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Preface 

This book presents mathematical descriptions of behavior of crystalline 
solids following theoretical methods of modern continuum mechanics.  
Emphasis is placed on geometrically nonlinear descriptions, i.e., finite or 
large deformations.  Topics include elasticity, plasticity, and ways of rep-
resenting effects of distributions of defects or flaws in the solid on the ma-
terial’s thermomechanical response.  Defects may include crystal disloca-
tions, point defects such as vacancies or interstitial atoms, rotational 
defects, deformation twins, voids or pores, and micro-cracks.  Representa-
tive substances towards which modeling techniques forwarded here may 
be applied are single crystalline and polycrystalline metals and alloys, ce-
ramics, minerals, and other geologic materials and their constituents.   

An early and substantial part of the text is devoted to kinematics of fi-
nite deformations, multiplicative inelasticity, and representations of lattice 
defects in a differential-geometric setting.  An accurate depiction of kine-
matics is deemed necessary in order to accompany rigorous models of 
thermodynamics and kinetics of material behavior, since kinematic as-
sumptions tend to enter, implicitly or explicitly, subsequent thermody-
namic and kinetic relations.  Descriptions and derivations of fundamental 
mechanical and thermodynamic balance laws and inequalities are then 
given.  Constitutive frameworks are provided for representing thermome-
chanical behaviors of various classes of crystalline materials: elastic solids, 
elastic-plastic solids, generalized inelastic solids with lattice defects, and 
dielectric solids.  In each case, material responses corresponding to large 
deformations are emphasized, though complementary geometrically linear 
theories are included in some cases for completeness and for comparison 
with their nonlinear counterparts.  General kinetic concepts are described, 
but relatively less attention is directed towards development of specific ki-
netic relations, since these tend to be more strongly dependent upon micro-
structures of particular materials (e.g., crystal structure or chemical com-
position) within each general class of materials considered.  Appendices 
provide supporting discussion on crystal symmetry and material coeffi-
cients, atomistic methods (i.e., lattice statics and origins of stress and elas-
tic coefficients), and elastic models of discrete line and point defects in 
crystals.  The content of this book consists of a combination of the author’s 
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interpretation and consolidation of existing science from historic and more 
recent literature, as well as a number of novel—and sometimes less con-
ventional—theoretical modeling concepts, the latter often presented, de-
veloped, or refined by the author (and collaborators in many cases) in a 
number of archival publications over the past ten years.  With a few excep-
tions, the text is written in the context of generalized (e.g., curvilinear) co-
ordinates, a rarity among other recent texts and monographs dealing with 
similar subject matter. 

This book is intended for use by scientists and engineers involved in ad-
vanced constitutive modeling of nonlinear mechanical behavior of crystal-
line materials.  Knowledge of fundamentals of continuum mechanics and 
tensor calculus is a prerequisite for accessing much of the material in the 
text.  The book could conceivably be used as supplemental material in 
graduate-level courses in continuum mechanics, elasticity, plasticity, mi-
cromechanics, or dislocation mechanics, for students in various disciplines 
of engineering, materials science, applied mathematics, or condensed mat-
ter physics.  

A number of individuals have contributed, directly or indirectly, to the 
content or production of this work; a number have suggested specific 
changes to early drafts resulting in significant overall improvement to the 
final manuscript.  Technical discussions, interactions, and/or close collabo-
rations with the following individuals over the past decade are gratefully 
acknowledged (in alphabetical order): Doug Bammann, Peter Chung, 
Datta Dandekar, Misha Grinfeld, Jarek Knap, Dave McDowell, Rich 
Regueiro, Mike Scheidler, and Tim Wright.  However, any technical in-
consistencies, unjust omissions, or errors that may remain are entirely my 
own.  I also appreciate support and resources of the U.S. Army Research 
Laboratory (formerly known as U.S. Army Ballistics Research Laborato-
ries), including a diligent library staff that was able to efficiently provide 
or obtain a number of historical works referenced in this text.  Finally, I 
am most appreciative of my wife and daughter, who have remained sup-
portive and patient during the many hours I have spent working on this 
book over the past 3½ years. 

 
 
 

John D. Clayton 
Aberdeen, Maryland, USA 

       2010 
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1 Introduction 

1.1 Objectives and Scope 

This book presents modeling techniques, primarily from the standpoint of 
modern continuum mechanics, for describing the nonlinear response of 
crystalline solids subjected to mechanical loading or deformation.  This re-
sponse may be deformation induced by applied loading, or the forces re-
quired to induce such deformation.  Nonlinearity may emerge in the geo-
metric sense, pertaining to finite deformations, and/or in the material 
sense, pertaining to nonlinear relationships among independent and de-
pendent state variables, for example relationships between strain and 
stress.  Though mechanical behavior is of primary interest in this book, 
thermodynamic principles are exercised for developing descriptions of ma-
terial behavior also dependent on temperature and internal state variables 
and consistent with known balance laws or inequalities such as conserva-
tion of energy and production of entropy.  

Though some physical and mathematical principles applicable towards 
descriptions of all kinds of materials are supplied in early Chapters, the 
content of this book is primarily focused on crystalline solids.  A crystal 
refers to a body whose atoms occupy an ordered, repeating structure called 
a lattice.  Defects in the crystal may disrupt the regularity of the lattice, 
and certain types of point, line, and surface defects are addressed explicitly 

so long as a large percentage of its atoms maintain a repeating, ordered 
structure.  In various instances throughout the text, single- or polycrystal-
line materials are considered, as are homogeneous and heterogeneous sol-
ids.  In a single crystal, the lattice is for the most part aligned in a uniform 
orientation, whereas a polycrystal consists of multiple single crystals or 
grains aligned in potentially different directions, with constituent crystals 

variations in material properties, for example composites consisting of dif-
ferent phases with different chemical compositions or different crystal 

 

in this book.  A body with defects is still considered here to be crystalline 

separated by grain boundaries.  Heterogeneous materials exhibit spatial 

DOI 10.1007/978-94-007-0350-6_1, © Springer Science+Business Media B.V. 2011 
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2      1 Introduction 

structures.  Specific examples of heterogeneous solids include metal-
matrix composites and geologic and cementious materials with several 
crystalline constituents, e.g., minerals of various crystal structures.  In con-
trast, single crystals are conventionally idealized as homogeneous, at least 
when their defect content is low.  During the course of deformation or a 
change in environment, initially homogeneous single crystals can become 
heterogeneous.  For example, misoriented subgranular regions can emerge 
within metallic crystals deformed plastically to large strains. 

Detailed consideration of material nonlinearity requires a description of 
microstructure and defects in the solid, including effects of such defects on 
kinematics of deformation and on the thermodynamic state of the material.  
Furthermore, kinetic relations are often required to dictate the temporal 
evolution of defect distributions and to account for their motions and dissi-
pated energy during time-dependent problems.  Defects considered explic-
itly in this text include distributions of dislocations, rotational line defects, 
deformation twins, vacancies, and voids.   

Chapter 2 provides mathematical background used subsequently 
throughout the text.  Chapter 2 begins with a description of general curvi-
linear coordinates and related definitions from differential geometry and 
tensor algebra on manifolds.  Such definitions emerge frequently later in 
presentations of theories of continuously distributed lattice defects.  A 
thorough treatment of the deformation gradient, a fundamental kinematic 
variable used in continuum mechanical descriptions of constitutive behav-
ior, is provided.  This treatment includes discussion of push-forward and 
pull-back operations, useful identities associated with the deformation gra-
dient, and deformation measures derived from it.  Chapter 2 also presents 
two identities from tensor calculus used often later in the text: Gauss’s 
theorem—a particular version of which is often called the divergence theo-
rem—and Stokes’s theorem.  Compatibility conditions for finite deforma-
tion are discussed, and anholonomic spaces are introduced.   

Chapter 3 focuses on descriptions of deformation kinematics of crystal-
line bodies.  This Chapter begins with the fundamental hypothesis of 
Cauchy and Born describing homogeneous deformations of Bravais lattice 
vectors and basis vectors comprising the structure of a perfect crystal.  
Kinematics of multiplicative inelasticity is then considered.  The interme-
diate configuration that emerges under the assumption of multiplicative de-
formation gradient kinematics is addressed from a general geometric point 
of view, regardless of the physical origin of inelastic response.  Then par-
ticular physical sources of non-recoverable deformation are treated in vari-
ous kinematic descriptions.  These include dislocation-based large defor-
mation plasticity of single- and polycrystalline materials, generation and 
motion of point defects, porosity evolution, and sources of residual elastic 
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deformation of the lattice emerging from multiscale considerations.  Chap-
ter 3 then addresses generalized continua embedded with additional kine-
matic degrees of freedom that describe spatial gradients of deformation of 
lattice director vectors, whereby locally inhomogeneous deformations can 
often be associated with the presence of lattice defects.  These additional 
degrees of freedom are introduced in the differential-geometric context of 
a linear connection on a spatial manifold whose tangent bundle is spanned 
by a field of deformed director vectors.  Geometric properties of the con-
nection enable physical characterization of deformation incompatibilities 
resulting from continuous distributions of line and point defects.   

Chapter 4 features general, traditional thermodynamic relationships and 
balance laws governing nonlinear behaviors of continuous bodies.  The 
discussion begins with presentation of traditional mass, momentum, and 
energy balances.  Mappings of balance equations among configurations or 
deformation states are given.  Thermodynamic potentials are defined.  The 
internal state variable concept is introduced, enabling representation of ef-
fects of defects or evolving microstructure in the description of the ther-
modynamic state of the material.  The dissipation inequality is presented, 
followed by a brief introduction to kinetic relations and dissipation poten-
tials.  Governing equations for generalized continua supporting higher-
order stresses (e.g., couple stresses) and those incorporating electrome-
chanical effects are addressed on a case-by-case basis in later Chapters. 

Chapter 5 considers elastically deforming solids, a description most ap-
plicable to defect-free crystals or to those wherein any effects of defects 
are not considered explicitly.  Constitutive functions and thermodynamic 
relationships are presented for crystals displaying a hyperelastic response 
with temperature changes.  Thermoelastic material coefficients pertinent to 
arbitrary three-dimensional stress states, and then those specifically appli-
cable to (but not always limited to) spherical stress states, are defined or 
derived.  Reductions of the general theory of nonlinear anisotropic ther-
moelasticity under conditions of material linearity, geometric linearity, and 
isotropic symmetry are described.  A thorough presentation of symmetry 
operations, anisotropy, and material coefficients for all thirty-two crystal 
classes is provided as supplementary supporting material in Appendix A.  
An alternative version of finite elasticity with explicitly delineated me-
chanical and thermal deformations is then developed.  Next, Lagrangian 
field theory of elasticity is presented, wherein governing equations are de-
duced from Hamilton’s principle.  Chapter 5 concludes with a discussion 
of second-grade hyperelasticity, a kind of generalized continuum theory.   

Chapter 6 deals with elastoplastic materials.  The kinematic description 
consists of a multiplicative decomposition of the deformation gradient into 
two terms: the lattice-altering thermoelastic deformation associated with 
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mechanical stresses and temperature changes, and the lattice-preserving 
plastic deformation resulting from glide of dislocations.  Thermodynamic 
relationships are derived via consideration of thermodynamic potentials on 
a per-unit-volume basis in the thermoelastically unloaded intermediate 
configuration.  A variant of the so-called Eshelby stress emerges as a work 
conjugate stress measure to the plastic velocity gradient.  This stress meas-
ure is examined in some detail in a later Section of Chapter 6.  The stored 
energy of cold working—reflected via internal state variables related to de-
fects and microstructural features—is considered.  Specific applications of 
the general finite deformation theory towards describing plasticity result-
ing from distributed line defects (i.e., dislocation dynamics) and crystallo-
graphic slip on discrete glide systems (i.e., crystal plasticity) are discussed 
in turn.  Kinetic equations for plastic flow and time rates of internal vari-
ables are considered briefly in each case.  Reduction of the finite deforma-
tion theory to geometrically linear elastoplasticity is presented for com-
pleteness.  Chapter 6 concludes with description of a generalized 
continuum theory incorporating second-grade elasticity with multiplicative 
elastic-plastic kinematics. 

Chapter 7 addresses large deformation kinematics and internal forces 
arising from defects in crystalline solids by combining a nonlinear kine-
matic description with multiscale averaging concepts.  An element of ma-
terial containing defects such as dislocation lines and loops is considered.  
The average deformation gradient for this element is decomposed multipli-
catively into terms accounting for effects of dislocation flux, recoverable 
elastic stretch and rotation, and residual elastic deformation associated 
with self-equilibrating internal forces induced by defects.  Two methods 
are considered for quantifying the average residual elastic deformation 
gradient: continuum nonlinear elasticity and discrete lattice statics.  Vol-
ume changes resulting from point defects such as vacancies are discussed 
in the final Section of Chapter 7.  Supporting background information on 
lattice statics pertinent to the content of Chapter 7, including atomic ori-
gins of elasticity coefficients, is provided in Appendix B.  Pertinent sup-
porting information on residual elastic stress fields and strain energies in-
duced by line and point defects is provided in Appendix C.   

Chapter 8 extends the introductory treatment of crystal plasticity devel-
oped in Chapter 6 to encompass thermoelasticity, residual elastic volume 
changes, plastic slip, and mechanical twinning in anisotropic single crys-
tals subjected to arbitrarily large deformations.  Dislocation glide and de-
formation twinning are treated as dissipative mechanisms, while energy 
storage mechanisms associated with dislocation lines and twin boundaries 
are described via internal state variables.  Shear strain rates for discrete 
glide and twinning systems are modeled explicitly.  Residual elastic vol-
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ume changes, predicted from nonlinear elasticity using theoretical methods 
developed in Chapter 7, are proportional to dislocation line length per unit 
volume and twin boundary area per unit volume.   

Chapter 9 broadens the constitutive description of elastoplastic materials 
to encompass a number of more general modes of inelastic deformation.  
The kinematic description forwarded in Chapter 9 features a three-term 
decomposition of the deformation gradient into recoverable elastic defor-
mation, lattice-preserving plastic deformation, and an intermediate term 
associated with irreversible lattice rearrangements.  A general thermody-
namic analysis proceeds with the intermediate term of the deformation 
gradient entering the thermodynamic potentials as a generic independent 
state variable, leading to general constitutive relationships and a reduced 
dissipation inequality.  Particular versions of this generic framework for 
inelasticity are then developed to address physics of isotropic void growth, 
pore compaction, and residual lattice deformation from defects.  The last 
Section of Chapter 9 describes a second-grade theory of elastoplasticity 
accounting for geometrically necessary dislocations and disclinations.  Mi-
cropolar kinematics and microscopic balance laws featuring higher-order 
stresses enter the description.  This nonlocal theory is intended to represent 
the constitutive response of ductile crystals exhibiting drastic microstruc-
tural changes such as grain refinement occurring during severe plastic de-
formation processes. 

