this result only 3 times in 10,000 by chance if there was not a lin-
ear trend. We therefore accept that there is a linear trend.

C On 100% of occasions a truly linear trend would produce deviations as large as
those observed. We therefore accept that a linear trend is the most appropriate
description of the data. 

Summary on Test for Linear Trend in One-way ANOVA

Linear trend analysis is a statistical technique that employs ANOVA to look at trends
in the relationship between the dependent and independent variables. It assumes that
the levels of the independent variable form a series of equal steps along an ordered
scale, such as distance. If the conditions are not equally spaced, then regression
analysis should be employed.

To employ this analysis a set of weights are used. Which weights are employed
depends upon whether the trend is thought to be linear, quadratic or cubic. These
weights are used to determine how much of the variability is due to the trend. If this
trend component accounts for a significant portion of the between-condition vari-
ability then the conclusion is drawn that the trend describes the nature of the rela-
tionship between the independent and dependent variable.
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Table 10.22 Coefficients of orthogonal polynomials for equally spaced
intervals

k Comparison 1 2 3 4 5 6 7 8 9 10 ΣΣαα2

3 Linear −1 0 1 2
Quadratic 1 −2 1 6

4 Linear −3 −1 1 3 20
Quadratic 1 −1 −1 1 4
Cubic −1 3 −3 1 20

5 Linear −2 −1 0 1 2 10
Quadratic 2 −1 −2 −1 2 14
Cubic −1 2 0 −2 1 10
Quartic 1 −4 6 −4 1 70

6 Linear −5 −3 −1 1 3 5 70
Quadratic 5 −1 −4 −4 −1 5 84
Cubic −5 7 4 −4 −7 5 180
Quartic 1 −3 2 2 −3 1 28

7 Linear −3 −2 −1 0 1 2 3 28
Quadratic 5 0 −3 −4 −3 0 5 84
Cubic −1 1 1 0 −1 −1 1 6
Quartic 3 −7 1 6 1 −7 3 154

8 Linear −7 −5 −3 −1 1 3 5 7 168
Quadratic 7 1 −3 −5 −5 −3 1 7 168
Cubic −7 5 7 3 −3 −7 −5 7 264
Quartic 7 −13 −3 9 9 −3 −13 7 616

9 Linear −4 −3 −2 −1 0 1 2 3 4 60
Quadratic 28 7 −8 −17 −20 −17 −8 7 28 2772
Cubic −14 7 13 9 0 −9 −13 −7 14 990
Quartic 14 −21 −11 9 18 9 −11 −21 14 2002

10 Linear −9 −7 −5 −3 −1 1 3 5 7 9 330
Quadratic 6 2 −1 −3 −4 −4 −3 −1 2 6 132
Cubic −42 14 35 31 12 −12 −31 −35 −14 42 8580
Quartic 18 −22 −17 3 18 18 3 −17 −22 18 2860

Note that the coefficients in each row sum to zero.
The sum of the products of the coefficients for any two degrees of curvature is also zero (therefore
orthogonal)

∑
α2 = the sum of the squared coefficients in the row

The value for a comparison is obtained by multiplying the group sums by the coefficients for the com-
parison. For example, in a linear comparison of three groups:

Clinear = −1
∑

X1 + 0
∑

X2 + 1
∑

X3
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Correlational Research

In the previous chapters the focus was on identifying significant differences between
two or more sets of scores. In this chapter the focus is on the linear relationship
between two variables. It is important to distinguish between research questions that
focus on differences and those that focus on relationships as the type of question has
a direct influence on the statistical analysis employed by the researcher. Furthermore
in an experiment the researcher manipulates the independent variable and measures
the changes in the dependent variable. Holding all other variables constant, the
researcher infers that any changes in the dependent variables are caused by the
manipulations of the independent variable. 

In contrast, a researcher may be interested in the relationship between two vari-
ables. The researcher simply measures both variables and observes the relationship
between them. If a strong relationship is found the researcher cannot immediately
infer a causal relationship as it is not known which is the cause and which is the effect.
For example, there may be a strong relationship between performance and self-
confidence. However, simply by measuring the variables and the linear relationship
between them does not tell the researcher whether performance causes a change in
self-confidence, or self-confidence produces a change in performance. In addition, it
is always possible that any observed relationship between two variables could be the
product of a third variable. Moreover, it needs to be stressed that a causal relationship
cannot exist between two variables unless they are correlated. Thus, a correlation is a
necessary, but not a sufficient factor for us to infer a causal relationship.

Purpose

The purpose of regression analysis is to test the degree of linear relationship between
two variables. 

Research Question

Linear regression is appropriate for research questions where the direction and mag-
nitude of the linear relationship between two variables is of interest. The relationship
between the two variables may then be used for predictive purposes. For example, if
there is a relationship between scores in an entrance test and subsequent performance

11
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on a university course, then a prediction of an applicant’s future performance may
be made on the basis of his/her score on the admission test. 

Null Hypothesis Tested

In linear regression and correlation the null hypothesis states that there is not a
significant linear relationship between two variables. For example, there will be no
significant linear relationship between hat size and intelligence. 

Linear Regression

To illustrate the principles behind linear regression, consider the following example. A
sports scientist was interested in the question of whether confidence was related to
performance. The scientist measured the confidence of participants to perform a famil-
iar task and then measured their performance. The results are shown in Table 11.1.

To get an indication of how self-confidence and performance are related, the scores
on the data may be plotted on a graph known as a scattergram. This is done by plotting
each individual’s performance score against their self-confidence score (Figure 11.1).

This scattergram displays a trend for the two sets of scores to change in the same
direction. That is, there appears to be a positive relationship between the two vari-
ables, with performance tending to increase as self-confidence increases.

If changes of a certain magnitude on one dimension always produced changes of
a consistent magnitude on another dimension then the data points on the scattergram
would produce a straight line. That is, a perfect linear relationship would exist
between the two variables. 

Although all the points do not fall on a straight line in this case, a clearer picture
of the relationship emerges when a line that is equidistant from all the plotted points
is drawn (Figure 11.2). In this case the line would be drawn from R to R on the
graph. This line is called the regression line.
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Table 11.1

Self-confidence Performance
X Y

3 5
5 5
4 6
2 3
3 3
4 4
5 6
2 4

Σ 28 36
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Regression Lines

The regression line may be defined by two key characteristics. The first is the slope
of the line. The slope of the line reflects the change in Y (performance) that is
accompanied by a change in X (self-confidence). A steep slope means that a small
change in X is accompanied by a large change in Y. A shallow slope means that a
large change in X is accompanied by a small change in Y. It is quite simple to pro-
duce a value that reflects the slope of a line. To do this, consider the convention that
is adopted in road traffic signs. Traffic signs previously indicated the gradient of a
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6.05.04.03.0
Self-confidence (X )

2.01.0

X 1

R

R

X 2

Y1

Y2

0.0

P
er

fo
rm

an
ce

 (
Y

 )

7.0

6.0

5.0

3.0

2.0

0.0

1.0

4.0

Figure 11.2 Regression line showing the relationship of performance plotted
against self-confidence
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hill by presenting a ratio such as 1 in 10. This ratio meant that for every 10 metres
travelled forward one climbs 1 metre in height. The more recent system presents this
information as a percentage. In this case, the 1 in 10 sign is replaced with one that
states 10%. This means that for every 100 metres travelled forward one climbs
10 metres in height. If the same convention is applied in the context of the regres-
sion line in Figure 11.2, the formula for the slope becomes

The second defining characteristic of the regression line is the point at which it
crosses the vertical (Y) axis, that is the value of Y when X equals zero. The point
where the regression line crosses the Y-axis is known as the Y-intercept (ay). In
Figure 11.2, the regression line crosses the Y-axis at a value close to 2. This means
that if a person has a self-confidence score of 0 we would expect their performance
score to be approximately 2.

Once the slope and intercept have been identified, a straight line can be defined
according to the following formula:

Y = a y + (b y)(x)

where a is the Y-intercept and b the slope. Therefore,

Performance = intercept + (slope of the line × self-confidence score)

If the values for the intercept and the slope of the line are known, any value for X
may be entered into the equation and the corresponding value of Y calculated. In the
current example, this means that if an athlete’s self-confidence score is known, then
their performance level may be predicted using the regression equation. 

In this example, the researcher found that the scattergram did not produce a straight
line; that is, there is not a perfect relationship between the two variables confidence and
performance. Instead the points tended to be scattered around the regression line. This
means that knowing someone’s self-confidence (X) only allows an estimation of their
performance level (Y) to be made. To show that the result of the calculation is an
estimation of performance we use the notation Y ′ (termed Y prime) rather than Y.

Estimating the Slope 

This estimation of Y ′ will be based on the estimation of the slope and intercept of
the regression line. The formula for calculating the slope will be presented first as it
is a component of the formula for estimating the intercept. 
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Slope(by) = rate of change in Y
rate of change in X

Y2 − Y1

X2 − X1

=

SKerr11.qxd  2/7/02 12:44 PM  Page 166



The slope takes into account how the two sets of scores X and Y vary together
divided by the variation in X. In this example,

how self-confidence (X) and performace (Y) vary together
Slope by =

variance in self-confidence

= covariation of X and Y

variation of X

Covariation of X and Y refers to the degree to which the two variables covary, that is
vary together. So if

and

then 

The numerator (i.e. the top line) in this equation is the sum of the products of the
corresponding deviations on the X and Y variables; thus it is known as the sum of
products or SPxy.

Therefore,

covariance(X, Y ) =

Remember that the slope

Therefore

covariance(X, Y ) =
∑

(x − x)(y − y)

df

Variance of (Y ) =
∑

(y − y)2

df
= SSy

df

Variance of (X) =
∑

(x − x)2

df
= SSx

df
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covariation of X and Y

variation of X

SPxy

df

by =

by = =covariance(X, Y)

variance(X)

SPxy/df

SSx/df
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However, because the degrees of freedom for both the numerator and the denomi-
nator are the same they cancel out. Hence

Estimating the Intercept

In addition to the slope, an estimation of the Y-intercept (ay), the point at which the
regression line cuts across the Y-axis, is required. For example, this is the level of
performance expected when self-confidence is zero. To calculate the intercept, the
means of X and Y are substituted into the following formula:

ay = Y– − (by)(X
– )

that is

Intercept = mean performance score − (slope × mean self-confidence score)

To illustrate using the previous example concerning self-confidence (X) and perfor-
mance (Y), first work out the slope of the regression line by (Table 11.2).

The mean self-confidence score (X– ) = 3.5 and the mean performance score (Y– ) =
4.5. Therefore
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SPxy

SSx

by =

Table 11.2

Self-confidence Performance

X (X−−X
_
) (X−−X

_
)2 Y (Y−−Y

_
) (X−−X

_
)(Y−−Y

_
)

3 −0.5 0.25 5 0.5 −0.25
5 1.5 2.25 5 0.5 0.75
4 0.5 0.25 6 1.5 0.75
2 −1.5 2.25 3 −1.5 2.25
3 −0.5 0.25 3 −1.5 0.75
4 0.5 0.25 4 −0.5 −0.25
5 1.5 2.25 6 1.5 2.25
2 −1.5 2.25 4 −0.5 0.75

Σ 28 (SSx) = 10.0 36 (SPxy) = 7.00

SPxy

SSx

Slope by = 7.0

10
= = 0.70

SKerr11.qxd  2/7/02 12:45 PM  Page 168



This means that, on average, every single-point increase in self-confidence is accom-
panied by a 0.70-point increase in performance score.

Now the intercept is calculated as follows:

ay = Y– − (by)(X
– ) = 4.5 − (0.70)(3.5) = 2.05

This means that when self-confidence measures zero, the predicted performance
score is 2.05. Returning to the original scattergram for the data, it is apparent that
this value is approximately where the extrapolated line cuts through the Y-axis.

Predicting from the Regression Line

Recall that once the slope and the intercept are identified, the regression line can be
defined according to the following formula:

Y = ay + (by)(X)

Having calculated ay and by above, any value for X may be entered into the equation
and the corresponding value of Y estimated. For example, if X = 3 then

Y ′ = 2.05 + (0.70)(3)

= 2.05 + 2.1 = 4.15

This means that if someone’s self-confidence score is 3, their predicted performance
score would be 4.15.

The accuracy of this estimation will depend on how far the scores are dispersed
around the regression line. If the relationship is perfect, all the scores will fall exactly
on the line. Under these conditions, the prediction would be 100% accurate. How-
ever, as the scores become more widely dispersed around the regression line, that is
the relationship becomes weaker, the predictive accuracy of the line is reduced.

Correlation Coefficients

To assess the predictive value of the regression line a measure of the strength of the
relationship between the two variables is necessary. The nature of the relationship
between two variables is represented by a correlation coefficient (r). 

The following presents one way of obtaining a measure of r:

r = covariance(X, Y )√
[variance(X)][variance(Y )]

= SPxy√
(SSx)(SSy)
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Using the figures from the previous example this gives us

Therefore, the correlation coefficient between self-confidence and performance
is 0.70.

Interpreting Correlation Coefficients

The above computation will always produce a value for the correlation coefficient
between −1 and +1. The positive and negative signs indicate the direction of the
relationship. A positive sign indicates that the two variables covary in the same
direction. For example, the relationship between height and weight is positive. In
general, taller people tend to weigh more than shorter people. Of course there are
exceptions; thus the relationship is less than perfect, that is r < 1. On the other hand,
a negative r-value suggests that the two variables covary in opposite directions. For
example, the relationship between the amount of alcohol consumed and driving per-
formance is negative. As alcohol consumption increases, driving skill decreases. The
strength of the relationship is indicated by the magnitude of the r-value. If the value
of the coefficient is 0 this means that there is no linear relationship between the two
variables. If, on the other hand, the absolute value of the coefficient is 1 then there
is a perfect linear relationship between the two variables.

The scattergrams presented in Figure 11.3 illustrate the approximate dispersion
of data points for relationships of varying strength and direction. It is apparent from
the scattergrams that the pattern of data points represents a straight line for very

r = 7.0√
(10)(10)

= 7.0

10
= 0.70
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Figure 11.3 Hypothetical scattergrams illustrating approximate
relationships of varying magnitude and direction
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strong linear relationships and tends to deviate further from a straight line as the
linear relationship weakens. 

From the graphs in Figure 11.3 it can be noted that:

1. As the correlation becomes weaker, it becomes more difficult to predict a person’s
score on one variable from a knowledge of the score on the other variable.

2. Although graph (f) shows a curvilinear relationship between the two variables,
this data still produces a coefficient of zero. It is for this reason that it is impor-
tant to draw a scattergram before one calculates the correlation coefficient.

Reliability of r

One way of interpreting the reliability of an r-value is to look up its significance level
in the appropriate tables. To do this one needs to know the degrees of freedom, which
is always equal to the number of participants minus two (N − 2). In the preceding
example, the critical r-value for the 5% significance level with a one-tailed hypothesis
and 6 degrees of freedom is 0.62. This means that a correlation of 0.62 or greater must
be observed before one can be 95% confident that the observed relationship was not
obtained by chance. Note from Table 11.3 that if there were 100 participants in the
study, then a correlation coefficient of 0.1638 would be statistically significant,
although it may be of no practical significance because of its predictive weakness.

To illustrate what is meant by ‘practical significance’ it is useful to calculate and
interpret the coefficient of determination. 

Coefficient of Determination

One way of rendering a correlation coefficient more meaningful is to compute the
coefficient of determination. This coefficient expresses the amount of the variance
on one dimension that can be explained or accounted for by the variance on the other
dimension. To compute this coefficient one simply squares the value of r and multi-
plies it by 100 to convert it to a percentage. So in the above example:

Coefficient of determination = 0.70 × 0.70 × 100 = 49.0%
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Table 11.3 Critical values of the Pearson correlation
coefficient

df αα == 0.05

1 0.9877
5 0.6694
10 0.4973
30 0.2960
100 0.1638
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This means that 49.0% of the variance in performance scores (Y) can be explained
by the variance in self-confidence scores (X). Of course, this leaves 51% of the vari-
ance in performance scores unexplained by the variance in self-confidence scores.
The amount of unexplained variance provides an indication of the error involved in
the prediction, that is it reflects the difference between Y and Y´.

The coefficient of determination highlights two key points:

1. That a correlation of 0.71 is required before half of the variance on one variable
can be explained by changes in the other.

2. That for a correlation of 0.9 the coefficient of determination is 81%, but for a
correlation of 0.3 the coefficient of determination is only 9%. This means that
while a correlation of 0.9 is three times larger than a correlation of 0.3, the
strength of the relationship it reflects is nine times larger as the amount of variance
accounted for is nine times greater.

SPSS not only computes a value for r square but it also provides a value for what is
termed the adjusted r square. This adjusted r square is the estimate of the proportion
of overlapping variance that will be found in the population that the sample is drawn
from. An example can be found in Table 11.5.

Pearson’s Product Moment Coefficient of Correlation (r)

Correlation coefficients are commonly calculated in one of two ways depending on
the level of data collected. If the data is ordinal a Spearman’s rank correlation is
appropriate. If the data is on an interval scale, a Pearson’s product moment correla-
tion is required. In keeping with the theme of the book, only the parametric test,
Pearson’s product moment correlation, will be presented. This parametric test
assumes that the data is on an interval scale. It is also assumed that the scores on the
two variables are normally distributed. Pearson’s product moment can be computed
in a variety of ways, for example

To use this formula one simply:

1. Totals each set of scores.
2. Squares each set of scores and sums the total.
3. Multiplies each pair of scores and sums the total.

How this works out in practice can be seen from the following exercise.

r = N
∑

(XY ) − ( ∑
X

)( ∑
Y

)
√[

N
∑

X2 − ( ∑
X

)2][
N

∑
Y 2 − ( ∑

Y
)2]
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Consider the values given in Table 11.4.

Thus

r = covariance(X, Y )√
[variance(X)][variance(Y )]

= SPxy√
(SSx)(SSy)

= N
∑

(XY ) − ( ∑
X

)( ∑
Y

)
√[

N
∑

X2 − (∑
X

)2][
N

∑
Y 2 − ( ∑

Y
)2]

= (8 × 133) − (28 × 36)√
[(8 × 108) − 282][(8 × 172) − 362]

= 1064 − 1008√
(864 − 784)(1376 − 1296)

= 56√
6400

= 56

80

= 0.70
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Table 11.4

Self-confidence Performance
X Y X2 Y2 XY

3 5 9 25 15
5 5 25 25 25
4 6 16 36 24
2 3 4 9 6
3 3 9 9 9
4 4 16 16 16
5 6 25 36 30
2 4 4 16 8

Σ 28 36 108 172 133
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What does this value of r tell you about the relationship between self-confidence and
performance?

......................................................................................................................................

......................................................................................................................................

What is the coefficient of determination associated with this value of r?

......................................................................................................................................

What can you conclude from this particular coefficient of determination?

......................................................................................................................................

......................................................................................................................................

Summary

Linear regression is used when a researcher is interested in the linear relationship
between two variables. A plot of the subjects’ scores on the two variables is called a
scattergram. The line of best fit through the data points is termed the regression line.
The regression line may be defined by the equation Y = a + bX. In this equation, a
is the Y-intercept and b is the slope of the line. If one knows the intercept and slope
of the regression line, one may predict the value of Y for any value of X. 

The accuracy of the prediction depends on the strength of the relationship between
the two variables. The stronger the relationship, the more accurate the prediction. The
strength of the relationship between two variables may be determined by calculating
the correlation coefficient or r. Correlation coefficients have a possible range from
−1 to +1. The null hypothesis for a correlation states that there will be no significant
relationship between the two variables (i.e. r = 0). As the r-value approaches ±1 the
strength of the relationship increases. A positive correlation indicates that the two
variables covary in the same direction. A negative sign indicates covariation in the
opposite direction. To make the correlation coefficient more meaningful, the coeffi-
cient of determination may be calculated. The coefficient of determination is simply
r2 × 100 and is expressed as a percentage. This value indicates the percentage of vari-
ance in one variable that is accounted for by the variance in the other variable. 

Example 11.1 Linear Regression Output Using SPSS on
in Table 11.1 Data Set
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Table 11.5

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .700 .490 .405 .92

a Predictors: (Constant), SELF_CON
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Table 11.5 shows that:

• The correlation coefficient between the two variables is 0.7.
• The coefficient of determination for the sample is 49%.
• The estimated coefficient of determination for the population is 40.5%.

The F-value in Table 11.6 can be used to test the null hypothesis that there is
no linear relationship between the independent and dependent variables. F is the
ratio of the mean square for regression to the mean square for the residual. As the
significance level associated with the observed value of F is 0.05 the null hypo-
thesis cannot be rejected. Although 49% of the variance in performance was
accounted for by self-confidence, this percentage was not statistically significant.

In Table 11.7, the intercept (A) is termed the constant and has the value
2.050. The slope of the line (B) has the value .700. The column headed ‘Std.
Error’ displays the standard errors of the intercept and slope values. If the inter-
cept and slope value are divided by their respective standard errors the values
displayed in the column headed ‘ t’ will be produced. For example, .700 divided
by .292 results in 2.401. This t value is testing the null hypothesis that there
is no linear relationship between the two variables performance and self-
confidence. As the associated probability of .053 shown in the column headed
‘Sig.’ is greater than 0.05 the null hypothesis cannot be rejected. In the same
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Table 11.6

ANOVA

Model Sum of Squares df Mean Square F Sig.

1 Regression 4.900 1 4.900 5.765 .053

Residual 5.100 6 .850

Total 10.000 7

a Predictors: (Constant), SELF_CON
b Dependent Variable: PERFORM

Table 11.7

Coefficients

Unstandardized Standardized t Sig.
Coefficients Coefficients

Model B Std. Error Beta

1 (Constant) 2.050 1.071 1.914 .104

SELF_CON .700 .292 .700 2.401 .053

a Dependent Variable: PERFORM
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way this t test is used to test the null hypothesis that the value of the intercept
is zero in the population. As 2.050 divided by 1.071 results in a t value of 1.914,
which has an associated probability of .104, so once again the null hypothesis
is accepted. Finally, the column headed ‘Standardized Coefficients’ can be
ignored for the moment as its importance will be explained in the next chapter.

Substituting these values for the intercept and the slope into the equation
Y = A + BX results in:

Performance = 2.05 + (0.700 × the self-confidence score)

A researcher in education wanted to determine whether there is any relationship
between various student activities and academic performance.

A sample of 30 sport science students from a local university were selected, and
the students assessed on the following variables by means of a short questionnaire:

1. Hours spent in the pub each week.
2. Hours spent studying outside of class each week.
3. Number of pints of beer consumed each week.
4. Number of classes missed each week.
5. Average academic grade at the end of the year.
6. Average practical grade at the end of the year.

1. For three pairs of variables, state a testable hypothesis which predicts the spe-
cific expected relationship, for example: There will be a positive relationship
between ‘Beer Consumed’ and ‘Hours in Pub’.

(a) .......................................................................................................................

(b) .......................................................................................................................

(c) .......................................................................................................................

2. For each of the first four variables, state a testable hypothesis predicting the spe-
cific relationship expected between each variable and students’ academic grade,
for example: There will be a negative relationship between ‘Classes Missed’and
‘Av. Ac. Grade’ .

(d) .......................................................................................................................

(e) .......................................................................................................................

(f) .......................................................................................................................

(g) .......................................................................................................................
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3. To test a hypothesis about whether a linear relationship exists between two
variables, one needs to obtain the correlation coefficient. In order to test each of
the hypotheses formulated, enter the data in Table 11.8. Use the previous exercises
as a guide. Remember that variables are to be listed in each column, and each
participant’s scores are entered on a separate row.

4. Use the Explore option to test for deviations from normality in each variable.
5. Choose Correlate from the Analyze menu, and click on Bivariate. Enter all

of the variables under the Variables command. Click on the Options box, and
highlight means and standard deviations. Then click on Continue.

Make sure the Pearson Correlation Coefficient is highlighted and click
on OK to run the analysis.

6. Examine the printout of the correlation matrix and then complete Table 11.9.
7. The next stage of the analysis involves predicting students’ academic grades

from knowledge about the time they spend studying each week. In order to make
this prediction, a linear regression analysis is required.

Choose Regression from the Analyze menu and select Linear. Insert
Academic grade as the Dependent measure, and Study hours as the
Independent measure and then click on OK to run the analysis.
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Table 11.8

Hours in Pub Study Hours Beer Consumed Classes Missed Av. Ac. Grade Av. Prac. Grade

26 10 50 10 42 70
15 14 12 2 54 68
3 40 14 0 66 67
14 12 10 1 64 67
21 8 0 0 44 76
10 20 14 2 58 56
5 35 2 0 72 76
6 24 12 0 60 68
14 12 26 1 60 59
12 18 30 1 67 67
6 22 12 0 70 81
18 4 18 2 57 56
22 12 11 2 59 68
35 5 50 4 40 66
30 6 24 4 41 54
1 34 12 0 74 59
0 25 5 0 70 67
2 18 0 0 61 67
6 18 0 0 65 69
10 22 12 1 69 74
8 25 0 1 70 48
6 10 10 0 55 66
20 10 30 3 50 57
15 15 22 2 49 69
15 20 12 3 60 63
12 18 10 2 54 54
6 14 0 1 58 52
1 18 0 0 59 60
0 12 10 0 72 40
10 7 12 1 45 40
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To obtain a scatterplot of the data, choose Scatter from the Graphs menu.
Click on Simple. Then click on Define, and insert Academic Grade on the Y
axis and Study Hours on the X axis. Click on OK to produce the scatterplot.

8. Print a copy of your results by selecting Print from the File menu.
9. To draw the regression line (the line of best fit) through the data points that

graphically represent the relationship between hours studying and academic
grade, solve the regression equation

Y′ = a + bx

where:

a = the point where the regression line crosses the Y-axis
b = the slope of the regression line
x = the raw scores for any value of the study hours variable

These values can be obtained from the printout of the regression analysis.
The values for a and b are listed in the column headed ‘Unstandardized

coefficients’ and then ‘B’. The first value down after the ‘B’ is the value of a,
which is reported as a constant. The next value down is the value of b and is
associated with the study hours variable. Choose any values of x and you
should be able to solve the equation for the corresponding Y′-value.

10. Explain what you understand from the above equation.

.............................................................................................................................

.............................................................................................................................

.............................................................................................................................

11. What is the value of r2? ............................................................................
12. What does the value of r2 tell you?

.............................................................................................................................

.............................................................................................................................

Finally, using the example of SPSS output in Example 11.1 annotate your output
explaining what you understand from each table and the graph.
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Table 11.9

Hyp. one or Correlation Accept or
Hypotheses Variables two tailed? coefficient Sig. reject H0?

(a)
(b)
(c)
(d)
(e)
(f)
(g)
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M U LT I P L E  R E G R E S S I O N

Purpose

The previous chapter introduced linear regression as a technique for examining the
relationship between two variables. Multiple regression is an extension of linear
regression. This technique is used when one is interested in the linear relationship
between a set of independent variables and one dependent variable. In multiple
regression the independent variables are sometimes referred to as predictor variables
and the dependent variable as the criterion variable.

Research Question

Multiple regression is appropriate for research questions where the relationship
between two or more independent variables and one dependent variable is of inter-
est. Multiple regression allows the researcher to make predictions of the dependent
variable based on several independent variables. For example, a researcher may be
interested in predicting athletic performance based upon measures of self-confidence
and achievement motivation. Conclusions regarding the relative importance of the
various independent variables may be drawn. 

Assumptions Underlying Multiple Regression

Multiple regression is a very versatile statistical technique as the independent vari-
ables can be continuous (i.e. interval) or categorical in nature. If categorical data is
used then it needs to be dummy coded (e.g. 1 for a male and 2 for a female). Scores
on the dependent variable must be interval in scale.

As multiple regression is merely an extension of bivariate linear regression, only the
linear relationships between the independent variables and the dependent variables are
tested. If a scatterplot suggests the relationship is curvilinear then it may be possible to
transform the data to a linear relationship through the use of a log transformation
procedure. Multiple regression analysis assumes that the data is normally distributed. 

Null Hypothesis

The null hypothesis for a regression analysis is that there will be no significant lin-
ear relationship between the set of predictors and the dependent variable. Separate

12
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null hypotheses may also be tested for the linear relationship between each
independent variable and the dependent variable. 

An Extension of Bivariate Regression

To illustrate the principles behind multiple regression it is simplest to start by pre-
senting a bivariate example. Imagine that a leisure researcher was interested in the
way that various features of a landscape contributed to its overall attractiveness to
visitors. To investigate this the researcher carried out a pilot study in which the num-
ber of trees within eight areas of countryside 1 kilometre square were counted and
then a group of participants came to a consensus on the subjective rating of attrac-
tiveness of each of the squares. The results were as shown in Table 12.1.
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Table 12.1

Number of trees Attractiveness
(X) (Y)

3 5
5 5
4 6
2 3
3 3
4 4
5 6
2 4

Σ 28 36

6.05.04.03.0
Number of trees
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Figure 12.1 Scattergram of attractiveness and the number of trees
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From the scattergram in Figure 12.1 drawn from this data the researcher noted
a trend for the two sets of scores to change in the same direction; that is, there
appears to be a positive relationship between the number of trees and the subjective
ratings of attractiveness.

In this simple study, there is one independent variable (number of trees), and one
dependent variable (attractiveness). This is known as bivariate regression and, as pre-
sented in the previous chapter, this analysis allows one to define the nature of this
relationship in the form of a regression line. However, the researcher thought it most
unlikely that the attractiveness of an area is only related to just one variable. Instead,
the researcher expected that attractiveness would relate to a number of different vari-
ables, such as the area of water, the length of roads, the area of industry, the length
of hedgerows, etc.

If the researcher wants to predict one dependent variable (DV) from several inde-
pendent variables (IVs), multiple regression is the most appropriate analysis. Multi-
ple regression simply involves an extension of the bivariate regression equation for
a straight line.