Chapter 10 depicts the geometrically nonlinear response of dielectric 
crystalline solids.  A dielectric crystal is defined as an insulator (i.e., a non-
conductor of electricity) that may exhibit electric polarization.  Maxwell’s 
complete set of electrodynamic equations are presented; however, electro-
dynamics and magnetization are not formally addressed in the constitutive 
theory developed later in Chapter 10.  Rather, mechanical, thermal, and 
quasi-electrostatic behaviors, and their couplings, are considered simulta-
neously.  Forces of electromechanical origin contribute to balance laws of 
momentum and energy and the dissipation inequality, resulting in discrep-
ancies from the traditional continuum mechanical description of Chapter 4.  
In particular, the presence of Maxwell’s stress associated with nonlinear 
electromechanics can render the Cauchy stress, as defined in the present 
context, non-symmetric.  A thermodynamic treatment is developed that 
addresses dielectric, piezoelectric, pyroelectric, and electrostrictive phe-
nomena.  Material coefficients of various orders, and relationships among 
these coefficients, are defined or derived.  Reduction of the nonlinear the-
ory to the traditional geometrically and materially linear theory of piezo-
electric materials is presented for completeness. 

The following topics are not addressed extensively in this book: viscoe-
lastic behavior, lattice vibrations, acoustic wave propagation, electrody-
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namics (including optics), electrical conduction, magnetism, phase trans-
formations, mass transport, liquid crystals, or fracture mechanics of dis-
crete cracks.  Brief coverage of atomic lattice statics and dynamics is given 
in Appendix B; this Appendix does not, however, contain a complete de-
scription of classical particle mechanics, nor does it include discussion of 
electronic structure or fundamental topics in quantum mechanics.  

Because of the inherent nonlinearity of many of the models presented, 
numerical methods become necessary for obtaining solutions of the gov-
erning equations of mechanics when used in conjunction with many con-
stitutive relationships discussed in this book.  Methods for numerically ap-
proximating solutions of governing equations (with requisite boundary and 
initial conditions) of thermomechanical problems involving nonlinear con-
stitutive models are beyond the scope of this book.  Discussions of solu-
tions of specific boundary value problems are primarily limited, in this 
book, to those considered in the context of discrete, elastic defect models 
of Appendix C. 

1.2 Background 

An attempt to provide adequate historical perspective for the content of 
this book would require an entire volume in itself.  Instead, a brief collec-
tion of books and review articles is suggested below, and presumably ade-
quate historical context can be found, collectively, in these references.  
The list is limited to books and review articles published in the 20th century 
or later, and is divided into relevant categories.  Some of the listed refer-
ences clearly could belong to multiple categories.  Omission of other rele-
vant references is certain but is not intentional; those references listed be-
low have been particularly useful during preparation of this book. 

• Mathematics and geometry: Eisenhart (1926), Schouten (1954), Bril-
louin (1964), Marsden and Hughes (1983), Epstein and Elzanowski 
(2007) 

• Continuum mechanics: Eringen (1962), Sedov (1966), Malvern 
(1969), Gurtin (1981) 

• Elasticity: Love (1927), Landau and Lifshitz (1959), Wang and Trues-
dell (1973), Thurston (1974) 

• Plasticity: Hill (1950), Schmid and Boas (1950), Kocks et al. (1975), 
Lubliner (1990), Havner (1992), Khan and Huang (1995), Nemat-
Nasser (2004) 
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• Defect mechanics and micromechanics: Eshelby (1956), Nabarro 
(1967), Hirth and Lothe (1982), Mura (1982), Teodosiu (1982), 
Nemat-Nasser and Hori (1999), Phillips (2001), Buryachenko (2007) 

• Electromechanics: Stratton (1941), Landau and Lifshitz (1960), 
Maugin (1988), Jackson (1999) 

Also notable are books of Born and Huang (1954), Maradudin et al. 
(1971), and Wallace (1972) that consider atomic, and in some instances 
quantum mechanical, origins of thermoelastic and/or electromechanical 
behavior in crystals.  Finally, works by Truesdell and Toupin (1960) and 
Truesdell and Noll (1965), the former with an Appendix by Ericksen 
(1960), address many relevant topics in mechanics and provide an exten-
sive bibliography of historical contributions to the field. 

1.3 Notation 

Throughout the text, boldface type is generally used to denote vectors and 
tensors of higher order, while italic type is usually used for scalars and in-
dividual components of vectors and tensors.  Notable exceptions are the 
zero vector and null tensor, both of which are simply written in Roman 
font (i.e., not boldface).   

The index notation is used frequently for describing vector and tensor 
variables.  The index notation complements the direct or boldface notation, 
often providing increased clarification.  Another advantage of the index 
notation is that it is straightforwardly converted to computer programming 
languages enabling matrix operations (e.g., addition and multiplication) of-
ten involved in numerical solutions of boundary value problems.  The Ein-
stein summation convention is followed unless noted otherwise, with 
summation implied over repeated contravariant (superscript) and covariant 
(subscript) pairs.  For example, a scalar or dot product is computed as 

1 2 3
1 2 3

a
aV W V W V W V W= + +  for components of contravariant vector V and 

covariant vector W in three-dimensional vector space.   
In the index notation, fonts used for indices of vectors and higher-order 

tensors also follow a certain convention.  Specifically, indices associated 
with the spatial (i.e., deformed or current) configuration are usually written 
in lower case Roman font, e.g., aV .  Indices associated with the reference 
(i.e., undeformed or initial) configuration are usually written in upper case 
Roman font, e.g., AV .  Indices associated with other configurations (for 
example, one or more intermediate configuration(s) of multiplicative ine-
lasticity) are usually written in Greek font, e.g., V α .   



8      1 Introduction 

Regarding higher-order tensors, indices in parentheses are symmetric, 
and indices in braces are anti-symmetric (i.e., skew).  For example, let abA  
be covariant components of an arbitrary second-order tensor A.  Then 

( ) (1/ 2)( )ab baabA A A= + , [ ] (1/ 2)( )ab baabA A A= − , and ( ) [ ] abab abA A A+ = . 

Following the usual notation scheme of continuum mechanics, labels 
“order” and “rank” are used interchangeably throughout the text to denote 
the total number of associated indices (both contravariant and covariant) of 
tensors, matrices, and more general mathematical objects.  For example, a 
tensor A with contravariant components abA  is said to be of second order, 
or rank two.  A vector can be interpreted as a tensor of rank one, and a sca-
lar can be considered a tensor of rank zero.  The term “rank” as used here 
differs from formal definitions often encountered in linear algebra, 
wherein the rank of a matrix can depend on the number of linearly inde-
pendent rows or columns in that matrix.   

Another notational scheme concerns the differentiability of mathemati-
cal functions.  Terms “sufficiently differentiable” and “sufficiently 
smooth” are used interchangeably throughout the text to specify that de-
rivatives of adequate order exist, enabling validity of mathematical formu-
lae or definitions in a given context.  Formally, the term “smooth” usually 
refers to a function of class C∞ , while “sufficiently smooth” as used 
herein can be a weaker, i.e., less stringent, requirement. 

An additional point of clarification involves notation for the square root 
operation.  Let x denote a scalar.  Then the square root and its reciprocal 
are written in this book as 1/ 2x x=  and 1/ 21 1/x x x−− = = , respectively.  
Hence, 11 x x−− ≠  for any x.  To avoid confusion, roots other than the sec-
ond are written as exponents, i.e., as 1/ nx  ( 2n ≠ ± ) rather than as n x . 

In many cases, derivations of equations and relationships are written out 
in full, including algebraic and indicial manipulations that experienced 
readers may find routine.  While such a presentation results in some rather 
lengthy equations, it is hoped that the derivations will provide insight, for 
the novice, into the final expressions so obtained and enable the reader to 
easily verify correctness of the results.  An attempt is made to minimize 
use of the same symbol to represent quantities with different meanings; 
when such duplication is unavoidable, the meaning of a given symbol is 
clarified either explicitly or implicitly from the context in which it is used.   

Certain literary conventions are used throughout the text, and some of 
these should be clear to the reader already.  References are labeled in (au-
thor year) format and are compiled alphabetically at the end of the book, 
rather than in footnotes or on a chapter-by-chapter basis.  References to 
historical works published prior to year 1900 are omitted.  Author’s names 
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of non-Anglican origin are written in standard English language, with spe-
cial characters replaced in some cases by letters most similar in appear-
ance.  A subject index is provided at the end of the book, following the list 
of references. 



 



2 Mathematical Foundations 

Chapter 2 includes notation, definitions, and a number of identities that are 
applied subsequently in later Chapters of the text.  Emphasized are differ-
ential-geometric aspects of kinematics of finite deformations, linear con-
nections and covariant differentiation, the deformation gradient of contin-
uum mechanics, time derivatives and rate kinematics, theorems of Gauss 
and Stokes, and compatibility conditions. 

As will be clear in later Chapters, from the standpoint of crystals with 
defects, a geometric approach is advantageous for dealing with incompati-
ble material configurations not globally homeomorphic to, i.e., configura-
tions topologically inequivalent to, three-dimensional Euclidean space 
(Eckart 1948; Kondo 1949, 1964; Bilby et al. 1955; Truesdell and Noll 
1965; Noll 1967; Teodosiu 1967a, b).  Detailed descriptions invoking for-
malisms of tensor algebra and tensor calculus on differential manifolds 
have been devoted elsewhere to elasticity theory (Marsden and Hughes 
1983; Yavari et al. 2006) and general nonlinear continuum mechanics 
(Van der Giessen and Kollmann 1996; Stumpf and Hoppe 1997; Clayton et 
al. 2005; Epstein and Elzanowski 2007).  In many instances, the differen-
tial-geometric approach is favored over conventional Cartesian formula-
tions for the former’s generality in terms of available choices of coordi-
nates (e.g., curvilinear coordinates in the former versus rectangular 
coordinates in the latter) and representation of spaces with non-vanishing 
curvature (e.g., curved surfaces such as shells).  Compact, coordinate-free 
(i.e., component-free) representations are possible for many mathematical 
expressions and identities, and have become popular among many authors 
in recent literature.  However, coordinate-based representations are fre-
quently exercised in this text for clarity of presentation and for drawing 
comparisons with other treatments from historic and more recent literature.  
Hence, the index notation is used often in Chapter 2, especially in the con-
text of geometric objects such as connections, torsion, curvature, and im-
portant properties and mathematical identities for these objects.  

Included in Chapter 2 is only that content deemed relevant and neces-
sary for development of theories of material behavior in later Chapters.  
Comprehensive supplementary treatment of topics in differential geometry 
can be found in historical texts of Eisenhart (1926) and Schouten (1954), 

DOI 10.1007/978-94-007-0350-6_2, © Springer Science+Business Media B.V. 2011 
 11  J.D. Clayton, Nonlinear Mechanics of Crystals, Solid Mechanics and Its Applications 177,
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while more modern presentations can be found in monographs of Boothby 
(1975) and Kosinski (1993).  In-depth descriptions of continuum mechan-
ics in the setting of general curvilinear coordinates and finite deformations 
can be found in a number of texts, including those of Truesdell and Toupin 
(1960), Eringen (1962), Sedov (1966), Malvern (1969), Wang and Trues-
dell (1973), and Marsden and Hughes (1983).   

2.1 Geometric Description of a Deformable Body  

Section 2.1 addresses the following topics: terminology of geometric 
spaces in the context of continuum mechanics; configurations of a body 
subjected to large deformations; manifolds and associated tangent and co-
tangent spaces; coordinate systems; basis vectors and their reciprocal vec-
tors; and metric tensors.  

2.1.1 Terminology 

The definitions given immediately below are free of notation and hence are 
somewhat qualitative.  More precise mathematical formulae and supple-
mentary figures follow in Section 2.1.2 and later in Section 2.2. 

A configuration denotes a time-dependent realization of a body.  A body 
is said to consist of a number of material particles, each encompassing a 
representative set of atoms or molecules pertinent to the scale of resolution 
afforded by the continuum description.  A configuration may be actual or 
virtual (i.e., real or fictitious).  In finite deformation continuum mechanics, 
the terms reference, initial, undeformed, or Lagrangian configuration most 
often refer to a description of the body at zero time, though broader defini-
tions enabling multiple and evolving reference configurations are possible.  
Similarly, the current, spatial, deformed, or Eulerian configuration usually 
corresponds to the current instant of time.  In the absence of discontinui-
ties, reference and current configurations are holonomic to one another, 
implying that current coordinates of a material particle can be written as 
single-valued functions of reference coordinates of that particle, and vice-
versa.  In contrast, as will be demonstrated in Chapter 3, a virtual interme-
diate, relaxed, or unloaded configuration is often introduced, for example 
to describe crystals with distributions of defects or those undergoing large 
inelastic deformations.  Such an intermediate configuration is anholonomic 
when its “coordinates” cannot be prescribed as single-valued functions of 
reference or current coordinates of material particles.  The term placement 
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(Noll 1967; Maugin 1993) has also been used to refer to a configuration of 
a deformable body. 

A connection is a rank three construct that enables evaluation of the co-
variant derivative of vectors and tensors of higher rank.  The covariant de-
rivative operation defines the connection coefficients, also called Christof-
fel symbols of the connection in the context of Riemannian geometry.  The 
content of this book only deals with linear connections, also called affine 
connections.  Nonlinear connections can arise in more generalized spaces 
such as Finsler spaces (Rund 1959; Bejancu 1990) and are not addressed in 
this text. 

 A metric tensor, or simply a metric, is a rank two covariant tensor that 
defines the scalar product of contravariant vectors, and consequently, the 
squared length of a vector.  A metric tensor that is both symmetric and 
positive definite is called a Riemannian metric tensor1; non-Riemannian 
metrics are not considered explicitly in this text.  Metric tensors perform 
other consequential functions, such as raising and lowering of vector and 
tensor indices and defining scalar products of higher-order tensors.   

A particular configuration can be assigned more than one connection, 
just as it can be assigned more than one metric tensor.  The pair of {con-
figuration, connection} or triplet of {configuration, connection, metric ten-
sor} can often be classified as one or more of the following five types of 
geometric spaces: Euclidean, anholonomic, non-metric, Cartan, and/or 
Riemannian. 

For a space to be classified as Euclidean or non-Euclidean, it must in-
clude a configuration, a metric tensor, and a connection.  A Euclidean 
space satisfies three requirements: (i) the torsion tensor of the connection 
vanishes, (ii) the covariant derivative of the metric tensor vanishes, and 
(iii) the Riemann-Christoffel curvature tensor constructed from the con-
nection coefficients vanishes.  A Euclidean n-space permits at each loca-
tion a transformation from local, possibly curvilinear n-dimensional coor-
dinates to a global n-dimensional Cartesian coordinate system.  In 
continuum mechanics, both the reference and current configurations are 
typically viewed as three-dimensional Euclidean spaces, with the motion 
acting as a diffeomorphism, i.e., a differentiable homeomorphism, or a dif-
ferentiable one-to-one, invertible mapping, between these two configura-
tions (Stumpf and Hoppe 1997).  Notice the distinction between Euclidean 

                                                      
1 A non-Riemannian metric tensor need not be positive definite.  Such metrics 

can arise in more general geometric settings such as Finsler spaces, or for example 
Minkowski’s spacetime (Rund 1959; Synge 1960) wherein the determinant of the 
metric in 4-space can be negative in sign.  A non-symmetric fundamental tensor 
was suggested in Einstein’s unified field theory (Einstein 1945; Schouten 1954).  