Recall from the previous chapter that the bivariate regression equation is

Y′ = ay + (by)x

that is,

Attractiveness = intercept + (slope of the regression line × number of trees)

The multiple regression equation is simply an extension of this and takes the form

Y ′ = ay + b1x1 + b2x2 + … + bkxk

where

ay = the value of the intercept
b1 = the slope (weighting) of the first variable
b2 = the slope (weighting) of the second variable
bk = the slope of the kth variable

Thus, Y ′ equals the value of the intercept (ay) plus the slope of the first variable mul-
tiplied by its corresponding value, plus the slope of the second variable multiplied
by its corresponding value, and so on for each IV.

The goal of multiple regression is to arrive at the set of values for bk, called regres-
sion coefficients, that bring the Y ′-values predicted from the equation as close as pos-
sible to the actual Y-values obtained by measurement. To understand the ways in
which it does this the different types of multiple regression need to be considered.
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There are three broad types of multiple regression:

1. standard multiple regression
2. hierarchical regression
3. statistical (stepwise and setwise) regression.

These methods differ in how they deal with overlapping variability due to correlated
IVs and in how they determine the order of entry of IVs into the equation. To illustrate
the idea of overlapping variability due to correlated IVs, consider the following which
extends the example introduced in the previous chapter. A researcher is interested in
predicting athletic performance based on self-confidence and now with the addition of
achievement motivation as a second IV. A bivariate linear relationship exists between
each of the IVs and performance. Also, there is a linear relationship between the two
IVs. In order to identify the contribution of self-confidence and achievement motiva-
tion to performance, the researcher must take into account the fact that the two
predictors share some overlapping variability. 

The way in which this overlapping variance is statistically taken into account is
by partial and semi-partial correlation. An understanding of partial and semi-partial
correlation is useful, but not essential, for conducting multiple regression analyses.
The same basic principles are illustrated graphically through the use of the Venn
diagram later in this chapter. 

Partial Correlation

The correlation between any two variables may be the result of their common depen-
dence on some third variable. In the above example, some part of the correlation
between achievement motivation and performance may be the result of their com-
mon relationship with self-confidence. The process of excluding the influence of this
third variable before establishing the relationship between the first two is known as
partialing out the effect of the third variable. This is written as

r12.3 = correlation between variables 1 and 2 (r12) with variable 3 held constant

The general formula for this is

Imagine that the correlation coefficients among the three variables in the example
are as shown in Figure 12.2. AM, PE and SC represent achievement motivation,
performance and self-confidence respectively.

r12.3 = r12 − r13r23√
1 − r2

13

√
1 − r2

23
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Entering the appropriate values from the correlation matrix into the equation, the
calculation of the correlation between variables 1 and 2 with variable 3 partialed out
would proceed as follows:

The correlation between variables 1 and 2 when variable 3 is held constant is 0.485.
Note that this value is less than the value of 0.65 as shown in the correlation matrix.
The difference between the two correlation values reflects the amount of overlap in
variables 1 and 2 that was due to their common relationship with variable 3. 

When only one variable is held constant, as in the above example, this is known
as a first-order partial correlation. When two variables are held constant, this is
known as a second-order partial correlation. To calculate the correlation that
would occur between variables 1 and 2 with the effects of variables 3 and 4 elimi-
nated, the general formula is

r12.34 = r12.3 − r14.3r24.3√
1 − r2

14.3

√
1 − r2

24.3

r12.3 = 0.65 − (0.50 × 0.70)√
1 − 0.502

√
1 − 0.72

= 0.65 − 0.35√
1 − 0.25

√
1 − 0.49

= 0.30√
0.75

√
0.51

= 0.30

0.866 × 0.714

= 0.30

0.618
= 0.485
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r = 0.5

AM   1 3   SC

r = 0.65
r = 0.7

Correlation matrix

1
2
3

1
–
–
–

3
.50
.70
–

2
.65
–
–

2   PE

Figure 12.2 Correlation coefficients between achievement motivation, perfor-
mance and self-confidence
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To solve this equation one must first solve the three first-order partial correlation
coefficients, namely r12.3. r14.3. r24.3.

To summarise, partial correlation is a useful statistical technique that allows a
researcher to identify the relationship between two variables when the influence of
one or more other variables is controlled. 

Semi-partial Correlation

In partial correlation, the contribution of the third variable is removed from both key
variables of interest. Sometimes it is useful to partial out the influence of a third vari-
able on only one of the two key variables. This is known as a semi-partial correla-
tion. Returning to the previous example of athletic performance semi-partial
correlation would allow the researcher to remove the influence of self-confidence on
achievement motivation whilst maintaining the influence of self-confidence on
performance.

r1(2 3) = relationship between variables 1 and 2 after relationship between
variables 3 and 2 is partialed out

Semi-partial correlation coefficients are used in multiple regression analysis to pro-
vide a measure of the strength of the unique relationship between an IV and the DV.
This is achieved by taking the square root of the change in R2 that results from
adding a new variable to the equation.

Overlapping Variance 

It is not necessary to fully understand partial and semi-partial correlation to under-
take multiple regression analysis. The problem addressed by these statistical tech-
niques is graphically illustrated by considering the Venn diagram in Figure 12.3. In
this example there are three IVs and one DV. A circle represents each variable. The
area of the circle can be considered to represent all of the variance within that vari-
able. The common area shared by each IV and the DV represents the variance in the
DV accounted for by that IV. Thus, the total area of the DV overlapping with all the
IVs is the total amount of variance in the DV explained by the set of IVs. The area
of overlap in the respective IVs represents the degree to which each IV shares a com-
mon variance with another IV.

From the diagram it is apparent that IV1 and IV3 both overlap with the DV but
do not overlap each other; therefore each makes a separate contribution to our
understanding of the variance within the DV. IV3 also overlaps IV2 and this sug-
gests that these two variables are associated with each other, that is changes in one
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are associated with changes in the other. However, some difficulty is caused by the
fact that IV3’s overlap with IV2 includes parts of IV2 that overlap the DV, that is
area ‘d’. This means that both explain a common variance in the DV. Where the
same area of the DV is covered by more than one IV it is difficult to attribute this
portion of the variance to any one variable. The following section presents different
methods for dealing with this overlapping variance.

Standard Multiple Regression (known as Enter in SPSS)

In standard multiple regression, all of the IVs are entered into the regression model
at the same time. However, each IV is assessed as if it had entered the equation after
all other IVs had been entered. Each is assessed in terms of what it adds to the pre-
diction of the DV that is different from that already covered by the other IVs. In other
words, the relationship between each IV and the DV is established with the contri-
butions of the other IVs partialed out. Thus, this type of multiple regression analysis
is an elaborate application of the semi-partial correlation technique introduced
earlier. Areas of the DV that are overlapped by more than one IV are taken into
account in the total variance explained by the set of IVs, but not assigned to any one
particular IV.

Thus, in terms of the diagram in Figure 12.3, IV1 is credited with explaining ‘a’,
IV2 with ‘c’ and IV3 with ‘e’; ‘b’ and ‘d’ are accounted for with the total variance
explained, but are not attributed to any particular IV.
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Figure 12.3 Venn diagram illustrating overlapping variance
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Hierarchical Multiple Regression

In hierarchical regression, IVs enter the equation in an order specified by the
researcher. From Figure 12.3 note that the importance of each  IV will depend upon
the order in which it is entered into the equation. The researcher normally assigns
the order of variable entry according to logical or theoretical considerations.

In Figure 12.3, if theoretical considerations were to suggest that the variables
should be entered in the order 1, 2, 3, we would find that IV1 is credited with
explaining ‘a’ and ‘b’, IV2 with ‘c’ and ‘d’, and IV3 with ‘e’. Compared with stan-
dard multiple regression, the total amount of variance explained remains the same
but the relative contribution of the IVs changes.

Statistical Regression

In statistical regression (generically called stepwise) the order of variable entry is
based solely on statistical criteria. There are three types of statistical regression: for-
ward selection, backward deletion and stepwise regression.

In forward selection, IVs are entered in the order of the magnitude of their bivari-
ate correlation with the DV. The IV with the highest correlation with the DV is
entered first. Then the next highest is entered and so on. The analysis is stopped
when the addition of new variables no longer makes a significant improvement in the
prediction of the DV. In backward deletion, all IVs are entered initially and then they
are deleted one at a time if they do not contribute significantly to the regression
equation. In stepwise regression, IVs are added one at a time according to the statis-
tical criteria but they may also be deleted at any step when they no longer contribute
significantly to the regression.

In applying stepwise regression to the problem of overlapping variance illustrated
in the Venn diagram, note that IV1 is credited with explaining ‘a’ and ‘b’, but then
as this would reduce the contribution of IV2, IV3 would be entered next and cred-
ited with ‘e’ and ‘d’. Finally IV2 would be entered and credited with ‘c’. Again, the
total amount of variance explained in the DV is the same as that under the other two
methods presented earlier, but the relative contribution of each IV changes. For ease
of comparison, Table 12.2 presents the relative contribution of each IV produced by
the three different regression procedures.
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Table 12.2 Portion of variance explained by each IV using
three different regression procedures

Portion of DV explained by each IV

IV Standard Hierarchical Stepwise

IV1 a a and b a and b
IV2 c c and d c
IV3 e e d and e

SKerr12.qxd  2/7/02 12:45 PM  Page 186



Ratio of Cases to IVs

Recall from Chapter 10 that the significance of a correlation coefficient is highly
dependent upon the sample size. With small samples, a very strong correlation is
necessary in order to reach statistical significance, whilst with a very large sample,
very small correlation coefficients may be statistically significant. These facts have
implications for the ratio of cases (participants) to IVs in multiple regression.

Tabachnick and Fidell (1996) provide guidelines for the minimum number of
cases to IVs. With either standard or hierarchical regression, they suggest a mini-
mum of 50 cases plus 8 cases for each IV. For example, in a study with five IVs, the
minimum sample size would be 50 + (8 × 5), or 90. In stepwise regression, a ratio of
40 to 1 is recommended.

Type I and Type II Errors in Multiple Regression

When previously discussing planned contrasts within ANOVA models, concern was
expressed about the increased risk of committing a Type I error when multiple con-
trasts were conducted. In the same way, when a multiple regression analysis is carried
out, multiple tests of R are executed. This problem becomes more acute when a step-
wise method is employed as a whole series of repeated tests are undertaken. Whilst a
number of well-documented procedures exist for addressing this concern in ANOVA
models, this topic is less fully discussed within the literature for multiple regression
analyses. Cohen and Cohen (1983) argue that the potential risk of committing Type 1
errors should initially be minimised by reducing the number of IVs. They write that
‘having more variables when fewer are possible increases the risks of both finding
things that are not so and failing to find things that are’ (page 170). Researchers should
be guided by theory in their selection of the IVs and employ reliable and valid mea-
sures that display a minimum amount of inter-relationships between the independent
measures (collinearity). Cohen and Cohen conclude by stating that a ‘general princi-
ple in research inference is succinctly stated: “less is more” – more statistical test valid-
ity, more power, and more clarity in the meaning of results.’

Grouping the IVs according to their importance to the research question can fur-
ther refine this approach of rationalising the number of IVs. Then, by employing a
hierarchical regression analysis, those that are most central can be entered first,
whilst those that are less important can be entered later with an increased risk of a
Type I error. The results from the IVs that are not central provide the basis for future
research hypotheses rather than conclusions.

Cohen and Cohen go on to suggest that the strategy employed in ANOVA analy-
sis of examining the omnibus F before looking at the individual effects should be
copied in multiple regression. Recall from Example 11.1 that the overall F indicates
whether a significant relationship exists between the predictor(s) and the DV. This
means that the role of individual predictors should only be examined after the over-
all F for the multiple regression analysis is found to be statistically significant. This
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prevents the comparison on 95% of the occasions when the overall null hypothesis
is true. By following this procedure, they state that ‘the t tests are protected from the
mounting up of small per-comparison α to large experiment-wise error rates’ (page
174). The use of Backwards regression in SPSS conforms to the suggestions made
by Cohen and Cohen. The Backwards method first executes a standard (Enter)
method and then removes non-significant predictors in a stepwise fashion. If the
initial inclusion of all variables in the model does not provide a significant overall F
then there is no need to examine the individual predictors.

The following is a simple example of a backwards multiple regression analysis.
Read through this analysis and note the explanatory comments. The understanding
gained from this reading should then make the subsequent section more meaningful.

Example 12.1 SPSS Multiple Regression Output from the data
presented in Table 12.1

A researcher was interested in the contribution of three landscape features to
the overall rating of a land’s attractiveness. To this end, 10 areas of countryside
1 kilometre square were surveyed for the area of trees, water and length of
hedgerows (Table 12.3). A group of participants then came to a consensus on
the subjective rating of attractiveness of each of the squares.

A multiple regression analysis was carried out to determine the contribution
of each of the landscape features towards the attractiveness rating of the areas
surveyed. The results from SPSS and a scattergram of the data (Figure  12.4),
which displays the three regression lines, are shown below.

A backward regression method was adopted for this analysis. First, all the
IVs are entered at once and then those variables with significance levels below
the default criterion of 0.1 are removed (Table 12.4). 
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Table 12.3 Survey Results of six areas of countryside
1 kilometre square

Attractiveness Area of Area of Length of
rating trees water hedges

18 19 19 8
9 8 11 5
8 14 10 4
8 10 7 6
5 8 9 4
12 9 11 6
15 13 16 6
3 2 4 2
6 4 7 4
7 8 8 5

SKerr12.qxd  2/7/02 12:45 PM  Page 188



The numbers in the column headed ‘Model’ refer to steps. So from Table 12.4
it is apparent that on step 1 all three predictors were entered and then on step 2
the variable TREES was removed.

Table 12.5 shows that R2 was 0.950 when all three predictors were included
on step 1. This means that 95% of the variance in attractiveness is associated
with changes in the variables of hedges, trees and water for this sample. The
estimated coefficient of determination for the population (i.e. adjusted R2) is
92.4%. In step 2 in the table, when the variable TREES is removed, then there
was a very slight reduction in both these figures.

In Table 12.6 ANOVA tests the null hypothesis that there is no linear rela-
tionship between the predictors and the DV. F is the ratio of the mean square
for regression to the mean square for the residual. For model 1, when all three
predictors are entered, the significance level associated with the observed value
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Figure 12.4 Scattergram of attractiveness against the three
predictor variables

Table 12.4

Variables Entered/Removed

Model Variables Entered Variables Removed Method

1 HEDGES, TREES, WATER . Enter

2 . TREES Backward (criterion: 
Probability of

F-to-remove > = .100).

a All requested variables entered.
b Dependent Variable: ATTRACT
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of F is 0.000. Thus, the null hypothesis can be rejected and we may conclude
that there is a significant linear relationship between the set of IVs and the DV.
Note the increase in the F-value in model 2 when the variable TREES is
removed. The F-value increases as there is little change in the sum of squares,
but df is reduced from 3 to 2. 

Table 12.7 displays the values of the coefficients in the regression equation
and measures the probability that a linear relationship exists between each pre-
dictor variable and the DV. In this table ‘B’ is the slope of the line. ‘SE B’ is
the standard error of ‘B’. ‘Beta’ is the standardised regression coefficient.
‘Sig’. is the significance level for the test of the null hypothesis that the value
of a coefficient is zero in the population. In model 1, the ‘Sig’. value for trees
is greater than 0.05 (0.7012). Therefore, the null hypothesis that there is no lin-
ear relationship between this predictor and attractiveness cannot be rejected.
As a result, the variable TREES is removed in model 2. All of the remaining
variables in model 2 have significance values less than the criterion of 0.1.
Thus, the null hypothesis for water and hedges may be rejected. Significant
linear relationships exist between water and attractiveness and hedges and
attractiveness. 
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Table 12.5

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .974 .950 .924 1.2724

2 .974 .948 .934 1.1938

a Predictors: (Constant), HEDGES, TREES, WATER
b Predictors: (Constant), HEDGES, WATER

Table 12.6

ANOVA

Model Sum of Squares df Mean Square F Sig.

1 Regression 183.187 3 61.062 37.719 .000

Residual 9.713 6 1.619

Total 192.900 9

2 Regression 182.924 2 91.462 64.179 .000

Residual 9.976 7 1.425

Total 192.900 9

Total 192.900 9

a Predictors: (Constant), HEDGES, TREES, WATER
b Predictors: (Constant), HEDGES, WATER
c Dependent Variable: ATTRACT
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The final table (Table 12.8) provides the coefficients for the excluded variable
TREES.

The resulting regression equation is

Attractiveness = − 3.165 + 0.679(WATER) + 1.043(HEDGES)

This equation estimates that for the sample surveyed 94.8% of the variance in
the DV (attractiveness) is explained by the area of water and the length of the
hedgerows contained in the ten selected one-kilometer squares.

Terms and Concepts Displayed in Example 12.1

Multiple R

This coefficient reflects the strength of the relationship between the DV and the
combination of IVs which have been weighted according to the regression equation

Table 12.8

Excluded Variables

Beta In t Sig. Partial Correlation Collinearity Statistics

Model Tolerance

2 TREES -.076 -.403 .701 -.162 .233

a  Predictors in the Model: (Constant), HEDGES, WATER
b  Dependent Variable: ATTRACT

Table 12.7

Coefficients

Unstandardized Standardized t Sig.
Coefficients Coefficients

Model B Std. Error Beta

1 (Constant) -3.165 1.403 -2.256 .065

TREES -7.215E-02 .179 -.076 -.403 .701

WATER .730 .207 .700 3.519 .013

HEDGES 1.101 .467 .388 2.356 .057

2 (Constant) -3.037 1.282 -2.369 .050

WATER .679 .153 .651 4.423 .003

HEDGES 1.043 .417 .368 2.500 .041

a Dependent Variable: ATTRACT

M U L T I P L E  R E G R E S S I O N 191

SKerr12.qxd  2/7/02 12:45 PM  Page 191



(i.e. Y ′ = ay + b1x1 + b2x2 + … + bkxk). R-values have a potential range of zero to
one. An R-value of 0 indicates no linear relationship between the set of predictors
and the  DV. The higher the R-value, the stronger the linear relationship between the
set of predictors and the DV.

R Square

It was noted in the previous chapter that one way of rendering a correlation coeffi-
cient more meaningful is to compute the coefficient of determination (R2). In multi-
ple regression analysis, this coefficient expresses the amount of the variance in the
DV that is shared by the combination of the weighted IVs. As with R, R2 will have a
value that falls between 0 and 1. Multiplying R2 by 100 allows the amount of vari-
ance to be stated as a percentage. To work out the proportion of the variance that is
not shared, and hence not predicted by the IVs, simply take the value of R2 away
from 1. For example, an R of 0.7 would produce an R2 of 0.49. This suggests that
0.49 (49%) of the variance in the DV is shared by the predictor variables; therefore
0.51 (51%) is not shared. Thus, R2 can be considered a measure of the goodness of
fit of the model produced by the regression equation.

Standard Error

The regression equation allows one to compute predicted values for each participant
on the DV and then compare these with the actual score. Unless the model is perfect
(i.e. R2 has a value of 1), then there will be a difference between the predicted and
observed scores. These differences reflect errors in the model and are known as error
scores or residual scores. Chapter 2 discussed the utility of describing a data set in
terms of its dispersion. In the same way, a description of the dispersion of error
scores may be obtained by computing their standard deviation. This standard devia-
tion of the error scores is known as the standard error and it provides a general indi-
cation of the average error in the prediction. Therefore, a model that has a high
goodness of fit would produce a low standard error. There will be a relatively good
match between the predicted and observed values of the DV. 

B (Slope of the Regression Line)

B is the partial regression coefficient. As discussed in Chapter 10, the regression
coefficient defines the direction and magnitude of the slope of the regression line.
For example, a B-value of −1.5 means that with every increase of one unit of the IV
the equation predicts a decrease of 1.5 units of the DV. The use of the term partial
means that this effect is predicted after the influence of all the other IVs has been
statistically controlled.
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‘Beta’ (Standardized Slope of the Regression Line)

The slope, indicated by the value of B, is influenced by the scale upon which the IV
was measured. As different IVs may be measured on scales of very different units,
it is very difficult to compare their relative influence. The use of standardised scores
may overcome this difficulty. Recall from Chapter 2 that standardised scores are
calculated by finding the difference between a score and the mean in units of stan-
dard deviation. That is, subtract the mean from each score and divide by the standard
deviation. Regression analysis based on standardised scores for both the IVs and the
DV would produce identical B and ‘Beta’ values. This would allow comparison of
the effects of different IVs by comparing their B values. However, there is a simpler
strategy, and to illustrate this consider the situation where there is one IV called W
and one DV called Y. If the slope B for W is multiplied by the ratio of the standard
deviation of W divided by the standard deviation of the Y this will produce the
standardised regression coefficient ‘Beta’. That is:

Thus, if ‘Beta’ for a particular IV equals 0.5 this means that a one standard deviation
increase in the IV predicts 0.5 of a standard deviation increase in the DV. ‘Beta’
values allow meaningful comparisons regarding the degree of predicted change on
the DV associated with changes in a number of IVs. The variable with the largest
‘Beta’ will have the most relative influence on the DV. One should be cautious when
interpreting the ‘Beta’ values as they are not absolute but depend upon the other IVs
in the equation.

R2 Change

As variables are added to a regression analysis they will cause an increase in R2. This
does not mean that there is an increase in the goodness of fit for the regression equa-
tion. In fact, the standard error may actually increase. In evaluating the consequences
of adding new variables, one takes into account the change in R2 produced by the
addition of the new variable. R2 change is simply the difference in the value of R2

before and after adding the new variable.
A measure of the strength of the independent relationship between the new IV and

the DV can be obtained by taking the square root of the change in R2. This is known
as the semi-partial correlation coefficient. Its value will usually be smaller than the
simple bivariate correlation between this IV and the DV as all the linear effects of
the previous IVs have been removed. The direction of this relationship can be found
from the corresponding partial regression coefficient.

= BW

(
SW

SY

)
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Multicollinearity

Collinearity refers to the correlations among IVs. This can be assessed by examin-
ing a correlation matrix for the IVs. If there is a high degree of collinearity between
two or more IVs, for example r > 0.7, then this raises two issues.

The first issue refers to the question of whether the variables are actually measur-
ing different constructs. The purpose of multiple regression is to produce the most
parsimonious explanation of the changes in the DV based on two or more predictors.
Therefore, it makes little sense to include IVs that are highly correlated as they
would not be making a unique contribution to the regression equation. The ideal
equation includes a small number of IVs, each of which makes a unique and signifi-
cant contribution to the overall prediction of the DV. 

The second issue is concerned with the difficulty of separating the individual
contribution made by each IV to the prediction of changes in the DV. Recall from
the previous discussion of the different multiple regression methods (e.g. stepwise,
Enter, etc.), the issue of crediting the shared variance to the IVs. This shared vari-
ance, which is known as redundant variance, could be the product of any one vari-
able or it may be the product of two or more. This difficulty is the Achilles’ heel of
multiple regression analysis. However, rather than looking for a statistical solution,
the researcher should be guided by the theoretical foundations that originally led to
the research question. This theoretical framework may suggest the order in which the
IVs should be entered through a hierarchical method and so determine the allocation
of the predicted variance.

Summary

Multiple regression is used to examine the relationship between a set of two or more
IVs and one DV. The overall strength of the relationship between the set of IVs and
the DV is reflected by the multiple R statistic. The coefficient of determination (R2)
provides an indication of the proportion of variance in the DV that is accounted for by
the set of IVs. Multiple regression provides the information necessary to make pre-
dictions of the DV based on several IVs. To do so, the bivariate equation introduced
earlier in this chapter is extended to Y′ = ay + b1x1 + b2x2 + … + bkxk. The
regression coefficients (b) reflect the direction and magnitude of change in Y asso-
ciated with each change in x. As the size of b is a function of the scale on which it
was measured, standardised regression coefficients (Betas values) are interpreted to
determine the relative influence of the various IVs. Three different types of multiple
regression analyses were discussed: standard multiple regression, hierarchical multi-
ple regression, and statistical (stepwise and setwise) multiple regression. Each
method differs in the way that it deals with the problem of overlapping variance
among the IVs.
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In Exercise 11.2 you produced a correlation matrix which indicated the linear rela-
tionship between the following variables: (1) hours per week spent in a pub; (2) hours
per week spent studying outside of class; (3) beer consumption in pints per week;
(4) number of classes missed per week; (5) academic grade; and (6) practical grade.

From the correlation matrix one was able to test specific hypotheses concerning
the bivariate relationship between the various student activities and academic
performance. To investigate this topic further one might ask:

What student activities are the best predictors of academic success?

The answer to this question may be found through the use of multiple regression.
This technique is designed to determine the relationships between variables, but
unlike a correlation coefficient which indicates the linear relationship between two
variables, multiple regression analysis determines the relationship between two or
more predictor variables (e.g. hours in pub and study hours) and one criterion vari-
able (e.g. academic performance).

As can be seen in the correlation matrix produced from the exercise, all variables
are related to each other in some way. Multiple regression accounts for this fact in
determining which are the best predictors of academic grade.

To conduct this multiple regression exercise, retrieve the data entered from
Exercise 11.2. Usually one would use the Explore option to test for normality but
this was already done for the previous exercise.

1. Click on Regression in the Analyze menu, and select Linear.
2. Select Academic Grade as the dependent variable, and insert hours per

week spent in a pub, hours per week spent studying outside of class, beer con-
sumption in pints per week and the number of classes missed per week as the
independent variables.

3. Click on Statistics and make sure that descriptives is highlighted.
4. Select Backward as the method of analysis.
5. Click on OK to run the analysis.
6. Complete Table 12.9.
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Table 12.9

Correlation Coefficients with Average Academic Grade

IVs R R Square Rank Order Based on Value of R

STUD_HRS

PUB_HRS

BEER

CLASS_MS

TOTAL
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7. What is ‘R Square’ a measure of?

.............................................................................................................................

8. What does it mean if the total of the ‘R Square’ values is greater than 1?

.............................................................................................................................

.............................................................................................................................

9. Which two predictor variables have the strongest relationship to each other?

.............................................................................................................................

10. Which predictor variable has the weakest relationship with the dependent
variable?

.............................................................................................................................

11. Which predictor variable was removed first by the Backward selection
procedure?

.............................................................................................................................

12. In the ‘Model Summary’ table, what happens to the value of ‘R Square’ as pre-
dictor variables are removed and why does this occur?

.............................................................................................................................

.............................................................................................................................

13. In the ‘ANOVA’ table, what happens to the value of F and its associated sig-
nificance as predictor variables are removed and why does this occur?

.............................................................................................................................

.............................................................................................................................

.............................................................................................................................

14. In the ‘Coefficients’ table what are the t-values a measure of?

.............................................................................................................................

15. Using the values in the ‘Coefficients’ table specify the final regression equation
that predicts academic grade?

.............................................................................................................................

16. In the ‘Coefficients’ table what do the ‘Beta’ values measure?

.............................................................................................................................

.............................................................................................................................

17. What can be concluded from this analysis?

.............................................................................................................................

.............................................................................................................................

.............................................................................................................................
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In order to supplement your income, you have been employed by the university
administrators to determine how well we can predict academic performance in the
final year (Grade). This prediction is to be made from: (a) a measure of motivation
assessed in the first year (Motive), (b) entrance exam performance (Entrance), and
(c) performance in the first-year exams (FirstYr) (see Table 12.10).

1. Write a hypothesis indicating the degree to which you think each of the stated
variables will predict academic performance in the final year.

2. To test your hypothesis using multiple regression analysis, follow the instruc-
tions from the previous exercise.

3. Examine your printout and write a sentence or two explaining whether or not
your hypotheses were supported. Indicate which were the best predictors of aca-
demic performance in the final year.
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Table 12.10

Motive Entrance FirstYr Grade

35 21 54 60
24 16 61 50
40 17 70 66
42 14 56 66
45 22 42 68
25 17 60 41
20 15 45 39
18 18 40 42
36 19 60 54
34 14 56 52
39 14 58 61
34 16 52 58
44 14 62 73
42 17 73 50
34 19 70 55
20 22 63 61
18 13 48 22
43 20 55 64
38 18 60 72
26 16 58 60
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T W O  F I N A L  E X E R C I S E S

The following tasks describe a series of research investigations. For each task you
are to:

1. Write a research question
2. Write appropriate null and alternate hypotheses
3. Identify the number of independent variables
4. Identify the number of dependent variables
5. Recommend an appropriate statistical analysis (with reasons for choice)
6. Outline the assumptions that the chosen statistical technique makes (e.g. type of

data, distribution of data).

In completing this first exercise you may find it helpful to look at the data that is pre-
sented in exercise 13.2 on data analysis.

Scenario One

A physiotherapist has experience of treating a large number of lower body injuries
in athletes who have visited her clinic. The physiotherapist’s curiosity leads her
towards attempting to discover whether the number of lower body injuries sustained
is a function of the particular sport in which the athletes engage. She obtains a
sample of elite athletes from four different sports (rugby, soccer, hockey, track and
field) and examines the athletes’ injury records which have been supplied by sports
medicine staff associated with each athlete’s home club. From this data, she is able
to measure the number of lower body injuries each athlete has sustained over the
last year. 

Scenario Two

A smoker, sceptical about information that has been disseminated by the medical
community warning against the dangers of smoking, decides to conduct a personal

13
E X E R C I S E  1 3 . 1  H Y P O T H E S I S  W R I T I N G  A N D
T E S T  S E L E C T I O N
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investigation to determine whether cigarette smoking influences longevity in his
home town. He wrote to the local authority and obtained both the age of local resi-
dents at the time of death and average number of cigarettes smoked per day over the
course of a lifetime.

Scenario Three

A leisure researcher was interested in determining whether age and sex had any bear-
ing upon the amount of time adults engaged in leisure activities. After obtaining data
on the average amount of time individuals engaged in leisure activities each week
from a representative sample of the population, she divided the sample according to
sex, and further subdivided the sample into young adults, middle-aged adults and
older adults.