14      2 Mathematical Foundations 

and Cartesian: a general coordinate system in the former, for example 
spherical coordinates in three dimensions, admits a global transformation 
to a more specific kind of coordinate system in the latter, i.e., coordinate 
axes consisting of three constant orthonormal basis vectors.  

An anholonomic space is a configuration associated with a non-
integrable, two-point deformation map.  For example, in multiplicative 
elastoplasticity theory, since elastic and plastic deformation maps (i.e., 
tangent maps) taken individually are generally non-integrable or an-
holonomic functions of current and reference coordinates, respectively, the 
corresponding intermediate configuration is generally anholonomic.  Con-
tinuous coordinates on such an anholonomic space do not exist; rather, an-
holonomic coordinates can be regarded as discontinuous, multi-valued 
functions of holonomic coordinates of the current or reference configura-
tion.  Anholonomicity is related to Cartan’s torsion tensor of a special con-
nection constructed from the non-integrable, two-point deformation map.  
Anholonomic coordinates are analyzed at length by Schouten (1954), and 
to a lesser extent, by Ericksen (1960).   

Designation of a general space as metric or non-metric requires that the 
configuration be assigned both a linear connection and a metric tensor; i.e., 
one must examine the triad of {configuration, connection, metric tensor}.  
In a non-metric space, the covariant derivative of the metric tensor taken 
with respect to the connection is nonzero.  On the other hand, in a metric 
space the covariant derivative of the metric tensor vanishes identically.   

A configuration with a connection admitting a non-vanishing torsion 
tensor is labeled a Cartan space, sometimes called a non-symmetric space.  
Only the pair {configuration, connection} need be considered to enable la-
beling a space as Cartan or non-Cartan.  A space with vanishing torsion is 
called a symmetric space. 

For a space to be labeled as Riemannian or non-Riemannian, it must in-
clude the pair {configuration, connection}—a metric is not needed for 
such a designation as defined herein.  A Riemannian space is defined here 
as a configuration with connection coefficients whose components yield a 
nonzero Riemann-Christoffel curvature tensor2.  A space with non-
vanishing curvature is necessarily non-Euclidean.  For example, a global 
two-dimensional Cartesian coordinate system cannot be used to parameter-
ize a shell unless the shell is flat.  Conversely, a space with vanishing cur-
vature is non-Riemannian and is said to be flat, and the connection in a 
non-Riemannian space is said to be integrable. 
                                                      

2 The mathematical field of study traditionally referred to as Riemannian ge-
ometry considers metric spaces with vanishing torsion, but in general non-
vanishing curvature (Eisenhart 1926; Schouten 1954).  
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Euclidean spaces by definition exclude the other four types of (non-
Euclidean) spaces: anholonomic, non-metric, Cartan, and Riemannian 
spaces.  On the other hand, the four types of non-Euclidean spaces are not 
mutually exclusive.  The above terminology is not always consistent in the 
literature (Schouten 1954; Bilby et al. 1955; Kondo 1964; Noll 1967; 
Marsden and Hughes 1983; Steinmann 1996; Clayton et al. 2005).  How-
ever, definitions given here are deemed as those used either most fre-
quently or most logically for describing kinematics of deformable crystal-
line solids, as will become clear later in Chapter 3.  

2.1.2 Manifolds, Coordinates, and Metrics 

Denoted by 3( ):tχ → ΕB B  is a smooth, invertible, time-dependent embed-
ding of a material body B  into three-dimensional Euclidean space 3Ε .  
The configuration of body B  at time t is denoted by ( )t tB = χ B , hence-
forth written simply as B for 0t > .  Initially, i.e., at 0t = , material parti-
cles ∈X B  are said to occupy reference configuration 0 0 ( )B χ= B  and are 
assigned reference coordinates 0 ( )A AX = χ X .  Particles of material mapped 
to current configuration B are assigned spatial coordinates ( )a a

tx = χ X .  A 
description of the motion of all material particles is furnished by the con-
tinuous, invertible mapping 1

0 0:t B Bϕ −= χ χ →D .  The D  operator denotes 
the composition, such that for two functions f and g, ( )( ) ( ( ))f g X f g X=D .  
The inverse obeys 1f f i− =D , with i the identity operator.  The local mo-
tion for a material particle identified by particular reference coordinates 

0 ( )A ΑX = χ X  is written Xϕ .  Restricting the motion so that no two material 
particles occupy the same spatial location may limit the domain of ( , )X tϕ  
to open regions of the body, e.g., when two points at different referential 
locations of the boundary of a body may come into contact as a result of 
deformation.  Mappings 0χ , tχ , and ϕ  can be applied pointwise or glob-
ally and are not vector fields.  For this reason, and since these mappings 
may operate without explicit introduction of coordinate basis vectors, 
boldface notation is not used to symbolically represent these functions.  As 
indicated implicitly already and as will be made clear later, contravariant 
indices (i.e., indices in the upper position) are appended to such mappings 
as needed when coordinate systems are involved.  

A point in space occupied by the body in the reference configuration is 
denoted by 0X B∈ , while a point in space occupied by the body in the 
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current configuration is denoted by x B∈ .  Functions depending on posi-
tion in the reference configuration are denoted by ( )f X , while functions 
depending on position in the current configuration are written ( )f x .  No 
distinction is made here between functions depending on material particle, 
e.g., a material description ( )f X  (Malvern 1969), and those depending on 
the reference coordinates AX  of that particle, e.g., a Lagrangian descrip-
tion ( )f X .  Because the reference configuration is embedded in Euclidean 
space, a unique vector of coordinates X can always be assigned to each 
material particle at X.  Similar arguments hold for the spatial description, 
since at any given time t, each location x can be assigned a unique vector 
of coordinates x.  Thus the notation for a function of spatial position, ( )f x , 
is hereafter used interchangeably with ( )f x .   

In indicial notation, time-dependent components of the motion and its 
inverse, respectively, are expressed in functional form as  

 ( , )a ax x X t= , ( , )A AX X x t= . (2.1) 
The first of (2.1) implies that spatial coordinates ax  of each material parti-
cle depend upon the choice of point X, or equivalently the material particle 
located at that point in the reference configuration, and time t.  The second 
of (2.1) assigns a set of reference coordinates AX  to a material particle 
that occupies spatial location x at time t.  Spatial coordinates ax  of a mate-
rial particle corresponding to location X will generally change with time as 
a result of motion, and spatial locations x occupied by the body at one in-
stance of time may not coincide with those occupied at a different instance. 

The manifold concept, in the context of differential geometry, is now 
formally introduced (Boothby 1975).  An n-manifold is a set M  such that 
for each point P ∈M  there is a subset U  of M  containing P, and a one-
to-one mapping called a chart or coordinate system from U  onto an open 
set in the n-dimensional space of real numbers n\ .  Multiple charts or co-
ordinate systems may be introduced on (regions of) a given manifold.  
Transformations between different coordinate systems over (regions of) 
the manifold are assumed to be infinitely differentiable if the manifold is 
smooth; i.e., such changes in coordinates are of continuity class C∞  for 
smooth manifolds.  A collection of charts covering M  is called an atlas.  
As will be discussed in Section 2.2.4, the chart of a smooth n-manifold can 
be embedded in n-dimensional Euclidean space nΕ  if and only if the cur-
vature tensor of its corresponding Levi-Civita connection vanishes.   
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Fig. 2.1 Two-dimensional manifold embedded in 3-D Euclidean space 

 
The tangent space of M  at P is the n-dimensional space of contravari-

ant vectors emanating from P, written as PT M .  The collection of base 
points P and tangent vectors at all P comprises the tangent bundle TM  
(i.e., the tangent bundle is the union of tangent spaces over all points P on 
M ), and the map π M  from a tangent vector to its base point is called that 
vector’s projection.  Inverse mappings 1π −

M  comprise sections of the tan-
gent bundle.  Similarly, the cotangent space of M  at P, written as *

PT M , is 
the n-dimensional space of covariant vectors—also called covectors, one-
forms, reciprocal vectors, or dual vectors—emanating from P.  The cotan-
gent bundle, denoted by *T M , is defined analogously to the tangent bun-
dle, i.e., the cotangent bundle is the union of cotangent spaces over mani-
fold M .  Shown in Fig. 2.1 is a two-dimensional manifold M  with non-
vanishing curvature embedded in 3Ε , with a point X described by a pair of 
coordinates 1 2( , )X X=X .  Tangent space XT M  is also shown.  

Each time-dependent configuration of a deformable body can be re-
garded as a manifold, with locations of particles of material in that con-
figuration identified in a one-to-one manner with points X of B ; the latter 
itself can also be viewed as a manifold since charts of smooth coordinates 
(e.g., Xa) can, in principle, be introduced to cover B .  Referential locations 
X and spatial locations x can be associated with base points on correspond-
ing manifolds 0B  and B, respectively.  Tangent spaces to reference and 
current manifolds at points X and x are written 0XT B  and xT B , respec-
tively.  Body B , configurations 0B  and B, and tangent spaces 0XT B  and 

xT B  are illustrated in Fig. 2.2.  Reference and current tangent bundles are 
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00 0X B XTB T B∈= ∪  and x B xTB T B∈= ∪ , respectively.  Analogously, cotan-

gent spaces are written as 0
*
XT B  and *

xT B , with 
00 0

* *
X B XT B T B∈= ∪  and 

* *
x B xT B T B∈= ∪  the corresponding cotangent bundles in reference and cur-

rent configurations, respectively.   

         
Fig. 2.2 Configurations, mappings, and tangent spaces 

 
Natural or holonomic basis vectors in reference and current configura-

tions are defined, respectively, by 

 0A XA T B
X

= ∈G ∂
∂

, a xa T B
x

= ∈g ∂
∂

, (2.2) 

and are tangent to local coordinate curves at X or x; for example, see Fig. 
2.1 in which M  can represent the reference configuration 0B .  Sometimes 
the basis vectors in (2.2) are called covariant basis vectors because their 
indices occupy lower positions, though this can cause confusion because 
these vectors act as the basis for general contravariant vectors.  Basis vec-
tors in (2.2) are sometimes written as ,A A A= ∂ =G X X  and ,a a a= ∂ =g x x .  
Dual or reciprocal bases to (2.2) are written as 

 0
A A

X
*X T B= ∈G d , a a

x
*x T B= ∈g d . (2.3) 

Basis vectors (2.2) and their duals (2.3) satisfy the orthonormality relations 
 

0

A A
B .BB

, δ=G G , a a
b .bB

, δ=g g . (2.4) 

In (2.4), dual pairings (i.e., scalar product of vector and covector) in refer-
ence and spatial configurations correspond to  the respective operations 

0
0 0  : X XB

*. , . T B T B× →\  and   : x xB
*. , . T B T B× → \ .  The dual basis 

vectors are sometimes called contravariant basis vectors because their in-
dices occupy upper positions.  Also introduced in (2.4), Kronecker delta 
symbols satisfy 
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 .

1  ,
0  ,

A
B

A B
A B

δ
∀ =⎧

= ⎨ ∀ ≠⎩
 .

1  ,
0  .

a
b

a b
a b

δ
∀ =⎧

= ⎨ ∀ ≠⎩
 (2.5) 

Location of the placeholder (index) denoted by the period is arbitrary in 
the special symbols defined in (2.5), but such placeholders are not always 
arbitrary for general tensor-valued quantities defined later in this book.  
Henceforward, subscripts on scalar product operations as in (2.4) denoting 
configuration(s) of arguments in angled brackets are omitted since the ap-
propriate configuration(s) can always be inferred from the arguments.  
Summation over repeated indices produces 1 2 3

. . .1 .2 .3 3A a
A aδ δ δ δ δ= = + + = .  

From (2.2)-(2.4), 0XT B  is the linear vector space of all contravariant 
vectors A

AV=V G  emanating from point 0X B∈ .  Cotangent space 0X
*T B  

is the linear vector space of all one-forms A
Aα=α G  emanating from point 

0X B∈ .  In the context of dual products, vectors and one-forms are linear 
functions, 0: X

*T B →V \  and 0: XT B →α \ , and correspondingly  
 ( ) ( ),  =   =   =   =   = ,A A

A AV Vα αα V α V V α V α , (2.6) 
invoking the symmetry property of the scalar product operation.  Similar 
arguments hold for vectors and one-forms on respective tangent and co-
tangent spaces referred to current configuration B.  Contravariant compo-
nent AV  of vector V can be obtained via the scalar product operation as 

., ,A B A B A A
B BV V Vδ= = =V G G G , where (2.4) has been used. 

Let 0 0:( )X XT B , T B∈ ∈ →G V W \  be a symmetric, positive definite bi-
linear form assigning a real number to any two vectors V and W in 0XT B .  
Object G is called a metric tensor, or simply a metric.  Since G is symmet-
ric, its components obey ( )AB ABG G= , where indices in parentheses are 

symmetric: ( )2 AB BAABA A A= +  for arbitrary second-order tensor A.  Metric 

G maps a contravariant vector V  into its associated covariant vector #V : 
             ( )( )A B B A

# AB B AG V V= = ⊗ =V GV G G G G , B
A ABV G V= . (2.7) 

The outer product (also called tensor product) of vectors and/or covectors, 
corresponding to a juxtaposition of indices, is denoted by ⊗  and satisfies 
the identity ( ) ,A B A B

C C⊗ =G G G G G G .   

The inverse of the metric tensor 1−G , or simply the inverse metric, maps 
covectors α  into associated vectors #α : 
            ( )( )1# AB B A

A B B AG α α−= = ⊗ =α G α G G G G , A AB
BGα α= . (2.8) 
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The standard notational convention of denoting components of 1−G  with 
ABG  (i.e., 1( )AB ABG− =G ) is followed henceforth.   
On vector space 0XT B , metric tensor G enables evaluation of the inner 

product or dot product of vectors: 
 A B

AB, V G W= =V W V GWi . (2.9) 
Covariant component AV  of vector V can be obtained via use of the dot 
product operation as follows: B B

A B A BA AV V G V= = =V G G Gi i .  Similarly 
to (2.9), the inverse of the metric tensor, i.e., its contravariant form, en-
ables evaluation of the inner product or dot product of covectors: 

 1 AB
A B, G−= =α β α G βi α β . (2.10) 

In the current configuration B, the metric tensor associated with spatial 
coordinates x is denoted by : ( , )x xT B T B∈ ∈ →g v w \ , with inverse 1−g .  
Equations analogous to (2.7)-(2.10) apply for spatial metric g and its in-
verse in the current configuration. 

From (2.4), (2.9), and (2.10), it is implied that matrix components of 
metric tensors and their inverses in reference and current configurations 
are given, respectively, by  

 AB A BG = G Gi , AB A BG = G Gi ; (2.11) 
 ab a bg = g gi , ab a bg = g gi . (2.12) 

Metrics and their inverses are related, by definition, as follows: 
 .

AB A
BC CG G δ= , .

ab a
bc cg g δ= . (2.13) 

Relationships between basis vectors and their reciprocal vectors are  
 A AB

BG=G G , B
A ABG=G G , a ab

bg=g g , b
a abg=g g . (2.14) 

In addition to their role in scalar product operations, metric tensors (or 
their inverses) may be used to lower (or raise) indices of tensors of arbi-
trarily higher order.  For example, let AB

A BA= ⊗A G G  be a generic con-
travariant tensor of order two.  The fully covariant representation of A is 
 #

CD A B A B
AC BD ABG G A A= ⊗ = ⊗A G G G G . (2.15) 

When considering multiple configurations, it often becomes necessary 
to express components of vectors or tensors introduced in one configura-
tion, with one set of coordinates, with respect to bases in another configu-
ration with a different set of coordinates.  For example, a vector V defined 
in a parallel manner on 0XT B  and xT B  is written (Eringen 1962) 

 ( ) ( )A a
A aV X V x= =V G g . (2.16) 

Taking the inner product with dual basis vectors in each configuration, it 
follows that 
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., , ,B A B a B a B
A a aV V V V g= = =G G g G  .A

a a Ag=g G ; (2.17) 

 ., , ,b a b A b A b
a A AV V V V g= = =g g G g  .a

A A ag=G g ; (2.18) 

where mixed-variant components of shifters, examples of two-point ten-
sors, are defined as 

  .
. ( , ) ,A A A
a a ag x X g= =G g , .

. ( , ) ,a a a
A A Ag x X g= =g G . (2.19) 

Similarly, fully covariant and fully contravariant components of shifter 
tensors are, respectively, 

   ( , )Aa A a aAg x X g= =G gi , ( , )Aa A a aAg x X g= =G gi . (2.20) 
From (2.14), it follows that components of the shifters are raised and low-
ered by components of metric tensors of the corresponding configuration: 

                 . .
b B Bb

Aa ab A AB a ab ABg g g G g g G g= = = . (2.21) 
Moreover, summation over one set of indices leads to the identities 

                        . . .
A a a
b A bg g δ= , . . .

A a A
a B Bg g δ= . (2.22) 

It follows that . .det( ) 1/ det( ) det( ) / det( )A a
a A ab ABg g g G= = , where det  is 

the usual determinant of a second-order tensor.  Shifters can also be used 
to express components of vectors and tensors introduced in one frame of 
coordinates with respect to a different coordinate frame in the same con-
figuration via parallel transport (Toupin 1956; Ericksen 1960).  Differen-
tiation indices cannot usually be shifted; e.g., generally .

A
a a Ag∂ ≠ ∂ . 

Components of metric tensors on Euclidean spaces can be defined 
equivalently in terms of transformations to Cartesian coordinates and the 
dot product of vectors.  For example, let AX  denote general curvilinear 
coordinates on 0B , and let ( )A AZ Z X=  denote Cartesian coordinates on 

0B .  Since tangent vectors to AZ  are orthonormal by definition, 

         
C D C D

AB CDA B A B C D A B

Z Z Z ZG
X X X X Z Z X X

δ∂ ∂ ∂ ∂⎛ ⎞= = =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
i i∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
, (2.23) 

with CDδ  covariant Kronecker delta symbols.  From (2.23), the determi-
nant of the matrix of metric tensor components is always non-negative: 

2det( ) [det( / )] 0A B
ABG Z X= ∂ ∂ ≥ .  Similarly for the inverse metric tensor, 

2det( ) 1/ det( ) [det( / )] 0AB A B
ABG G X Z= = ∂ ∂ ≥ .  The metric tensor (or its 

inverse) may have zero determinant along certain singular points or curves 
(e.g., at 0R =  in cylindrical or spherical coordinates) but is non-singular 
over any volume (Malvern 1969).  In Cartesian space, the metric is simply 

AB ABG δ= , and distinction between covariant and contravariant indices is 
not necessary.  Analogously for a shifter, components can be computed via 
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B b B b

Aa BbA a A a B b A a

Z z Z zg
X x X x Ζ z X x

δ∂ ∂ ∂ ∂⎛ ⎞= = =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
i i∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
, (2.24) 

where ax  and ( )a az z x=  denote curvilinear and Cartesian coordinates, re-
spectively, in spatial configuration B , and Bbδ  reduces to Kronecker’s 
delta when coincident Cartesian coordinate frames for AZ  and az  are pre-
scribed, respectively, in reference and current configurations.  

Generally non-vanishing components of metric tensors for several com-
mon three-dimensional coordinate systems are listed in Table 2.1.  Metric 
tensor components listed in Table 2.1 can be applied towards representa-
tions in either of the reference or current configurations. 

 
Table 2.1 Metric tensors for common three-dimensional coordinate systems  

Coordinate system Non-vanishing components of ABG  

Cartesian: 1 2 3( , , )X X X → ( , , )X Y Z  1XX YY ZZG G G= = =  
Cylindrical: 1 2 3( , , )X X X → ( , , )R Zθ  

cos ,  sin ,  X R Y R Z Zθ θ= = =  
0,  ( , ]R θ π π≥ ∈ −  

1RR ZZG G= = , 2G Rθθ =  

Spherical: 1 2 3( , , )X X X → ( , , )R θ ϕ  
sin cos ,  sin sin ,  cosX R Y R Z Rθ ϕ θ ϕ θ= = =  

0,  [0, ],  ( , ]R θ π ϕ π π≥ ∈ ∈ −  

1RRG = , 2G Rθθ = , 2 2sinG Rϕϕ θ=  

2.2 Linear Connections 

The following topics are addressed in Section 2.2: the definition of a ge-
neric linear connection, its covariant derivative, and connection coeffi-
cients; torsion and curvature of a connection; identities from differential 
geometry describing properties of the connection and its torsion and curva-
ture; and a special kind of connection called the Levi-Civita connection.   

2.2.1 The Covariant Derivative and Connection Coefficients  

A linear connection, also often called an affine connection, on a manifold 
0B  induces an operation ∇  that assigns to two vector fields 0, TB∈V  W  a 

third vector field 0TB∇ ∈V W , called the covariant derivative of W along 
V, such that 
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( )

 (i)    is linear in both  and ;
 (ii)   for scalar function ;

 (iii) , .
f f f

f f f

∇
∇ = ∇

∇ = ∇ +

V

V V

V V

W V W
W W

W W V D W

 (2.25) 

The derivative of f is Df, and in coordinates the derivative of f in the direc-
tion of V is ,, /A A A A

A Af V f V f V f X= = ∂ = ∂ ∂V D .  The covariant deriva-
tive of W along V is written in indicial notation as 
      .. ..

.,( ) ( )B A A B C B A A B C
B BC A B BC AV W V W V W V WΓ Γ∇ = ∂ + = +V W G G , (2.26) 

where the notation ,( . ) ( . ) ( . ) / B
B B X= ∂ = ∂ ∂  is used interchangeably 

throughout this text for partial coordinate differentiation.  The n3 coeffi-
cients of the connection in n-dimensional space are written ..A

BCΓ .  Connec-
tion coefficients do not follow conventional coordinate transformation 
laws for third-order tensors.  Consider a coordinate transformation 

A AX X→
��

.  Since vector field ∇VW  of (2.26) transforms conventionally 
under a change of basis as (Schouten 1954) 

     

( ) ..

..

..

             

             

             

A
A B A B C

V BCB

B A B C
B C A B C

BCBB BC C

A B C
B C A B C

BCB BC C

C
B

WW V V W
X
X X X XV W V W

XX XX X

X X XV W V W
X XX X

WV

Γ

Γ

Γ

∂
∇ = +

∂
⎛ ⎞∂ ∂ ∂ ∂ ∂

= +⎜ ⎟∂∂ ∂∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂

= +⎜ ⎟
∂ ∂∂ ∂⎝ ⎠

∂
=

∂

� �� �
� � � �

� �� �
� � � �

�
�

� � � �
� �� �

� � � �
� �� �

�� ..

..             

                                        

A B C A
A B C

BCB B BC C C

A A A A B C
B D

BC DB BA A C

A

C B

X X X X V W
X X XX X X

X W X X X XV
XX XX X X

X X
X X

Γ

Γ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ +⎜ ⎟

∂ ∂∂ ∂ ∂⎝ ⎠
⎛∂ ∂ ∂ ∂ ∂ ∂

= + ⎜⎜ ∂∂ ∂∂ ∂ ∂⎝

∂ ∂ ∂
+

∂ ∂

��
� � � � � �

� �
�

� � � � �

�

�

� �
� � �� � �

� ��
� �� � �

�
�

..             ( ) ,

C
B C

C

A A A
B A B C A

VBCBA A

V W
X

X W XV V W W
XX X

Γ

⎞
⎟⎟∂ ⎠

⎛ ⎞∂ ∂ ∂
= + = ∇⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠

��
�

�
� � ��
� ��� � �

� �
�

�� � � ��
�� �

 (2.27) 

transformation formulae for the connection coefficients are deduced as  
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       ,

B C A A C
A ..A

BCA CBC B BC C

B C A A
..A
BCA B CB C

X X X X X
X XX XX X

X X X X
X X XX X

∂ ∂ ∂ ∂ ∂ ∂
= +

∂ ∂∂ ∂∂ ∂
⎛ ⎞∂ ∂ ∂ ∂ ∂

= −⎜ ⎟⎜ ⎟∂ ∂ ∂∂ ∂ ⎝ ⎠

� �
�
�� � � � �

� �

� �

� ��
� �� �

� �
� �

Γ Γ

Γ
 (2.28) 

with the second equality in (2.28) following readily from the identity 
( ) ( ) 0A C A

C ,B ,BC .CX X∂ ∂ = =
� �

� � � �
�

δ .  Furthermore, the covariant derivative of a 

vector field, ( )X∇W , is a { }1
1 tensor field, expressed in components as 

   
..

..
.,

( ) ( )

             ( ) .

A A C B
B BC A

A A C B
B BC A

X W W

W W

Γ

Γ

∇ = ∂ + ⊗

= + ⊗

W G G

G G
 (2.29) 

An affine connection on tangent bundle 0TB  enables parallel transport 
of vectors across different tangent spaces in 0TB .  A vector is said to un-
dergo parallel transport with respect to a connection with covariant deriva-
tive ∇  along paths for which its covariant derivative vanishes.  For exam-
ple, a vector W is considered to be parallel along a curve ( )tλ  if 

0∇ =V W , where / t= ∂ ∂V λ  is tangent to the curve parameterized by t.  
A vector W is then parallel transported along λ  if it is extended to a paral-
lel vector field ( )tW  for all values of t.   

The covariant derivative is applied to covector fields and to tensor fields 
of higher order as follows (Schouten 1954): 

 

... ...
... ... ,

.. ... .. ...
... ...

.. ... .. ...
... ...

  

                             ...

                            ... ,

A F A F
N G M G M N

A RB F F A ER
NR G M NR G M

R A F R A F
NG RH M NM G LR

A A

A A

A A

∇ =

+ + +

− − −

Γ Γ

Γ Γ

 (2.30) 

where the index of covariant differentiation is a subscript immediately fol-
lowing the ∇ -operator.  Notice that the first covariant index of the con-
nection coefficients corresponds to that of the differentiation.  The covari-
ant derivative of an absolute or true scalar function is defined in the same 
way as its ordinary partial derivative: ,N N NA A A∇ = ∂ = .  Hence the co-
variant derivative of a constant scalar vanishes identically.  Another useful 
identity is .. .. .. ..

. . , . . . , . , 0A A A C C A A A A A
N B B N NC B NB C B N NB NB B N∇ = + − = + − = =δ δ Γ δ Γ δ δ Γ Γ δ . 

From the linearity property of the connection, the covariant derivative of a 
sum of objects is equal to the sum of the covariant derivatives of these ob-
jects.  Covariant differentiation obeys the product rule of Leibniz; e.g.,  

( )A B A B B A
C C CV W V W W V∇ = ∇ + ∇ .  Analogous to terminology for parallel 
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transport of vectors, a tensor is said to be parallel transported along a curve 
if its covariant derivative vanishes as the tensor is dragged along the curve.   

2.2.2 Torsion and Curvature 

The torsion tensor T of a connection is defined by the operation 
 ( ) [ ]2 , ,= ∇ − ∇ −V WT V W W V V W , (2.31) 

where the Lie bracket of vector fields V and W on 0TB  is  
 [ ] ( )., .,, B A B A

B B AV W W V= −V W G . (2.32) 

From (2.26), (2.31), and (2.32), the torsion tensor is  
 [ ]

..A B C
ABCΓ= ⊗ ⊗T G G G , (2.33) 

where pairs of indices in square brackets are anti-symmetric, e.g., for a 
second-rank tensor [ ]2 AB BAABΑ A A= − .  A connection is torsion-free when 

its torsion tensor vanishes, or equivalently, when its connection coeffi-
cients are symmetric in covariant indices.  The torsion tensor of a linear 
connection on a manifold is often called Cartan’s torsion, by association 
with geometer E. Cartan (Cartan 1922).  A connection with vanishing tor-
sion is said to be symmetric.  Sometimes twice the quantity in (2.31) and 
(2.33) is used as the definition of the torsion (Marsden and Hughes 1983; 
Clayton et al. 2004a, b, 2005, 2006, 2008).  One may verify that the tor-
sion transforms like a true tensor of order { }1

2  under a change of 

holonomic coordinate basis, by direct substitution of (2.33) into (2.28). 
The Riemann-Christoffel curvature tensor associated with a linear con-

nection with covariant derivative ∇ , 0 0 0 0: X X X X
*T B T B T B T B× × × →R \ , 

is a { }1
3  tensor with component representation  

    
[ ] [ ]

... .. .. .. .. .. ..
, ,

.. .. ..        2 2 ,

A A A A E A E
BCD CD B BD C BE CD CE BD

A A E
B C D B E C D

R = − + −

= ∂ +

Γ Γ Γ Γ Γ Γ

Γ Γ Γ
 (2.34) 

where indices in vertical bars are excluded from the anti-symmetry opera-
tion.  Order and placement of indices used in the definition of R vary 
among authors (Schouten 1954; Fosdick 1966; Marsden and Hughes 1983; 
Clayton et al. 2005); conventions adopted in this book for the Riemann-
Christoffel curvature tensor and quantities derived from it follow those of 
Schouten (1954) and Minagawa (1979).  The Riemann-Christoffel curva-
ture tensor transforms like a true tensor of order { }1

3  under a change of 

holonomic coordinates (Schouten 1954).  From definition (2.34), R is al-



26      2 Mathematical Foundations 

ways anti-symmetric in the first two covariant indices.  Definitions, in in-
dicial components, of several quantities constructed from the Riemann-
Christoffel curvature tensor include its fully covariant version 

 ... ,E
BCDA BCD EAR R G=  (2.35) 

called simply the curvature tensor by Eringen (1962) and the Riemann ten-
sor by Fosdick (1966), though again the placement of indices varies among 
authors.  Components of the Ricci curvature are 

 ...A
CD ACDR R= . (2.36) 

Recalling that n is the dimensionality of the space, scalar curvature κ  is 
defined as 

 1 1
( 1) ( 1)

AB
ABR G R

n n n n
κ = =

− −
, (2.37) 

with R the trace of the Ricci curvature.  For 2n = , R of (2.37) is equiva-
lent to the Gaussian curvature.  Finally, Einstein’s tensor θ  has compo-
nents 

 4 AB ACD BEF
CDEFRθ ε ε= , (2.38) 

where components of the permutation tensor ACDε  are introduced formally 
later in (2.64). 