Scenario Four

A cardiologist, worried about the risks of coronary heart disease in his patients,
decided to investigate the effects of putting the patients on a low-fat diet in con-
junction with regular physical exercise. As the accumulation of cholesterol deposits
in the arteries accounted for 50% of the deaths in the USA in 1986, he decided to
measure the LDL/HDL ratio (low-density lipoproteins to high-density lipoproteins)
in his patients before initiating a plan of diet and exercise, then again after six
months of adherence to the diet and exercise regime.

Scenario Five

A researcher was interested in the extent to which heart disease in the form of the
amount of atherosclerosis (i.e. a hardening of the arteries) could be predicted by:
advancing age, elevated levels of serum cholesterol, obesity, inactivity and Type A
Behaviour Pattern. She collected data from a sample of patients on all of these vari-
ables. On each scale the higher the value the more of the variable they displayed. 

Scenario Six

A researcher was interested in the influence of arousal on attentional breadth. He
believed that as arousal increased, the attentional span of an individual would
decrease. In addition, he argued that if participants were given a primary task and
secondary task to complete at the same time, known as a dual-task paradigm, the
influence of arousal would be most notable on the performance of the secondary task.

To test this argument he first of all divided his participants into two groups accord-
ing to whether they were experts or novices at performing the primary task. He then
measured half of the participants’ performance on both tasks over a 5 minute period
when they displayed low levels of arousal. This situation was then repeated when
these participants’ arousal levels had been experimentally manipulated to a high
level. These two procedures were then reversed for the remaining half of the partici-
pants in an attempt to counterbalance for order effects.
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In the previous exercise you determined the research questions being asked by the
investigators, devised testable hypotheses, and established the most appropriate sta-
tistical analyses in order to obtain answers to the research questions. For each of the
tasks, you must now enter the corresponding data, extract the most useful descrip-
tive statistics, and conduct the analysis that you previously suggested as the most
appropriate. 

Once you have analysed the data, and obtained a printout of the results for each
task, you should the answer the following six questions:

1. What do you interpret from the descriptive statistics?
2. What do you interpret from the graphical representations?
3. Are the assumptions of the statistical technique met?
4. What should be inferred from the statistical test employed?
5. Which hypotheses do you accept and which do you reject?
6. What do you conclude with respect to the research question?

Scenario One

A physiotherapist has experience of treating a large number of lower body injuries
in athletes who have visited her clinic. The physiotherapist’s curiosity leads her
toward attempting to discover whether the number of lower body injuries sustained
is a function of the particular sport in which the athletes engage. She obtains a sam-
ple of elite athletes from four different sports (rugby, soccer, hockey, track and field)
and examines the athletes’ injury records that have been supplied by sports medicine
staff associated with each athlete’s home club. From this data, she is able to measure
the number of lower body injuries each athlete has sustained over the last year. The
data given in Table 13.1 was obtained.
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Table 13.1 Sports injury data

Rugby Soccer Hockey Track and field

3 9 2 8
4 12 1 4
2 15 3 7
0 10 7 9
8 13 1 6
4 12 4 8
0 8 2 7
6 4 1 9
4 10 6 10
7 7 0 4
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Scenario Two

A smoker, sceptical about information that has been disseminated by the medical
community warning against the dangers of smoking, decides to conduct a personal
investigation to determine whether cigarette smoking influences longevity in his
home town. He wrote to the local authority and obtained both the age of local resi-
dents at the time of death and the average number of cigarettes smoked per day over
the course of a lifetime. The data given in Table 13.2 was obtained.

Scenario Three

A leisure researcher was interested in determining whether age and sex had any bear-
ing upon the amount of time adults engaged in leisure activities. After obtaining data
on the average amount of time individuals engaged in leisure activities each week
from a representative sample of the population, she divided the sample according to
sex, and further subdivided the sample into young adults, middle-aged adults and
older adults. The data in Table 13.3 was obtained.
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Table 13.2 Smoking and longevity data

Cigarettes/day Age at death Cigarettes/day Age at death

0 85 4 61
10 66 25 62
5 70 30 58
12 64 0 79
1 82 0 78
0 88 0 90
0 94 2 69
2 73 0 79
25 57 40 47
20 60 20 58
30 48 10 66
6 69 0 70
0 85 0 59
0 82 1 66
1 75 2 72

Table 13.3 Leisure data

Male Female

Young Mid age Old Young Mid age Old

24 12 16 26 4 8
20 10 14 20 2 2
16 6 20 16 8 4
12 6 22 20 6 4
28 4 20 15 4 12
24 8 18 18 6 16
22 8 12 24 8 2
18 6 16 22 2 8
19 12 24 19 2 6
22 2 22 18 8 8
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Scenario Four

A cardiologist, worried about the risks of coronary heart disease in his patients,
decided to investigate the effects of putting the patients on a low-fat diet in conjunc-
tion with regular physical exercise. As the accumulation of cholesterol deposits in the
arteries accounted for 50% of the deaths in the USA in 1986, he decided to measure
the LDL/HDL ratio (low-density lipoproteins to high-density lipoproteins) in his
patients before initiating a plan of diet and exercise, then again after six months of
adherence to the diet and exercise regime. The data in Table 13.4 was obtained.

Scenario Five

A researcher was interested in the extent to which heart disease in the form of the
amount of atherosclerosis (i.e. a hardening of the arteries) could be predicted by:
advancing age, elevated levels of serum cholesterol, obesity, inactivity and Type A
Behaviour Pattern. She collected data from a sample of patients on all of these vari-
ables. On each scale the higher the value the more of the variable they displayed. The
data in Table 13.5 was obtained.

Scenario Six

A researcher was interested in the influence of arousal on attentional breadth. He
believed that as arousal increased, the attentional span of an individual would
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Table 13.4 Cholesterol data

LDL/HDL pre LDL/HDL post

6.1 4.2
5.6 5.2
4.7 3.1
4.9 4.0
6.7 5.1
5.6 5.0
6.3 4.5
5.2 4.1
6.3 4.8
5.7 4.5
5.4 4.4
5.3 5.0
4.6 4.0
4.9 4.2
4.2 3.8
4.8 4.2
5.8 4.2
5.2 5.0
6.1 4.4
5.8 4.6
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decrease. In addition, he argued that if participants were given a primary task and
secondary task to complete at the same time, known as a dual-task paradigm, the
influence of arousal would be most notable on the performance of the secondary task.

To test this argument he first of all divided his participants into two groups accord-
ing to whether they were experts or novices at performing the primary task. He then
measured half of the participants’ performance on both tasks over a 5 minute period
when they displayed low levels of arousal. This situation was then repeated when
these participants’ arousal levels had been experimentally manipulated to a high
level. These two procedures were then reversed for the remaining half of the
participants in an attempt to counterbalance for order effects.

When comparing the results on the primary task, the researcher found no dif-
ference in performance across the two levels of arousal. He found the results in
Table 13.6 for performance on the secondary task.
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Table 13.5

Age Cholesterol Obesity Inactivity Type A Atherosclerosis

30 13 15 5 15 4
55 16 12 7 14 6
48 14 12 7 17 7
72 9 11 5 12 5
65 12 14 6 15 7
45 13 15 7 18 8
67 16 17 9 15 9
53 9 12 4 20 8
57 12 10 6 16 7
70 10 10 7 15 9
38 16 8 8 14 6
56 13 15 8 12 4
63 15 17 7 15 5
56 18 14 9 16 7
49 19 18 9 18 9

Table 13.6 Performance scores on secondary task

Low arousal High arousal

Novices Experts Novices Experts

4 6 2 4
5 7 3 5
6 8 4 6
7 9 3 7
8 10 4 8
7 9 3 7
6 8 2 6
5 7 3 5
4 6 3 4
7 8 4 6
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Appendix 1
GLOSSARY

Terms

Alternate/experimental hypothesis This hypothesis states that any
observed differences or relationships between sets of data are not a product of
chance. If the null hypothesis is rejected then this hypothesis is accepted as the
alternative explanation.

Boxplot A graph that displays the actual distribution of the data around the
median value that is represented by a horizontal bar. This bar is surrounded by a
box that contains 50% of the scores. Extending from this box are whiskers. These
whiskers show the highest and lowest value that are not outliers. Outliers that are
more than 1.5 box-lengths from the 25th or 75th percentile are displayed by a
circle and those that are more than 4 box-lengths away are shown by an asterisk.

Causal relationship A relationship in which changes in the independent vari-
able(s) cause changes in the dependent variable(s).

Central tendency A collective term for the statistical measures (mean,
median, mode) which aim to provide the value of a typical score.

Chi square A test that requires nominal data, and compares the difference
between the observed and the expected results.

Class boundary The value that marks the dividing point between two classes.

Class limits The smallest and largest values that are permitted in each class.

Class mark The point half-way between the class limits.

Coefficient of determination (r 2) The amount of variance in the dependent
variable accounted for by the independent variable(s).

Confounding variable A variable that produces systematic error in its influ-
ence of the dependent variable.

Control group A group of participants in an experiment which is used for
comparison with the experimental group. The control group experiences exactly
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the same conditions as the experimental group except for the treatment level of
the independent variable. By comparing the results of the two groups, the
effects of the independent variable can be observed.

Correlational research Research that explores the relationship between
variables and is restricted in its ability to infer cause and effect.

Counterbalancing A strategy used in the design of an experiment in which
the order of the presentation of the conditions could affect the result, for exam-
ple practice effects or fatigue effects in a repeated measures design. Counter-
balancing involves systematically varying the order of presentation of the
conditions: for example, half the participants would have condition A followed
by condition B, the other half would have condition B followed by condition A.

Degrees of freedom A concept that refers to how data is free to vary. For
example, in estimating the variance of a population from a sample the degrees
of freedom are one less than the sample size.

Demand characteristics Those features of an investigation which bring
about unusual forms of behaviour from the subjects, for example a desire by the
participant to give the investigator the results he/she wants.

Dependent variable The factor which is observed or measured by the inves-
tigator, the outcome of the study. If the alternate/experimental hypothesis is cor-
rect the value of this factor will depend upon the independent variable.

Descriptive statistics A branch of statistics that involves describing or dis-
playing data and includes the calculation of measures of central tendency and
dispersion.

Dispersion A collective term for the measures (e.g. range, standard deviation,
variance) which describe the spread of a set of scores.

Error bar A graph that displays the estimated distribution of the data around
the mean. This distribution can be confidence intervals, standard errors or stan-
dard deviations.

Experimental group A group of participants which all receive the same
experimental condition. When there is only one experimental condition the
group is compared with a control group. Sometimes there are several experi-
mental groups, each receiving a different condition.

Experimental research Research in which the independent variables are
manipulated and attempts are made to hold all other variables constant. It aims
to establish causal relationships.

Experimenter effects Problems producing a biased result brought about by
the influence of the experimenter, for example an unconscious bias that is trans-
mitted to the participants and brings about a ‘self-fulfilling prophecy’.
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Extraneous variable A factor that could influence the dependent variable
but that is not controlled by the experimental design.

Histogram A barchart of a frequency distribution.

Hypothesis A testable statement, usually derived from theory or observation,
which predicts the nature of the relationship between variables, or the nature
of differences between treatment results.

Independent variable The factor that is chosen or manipulated by the experi-
menter in order to discover the effect on the dependent variable.

Inferential statistics A branch of statistics that involves drawing inferences
about the population from which the data set was sampled.

Intercept The point where the regression line crosses the Y-axis. It is termed
the constant when its value is included in a regression equation.

Interquartile range A measure of dispersion that is usually used with the
median. Scores are put into size order and then the value of the score that comes
one-quarter of the way along is subtracted from the score that comes three-
quarters of the way along. Unlike the range, it is not affected by extreme scores.

Interval scale A scale in which equal differences between pairs of points on
the scale are represented by equal intervals, but the zero point is arbitrary.

Kurtosis A measure that indicates whether the arc of a curve is peaked or flat.

Matching The procedure which attempts to ensure that two sets of experi-
mental materials or participants are identical in all important respects.

Mean A measure of central tendency calculated by adding all the scores and
dividing by the number of scores. Its advantage over alternative measures of
central tendency is that it uses all the scores; its disadvantage is that it is influ-
enced by extreme scores. It should only be used with interval or ratio levels of
measurement.

Median A measure of central tendency that is the middle score of a set of
scores placed in size order. Its advantage over alternative measures of central
tendency is that it is not influenced by the values of extreme scores; its dis-
advantage is that it does not use the arithmetic values of the intervals between
the scores. It requires at least an ordinal level of measurement and should be
used instead of the mean when the distribution of data on an interval scale
is skewed.

Mode A measure of central tendency which is the most frequently occurring
score in a distribution.
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Nominal scale A scale which sorts examples according to categories, for
example sorting cars according to make. Every example should belong to one,
and only one, category.

Non-parametric tests Tests that make no assumptions about the distribution
of the data.

Normal distribution A theoretical distribution that is symmetrical and which
the distribution of data is described by z-tables. For example, approximately 68%
of the population lie within ±1 standard deviation of the mean, 95% of the
population lie within ±2 standard deviations of the mean and 99.7% of the
population lie within ±3 standard deviations of the mean.

Null hypothesis This hypothesis states that any observed differences or rela-
tionships between sets of data are a product of chance. The probability that this
hypothesis is correct is statistically determined.

One-tailed hypothesis An alternate hypothesis in which the direction of the
difference or relationship is predicted. For example, the experimental groups
will have significantly higher scores than the control group.

Ordinal scale A scale where the data is ranked in order from the smallest to
the largest but where the intervals between each pair of scores may be unequal.
For example, the finishing positions in a race are on an ordinal scale as the dif-
ference in time between the first and second runners crossing the finishing line
may not be the same as that between the second and third runners.

Parametric tests Tests which use the sample data to estimate the population
parameters. They require at least interval data, equal variance and a normal
distribution.

Population All the members of a group defined according to key characteristics.

Post-hoc tests Tests made after obtaining significant differences in ANOVA to
identify differences among levels of the IV(s).

Power (ββ) Measures the probability of rejecting the null hypothesis when it is
false.

Range The simplest measure of dispersion; measures the difference between
the highest and the lowest scores. Sometimes the value 1 is added to this differ-
ence to reflect that the range is inclusive of the end points.

Regression coefficient (B) The slope of the regression line that reflects the
amount of change in Y’ associated with each unit change in X.

Regression line A straight line drawn through the points on a scatterplot
that shows the predicted values of one variable for values of the other
variable(s). 
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Sample A group of participants selected from a population.

Significance level The probability that one is prepared to accept that the
result was obtained by chance and yet still reject H0. Usually set at 0.05 (5%).

Skewed distribution A non-symmetrical distribution in which the mean is
distorted by the existence of extreme scores that lie to one side of the median.

Sphericity assumption In a within-subjects ANOVA it is assumed that the
variances of the differences between each pair of scores are not significantly dif-
ferent. If this assumption is not met there is an increased risk of committing a
Type I error.

Standard deviation The square root of the variance. It measures the disper-
sion of the scores around the mean in a normal distribution.