The skew second covariant derivatives of a contravariant vector V and 
covariant vector α  can be expressed as (Schouten 1954) 

 [ ]
... ..1

2
A A D D A

BCD BC DB C V R V T V∇ ∇ = − ∇ , (2.39) 

 [ ]
... ..1

2
A A

D BCD A BC A DB C R Tα α α∇ ∇ = − − ∇ . (2.40) 

Skew differential operator [ ]B C∇ ∇  obeys the product rule of Leibniz, e.g.,  

 [ ] [ ] [ ]( )A A A
D D DB C B C B CV V Vα α α∇ ∇ = ∇ ∇ + ∇ ∇ . (2.41) 

2.2.3 Identities for the Connection Coefficients and Curvature 

Coefficients of an arbitrary linear connection can be written in the form 
(Schouten 1954) 

 { }.. .. .. . . .. .. . . ..
. . . .

1 ( )
2

A A A A A A A A
BC BC BC C B BC BC C B BCT T T M M MΓ = + − + + + − , (2.42) 

where for a symmetric, three times differentiable, and invertible but oth-
erwise arbitrary second-rank tensor with components ABG  and inverse 
components ABG , the quantities 
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 { }..
, , ,

1 ( )
2

A AD
BC CD B BD C BC DG G G G= + −  (2.43) 

are called Christoffel symbols3 of the tensor ABG .  Christoffel symbols in 
(2.43) are symmetric in covariant indices.  Also in (2.42), the third-order 
object 

 ..A AD AD AD
BC BCD B CD CD BM G M G G G G= = − ∇ = ∇ , (2.44) 

with the final equality following from identity .( ) 0AD A
B CD B CG G δ∇ = ∇ = .  

The covariant derivative of ABG  is, from (2.30) and coefficients in (2.42), 
 .. ..

,
D D

A BC BC A AB DC AC BD ABCG G G G MΓ Γ∇ = − − = − . (2.45) 
Symmetry conditions ( )ABC A BCM M=  follow immediately from conditions 

AB BAG G= .  When 0A BCG∇ = , or equivalently when 0ABCM = , the con-
nection is said to be metric with respect to ABG .  In that case, covariant 
differentiation via ∇  and raising (or lowering) of indices via ABG  (or 

ABG ) or commute.  In general, ABG  of (2.43)-(2.45) need not be the metric 
tensor used to define scalar products of vectors.  However, when the con-
nection of (2.42) is metric, and when ABG  is in fact the metric tensor of the 
space with connection (2.42), then ABG  is called the fundamental tensor of 
the space (Schouten 1954).  In the particular case of Riemannian geometry, 
by definition the connection is simultaneously symmetric ( .. 0A

BCΤ = ) and 
metric ( .. 0A

BCM = ), leading to   

 { }.. ..A A
BC BCΓ =  (Riemannian geometry). (2.46) 

Returning now to the general case in (2.42) with possibly non-vanishing 
torsion and non-metric connection, the Riemann-Christoffel curvature ten-
sor of (2.34) exhibits the following properties (Schouten 1954): 

 ( )
... 0A
BC DR = , (2.47) 

 [ ] [ ] [ ]
... .. .. ..2 4A A E A
BCD B CD BC D ER T T T= ∇ − , (2.48) 

 ( ) [ ]
..E
AB ECDAB CD A B CDR M T M= ∇ + , (2.49) 

 [ ] [ ]
... .. ...2A F A

E BC D EB C FDR T R∇ = , (2.50) 

where anti-symmetry over three indices is expressed as 
 [ ]6 ABC BCA CAB BAC CBA ACBABCA A A A A A A= + + − − − . (2.51) 

                                                      
3 In tensor analysis, { }..A

BC  are often labeled Christoffel symbols of the second 

kind, and { }..D
BC ,A AD BCG⎡ ⎤⎣ ⎦ =  are often labeled Christoffel symbols of the first kind. 
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Relation (2.50) is often called Bianchi’s identity.  For a symmetric connec-
tion the right sides of (2.48) and (2.50) vanish, and for a metric connection 
the right side of (2.49) vanishes.  For a Riemannian connection of the type 
(2.46) that is both symmetric and metric,  
     ( ) 0BC DAR = , [ ] 0BCD AR = , ( ) 0BC DAR = , BCDA DABCR R= , (2.52) 

and the number of independent components of R is 2 2( 1) /12n n − , for ex-
ample one independent component for a two-dimensional space and six 
independent components for a three-dimensional space.  In Riemannian 
geometry, the Ricci tensor of (2.36) and Einstein’s tensor of (2.38) are 
both symmetric and satisfy 

 1
2AB AB ABR RGθ = − , . .

1 0
2

A AC A
A B A CB BR G Rθ δ⎛ ⎞∇ = ∇ − =⎜ ⎟

⎝ ⎠
. (2.53) 

A space with connection for which the covariant derivative of the Ricci 
tensor of (2.36) vanishes, i.e., for which 0A CDR∇ = , is called a Ricci 
space.  A space in Riemannian geometry—that is a symmetric space with 
connection and metric in which (2.46) applies—in which the Ricci curva-
ture and metric differ only by a scalar factor as 

 1 ( 1)CD CD CDR RG n G
n

κ= = −  (2.54) 

is called an Einstein space.  From vanishing of the right side of Bianchi’s 
identity (2.50) for a symmetric space, it follows that the scalar curvature of 
an Einstein space is constant, i.e., 0Aκ∇ =  (Schouten 1954).  

2.2.4 The Levi-Civita Connection 

For a smooth manifold 0B  with metric tensor ( ) A B
A B= ⊗G G G G Gi , 

there is a unique affine connection with the covariant derivative operator 

∇
G

 on 0B  that is torsion-free ( 0=
G
T ) and metric ( 0∇ =

G
G ), i.e., for which 

parallel transport preserves the dot products of vectors.  It is called the 
Levi-Civita connection (Marsden and Hughes 1983).  The Levi-Civita 
connection is a particular example of (2.46) and hence is often called the 
Riemannian connection (Hou and Hou 1997).  In this book the term Levi-
Civita connection is reserved for the particular Riemannian connection 

whose curvature tensor vanishes as discussed below.  Coefficients of ∇
G

 
are defined as 

 .. ..
, , ,

1 ( )
2

G G
A AD A

BC BD C CD B BC D CBG G G GΓ Γ= + − = . (2.55) 
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Superscript G (or G) of the Levi-Civita connection and its corresponding 
covariant derivative or gradient operator is not subject to the summation 
convention.  The Riemann-Christoffel curvature tensor formed by inserting 
Christoffel symbols of Levi-Civita connection (2.55) into definition (2.34) 

is denoted by 
G
R .  This curvature tensor can be expressed completely in 

terms of metric G  and its first and second partial derivatives with respect 

to coordinates AX .  A space 0B  with metric G and having 0=
G
R  is called 

flat.  One may show (Schouten 1954) that 0=
G
R  if and only if one may as-

sign parallel orthonormal coordinate basis vectors at each point 0X B∈  
such that AB ABG δ→ .  Thus, the curvature tensor vanishes identically and 

the space is flat when 0B  is Euclidean.  In fact, 0=
G
R  are compatibility 

conditions for the existence of connection coefficients ..
G

A
BCΓ  derived from 

a Euclidean metric tensor G  via (2.55) (Schouten 1954; Ciarlet 1998).  
Henceforward in this book, space 0B  with metric G and associated con-

nection (2.55) is always assumed Euclidean, meaning that 0=
G
R  by defini-

tion.  Thus, the notation ..
G

A
BCΓ  is used to denote components of { }..A

BC  of 

(2.46) when AB A BG = G Gi  and when the Riemann Christoffel curvature 
tensor formed from { }..A

BC  vanishes.  On the other hand, on a curved sur-

face—for example a two-dimensional shell parameterized by a pair of co-
ordinates 2:AX →\M  embedded in 3Ε  such as shown in Fig. 2.1—the 
single independent component of the curvature from { }..A

BC  does not vanish.   

In terms of Levi-Civita connection (2.55), partial coordinate derivatives 
of natural basis vectors and dual basis vectors are  

 ..
,

G
A A C

B BCΓ= −G G , ..
, ,

G
C

A B BA C B A= =G G GΓ , (2.56) 
and partial derivatives of components of the metric tensor are 

 .. ..
, ,( )

G G
D D

AB C A B C CB AD CA BDG G GΓ Γ= = +G Gi . (2.57) 
Viewed another way, (2.56) and (2.57) imply that the basis vectors, dual 
basis vectors, and metric tensor are all parallel (i.e., have vanishing covari-
ant derivatives) with respect to the Levi-Civita connection.  Since the cur-
vature and torsion of the connection (2.55) vanish by definition, (2.39) im-

plies that skew second covariant derivatives vanish, i.e., [ ] 0
G G

A
B C V∇ ∇ =  
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for a vector field with components ( )AV X .  From the second of (2.56), 

[ ], 0A B =G .  However, in general [ ] 0
G

A
B C V∂ ∇ ≠ , meaning that partial and 

covariant differentiation do not always commute.  From the first of (2.4) 
and the second of (2.56), referential Christoffel symbols of (2.55) can also 

be computed as .. .. ..
. ,, ,

G G G
C D C D C C

BA BA D BA D A BΓ Γ δ Γ= = =G G G G . 

In the context of geometrically nonlinear continuum mechanics, (2.55)-
(2.57) may be formulated in spatial configuration B  by replacing refer-
ence coordinates AX  with current coordinates ax , replacing reference 
metric G with spatial metric g, and replacing reference configuration basis 
(co)vectors with current configuration basis (co)vectors.  Christoffel sym-

bols of the second kind for covariant derivative operator ∇
g

 on B  are 

 .. ..
, , ,

1 ( )
2

g g
a ad a

bc bd c cd b bc d bcg g g gΓ Γ= + − = , (2.58) 

and the curvature tensor derived from 
g

..a
bcΓ  using (2.34) is denoted by 

g

R .  
Configuration B  with connection (2.58) and metric g is always assumed a 

Euclidean space.  Since the set { B , 
g

..a
bcΓ , abg } constitutes a Euclidean 

space, torsion and curvature tensors formed from (2.58) vanish identically.  
Analogs of (2.56) and (2.57) in the current configuration are 

 ..
,

g
a a c

b bc= −g gΓ , ..
, ,

g
c

a b ba c b a= =g g gΓ ; (2.59) 

 .. ..
, ,( )

g g
d d

ab c a b c cb ad ca bdg g gΓ Γ= = +g gi ; (2.60) 

and [ ] 0
g g

a
b c V∇ ∇ =  for a spatial vector field with components ( )aV x .  

From the symmetry properties evident in (2.58), [ ], 0a b =g .  From the sec-

ond of (2.4) and the second of (2.59), spatial Christoffel symbols of (2.58) 

can also be computed as .. .. ..
. ,, ,

g g g
c d c d c c

ba ba d ba d a bΓ Γ δ Γ= = =g g g g . 

In terms of transformation formulae to Cartesian coordinates introduced 
in (2.23) and (2.24), coefficients in (2.55) and (2.58) satisfy 

 
2

..
D AG

A
BC B C D

Z X
X X Z

Γ ∂ ∂
=

∂ ∂ ∂
, 

2
..

d ag
a

bc b c d

z x
x x z

Γ ∂ ∂
=

∂ ∂ ∂
. (2.61) 

Levi-Civita connection coefficients for cylindrical and spherical coordinate 
systems are listed in Table 2.2, where the superscript G has been dropped 
for brevity.   
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Since metric tensor components constantAB ABG δ= =  in Cartesian co-
ordinates, Christoffel symbols obtained from ABG  all vanish by (2.55) in 
Cartesian coordinates.  So long as basis vectors AG  are spatially constant 
(but not necessarily orthogonal), Christoffel symbols formed from 

AB A BG = G Gi  vanish identically, and covariant differentiation via 
G

A∇  and 
partial differentiation via A

A / X∂ = ∂ ∂  are equivalent operations.   
 
Table 2.2 Connection coefficients for common coordinate systems  

Coordinate system Nonzero components of ..A
BCΓ  

Cartesian: 1 2 3( , , )X X X → ( , , )X Y Z  None 
Cylindrical: 1 2 3( , , )X X X → ( , , )R Zθ  

cos ,  sin ,  X R Y R Z Zθ θ= = =  

.. .. 1/R R Rθ θ
θ θΓ Γ= = , ..R RθθΓ = −  

Spherical: 1 2 3( , , )X X X → ( , , )R θ ϕ  
sin cos ,  sin sin ,  cosX R Y R Z Rθ ϕ θ ϕ θ= = =  

.. .. .. .. 1/R R R R Rθ θ ϕ ϕ
θ θ ϕ ϕΓ Γ Γ Γ= = = = , 

..R RθθΓ = − , .. 2sinR RϕϕΓ θ= − , 

.. sin cosθ
ϕϕΓ θ θ= − , 
.. .. cotϕ ϕ
θϕ ϕθΓ = Γ θ=  

2.3 Notation, Differential Operators, and Other Identities 

To avoid frequent writing of the gradient operator for covariant deriva-
tives, the following compact notation is used henceforward for covariant 
differentiation with respect to associated Levi-Civita connections with co-
efficients in (2.55) and (2.58): 

 ... ...
... ... ;( )   

G
A H A H

N I M I M NA X A∇ = , (2.62) 

 ... ...
... ... ;( )   

g
a h a h

n i m i m nB x B∇ = , (2.63) 
where ( )XA  and ( )xB  are tensors of arbitrary order referred to reference 
and current coordinate systems, respectively.  From (2.55)-(2.60), it fol-
lows that ; 0A

B =G , ; 0A B =G , ; 0AB CG = , ; 0a
b =g , ; 0a b =g , and ; 0ab cg = . 

Contravariant and covariant components of third rank permutation ten-
sors on configurations 0B  and B , respectively, are defined by 

 1ABC ABCGeε −= , ABC ABCGeε = ; (2.64) 
 1abc abcge ε −= , abc abcgeε = ; (2.65) 
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where henceforth the standard abbreviated notation det det( )ABG G= = G  
and det det( )abg g= =g  is used for determinants of metric tensors. Recall 
also the compact notation used in this text for reciprocals of square roots: 

1 1G / G− =  and 1 1g / g− = .  Permutation symbols, also often called 
Levi-Civita symbols, satisfy 

 
  0 when any two indices are equal

1 for   = 123, 231, 312
1 for   = 132, 213, 321;

ABC
ABCe e ABC

ABC

⎧
⎪= = +⎨
⎪ −⎩

 (2.66) 

 
  0 when any two indices are equal

1 for   = 123, 231, 312
1 for   = 132, 213, 321.

abc
abce e abc

abc

⎧
⎪= = +⎨
⎪ −⎩

 (2.67) 

Permutation tensors and symbols in (2.64)-(2.67) are anti-symmetric in all 
pairs and triplets of indices, e.g., [ ] [ ] [ ] [ ]AB C A BC A|B|C ABCABCε ε ε ε ε= = = =  (re-
fer to (2.51)).  Covariant derivatives of permutation tensors in (2.64) and 
(2.65) with respect to Levi-Civita connections vanish since ; 0AG =  and 

; 0ag =  (Malvern 1969).  However, in general, , 0AG ≠  and , 0ag ≠  since 
( )G X  and ( )g x  are not invariant under general changes of coordinates 

and hence are not absolute scalars.  Identities for symbols of (2.66) are 
tabulated in Table 2.3.  Analogous identities apply for spatial symbols abce  
and abce  of (2.67) and for the permutation tensors of (2.64) and (2.65). 

 
Table 2.3 Identities for permutation symbols 

Identity Identity 

. . .

. . .

. . .

det

A A A
D E F

ABC B B B
DEF D E F

C C C
D E F

e e
δ δ δ
δ δ δ
δ δ δ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
. . . .

ABC B C B C
ADE D E E De e δ δ δ δ= −  

.2ABC C
ABE Ee e δ=  .2 6ABC A

ABC Ae e δ= =  
 
Several mathematical operations are now introduced in reference coor-

dinates.  Analogous definitions apply for spatial coordinates.  The trace of 
a second-order tensor A is defined as summation over its mixed-variant in-
dices: 

 .tr A AB AB
A AB ABA A G A G= = =A . (2.68) 

The transpose is identified as a horizontal switch of indices: 
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 T
AB BAA A= , ( )T AB BAA A= . (2.69) 

The gradient of a scalar function f is equivalent to its partial or covariant 
derivative: 

 ; ,
A A

A Af f f∇ = =
G

G G . (2.70) 
From (2.56) and (2.62), the gradient of a contravariant vector field V  is 

         

, ,

., ,

..
.,

..
., ;

( )

      ( )

      

      ( ) .

B A B
B A B

A A B
B A A B

G
A B A C B
B A BA C

G
A C A B A B
B BC A B A

V

V V

V V

V V V

Γ

Γ

∇ = ⊗ = ⊗

= + ⊗

= ⊗ + ⊗

= + ⊗ = ⊗

G
V V G G G

G G G

G G G G

G G G G

 (2.71) 

The divergence of a contravariant vector field V satisfies 

 
( )

,

1
, ; ,

, tr ,

           ( ) , .

A
A

B A A A
B A A AV V G GV−

∇ = ∇ =

= = =

G G
V V V G

G G
 (2.72) 

The final equality in (2.72) follows from the identity (Eringen 1962) 

 ( ) .. ..
,ln

G G
B B

A AB BAG Γ Γ= = . (2.73) 

The curl of a covariant vector field α  satisfies 

 , ; ;( )A B A B ABC
B A B A C B Aα α ε α∇× = × = × =

G
α G G G G G , (2.74) 

where the vector cross product of two contravariant or covariant vectors, 
respectively, is  

 B C A
ABCV Wε× =V W G , ABC

B C Aε α β× =α β G . (2.75) 
Since the Levi-Civita connection is symmetric, the covariant derivative in 
(2.74) can be replaced with a partial derivative: 

          [ ]
..

; , ,

G
ABC ABC ABC A ABC ABC

C B C B A C B B CBCε α ε α ε Γ α ε α ε α= − = = ∂ . (2.76) 

The Laplacian of a scalar function f is computed in general curvilinear co-
ordinates as 

 ( ) ( ) ( )2 1
, ; , ; , ,

AB AB AB
A B A B A Bf G f G f G GG f−∇ = = =

G
. (2.77) 

A number of other identities can be derived immediately from defini-
tions in (2.68)-(2.77).  For example, 

 ( ); ;, 0ABC ABC
C BA C BAε α ε α∇ ∇× = = =

G G
α , (2.78) 
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 ( ); ; 0ABC ABC
CB A ACBf f fε ε∇× ∇ = = =

G G
G G . (2.79) 

Many others can be found in books on vector calculus, electromagnetism 
(Stratton 1941; Jackson 1999), or continuum mechanics (Malvern 1969). 

Two mathematical operations for second- and higher-order tensors are 
defined next: the generalized dual product and the double-dot product.  
These operations will become particularly useful in Chapter 4 (and in sub-
sequent Chapters) for defining energetic quantities in the context of the 
continuum thermodynamics of deformable bodies.  The generalized dual 
product written for rank two tensors extends (2.4) to second-order tensors, 
providing a scalar product of two such quantities.  For example, 

 { }* *
0 0 0 0,   ,AB

BA X X X XA B T B T B T B T B= ∀ ∈ × ∈ ×A B A B , (2.80) 

 { }* *,   ,ab
ba x x x xa b T B T B T B T B= ∀ ∈ × ∈ ×a b a b , (2.81) 

 { }* *
. . 0 0,   ,a A
A a x X X xC D T B T B T B T B= ∀ ∈ × ∈ ×C D C D . (2.82) 

In (2.82), C and D are examples of two-point tensors.  The double-dot 
product, denoted by boldface colon : , implies summation over two sets of 
adjacent indices of second- and higher-order tensors.  As with the general-
ized dual product, the double-dot product may be applied to quantities de-
fined on the tangent and/or cotangent spaces of one or more configura-
tions, i.e., two-point tensors.  For example, 

 { }* *
0 0 0 0  ,AB

AB X X X XA B T B T B T B T B= ∀ ∈ × ∈ ×A : B A B , (2.83) 

 { }* *  ,ab
ab x x x xa b T B T B T B T B= ∀ ∈ × ∈ ×a : b a b , (2.84) 

 { }* *
0 0  ,aA

aA x X x xC D T B T B T B T B= ∀ ∈ × ∈ ×C : D C D , (2.85) 

{ }* * ,abcd
cd a b x x x x x xE F T B T B T B T B T B T B= ⊗ ∀ ∈ × × × ∈ ×E : F g g E F . (2.86) 

Notice from (2.86) that when tensors of rank greater than two are involved, 
the double-dot product operation does not yield a scalar as the result.  In 
situations where there is no chance for confusion, e.g., scalar products of 
mixed contravariant-covariant pairs along the lines of (2.82), the dual 
product and double-dot product notations may be used interchangeably.  In 
terms of the trace operation of (2.68), 
         ( ) ( ), tr tr T T= =A B AB A B , ( ) ( )tr trT T= =A : B AB A B . (2.87) 
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2.4 Physical Components 

Components of vectors and tensors expressed in general curvilinear coor-
dinates generally do not all exhibit the same dimensional units.  In general 
curvilinear systems, basis vectors need not be dimensionless.  Physical 
components of these objects can be introduced so that all components ex-
hibit the same dimensions, and so that all basis vectors are dimensionless 
and of unit length.  Developments that follow in Section 2.4 are expressed 
with respect to the reference configuration; analogous expressions apply 
for spatial coordinates.   

Physical components are referred to dimensionless basis vectors AE  ob-
tained by normalizing basis vectors of a general curvilinear coordinate sys-
tem by their lengths:  

 1
1/ 2( )

A
A A AA

A A

G−= =
GE G

G Gi
, (2.88) 

where underlined indices are not subject to the summation convention.  An 
arbitrary vector 0XT B∈V  can be written as 

 AA A
A AA A AV V G V= = =V G E E , (2.89) 

where contravariant physical components of V are 
 A A

AAV V G= . (2.90) 
Covariant components satisfy 

 1 BB
A AB AB BBV G V G G V−= = . (2.91) 

Physical components of a tensor of higher order can be defined by consid-
ering the way the tensor represents phenomena in physics; however, trans-
formation formulae for higher-order tensors from general curvilinear com-
ponents to physical components often involve lengthy manipulations 
(Malvern 1969).  Listed next are useful expressions for general orthogonal 
curvilinear coordinates, cylindrical coordinates, and spherical coordinates.  
Other kinds of curvilinear coordinate systems—elliptic, parabolic, bipolar, 
spheroidal, paraboloidal, and ellipsoidal—are addressed by Stratton 
(1941). 

2.4.1 General Orthogonal Coordinates 

General orthogonal coordinates are defined by the requirement that at each 
point X, the coordinate curves AX  passing through X are mutually or-
thogonal.  This requirement results in a diagonal metric tensor 
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,

0      .
AA

AB A B

G A B
G

A B
∀ =⎧

= = ⎨ ∀ ≠⎩
G Gi  (2.92) 

Thus 
      1 2 2 2 3 2

11 22 33( ) ( ) ( )A B
ABd d dX G dX G dX G dX G dX= = + +X Xi , (2.93) 

 1/ AA
AAG G= , (2.94) 

 11 22 33G G G G= , 1 11 22 33G G G G− = . (2.95) 
Non-vanishing Christoffel symbols are 

   ..
,

1
2

G
B

AA AA B
BB

G
G

Γ = − , .. ..
,(ln )

G G
B B

BA AB BB AG= =Γ Γ , ..
,(ln )

G
A

AA AA AG=Γ , (2.96) 

and otherwise 

 .. 0 ( )
G

A
BC A B CΓ = ≠ ≠ . (2.97) 

In contravariant physical components of orthogonal coordinates, the gradi-
ent and Laplacian of a scalar function ( )f X  and the divergence and curl 
of a vector field ( )XV  are, respectively (Eringen 1962) 

 1 1 1
11 ,1 1 22 ,2 2 33 ,3 3f G f G f G f− − −∇ = + +

G
E E E , (2.98) 

 
2 1 1

11 22 33 ,1 ,1

1 1
22 33 11 ,2 ,2 33 11 22 ,3 ,3

( )

                 ( ) ( ) ,

f G G G G f

G G G f G G G f

− −

− −

⎡∇ = ⎣
⎤+ + ⎦

G

 (2.99) 

 1 2 31
22 33 ,1 33 11 ,2 11 22 ,3, ( ) ( ) ( )G G G V G G V G G V− ⎡ ⎤∇ = + +⎣ ⎦

G
V , (2.100) 

 

3 21
22 33 33 ,2 22 ,3 1

1 31
33 11 11 ,3 33 ,1 2

2 11
11 22 22 ,1 11 ,2 3

( ) ( )

           ( ) ( )

           ( ) ( ) .

G G G V G V

G G G V G V

G G G V G V

−

−

−

⎡ ⎤∇× = −⎣ ⎦
⎡ ⎤+ −⎣ ⎦
⎡ ⎤+ −⎣ ⎦

G
V E

E

E

 (2.101) 

2.4.2 Cylindrical Coordinates 

Cylindrical coordinates 1 2 3( , , ) ( , , )X X X R Zθ→  are a particular kind of 
orthogonal curvilinear coordinates.  Transformation formulae to Cartesian 
coordinates and metric tensor components are listed in Table 2.1, and 
Christoffel symbols are listed in Table 2.2.  In particular, a squared incre-
ment of distance is 



2.4 Physical Components      37 

            
2 2 2

2 2 2 2

( ) ( ) ( )

           ( ) ( ) ( ) .

A B
AB RR ZZd d dX G dX G dR G d G dZ

dR R d dZ
θθ θ

θ

= = + +

= + +

X Xi
 (2.102) 

In physical components of cylindrical coordinates, the gradient and Lapla-
cian of a scalar ( )f X  and the divergence and curl of a vector field ( )XV  
are, respectively,  

 1
, , ,R R Z Zf f R f fθ θ

−∇ = + +
G

E E E , (2.103) 

 2 1 2
, , , ,RR R ZZf f R f R f fθθ

− −∇ = + + +
G

, (2.104) 

  1 1
, , ,, ( )R R Z ZR RV R V Vθ θ

− −∇ = + +
G

V , (2.105) 

 
1

, , , ,

1
, ,            ( ) .

Z Z R R Z Z R

R R Z

R V V V V

R RV V

θ θ θ

θ θ

−

−

⎡ ⎤ ⎡ ⎤∇× = − + −⎣ ⎦⎣ ⎦
⎡ ⎤+ −⎣ ⎦

G
V E E

E
 (2.106) 

By convention, indices of physical components of a vector in cylindrical 
coordinates are written in the subscript position, with angled brackets on 
indices omitted: 1 R

RV V V= = , 2V V Vθ
θ= = , and 3 Z

ZV V V= = .   

2.4.3 Spherical Coordinates 

Spherical coordinates 1 2 3( , , ) ( , , )X X X R θ ϕ→  are a second particular 
kind of orthogonal curvilinear coordinates.  Transformation formulae to 
Cartesian coordinates and metric tensor components are listed in Table 2.1; 
Christoffel symbols are listed in Tables 2.2.  In particular, a squared in-
crement of distance is 

           
2 2 2

2 2 2 2 2 2

( ) ( ) ( )

           ( ) ( ) sin ( ) .

A B
AB RRd d dX G dX G dR G d G d

dR R d R d
θθ ϕϕθ ϕ

θ θ ϕ

= = + +

= + +

X Xi
 (2.107) 

In physical components of spherical coordinates, the gradient and Lapla-
cian of a scalar ( )f X  and the divergence and curl of a vector field ( )XV  
are computed, respectively, as follows:  

        1 1
, , ,( sin )R Rf f R f R fθ θ ϕ ϕϕ− −∇ = + +

G
E E E , (2.108) 

      2 2 2 2 1 2
, , , , ,( ) ( sin ) ( sin ) ( sin )R Rf R R f R f R fθ θ ϕϕθ θ θ− − −∇ = + +

G
, (2.109) 

       2 2 1
, , ,, ( ) ( sin ) ( sin )R RR R V R V Vθ θ ϕ ϕθ θ− − ⎡ ⎤∇ = + +⎣ ⎦

G
V , (2.110) 
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1
, ,

1 1
, ,

1
, ,

( sin ) ( sin )

           (sin ) ( )

           ( ) .

R

R R

R R

R V V

R V RV

R RV V

ϕ θ θ ϑ

ϕ ϕ θ

θ θ ϕ

θ θ

θ

−

− −

−

⎡ ⎤∇× = −⎣ ⎦
⎡ ⎤+ −⎣ ⎦
⎡ ⎤+ −⎣ ⎦

G
V E

E

E

 (2.111) 

By convention, indices of physical components of a vector in spherical co-
ordinates are written in the subscript position, with angled brackets on in-
dices omitted: 1 R

RV V V= = , 2V V Vθ
θ= = , and 3V V Vϕ

ϕ= = .   

2.5 The Deformation Gradient 

The deformation gradient is a fundamental descriptor of kinematics of de-
formable bodies, and is of particular importance in the context of nonlinear 
solid mechanics.  In Section 2.5, the definition and interpretation of the de-
formation gradient are provided, followed by definitions and identities for 
key quantities derived from the deformation gradient. 

2.5.1 Fundamentals 

Recall from Section 2.1.2 that motion from the reference configuration to 
the current configuration of a deformable body is denoted by continuous, 
invertible, one-to-one function 1

0 0:t B Bϕ −= χ χ →D .  The deformation 
gradient field is defined as the tangent of ϕ , mapping vectors in 0TB  to 
vectors in TB , or locally at material point X, 0( ) :X X xX T T B T Bϕ= →F .  
A visual interpretation is provided in Fig. 2.2.  When coordinate systems 

ax  and aX  are introduced on 0B  and B , respectively, such that 
( , )a a Ax X tϕ= , then deformation gradient F can be written as 

 *
. 0

a
a A A
A a a x XAF T B T B

X
ϕ∂

= ⊗ = ⊗ ∈ ×
∂

F g G g G . (2.112) 

In components, the deformation gradient is often written4 . .,( , )a a
A AF X t x= .  