Standard error The amount of error in the estimation of the population para-
meters from the sample data. It is equal to the square root of the variance
divided by the degrees of freedom.

Sum of squares (SS) The sum of the square of the mean subtracted from
each score.

Symmetrical distribution A distribution in which the mean, median and
mode all have the same value.

Two-tailed hypothesis An experimental/alternate hypothesis that does not
predict the direction of the difference or relationship.

Type I Error Rejection of H0 when it is in fact true.

Type II Error Acceptance of H0 when it is in fact false.

Variance A measure of dispersion that is equal to the sum of the squares
divided by the degrees of freedom.

Symbols

≅ approximately equal to
> greater than
< less than
≠ not equal to
9 square root of 9 (i.e. the number multiplied by itself which will result in

the value 9)
α alpha – the measure of the internal consistency of a scale or the signi-

ficance level at which H0 is rejected
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β beta – the regression coefficients when all the variables are standardised
to a mean of zero and a standard deviation of one

µ mu – mean of the population
∑

summation – add up all the scores
σ sigma – standard deviation of the population
ω omega – weighting coefficient
a the symbol for the Y-intercept in a regression equation Y = a + B(x)
B regression coefficient that reflects the slope of the line in the above

equation
BX the value of B multiplied by the value of X
df degrees of freedom
DV dependent variable
f frequency
F cumulative frequency
F test statistic from ANOVA
H0 null hypothesis
IV independent variable
j number of rows
k number of columns
K number of groups
MS mean square (equals SS/df)
n1 size of the sample in the first group
N total size of the sample
r bivariate correlation coefficient
r2 proportion of the variance in one variable that is explained by the vari-

ance in the other variable; when multiplied by 100 this provides the
coefficient of determination

R multiple correlation coefficient
R2 proportion of the variance in the DV that is associated with changes in

a linear combination of multiple independent/predictor variables
s standard deviation of the sample
s2 variance of the sample
se standard error
SS sum of squares
t test statistic from t-test
X
–

mean of X
Y ´ predicted value of Y
z the z-score is the distance of a point from the mean measured in units

of standard deviation
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Appendix 2
TEST SELECTION TABLE

Selecting a statistical test

The statistical test one employs to analyse the data depends upon four major
factors:

1. What is the research question (i.e. are you looking at relationships between
variables or group differences)?

2. How many dependent and independent variables are there?
3. Was the data gathered by means of an independent, related or mixed

design?
4. What scale of measurement was used to measure the variables?

Table A2.1 Factors influencing choice of statistical technique

Number of Number of
dependent independent

Research variables variables 
question (DVs) (IVs) Analytical technique Goal of analysis

Degree of relationship One One Bivariate r Create a linear combination
among variables One Multiple Multiple R of IVs to predict DV 

optimally

Significance of group One One One-way ANOVA
differences or t-test

One Multiple Factorial ANOVA

Multiple One One-way MANOVA Create a linear combination
Multiple Multiple Factorial MANOVA of DVs to maximise group

differences
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Appendix 3
ANSWERS TO THE
EXERCISES

Exercise 2.1

High Sound Group

Question 1

Frequency Distribution for High Sound Group

Question 2

Class Class limits Class frequency (f)

1 1−2 3

2 3−4 7

3 5−6 9

4 7−8 5

5 9−10 1

Total 25

f

10

4

0

1–2 3–4 4–5
Class limits

Histogram of High Sound Group

6–7 8–9

2

8

6
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Question 3

Descriptive Statistics for High Sound Group

Low Sound Group

Question 1

Frequency Distribution for Low Sound Group

Question 2

Question 3

Descriptive Statistics for Low Sound Group
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Mean 5.0

Median 5.0

Mode 5

Variance 4.17

Std. deviation 2.04

Class Class limits Class frequency (f)

1 1−2 3

2 3−4 4

3 5−6 5

4 7−8 2

Total 14

f

6

4

2

0

1–2 3–4 4–5
Class limits

Histogram of Low Sound Group

6–7 7–8

1

5

3

Mean 4.2

Median 4.5

Mode 5

Variance 4.03

Std. deviation 2.01
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Exercise 2.2

1. Data = Laundry detergents: Nominal scale.

2. Data = Temperature: Interval.

3. Data = SES: If the occupations are categorised on some scale (e.g. ranging
from unskilled manual to professional) then the data is on an ordinal scale.
If the occupations are arbitrarily categorised (e.g. 1 for a plumber, 2 for a
doctor and 3 for an electrician) then the data is on a nominal scale.

4. Data = Attacking capability: Ordinal.

5. Data = Perceived success: Ordinal.

6. Data = Type of sport: Nominal.
Data = Severity of injury: Interval.

7. Data = Athletes: Ordinal.

Exercise 3.2 Using descriptive statistics using SPSS
for windows

Descriptive Statistics
Professor Student
Median 55.0000 Median 59.0000
Mean 55.0000 Mean 58.5455
Standard Deviation 15.5961 Standard Deviation 7.0355

Boxplot
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Is the median in the
middle of the box? Yes/No Yes/No

Are the whiskers the
same length? Yes/No Yes/No

Are there any outliers? Yes/No Yes/No

What do you conclude about the normality of the distributions of each set of
scores from the boxplots?

Professor: The narrow box suggests that except for two extreme values
and one outlier, the scores are narrowly distributed. This means
that although the median is not in the middle of the box and
the whiskers are of uneven length the data are unlikely to be
significantly skewed. The existence of the two extreme values
indicated by an asterisk suggests that the data will not be normally
distributed

Student: The narrow box suggests that except for three outliers, the scores are
narrowly distributed. The median is closer to the middle of this box
and the whiskers are almost equal in length. This suggests that the
data are unlikely to be significantly skewed. The existence of the
three outliers does not alter the overall impression that the data
approximate to a normal distribution.

Is this interpretation supported by the histograms for:

Professor: Yes, the distribution of the data is reasonably symmetrical but does
not closely approximate to a normal distribution.
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GRADE

90.080.070.060.050.040.030.020.010.0

Histogram

For CLASS = Professor’s Class

Fr
eq

u
en

cy

12

10

8

6

4

2

0

Std. Dev = 15.60
Mean = 55.0
N = 22.00
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Student: Yes, the distribution of the data is reasonably symmetrical and also
approximates to a normal distribution

From comparing the means in the context of the standard deviations and look-
ing at the boxplots, do you think there is practical difference in the final grades
of the students in the two classes? 

The difference in the means is 3.56 and the standard deviations range from
7.04 to 15.60. This suggests that there will be a large overlap in the two dis-
tribution of the sets of data. This observation is confirmed in the two boxplots
that overlap a great deal. This suggests that there is not a practical difference
in the final grades of the students in the two classes

Exercise 4.1

1.
A. First and second division players are different individuals and therefore

the data can be considered to be collected from an independent design.
B. The scale of measurement is interval as the difference between one

goal and two goals is the same as the difference between seven and
eight goals.

Test selected from Table 4.1 is a t-test for independent samples.

2.
A. The geographical area is the same in both years and therefore the data

can be considered to be collected from a repeated measures design.
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B. Rainfall is measured in millimetres and therefore the scale of measure-
ment is interval.

Test selected from Table 4.1 is a t-test for paired samples.

3.
A. The same woodlice are used in both conditions which are counter-

balanced and therefore the data can be considered to be collected from
a repeated measures design.

B. Foraging is measured in minutes and seconds and therefore the scale of
measurement is interval.

Test selected from Table 4.1 is a t-test for paired samples.

4.
A. The political choices and religious affiliations expressed are from

different individuals and therefore the data can be considered to be
collected from an independent groups design.

B. The data is just in the form of a tally sheet and therefore can be con-
sidered to be on a nominal scale.

Test selected from Table 4.1 is a chi-square test. 

5.
A. The random allocation to the two conditions means that the data can

be considered to be collected from an independent groups design.
B. The data is on a subjective scale of 1 to 10 in which it is unlikely all of

the intervals are equal and therefore the data can be considered to be
on an ordinal scale.

Test selected from Table 4.1 is a Mann–Whitney test. 

6.
A. The two groups of children are independent of one another and there-

fore the data can be considered to be collected from an independent
groups design.

B. The aspirations are ordered on a scale but the intervals may not be
equal and therefore a cautious decision would be that the data can be
considered to be on an ordinal scale.

Test selected from Table. 4.1 is a Mann–Whitney test. 

7.
A. The data can be considered to be collected from an independent groups

design as it is produced by two independent varieties of apple trees. 
B. The data collected will be on some metric of weight such as kilograms

and therefore can be considered to be at least on an ordinal scale.
Test selected from Table 4.1 is an independent samples t-test. 

8.
A. As the two sources of data are matched on what are considered to be

the important variables a matched pair design has been used.
B. The data collected will be measured on an interval scale.
Test selected from Table 4.1 is a paired samples t-test. 
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9.
A. As the two sources of data are from different genders the data can be

considered to be collected from an independent groups design.
B. The data collected is simply a tally of those who have and have not

given up smoking and can be considered to be on a nominal scale.
Test selected from Table 4.1 is a chi-square test. 

10.
A. As the same students are used in both the before and after conditions

the data can be considered to be collected from a repeated measures
design.

B. The attitude data is probably measured on a subjective scale of 1 to 7 in
which it is unlikely that all of the intervals are equal and therefore the
data can be considered to be on an ordinal scale.

Test selected from Table 4.1 is a Wilcoxon test. 

Exercise 4.2 

1a 0.99% of students consume more than 22 pints per week.
1b 75% of students drink more than 12.09 pints of beer.
1c 0.39% of students consume less than 7 pints per week.
1d The percentage drinking between 10 and 20 pints is 90.3%.
2a The average amount of time spent reading is 18.5 hours.
2b 2.74% of students fulfill the university reading requirement.
3a The number graduating with debts greater than £10,000 is 2,806 students.
3b The number graduating with debts less than £1,000 is 92 students.
3c The number graduating with debts between £4,000 and £8,000 is 51,865

students.

Exercise 7.2 (numerical components)

3. For the four groups:

A B C D Sum of weights
A vs B 1 −1 0 0 0
A vs BC 2 −1 −1 0 0

The weights shown above are only one of many possible solutions. For example,
the following would also be correct:

A vs B −1 1 0 0 0
A vs BC −2 1 1 0 0

To determine if these two contrasts are orthogonal:

(1 × 2) + (−1 × −1) + (0 × −1) + (0 × 0) = 2 + 1 + 0 + 0 = 3
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As the sum of these cross-multiplied weights does not equal zero the con-
trasts are not orthogonal and therefore a correction has to be made for the
increased risk of committing a Type I error.

4. For the four groups:

Contrast number A B C D Sum of weights
1 A vs BCD 3 −1 −1 −1 0
2 B vs CD 0 2 −1 −1 0
3 C vs D 0 0 −1 1 0

Again, the weights shown above are only one of many possible solutions.
To determine which of these contrasts are orthogonal:

Contrasts 1 and 2 (3 × 0) + (−1 × 2) + (−1 × −1) + (−1 × −1)
= 0  − 2 + 1 + 1 = 0

Contrasts 1 and 3 (3 × 0) + (−1 × 0) + (−1 × −1) + (−1 × 1)
= 0 + 0 + 1 − 1 = 0

Contrasts 2 and 3 (0 × 0) + (2 × 0) + (−1 × −1) + (−1 × 1)
= 0 + 0 + 1 − 1 = 0

As the sum of all of these cross-multiplied weights equals zero all of the con-
trasts are orthogonal and therefore no correction has to be made for an
increased risk of committing a Type I error.

5. Divide the desired significance level, for example 0.05, by 3 and use the
result as the significance level to be employed in deciding whether to accept
or reject the null hypothesis.

Exercise 13.1

Scenario One

1. Research question
Are the number of lower body injuries sustained a function of the particular
sport in which athletes engage?

2. Null and alternate hypotheses
H0 There will be no significant difference in the number of lower body

injuries sustained in the four different sports
H1 There will be a significant difference in the number of lower body injuries 

sustained in the four different sports

3. Number of independent variables
One Type of sport Four levels: rugby, soccer, hockey, track and field

4. Number of dependent variables
One Number of lower body injuries

5. Recommended statistical analyses
Between-subjects one-way ANOVA as the research question is focusing on
differences and there is only one IV and one DV. Analytical comparisons,
either post-hoc or planned contrast, to determine where any differences lie.
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6. Assumptions that statistical technique makes
Number of lower body injuries is measured on an interval scale.
Number of lower body injuries is normally distributed.
The variance of the number of lower body injuries within all the groups is equal.

Scenario Two

1. Research question
Does cigarette smoking influence longevity?

2. Null and alternate hypotheses
H0 There will be no significant linear relationship between the number of

cigarettes smoked and age at the time of death
H1 There will be a significant negative linear relationship between the

number of cigarettes smoked and age at the time of death

3. Number of independent variables
One predictor variable Number of cigarettes smoked per day

4. Number of dependent variables
One dependent (criterion) variable Age at time of death

5. Recommended statistical analyses
Bivariate regression analysis

6. Assumptions that statistical technique makes
Age at time of death is measured on an interval scale.
Age at time of death is normally distributed.

Scenario Three

1. Research question
Do age and sex have any bearing upon the amount of time adults engage in
leisure activities?

2. Null and alternate hypotheses
H0 There will be no significant difference in the time engaged in leisure

activities by adult men and women
H0 There will be no significant difference in the time engaged in leisure

activities by young adults, middle-aged adults and older adults
H0 Age will not show a differential effect upon the amount of time

engaged in leisure activities for adult men and women
H1 There will be a significant difference in the time engaged in leisure

activities by adult men and women
H2 There will be a significant difference in the time engaged in leisure

activities by young adults, middle-aged adults and older adults
H3 Age will show a differential effect upon the amount of time engaged

in leisure activities for adult men and women

3. Number of independent variables
Two independent variables:

Age Three levels: young adults, middle-aged adults and older adults
Gender Two levels: male and female

4. Number of dependent variables
One dependent variable Time engaged in leisure activities
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5. Recommended statistical analyses
Between-subjects factorial ANOVA as the research question is focusing on
differences and there is more than one IV.

6. Assumptions that statistical technique makes
Time engaged in leisure activities is measured on an interval scale.
Time engaged in leisure activities is normally distributed.
Equal variance in time engaged in leisure activities across the three age groups.
Equal variance in time engaged in leisure activities across the two gender
groups.

Scenario Four

1. Research question
What is the effect of a low-fat diet, in conjunction with regular physical
activity, on cholesterol levels?

2. Null and alternate hypotheses
H0 There is no significant difference in the cholesterol level (LDL/HDL ratio)

of patients prior to, and following, a diet and exercise programme
H1 Participants’ mean cholesterol levels will be significantly lower after

the diet and exercise programme with their pre-diet and exercise mean
cholesterol levels.

3. Number of independent variables
One independent variable Diet and exercise programme Two levels: pre
and post

4. Number of dependent variables
One dependent variable Cholesterol level (LDL/HDL ratio)

5. Recommended statistical analyses
Repeated measures (paired) t-test or one-way within-subjects ANOVA as the
research question focuses on differences and there is only one IV.

6. Assumptions that statistical technique makes
Cholesterol level is measured on an interval scale.
Cholesterol level is normally distributed.
As there are only two groups neither the homogeneity of variance assump-
tion for the t-test nor the sphericity assumption for the within-subjects
ANOVA analysis are relevant.

Scenario Five

1. Research question
How much of the variance in atherosclerosis can be explained by the combi-
nation of advancing age, serum cholesterol, obesity, inactivity and Type A
Behaviour Pattern?

2. Null and alternate hypotheses
H0 There will be no significant linear relationship between the dependent

variable (atherosclerosis) and the predictor variables (age, serum cho-
lesterol, obesity, inactivity and Type A Behaviour Pattern)

H1 There will be a significant linear relationship between atherosclerosis
and age, serum cholesterol, obesity, inactivity and Type A Behaviour
Pattern
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3. Number of independent variables
Five predictor variables: age, serum cholesterol, obesity, inactivity, Type A
Behaviour Pattern

4. Number of dependent variables
One dependent (criterion) variable Atherosclerosis

5. Recommended statistical analyses
Multiple regression analysis employing the backward method. Research
question focuses on linear relationship, the prediction of one DV (criterion)
(atherosclerosis) from five predictor variables (age, serum cholesterol, obe-
sity, inactivity, Type A).

6. Assumptions that statistical technique makes
Atherosclerosis is measured on an interval scale.
Age, serum cholesterol, obesity, inactivity, Type A and atherosclerosis are
normally distributed.
Age, serum cholesterol, obesity, inactivity, Type A are linearly related to
atherosclerosis.

Scenario Six

1. Research question
Do experience at a primary task and arousal level influence participants’ per-
formance score on a secondary task?

2. Null and alternate hypotheses
H0 There will be no significant difference between experts and novices in

performance scores on the secondary task
H0 There will be no significant difference in performance scores on the

secondary task between low and high arousal conditions
H0 There will be no significant interaction between experience and arousal

in their effect on performance scores on the secondary task
H1 There will be a significant difference between experts and novices in

performance scores on the secondary task
H2 Participants will perform significantly better in the low arousal condi-

tion compared with the high arousal condition
H3 There will be a significant interaction between experience and arousal

in their effect on performance scores on the secondary task

3. Number of independent variables
Two independent variables:

Experience on primary task (two levels) Arousal (two levels)

4. Number of dependent variables
One dependent variable Performance score on the secondary task

5. Recommended statistical analyses
Mixed design 2 × 2 factorial ANOVA.
The research question focuses on differences; there is one DV and two IVs,
one of which is a within-subjects (or repeated measures) factor, the other a
between-subjects factor.

6. Assumptions that statistical technique makes
Performance score on the secondary task is measured on an interval scale.
Performance score on the secondary task is normally distributed.
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The variance of performance scores on the secondary task within experience
groups (between-subjects factor) is equal.
The variance of performance scores on the secondary task within arousal
groups (within-subjects factor) is equal.
The sphericity assumption cannot be tested as there are only two within-
groups conditions.

Exercise 13.2

What follows is an indication of what should have been included in the comple-
tion of the analysis of the data for each of the six scenarios. A complete exam-
ple is given in Appendix 4.

Scenario One 

1. Presentation and interpretation from descriptive statistics
Means and standard deviations for each group should have been presented.
Comments, with explanations, should have been made as to whether the
above values suggest support for each hypothesis.

2. Presentation and interpretation from graphical representations
An appropriate boxplot should be presented. This graph should have
a title and clearly labelled axes. Comments should be made as to what
is interpreted from this graph, especially with respect to the null
hypothesis.

3. Presentation and interpretation on whether test assumptions are met
Checks should have been made that the data does not significantly deviate
from normal by computing z-values for skewness and kurtosis and checking
that these z-values fall between plus and minus 1.97.

The results from Levene’s test for equality of error variance should have
been presented. Also an explanation of whether the assumption of homo-
geneity is met and an outline of what implications this decision has for the
ANOVA analysis.

4. Presentation of what is inferred from the one-way between-subjects
ANOVA and analytical comparisons (i.e. post-hoc or planned con-
trasts)
The F-value, the degrees of freedom and the significance value from the
ANOVA should have been presented. A comment should have been made on
what the significance of F means.

A description of the analytical comparisons conducted and any significant
group differences. t-values and significance value from the comparisons
should have been presented. A comment should have been made on what
the findings mean.

5. Clear statement, with reasons, of which hypothesis is accepted and
which is rejected

6. Clear statement, with reasons, of what you concluded with respect
to the research question
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Scenario Two

1. Presentation and interpretation from descriptive statistics
Means and standard deviations for each variable should have been presented.

2. Presentation and interpretation from graphical representations
An appropriate scattergram should be presented. This graph should have a
title, clearly labelled axes, a legend, and a regression line (line of best fit).
Comments should be made as to what is interpreted from this graph, espe-
cially with respect to the hypothesis.

3. Presentation and interpretation on whether test assumptions are met 
Checks should have been made that the data does not significantly deviate
from normal by computing z-values for skewness and kurtosis and checking
that these z-values fall between plus and minus 1.97.

4. Presentation of what is inferred from the bivariate regression
The R-value, R2-value, the F-value and significance value from the ANOVA
should have been presented. A comment should have been made on what
the significance of F means and what the R2-value means.

The constant and B-value should have been used to represent the regression
equation (i.e. Y � a + Bx).

5. Clear statement, with reasons, of which hypothesis is accepted and
which is rejected

6. Clear statement, with reasons, of what you concluded with respect
to the research question

Scenario Three

1. Presentation and interpretation from descriptive statistics
Means, standard deviations and group sizes for each main effect and the
interaction should have been presented.

Comments, with explanations, should have been made as to whether the
above values suggest support for each hypothesis.

2. Presentation and interpretation from graphical representations
An appropriate line graph should be presented. This graph should have a
title, clearly labelled axes and a legend. Comments should be made as to
what is interpreted from this graph, especially with respect to the hypothe-
sis concerning the interaction between the factors.

3. Presentation and interpretation on whether test assumptions are met
Checks should have been made that the data does not significantly deviate
from normal by computing z-values for skewness and kurtosis and checking
that these z-values fall between plus and minus 1.97.

The results from Levene’s test for equality of error variance should have
been presented. Also an explanation of whether the assumption of homo-
geneity is met and an outline of what implications this decision has for the
ANOVA analysis.

4. Presentation of what is inferred from the factorial ANOVA
The F-values, the degrees of freedom, the significance values for each
of the main effects and the interaction should have been presented. A
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comment should have been made on what the significance of F means in
each case.

5. Clear statement, with reasons, of which hypotheses were accepted
and which were rejected

6. Clear statement, with reasons, of what you concluded with respect
to the research question

Scenario Four

1. Presentation and interpretation from descriptive statistics
Means and standard deviations for each group should have been presented.

Comments, with explanations, should have been made as to whether the
above values suggest support for each hypothesis.

2. Presentation and interpretation from graphical representations
An appropriate boxplot or error bar should be presented. This graph should
have a title and clearly labelled axes. Comments should be made as to what
is interpreted from this graph, especially with respect to the hypothesis.

3. Presentation and interpretation on whether test assumptions are met
Checks should have been made that the data does not significantly deviate
from normal by computing z-values for skewness and kurtosis and checking
that these z-values fall between plus and minus 1.97.

If a within-subjects ANOVA was used, the results from Mauchly’s test of spheric-
ity should have been presented. Also an explanation of the implications this
decision has for the within-subjects ANOVA analysis. That is, if the significance
value is not computed or less than 0.05 then the Greenhouse–Geisser results
should be used, whilst if the value is above 0.05 then the sphericity assumption
results should be employed.

4. Presentation of what is inferred from the t-test or within-subjects
ANOVA
Paired t-test: t-value, the degrees of freedom and the significance value
from the t-test should have been presented. A comment should have been
made on what the significance of t means.

Within-subjects ANOVA: the F-value, the degrees of freedom and the signi-
ficance value from the ANOVA should have been presented. A comment
should have been made on what the significance of F means.

5. Clear statement, with reasons, of which hypothesis is accepted and
which is rejected

6. Clear statement, with reasons, of what you concluded with respect
to the research question 

Scenario Five

1. Presentation and interpretation from descriptive statistics
A correlation matrix should have been presented. For each predictor vari-
able comments should have been made as to the direction, strength and
significance of their relationship with the dependent variable.
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An examination of the correlations between the predictor variables should
have been made to see if this suggests problems of multicollinearity.

Credit was given if a scattergram was included with appropriate regression
lines and interpretative comments. However, the inclusion of the regression
lines was not essential to gain full marks.

2. Presentation of what is inferred from the multiple regression
The simplest method would have been to select a backward method but the
same result could have been achieved by employing an Enter method and
then a stepwise method. The results would have been the same but there
would theoretically be an increased risk of committing a Type I error.

If an Enter method analysis was executed first then the following should
have been presented and interpreted for the first model containing all of
the predictor variables:

R, R Square
F, Sig. F
B, Beta, t and Sig. t

The results of the final model of the stepwise or backward method should
then have been included but the interpretation may be restricted to the
final model. These should include all of the above, namely

R, R Square
F, Sig. F
B, Beta, t and Sig. t

In addition the final regression equation should be presented:

Atherosclerosis = .069Age + .418Inactivity + .646Type_A - 9.961

An explanation of what this equation means should have been given.

3. Clear statement, with reasons, of which hypotheses were accepted
and which were rejected 

4. Clear statement, with reasons, of what you concluded with respect
to the research

Scenario Six

1. Presentation and interpretation from descriptive statistics
Means, standard deviations and group sizes for each main effect and the
interaction should have been presented.

Comments, with explanations, should have been made as to whether the
above values suggest support for each hypothesis.

2. Presentation and interpretation from graphical representations
An appropriate line graph should be presented. This graph should have a
title, clearly labelled axes and a legend. Comments should be made as to
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what is interpreted from this graph, especially with respect to the hypothe-
sis concerning the interaction between the factors.

3. Presentation and interpretation on whether test assumptions are met
Checks should have been made that the data does not significantly deviate
from normal by computing z-values for skewness and kurtosis and checking
that these z-values fall between plus and minus 1.97.

The results from Levene’s test for equality of error variance are not very use-
ful as they are comparing the variance of the experts and novices in each of
the levels of arousal. It would be easier to simply run one of the Descriptive
Statistics options (e.g. Explore) to compute the variances. This would have
meant you could have compared the variances for the expert group (com-
bining both high and low arousal groups) and the novice group (combining
both high and low arousal groups) to see if the variances were sufficiently
different to have implications for Type I error. You could then have com-
pared the variances of the low arousal group (combining both experts and
novice groups) with the high arousal group (combining both experts and
novice groups). Had you done this you could then have presented an expla-
nation of whether the assumption of homogeneity is met and what the
implications are of this for the ANOVA analysis and the interpretation of the
significance values.

4. Presentation of what is inferred from the factorial ANOVA
The relevant results from the ‘Tests of Within-Subjects Contrasts’ have been
pasted into the answer. These should have included the F-values, the
degrees of freedom and the significance values for each of the main effects
and the interaction should have been presented. A comment should have
been made on what the significance of F means in each case. This should
then have been repeated for the ‘Tests of Between-Subjects Effects’ table.

5. Clear statement, with reasons, of which hypotheses were accepted
and which were rejected 

6. Clear statement, with reasons, of what you concluded with respect
to the research question 
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Appendix 4
ILLUSTRATION OF HOW
CHAPTER 13 MIGHT BE
COMPLETED USING THE
DATA ON PAGE 74

Research Question

What is the effect of experience on pre-performance
anxiety in scuba divers?

The null hypothesis to be tested is as follows:

H0 There is no significant difference in the mean anxiety
scores of beginners and intermediate scuba divers

As an alternative to this null hypothesis the following one-tailed experimental
hypothesis was postulated:

H1 Beginner scuba divers will have higher mean anxiety
scores than intermediate divers

1. Interpretation from Descriptive Statistics

From Table A4.1 it can be noted that the results are in agreement with the
experimental hypothesis as the beginners group have a mean anxiety score that
is 1.45 points higher than that obtained from the intermediate group.

However, Table A4.1 also indicates that the standard deviation values are quite
large in comparison with the mean difference. This will result in a large overlap
in the distribution of the two groups of scores, suggesting that the observed dif-
ference in the two means is unlikely to prove to be statistically significant.
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2. Interpretation from Graphical Representations

This interpretation is confirmed by the boxplot in Figure A4.1 that displays a
small difference in the medians and a large overlap in the two sets of scores.

In the boxplot for the beginners it can be seen that the median is in the mid-
dle of the box and the ‘whiskers’ are of approximately equal length. This sug-
gests that this data is symmetrically distributed. The boxplot for the
intermediate group is very similar except that the two whiskers are of slightly
different length. This suggests that the data will be slightly, but probably not
significantly, skewed. As the two boxplots overlap a great deal on the anxiety
dimension this offers support for the null hypothesis.

3. Comments on Whether Test Assumptions Are Met

To measure the probability of finding a mean difference as large as 1.45 by
chance a t-test for independent samples was selected. This test was chosen to
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Table A4.1 Descriptive statistics

Mean Standard deviation Variance

ALL 17.25 6.37 40.59
Beginners 18.15 5.06 25.61
Intermediate 16.70 6.18 38.22
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Figure A4.1 Boxplot displaying anxiety scores for beginners and
intermediate scuba divers
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detect the difference as the hypothesis was concerned with differences and
there was only one independent variable, namely experience, and one depen-
dent variable, namely anxiety.

In employing this test we are making three assumptions. These are that anxi-
ety is measured on an interval scale, that anxiety is normally distributed and that
the variances of the two groups are equal

3 ( a )  I N T E R V A L D A T A

It is assumed that the anxiety scale employed produces interval data.

3 ( b )  N O R M A L D I S T R I B U T I O N

To see if the data is normally distributed the kurtosis and skewness values were
computed and are shown in Table A4.2.

To measure the probability that the scores displayed significant kurtosis or
skewness the values of each attribute were divided by their standard error. As
none of these values are greater than 1.97 we conclude that the data does not
significantly (p > 0.05) depart from a normal distribution.

3 ( c )  E Q U A L V A R I A N C E

To see if the assumption of homogeneity of variance was met the variances of
the two groups were inspected in Table A4.1. From this table we can note that
the variances do not appear to be very different as they have values of approx-
imately 25 and 38. As the data was considered to be normally distributed,
Levene’s test was used to confirm this observation; that is, to test the null hypo-
thesis that there is no significant difference in the variances of the two samples.
This test produced the statistics in Table A4.3.

As the probability of getting a value of F of 1.517 by chance is 22.6% we
accept the null hypothesis and conclude that the variances are not significantly
different.

As the assumptions of normality and equal variance were met a t-test was
employed and this produced the results in Table A4.4.
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Table A4.2 Kurtosis and skewness values

Beginners Kurtosis S.E. Kurt K/S.E.K. Skewness S.E. Skew S/S.E.S.