At any particular time t, spatial coordinates ax  occupied by the body are 
assumed one-to-one functions of AX  and (usually) differential of class rC  
( 1r ≥ ) with respect to AX .  Also at any time t, reference locations occu-
pied by the body with coordinates AX  are assumed one-to-one and of 
                                                      

4 Partial differentiation proceeds as , , , ., .( ) ( ) ( ) ( ) ( )a a a
A A a A a A a Ax x F∂ ⋅ = ⋅ = ⋅ ∂ = ⋅ = ∂ ⋅ . 
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class rC  with respect to spatial coordinates ax .  Thus .,det( ) 0a
Ax ≠ .  If 

0r =  across certain singular surfaces within an otherwise “smooth” body, 
then F may be discontinuous across such surfaces.  Because it is referred 
to (possibly) distinct coordinate systems in different configurations, F is 
said to be a two-point tensor or double tensor (Ericksen 1960) whose com-
ponents each transform like those of a vector (upper index) or covector 
(lower index) under transformations of only one set of coordinates.  The 
deformation gradient operates on an arbitrary vector 0

B
B XV T B= ∈V G  as  

     
( ).

. .     , ,

a A B
A a B

a B A a A
A a B A a x

F V

F V F V T B

= ⊗

= = ∈

FV g G G

g G G g
 (2.113) 

where the first of (2.4) has been used.  From (2.113) it is clear why the de-
formation gradient is called a tangent map: F maps a reference vector V 
that is a linear combination of tangent basis vectors at a point X on the ref-
erence configuration to a spatial vector FV that is a linear combination of 
tangent basis vectors at a point x on the current configuration. 

The deformation gradient provides the first-order approximation of the 
length and direction of a differential line element xd T B∈x  mapped to the 
current configuration from its referential representation 0Xd T B∈X .  For 
example, a Taylor-like series expansion can be written (Toupin 1964) 

 
N N

. . : . :

., : :

( ) ( )
1 1     ...
2! 3!

a a a
A A B A BC

a a a

a A a A B a A B C
A AB ABCX X X

F F F

dx x X x X

x dX x dX dX x dX dX dX

′= −

= + + +
�	


, (2.114) 

with A A AdX X X′= −  an infinitesimal vector between reference points X 
and X ′ .  Section D.1 of Appendix D contains a complete tensor derivation 
of (2.114), to second order in dX.  To first order in dX,  

 d d=x F X , . .,
a a A a A

A Adx F dX x dX= = . (2.115) 
In (2.114), the total covariant derivative of the deformation gradient, i.e., 
the second-order position gradient, obeys (Eringen 1962; Toupin 1964) 

 
.. ..

: . : . , . . .

.. ..
., ., ., .,                 .

gG
a a a C a a c b
AB A B A B BA C bc A B

gG
a C a a c b
AB BA C bc A B

x F F F F F

x x x x

Γ Γ

Γ Γ

= = − +

= − +
 (2.116) 

The total covariant derivative of a generic two-point or double tensor of 
arbitrary order, ( , )X xA , is defined as (Ericksen 1960; Eringen 1962) 

       
... ... ... ... ... ...
... ... : ... ... ; ... ... ; .

... ... ... ...

... ... : . ... ... : .,

( ) ( ) ( )

                    ( ) ( ) .

A C a c A C a c A C a c k
D F d f K D F d f K D F d f k K

A C a c k A C a c k
D F d f k K D F d f k K

A A A F

A F A x

= +

= =
 (2.117) 
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Partial covariant derivatives of A are found by applying the usual rules of 
covariant differentiation in (2.30) to only one index.  For example, 

 ..
. ; . , .

G
a a C a
A B A B BA CA A AΓ= − , ..

. ; . , .

g
a a a c
A b A b bc AA A AΓ= + . (2.118) 

In (2.116), regarding ., ., ( )a a
A Ax x X=  leads to inclusion of only one second-

order partial derivative in the total covariant derivative of F (Eringen 1962; 
Toupin 1964), though in general 1

. , . , . 0a a B
A b A B bF F F −= ≠ .  From the chain 

rule, . : . : .
a a b
A B A b BF F F=  and 1

. : . : .
a a B
A b A B bF F F −=  (Ericksen 1960).  Third-order po-

sition gradient :
a
ABCx  can be computed by taking the total covariant deriva-

tive of . :
a
A BF  via another iteration of (2.117).  Partial covariant derivatives 

of two-point shifter tensors vanish: . ; 0A
a bg = , . ; 0a

A Bg = , . ; 0a
A bg = , and 

. ; 0A
a Bg =  (Toupin 1956; Ericksen 1960).  For example, . ; ; 0A A

a b a bg = =G gi .  
Then from (2.117), total covariant derivatives of shifters must vanish: 

. : 0A
a bg = , . : 0a

A Bg = , . : 0a
A bg = , and . : 0A

a Bg = .  Thus it follows that partial co-
variant differentiation and total covariant differentiation both commute 
with shifting, raising, and lowering of indices. 

The dual map *F of the two-point tensor F  is defined by  
 0  x X

*T B, T B= ∀ ∈ ∈*F α,V α,FV α V . (2.119) 

From the properties of the mapping ϕ , deformation gradient tensor F is 
non-singular, and its inverse satisfies 

 1− = 0F F 1 , ., ., .
A a A
a B BX x δ= ; 1− =FF 1 , ., ., .

a A a
A b bx X δ= ; (2.120) 

where  and A B a b
.B A .b a= δ δ⊗ = ⊗01 G G 1 g g  are identity tensors on 0B  and 

B .  In components, the inverse 1
. .,( , )A A
a aF x t X− = , and partial differentiation 

1
.(.) (.) A

a A aF −∂ = ∂ .  The dual and inverse commute: 1 1* *− − −= =*F F F .  In 
components, the dual, inverse, and dual-inverse of F are, respectively,  

 0
.a A

A a X x
* * *F T B T B= ⊗ ∈ ×F G g , (2.121) 

 1 1
0

A a
.a A X x

*F T B T B− −= ⊗ ∈ ×F G g , (2.122) 

 0
.A a
a A x X

* * *F T B T B− −= ⊗ ∈ ×F g G . (2.123) 
The transpose map TF  between metric vector spaces 0( )XT B ,G  and 

( )xT B,g  is defined by the operation 
 0( ) ( )  T

x XT B, T B= ∀ ∈ ∈F w V w FV w Vi i . (2.124) 
Upon inspection of (2.119) and (2.124), the relationship between the trans-
pose and dual maps is apparent: 
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 1T −= *F G F g . (2.125) 
Notice that the transpose map depends on the metric tensors of each con-
figuration, while the dual map is defined independently of the metric in ei-
ther configuration.  In index notation, the dual map corresponds to a hori-
zontal switch of indices, while the transpose corresponds to a diagonal 
switch.  In coordinates, transpose and inverse-transpose maps are written 

 A 0
T AB b a

B ba X x
*. *G F g T B T B= ⊗ ∈ ×F G g , (2.126) 

 0
T ab .B A

b BA a x X
* *g F G T B T B− −= ⊗ ∈ ×F g G . (2.127) 

Two specific kinds of coordinate representation of the motion (and 
hence the deformation gradient) are common: convected coordinate repre-
sentations and Cartesian coordinate representations.   

For one kind of representation in convected coordinates, basis vectors of 
the spatial frame are updated with the motion in such a way that numerical 
values of the coordinates of a material particle in reference and spatial de-
scriptions always coincide: 

 .( , )a a A
Ax X t X= δ , . .

a a
A AF = δ , ( ) ( )A

a x,t X= ⊗F g G . (2.128) 
Alternatively, convected coordinates can be expressed in terms of spatial 
basis vectors fixed in time and updated reference basis vectors, again re-
sulting in coincident numerical values of coordinates of a material particle: 

 .( , )a a A
Ax X t X= δ , . .

a a
A AF δ= , ( ) ( )A

a x X ,t= ⊗F g G . (2.129) 
Because basis vectors for spatial and reference coordinates, respectively, in 
(2.128) and (2.129) evolve with time, associated metric tensors will also 
change with time as the body deforms.  Convected coordinates of types 
(2.128) and (2.129) will not be used henceforward in this book for describ-
ing the relationship between reference and spatial coordinates of a material 
particle.  Definition (2.112)—which is applicable in general curvilinear 
coordinates—is used this book, but it is henceforth restricted to non-
deforming, inertial coordinate systems on 0B  and B , thus ruling out use of 
convected coordinates.  Accordingly, natural basis vectors and metric ten-
sors do not depend explicitly on time: in the reference configuration 

( )A A X=G G , ( )A A X=G G , and hence ( )AB ABG G X= .  Likewise in the 
current configuration, ( )a a x=g g , ( )a a x=g g , and ( )ab abg g x= .  Thus in 
the remainder of this book, holonomic basis vectors can change with posi-
tion (X or x) as is the case for curvilinear coordinates, but the origin of 
each coordinate system for AX  and ax  remains fixed in both time and 
space.   

The presentation of kinematics of deformable bodies simplifies consid-
erably in Cartesian coordinates, also often called rectangular coordinates, 
rectilinear coordinates, or flat coordinates.  If coincident Cartesian coordi-
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nate axes5 are specified with .
a

A A A aδ= =e G g , .
A A A a

aδ= =e G g , AB ABG δ= , 

ab abg δ= , a a
.A .Ag δ= , and A A

.a .ag δ= , then (2.112) becomes, quite simply, 
 A B

.B AF= ⊗F e e . (2.130) 
Occasionally Cartesian representation (2.130) is used in this book, again 
assuming that the orientation of each basis vector remains fixed in time.  
Restriction of validity of a corresponding expression to Cartesian coordi-
nates will be stated explicitly.  In (2.130), notice . . ., ., .

A A a A A
B a B B BF x Xδ δ= ≠ = . 

Push-forward and pull-back operations are now defined.  The push for-
ward of a scalar 0:f B →\  is defined by 1

* f fϕ ϕ −= D .  The pull-back of 

a scalar :h B →\  is defined by *h hϕ ϕ= D .  The push-forward *ϕ V  of a 

vector 0XT B∈V , the pull-back *ϕ w  of a vector xT B∈w , the push-
forward *ϕ α  of a covector 0X

*T B∈α , and the pull-back *ϕ β  of a covector 

x
*T B∈β  are defined by  

 ( ) 1 1
X x* T T Bϕ ϕ ϕ ϕ− −= = ∈V V FVD D , (2.131) 

 ( ) ( )1 1
0X X

* T T Bϕ ϕ ϕ ϕ− −= = ∈w w F wD D , (2.132) 

 ( ) ( ) 1 1
X x

* * *
* T T Bϕ ϕ ϕ ϕ− − − −= = ∈α α F αD D , (2.133) 

 ( ) ( ) 0X X
** * *T T Bϕ ϕ ϕ ϕ= = ∈β β F βD D . (2.134) 

By extension, the push-forward to the current configuration of arbitrary 
tensor A  of rank { }N

M  referred to the reference configuration is defined as 

( ) ( )1 1
1 1 1 1

                                

M N M N

i x i x

* *
*

*

,... , ,... ,... , ,...

T B, T B.

ϕ − −=

∀ ∈ ∈

A w w β β A F w F w F β F β

w β
 (2.135) 

Similarly, the pull-back from the spatial configuration of arbitrary tensor b 
of order { }N

M to the reference configuration is defined as 

 
( ) ( )1 1 1 1

0 0                            

M N M N

i X i X

* * *

*

,... , ,... ,... , ,...

T B , T B .

ϕ − −=

∀ ∈ ∈

b V V α α b FV FV F α F α

V α
 (2.136) 

Composition with 1ϕ −  and ϕ  for respective push-forward and pull-back 
operations in (2.131)-(2.134) is often implied rather than written explicitly 
and is omitted henceforth when there is no chance of confusion.   

                                                      
5 This is a stricter requirement than non-coincident Cartesian coordinates, 

wherein the metric tensors reduce to Kronecker delta symbols, but the shifters rep-
resent rigid rotations independent of location. 
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Since reference and current configurations are embedded in Euclidean 
space, it is possible to introduce, for each material particle, a displacement 
function u with spatial components (Eringen 1962) 

 a a a au x X ξ= − + , (2.137) 
where ax  are spatial components of the vector from the origin of a fixed 
Cartesian coordinate frame to the particle in the deformed body, 

.
a a A

AX g X=  are spatial components of the vector from the origin of a dif-
ferent fixed Cartesian coordinate frame to the same particle in the unde-
formed body, and aξ  are spatial components of the vector extending from 
the origin of the Cartesian frame in the reference configuration to the ori-
gin of the Cartesian frame in the current configuration.  Using shifters and 
metric tensors of Section 2.1.2,  

 .
A A a Aa AB

a a Bu g u g u G u= = = . (2.138) 
Since aξ  are components of a constant vector, deformation gradient com-
ponents . ( , )a

AF X t  can be represented as (Toupin 1956; Suhubi and Eringen 
1964) 

       
. ., , . , . , . ,

., ., ., . ,

; . .

( ) ( ) ( ) ( )

     ( ) ( )( )

     ( ) .

a a a a a B a B a B a
A A A B A B A B A

B B B a B B B a
A A A B B A

B B a
A A B

F x u X u g X g g

u X g X u

u g

ξ ξ

ξ ξ

δ

= = + − = + −

= + − + + −

= +

g Gi  (2.139) 

Similarly, components of the inverse deformation gradient, 1
. ( , )A
aF x t− , can 

be expressed as 
 1

. ., . ; .( ) .A A b b A
a a a a bF X u gδ− = = −  (2.140) 

It is emphasized that the deformation gradient and its inverse cannot be 
represented by (2.139) and (2.140) when reference and current configura-
tions are non-Euclidean spaces, in which case (2.137) does not apply. 

2.5.2 Derived Kinematic Quantities and Identities 

The Jacobian determinant of F provides the relationship between a differ-
ential reference volume element 1 2 3

0dV GdX dX dX B= ⊂  and its de-
formed counterpart in the current configuration 1 2 3dv gdx dx dx B= ⊂ : 

 JdV dv= . (2.141) 
In coordinates (Truesdell and Toupin 1960; Eringen 1962; Marsden and 
Hughes 1983; Dluzewski 1996), the Jacobian determinate is computed as 
follows: 
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. . . . . .

.,

1 1 /
6 6
1 1  det / det( ) det( ) / det( ),
6 6

ABC a b c ABC a b c
abc A B C abc A B C

a
A ab AB

J F F F g Ge e F F F

g G x g G

ε ε= =

= =F
 (2.142) 

where (2.64) and (2.65) have been used.  For the inverse deformation6, 
1 1 1 1 1

. . .6 / detabc A B C
ABC a b cJ F F F G gε ε− − − − −= = F .  From (2.64)-(2.67) and 

Table 2.3, it follows that permutation tensors map between configurations 
via 1

. . .
abc ABC a b c

A B CJ F F Fε ε−=  and 1 1 1
. . .
A B C

abc ABC a b cJ F F Fε ε − − −= .  Jacobian 
( , )J X t , unlike detF , is an absolute scalar, invariant under coordinate 

transformations (Marsden and Hughes 1983).  Since volume v remains 
positive and bounded, 0 J< < ∞ .  When there is no deformation, e.g., 
when a body undergoes only rigid translation, then .

a A
A ag= = ⊗F 1 g G , 

and in that case ./ det( ) 1a
AJ g G g= =  follows from (2.142).  