-.74 .99 -.75 -.06 .5120 -.12

Intermediate Kurtosis S.E. Kurt K/S.E.K. Skewness S.E. Skew S/S.E.S.

-1.30 .99 -1.34 .31 .51 .61

Table A4.3

Levene´s Test for Equality of Variances F 1.517 P    .226==
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4 .  W H A T Y O U I N F E R F R O M T H E S T A T I S T I C A L T E S T S

E M P L O Y E D

As the variances were not considered to be significantly different, the row
headed ‘Equal’ in Table A4.4 was examined. When the mean difference of 1.45
was divided by the standard error of 1.786 this produced a value of t that
equalled 0.81. The two-tailed significance associated with this value of t with
38 degrees of freedom was 0.422. However, as the experimental hypothesis was
one-tailed this value has to be divided by 2 to produce a probability of 0.211.
Therefore 21 times out of 100 a mean difference of 1.45 would be obtained from
drawing two samples of 20 from the same population.

5. Which Hypotheses You Accept and Reject

As this probability is greater than the 5% significance criterion to be employed,
the null hypothesis is accepted and therefore the alternate hypothesis is
rejected.

6. What You Conclude with Respect to the Research Question

Therefore we conclude that there is no significant difference in the anxiety
scores of beginner and intermediate scuba divers.

Table A4.4 t-tests for independent samples for mean difference of 1.45

Variances t-value df Two-tail significance SE of differences

Equal 0.81 38 0.422 1.786
Unequal 0.81 36.6 0.422 1.786
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alpha see significance level
alternate/experimental hypothesis 44, 48,

64–5, 205
analysis of variance (ANOVA) 6, 109, 187

advance applications 144–62
assumptions 90–2
between-groups one-way 79–98,

101–2, 122
factorial 129–43
multiple one-way 130–1
one-way, linear trend 157–62
within-groups one-way 114–28

analytical comparisons 99–113, 125–8
a priori comparisons 102–5, 108–9
area under the curve 30–3, 35
array 9, 11

backward deletion 186
backwards multiple regression 188–91
bell-shaped curve see normal distribution
beta level 45
between-groups one-way ANOVA 79–98,

101–2, 122
between-groups sum of squares 83–5,

86, 119
between-groups variance 81, 82, 116–17
bimodal samples 16
bivariate regression 180–2
Bonferroni adjustment 125–6
Bonferroni-type adjustment 107–8, 128
boxplots 18–19, 26, 88–9, 137, 205

ANOVA 94
equal variance 53
factorial ANOVA 136

causal relationships 43, 47, 163, 205
central limit theorem 61
central tendency measures 15–17, 26, 205

see also mean; median; mode
chi square 205

circularity assumption see sphericity
assumption

class boundary 12, 205
classes 10–11
class limits 12, 205
class mark 12, 205
class width 11
coefficient of determination 171–2,

192, 194, 205
Cohen, J. 187, 188
Cohen, P. 187, 188
collinearity 194
conclusions 7
confounding factors 41–2
confounding variable 205
control groups 41, 42, 43, 66, 205–6
correlational research 163, 206
correlation coefficients 169–74,

187, 192–3
Pearson 171, 172–4
Spearman’s rank 172

correlations
first-order partial 183
partial correlation 182–4
second-order partial 183
semi-partial 182, 184, 193

counterbalancing 42, 206
cubic trends 159, 162
cumulative frequency curves 13–14
cumulative frequency distribution 13–14

data
collection 6, 43, 46–7
levels of 19–20
snooping 99–102
transformation 179

degrees of freedom
definition 206
sum of squares 84–5, 117, 119
t value 64, 67, 68
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demand characteristics 206
demand curve 13
dependent variables 40–1, 43, 49, 53,

54–5, 65, 206
non-parametric tests 54
one-way ANOVA 80
parametric tests 90
t-tests 61

descriptive statistics 6, 9–28, 30, 206
doubly multivariate repeated measures

design 153
factorial ANOVA 135
SPSS 36–8

dispersion measures 20–6, 206
doubly multivariate repeated measures

design 152–6

error 81–2
see also standard error
factorial ANOVA 131–2
one-way ANOVA 116–17
sampling 50, 58–78, 103–4
Type I 45–6, 55, 66, 110

ANOVA 92, 120
Bonferroni-type adjustment 107–8
definition 209
doubly multivariate repeated measures

design 156
multiple one-way ANOVA 131
multiple regression 187–8
multiple t-tests 80, 115
non-orthogonal comparisons 107
unplanned comparisons 99, 100, 101

Type II 45–6, 55, 66
definition 209
multiple regression 187–8

error bar 206
experimental design 55
experimental group 206
experimental hypothesis 44, 48, 64–5, 205
experimental research 40–57, 206
experimenter effects 206
extraneous/irrelevant variables 41, 43, 54,

65, 132, 207

factorial ANOVA 129–43
assumptions 131
simple effects 144–52

Fidell, L. S. 91–2, 151, 187
first-order partial correlation 183
forward selection 186
frequency distribution 10–12, 15

frequency polygon 12
F-statistic 82, 84, 116, 134, 159, 175
F-tables 85, 159
F-tests, univariate 107–8

graphs 12–15
boxplots 18–19, 26, 53, 88–9, 94,

136, 137, 205
cumulative frequency curves 13–14
error bar 206
histograms 12, 17, 18, 26, 50, 90, 207
scattergrams 164–5, 170, 174, 179,

180–1, 189
Greenhouse-Geisser statistics 121–2, 123,

154, 156

Helmert comparison 126, 127
hierarchical multiple regression 182, 186,

187, 194
histograms 12, 17, 18, 26, 50, 90, 207
homogeneity of variance 53, 54, 71, 110

factorial ANOVA 137–8
SPSS 91
t-tests 61

hypotheses
see also null hypothesis
alternate/experimental 44, 48, 64–5, 205
definition 207
generation 5–6
inferential statistics 6–7
testing 40, 44–5
types 64–5

independence of observations 90
independent groups design 42, 49
independent t-tests 61, 70–2, 73–7
independent variables 40–1, 42, 43, 49,

54–5, 65, 207
inference, logic of 43–4
inferential statistics 6–7, 40, 207
interaction effects 130, 132–4, 139
intercept, regression line 168–9, 174,

181, 207
inter-individual variability 81, 116,

117, 132
interquartile range 207
interval scale 20, 26, 80, 207

correlation 172
parametric assumptions 49, 53, 55, 90

intra-individual variability 81, 116, 117, 132
irrelevant/extraneous variables 41, 43, 54,

65, 132, 207
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Keppel, G. 91, 120
kurtosis

definition 207
factorial ANOVA 135, 136
parametric assumptions 50, 51–2,

55, 90

least significant difference 99, 100
leptokurtic curves 52
Levene’s test for equality of variance 71, 73,

91, 110, 137
linear regression 163–78
linear relationships 170
linear trend, one-way ANOVA 157–62
log transformation 179

main effects 144–5
MANOVA 147, 149, 151, 152
matched pair design 42, 49
matching 207
Mauchly’s test 120–1, 123
mean 6, 15, 16–17, 20, 21–2, 26

definition 207
normal distribution 30, 31–2,

34, 35
null hypothesis 66
population 48, 58, 59
sample 48, 58, 59
skewed distributions 18
standard deviation 24

mean square 84, 86–7, 117, 138
factorial ANOVA 138
linear trend 158–9
residual 122

median 15, 16–17, 26
boxplots 18, 19
definition 207
skewed distributions 18, 20

methodology 6
mixed design 49, 140, 142–3, 144
mode 15–17, 26, 207
multicollinearity 194
multi-modal samples 16
multiple one-way ANOVA 130–1
multiple regression 179–97

backwards 188–91
hierarchical 182, 186, 187, 194
standard 182, 185, 194
statistical 182, 186, 194

multiple t-tests 80, 99, 115
multivariate repeated measures design,

doubly 152–6

nominal scale 20, 26, 53, 208
non-orthogonal comparisons 105, 107,

108, 109
non-parametric tests 49, 53–4, 58, 208
normal distribution 29–39, 48

definition 208
factorial ANOVA 135, 136
parametric assumptions 49–52, 55,

90–1
t-tests 61

notation 3–4, 209–10
null hypothesis 44, 45, 48, 54–5, 64–7, 208

difference and relationships 46–7
factorial ANOVA 129–30
linear regression 164, 174, 175–6
multiple regression 179–80
one-way ANOVA 79–80, 99, 114–15
t-tests 61

one-tailed hypothesis 44–5, 65, 67, 208
factorial ANOVA 135
significance level 69–70, 72

one-way analysis, planned tests 103
one-way ANOVA 99

assumptions 80, 115–16, 120–2
between-groups 79–98, 101–2, 122
linear trend 157–62
multiple 130–1
within-groups 114–28

order effects 41–2
ordinal scale 20, 26, 53, 208

correlation 172
non-parametric tests 54

orthogonal comparisons 105–7, 110,
126, 128

outliers 18, 19
overlapping variance 182, 184–5, 186

paired samples t-test 60–4, 70–1,
72–3, 104

parameters 58, 73
parametric tests 49–53, 55, 58,

73, 208
assumptions 49–53, 55, 90–2
power 54

partial correlation 182–4
partial regression 192, 193
participant variables 41
Pearson correlation coefficient

171, 172–4
percentiles 18
planned comparisons 102–5, 109–11, 187
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platykurtic curves 52
population 47–8, 66

definition 208
mean 48, 58, 59
parameters 58, 73
variance 58

post-hoc tests 99–102, 109, 208
factorial ANOVA 139

power
definition 208
non-parametric tests 54
parametric tests 54
unplanned comparisons 100

practical significance 46

quadratic trends 159, 162

random assignment 42
random fluctuations 81, 116,

117, 132
random samples 48, 58, 59
range 9–10, 11, 21, 208
ranking 54
rates of change 13, 166
regression

coefficient definition 208
line 164–9, 174, 181, 192–3, 208
linear 163–78
multiple 179–97
partial 192, 193
setwise 182, 194
stepwise 182, 186, 187, 194

related samples 49
relationships 157

difference distinction 46–7
linear regression 163–78
multiple regression 179–97

reliability, correlation coefficients 171
repeated measures design 41, 42, 49, 70,

116, 120–1
doubly multivariate 152–6

representative samples 47–8
research, experimental 40–57
research question 49, 55

factorial ANOVA 129
identification 5
linear regression 163–4
multiple regression 179
one-way ANOVA 79, 114

residual sum of squares 117–19
robustness, parametric tests 54

R Square 192, 194
R Square Change 193

sample 47–8, 60, 66
definition 209
mean 48, 58, 59
random 48, 58, 59
related 49
statistics 58

sample size 9, 26, 34
correlation coefficient 187
independent t-test 70
non-parametric tests 54
sampling error 59
standard error 61, 62
sum of squares 22
t value 68–9

sampling error 50, 58–78, 103–4
scale 49, 53, 54, 55

see also interval scale
nominal 20, 26, 53, 208
ordinal 20, 26, 53, 54, 172, 208

scattergrams 164–5, 170, 174, 179,
180–1, 189

Scheffe’s confidence interval 100–1
Scheffe’s test 100–2, 109
second-order partial correlation 183
semi-partial correlation 182, 184, 193
setwise regression 182, 194
significance level 44, 45–6, 54–5

ANOVA 91–2
definition 209
non-orthogonal comparisons 107
one-tailed hypothesis 69–70, 72
t value 65–6, 68–9
two-tailed hypothesis 69–70

significant difference 43–4
factorial ANOVA 135–6, 137
parametric tests 54
relationships distinction 46–7

simple effects, factorial ANOVA 144–52
situational variables 41, 81, 132
skewness 17–18, 19, 20, 26, 209

factorial ANOVA 135, 136
parametric assumptions 50–1,

55, 90
slope, regression line 165–8, 174,

181, 192–3
Spearman’s rank correlation 172
sphericity assumption 115–16, 121–2, 123,

154, 156, 209
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SPSS
backwards regression 188–91
between-groups one-way ANOVA

87–90, 92–8
Contrast command 108–9
correlation coefficients 172
descriptive statistics 36–8
doubly multivariate repeated measures

design 152–6
factorial ANOVA 134–9, 141, 142–3
homogeneity of variance 91
independent t-tests 71, 73–7
linear regression 174–8
multiple regression 195
one-way ANOVA 85, 102, 159–60
paired samples t-test 72–3
planned comparisons 109–11
post-hoc tests 100
‘Sig.’ values 67, 71
skewness 51
sphericity 121–2, 123
standard multiple regression 185
Syntax window 145–52
t-tests 61
within-groups ANOVA 125–7

standard deviation 6, 23–6, 209
normal distribution 30–2, 34, 35
null hypothesis 66
z-score 62

standard error 61–2, 175
definition 209
independent t-test 70, 71
kurtosis 52
multiple regression 192
paired samples t-test 72
skewness 50, 51

standardised regression coefficients
193, 194

standardised slope, regression line 193
standard multiple regression 182,

185, 194
statistical multiple regression 182,

186, 194
stepwise regression 182, 186, 187, 194
subject sum of squares 118
sum of products 167
sum of squares 22, 83–7, 117–20

between-groups 83–5, 86, 119
definition 209
factorial ANOVA 138
linear trend 158, 159

sum of squares cont.
residual 117–19
subject 118
within-groups 83–5, 86–7, 119

symmetrical distributions 17, 18, 19,
20, 21, 26, 50, 209

see also normal distribution

Tabachnick, B. G. 91–2, 151, 187
treatment variability 81
trends, one-way ANOVA 157–62
t-statistic 62, 64–6, 108–9
t-tables 64, 67–8
t-tests

ANOVA relationship 92
assumptions 61
independent 61, 70–2, 73–7
multiple 80, 99, 115
paired samples 60–4, 70–1, 72–3, 104

two-tailed hypothesis 44–5, 65, 67, 68
definition 209
significance level 69–70

Type I error 45–6, 55, 66, 110
ANOVA 92, 120
Bonferroni-type adjustment 107–8
definition 209
doubly multivariate repeated

measures design 156
multiple one-way ANOVA 131
multiple regression 187–8
multiple t-tests 80, 115
non-orthogonal comparisons 107
unplanned comparisons 99, 100, 101

Type II error 45–6, 55, 66
definition 209
multiple regression 187–8

univariate F-tests 107–8
univariate tests 155, 156
unplanned comparisons 99–102, 109

variance 21–3, 26, 49, 55
see also analysis of variance
between-groups 81, 82, 116–17
definition 209
homogeneity 53, 54, 61, 71, 91, 110,

137–8
independent t-test 70
Levene’s test for equality 71, 73, 91,

110, 137
overlapping 182, 184–5, 186
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variance cont.
parametric tests 90
sampling error 58, 59
standard error 62
t-test 63
within-groups 80–1, 82, 91, 116–17

Venn diagram 182, 184–5, 186

weightings 104–6, 109, 110, 161
Wilcox, R. R. 91

within-groups one-way ANOVA 114–28
within-groups sum of squares 83–5,

86–7, 119
within-groups variance 80–1, 82, 91,

116–17

z-distribution 68
z-score 32–4, 35, 61–2
z-table 34, 50, 51
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