The following identity applies for the derivative of the determinant of a 
non-singular, second-order matrix A (Ericksen 1960; Thurston 1974): 

 1
.

.

(det ) detB
AA

B

A
A

−∂
=

∂
A A . (2.143) 

Applying (2.143) to J  and 1J −  produces the following identities: 

 1
.

.

A
aa

A

J JF
F

−∂
=

∂
, 

1
1

.1
.

a
AA

a

J J F
F

−
−

−

∂
=

∂
, (2.144) 

as can be verified directly via inspection of (2.142).  The total covariant 
derivative of the second of (2.144), using (2.73) and the chain rule (see the 
full derivation in Section D.2 of Appendix D), is 

   
1 1 1 1 1 .. 11

. : . : . , . .

1 1
. ., .,

( / ) ( ) ( )

                        0.

G
A a a a C B
a a A a A a C BA a

B a a
a AB BA

J F J F g g J F J F F

J F x x

Γ− − − − − −−

− −

∂ ∂ = = −

⎡ ⎤= − =⎣ ⎦
 (2.145) 

Analogously, the divergence of the first of (2.144) produces the identity 

            1 1 ..1
. : . : . ,( / ) ( ) ( ) 0

g
a A A b
A A a A a A baJ F JF G GJF J Γ− −−∂ ∂ = = − = . (2.146) 

Relations (2.145) and (2.146) are often called Piola identities.  Using the 
definition of the determinant and (2.139), the Jacobian satisfies 

 
. ; . ; .

2
; ; ; ;

/ det( )det det

  1 (1/ 2) ( ) .

a A A A A
A B B B B

A A A B
A A B A

J g G g u u

u u u u

δ δ⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦
⎡ ⎤≈ + + −⎣ ⎦

 (2.147) 

                                                      
6 Recall that for two generic, non-singular square matrices A and B the follow-

ing identities apply: det( ) (det )(det )=AB A B  and 1 1det( ) (det )− −=A A . 
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Terms of order three in referential displacement gradients are omitted in 
the final approximation in (2.147). 

Let oriented differential area elements referred to configurations 0B  and 
B  be labeled dSN  and dsn , respectively, where unit normal covariant 
vectors *

0XT B∈N  and *
xT B∈n .  These area elements are related by the 

transformation formula 
 * ,ds J dSϕ=n N *. 1

.
A A

a a A a An ds JF N dS JF N dS− −= = .     (2.148) 
Relation (2.148) is called Nanson’s formula (Malvern 1969) and represents 
the Piola transformation between differential forms dSN  and dsn  (Mars-
den and Hughes 1983).  Let [ ] / 2b c b c

a abc abcn ds dx dx dx dxε ε= = ∧  and 
[ ] / 2B C B C

A ABC ABCN dS dX dX dX dXε ε= = ∧ , where for two rank-one ob-
jects, the wedge product satisfies ( )AB A B∧ = ∧α β α β  A B B A= −α β α β .  
Schouten (1954) calls a bdx dx∧  an infinitesimal bivector.  From the above 
definitions of oriented differential area elements and the properties of the 
permutation tensor in Table 2.3, it follows that a b abc

cdx dx n dsε∧ =  and 
A B ABC

CdX dX N dSε∧ = .  Notice that adx  and bdx  are treated as compo-
nents of distinct vectors in the definition of the area element; otherwise the 
dyad a bdx dx  would be symmetric.  Notice also that the oriented area ele-
ment [ ]b c b c

a abc abcn ds dx dx dx dxε ε= = . 
Decomposition of the deformation gradient into the product of two ten-

sors—a rotation and a symmetric positive definite tensor called a stretch 
tensor—is always possible since F is non-singular.  This separation into 
stretch and rotation is called the polar decomposition and is written as 

                                 = =F RU VR , (2.149) 
where rotation 0: X xT B T B→R  is a proper orthogonal two-point tensor, 
i.e., 1 T− =R R  and R has positive Jacobian determinant of unit magnitude: 

 0
T =R R 1 , T =RR 1 , . . . 6ABC a b c

abc A B CR R R =ε ε . (2.150) 
Right stretch tensor 0 0: X XT B T B→U  and left stretch tensor : x xT B T B→V  
satisfy the following symmetry conditions: 

 . .
B B

AB C CB AG U G U= , . .
b b

ab c cb ag V g V= . (2.151) 
The stretch tensors in (2.151) are determined uniquely by the polar de-
composition of F, and are related to the right and left Cauchy-Green de-
formation tensors, C and B respectively, as  

 2T= =C F F U , 2T= =B FF V . (2.152) 
Since det / 0G g= >R  by convention (2.150), det det 0J = = >U V .  
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The covariant version of C is the pull-back of spatial metric g, and the 
contravariant version of B is the push-forward of reference metric 1−G : 

 * ( )ϕ=C g , ( ). .
a b

AB A ab B ABC F g F C= = ; (2.153) 

 * ( )ϕ −= 1B G , ( )
. .

abab a AB b
A BB F G F B= = . (2.154) 

The tensors defined in (2.153) and (2.154) are clearly symmetric.  From 
(2.115) and (2.153), C assigns, to first order, the length of an infinitesimal 
line element after deformation: 

 d d d , d= =x F X X C X . (2.155) 
Furthermore, the right Cauchy-Green strain tensor  

 1 ( )
2

= −E C G , ( )
1 ( )
2AB AB AB ABE C G E= − = , (2.156) 

provides a relationship for the difference in squared lengths of deformed 
and undeformed line elements as  

 2 ,d d d d d d− =x x X X X E Xi i . (2.157) 
A number of other finite strain measures not described here may be con-
structed from F or its inverse (Malvern 1969; Marsden and Hughes 1983).  
Notice that it is customary to represent the rotation R of (2.149) and 
(2.150) as a two-point tensor.  If instead R is referred exclusively to refer-
ence coordinates, for example, then a shifter must be introduced into the 
deformation gradient, e.g., 1/ 2

. . . . . . . . .( )a a C a B C a B C
A C A B C A B C AF R U g R U g R C= = = . 

More kinematic identities emerge from straightforward differentiation7: 

              . .
a bAB
A B

ab

C F F
g

∂
=

∂
, .( . )

.

2 C bAB
ab A Ba

C

C g F
F

δ∂
=

∂
, ( )

.( . )
1
2

C DAB
A B

CD

E
C

δ δ∂
=

∂
. (2.158) 

The following identity is derived from (2.143) and the symmetry of C: 

 1 1(det ) det detBA AB

AB

C C
C

− −∂
= =

∂
C C C . (2.159) 

Then because 2 2
. . .det det( ) det( ) ( / )(det )A AC c b
B C cb BC G F g F g G J= = = =C F ,  

 

2

1 1 1
. . ., .,

1 1 (det )2

        .
AB AB AB AB

AB A ab B A ab B
a b a b

J J J
E C J C J C

JC JF g F JX g X− − −

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂

= = =

C
 (2.160) 

                                                      
7 Additionally, from (2.120), .

. .1
.

a
a bB
A BA

b

F
F F

F −

∂
= −

∂
 and 

1
1 1.
. .

.

A
A Bb
a ba

B

F
F F

F

−
− −∂

= −
∂

. 
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2.5.3 Linearization 

It is instructive to consider the small deformation, i.e., geometrically linear 
or infinitesimal, kinematic description often applied in engineering prac-
tice.  In the usual linear theory, displacements and displacement gradients 
are assumed small so that configurations 0B  and B nearly coincide, and the 
same coordinate system is used in both configurations.  Thus the shifter 
degenerates to . .

a a
A Ag δ= , and partial coordinate differentiation with respect 

to either configuration is nearly the same operation, e.g., .(.) (.)A
a a Aδ∂ ≈ ∂ .  

Since there is only one coordinate system, lower case indices are used in 
this book for representation of mathematical objects the linear theory, by 
default.  Covariant differentiation with respect to the Levi-Civita connec-

tion is represented by ∇
g

, Christoffel symbols by .. ( )
g

a
bc xΓ , and metric by 

( )abg x .  In Euclidean space, spatial and reference coordinates are related 
in the linear theory by the vector addition rule 

 = +x X u , (2.161) 
where u is the displacement vector.  Components of the right Cauchy-
Green strain tensor ( , )X tE  of (2.156) are related to spatial covariant de-
rivatives of ( , )x tu  as (Eringen 1962)  

 1 1
. . ; ; ; ;2 A B c
a AB b a b b a a c bF E F u u u u− − = + − . (2.162) 

Components of the infinitesimal strain tensor ( , )x tε  (also called the linear 
or small strain tensor) are defined as  

 ( ) ; ;;
1 ( )
2ab a b b aa bu u uε = = + , (2.163) 

and clearly differ from those of finite strain tensor E by terms of order two 
in displacement gradients.  Such terms are assumed negligibly small with 
respect to the displacement gradient itself in the linear theory.  Volume 
changes in the linear theory are computed after omitting terms of orders 
two and higher in displacement gradients in (2.147) as 

 ;1 1 tr( )a
aJ u≈ + = + ∇

g

u , 1
;1 1 tr( )a
aJ u− ≈ − = − ∇

g

u . (2.164) 
The skew rotation tensor Ω  is also introduced in the linear theory: 

                 [ ] [ ] [ ] [ ]
..

; , ,

g
c

ab ca b a b ba a bu u u uΩ Γ= = − = , (2.165) 

which itself can be reduced to a vector w via the axial transformation 

 [ ],
1 1
2 2

a abc abc
bc b cw uε Ω ε= − = − , c

ab abcwΩ ε= − . (2.166) 



48      2 Mathematical Foundations 

Tensor Ω , when acting on differential element dx, produces the relative 
displacement d d= ×Ω x w x , where ( ) b c

a abcd w dxε× =w x .  When all com-
ponents of Ω  are small compared to one radian, this relative displacement 
represents a true rotation, and in Cartesian coordinates, = +R 1 Ω  is the 
corresponding rotation tensor appearing in (2.149). 

2.6 Velocities and Time Differentiation 

Material velocity ( , )X tV  and spatial velocity ( , )x tv  satisfy the following 
definitions in direct and indicial notation, respectively: 

        
a

a
Xt t

ϕ∂ ∂
= =

∂ ∂
xV g , ( ) ( ) ( ), , ( , ),a a aV X t X t v X t t

t
ϕ ϕ∂

= =
∂

; (2.167) 

 1
t t tϕ −=v V D , ( ) ( )1, ( , ),a av x t V x t tϕ −= . (2.168) 

Recall the notation ( , )x X tϕ=  and 1( , )X x tϕ −=  from Sections 2.1.2 and 
2.5.1.  Subscript t in the first of (2.168) denotes a spatial field quantity at a 
particular (fixed) time t.  Notice that components of both velocity fields are 
referred to spatial coordinates.  In each definition, the material particle at X 
is held constant during time differentiation, meaning that velocity is the 
time rate of change of position of a given material particle.  The composi-
tion operation in (2.168) is often implicitly assumed rather than written 
explicitly, and is omitted later in the text when no confusion arises. 

2.6.1 The Material Time Derivative 

The material time derivative measures the rate of change of a quantity as-
sociated with given a material particle at X.  Because spatial position x of a 
given particle may change with time, the material time derivative and the 
partial time derivative of a function expressed in terms of spatial position x 
can differ.  The material time derivative of a differentiable scalar function f 
of time t and spatial position x is defined as 
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           ,
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∂

�

 (2.169) 
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where the partial time derivative is taken with spatial coordinates x (i.e., 
position x) held constant, and the intrinsic derivative that accounts for con-
vective changes of scalar function f resulting from the velocity field is 

            ; ; ; ,( )a a a a
a a a a

f f f v fv fv f v
t

δ
δ

= ∇ = = − =
g

v . (2.170) 

It follows that for differentiable functions f and g, ( ) /d f g dt f g+ = +� �  
and ( ) /d fg dt fg fg= +� � .  The material time derivative is applied in an 
analogous way to vectors and tensors of higher order as, for example, 
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... ... ;,
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x
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f x t f v

t
∂
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∂

� . (2.171) 

The material time derivative of a time-dependent function of position in 
the reference configuration, with all indices referred to reference coordi-
nates8, by definition equals its partial time derivative: 
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� . (2.172) 

One application of (2.171) for a spatial vector is the spatial acceleration: 
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 (2.173) 

                                                      
8 For a function f of reference position with one or more indices referred to spa-

tial coordinates, letting /D Dt  denote the partial derivative with both X and g 
constant, the material time derivative is defined by (Truesdell and Toupin 1960) 
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On the other hand, the material acceleration, i.e., the material time deriva-
tive of material velocity (2.167) referred to spatial coordinates, satisfies  
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noting that .,( / ) ( / )a a a b
bX x

V t v t v v∂ ∂ = ∂ ∂ +  from (2.167).  Expressed as 
material time derivatives, contravariant velocity components are written as  

( , ) ( , ) ( , )a a aV X t v x t x X t= = �  and contravariant acceleration components 
are written as ( , ) ( , ) ( , )a a aA X t a x t x X t= = �� .   

Using (2.118) and (2.171), the material time derivative of the deforma-
tion gradient . .,

a A a A
A a A aF x= ⊗ = ⊗F g G g G  of (2.112), an example of a 

two-point tensor, is calculated in components as follows (Eringen 1962): 
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The spatial velocity gradient tensor L(x,t), i.e., the covariant spatial de-
rivative of the velocity vector v(x,t), is 
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, ;
1
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,
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L v x F F
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 (2.176) 

Noting that 1
. . .( ) / ( ) / 0a A a
A b bd F F dt d dtδ− = = , the material time derivative of 

the inverse deformation gradient satisfies 1 1
. . . ., ;( ) ( )A A b A b
a b a b aF F L X x− −= − = −� � .   
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The covariant derivative of a metric tensor with respect to its Levi-
Civita connection always vanishes identically; thus the material time de-
rivative of spatial metric tensor with components ( )abg x  vanishes: 

            ;( ) 0cab
ab ab c

x

gg x g v
t

∂
= + =

∂
� , ;( ) 0

ab
ab ab c

c
x

gg x g v
t

∂
= + =

∂
� . (2.177) 

Furthermore, ( ) ( / ) 0AB AB X
G X G t= ∂ ∂ =� .  Thus, raising or lowering of in-

dices commutes with material time differentiation in either configuration. 

2.6.2 The Lie Derivative 

The Lie derivative of a differentiable but otherwise arbitrary function 
( , )f x t  on spatial manifold B taken with respect to the velocity field 
( , )x tv  of (2.168) is computed by 

 *
* ( )df f

dt
ϕ ϕ⎡ ⎤= ⎢ ⎥⎣ ⎦

vL , (2.178) 

where *ϕ  and *ϕ  denote pull-back and push-forward operations with re-
spect to the motion.  The notation /d dt  denotes a material time derivative, 
as implied already by (2.169).  In this text, particular Lie derivative (2.178) 
is considered exclusively.  However, more general definitions of Lie de-
rivatives taken with respect to time-dependent vector fields, e.g., fields o-
ther than velocity v, exist (Schouten 1954; Marsden and Hughes 1983).  
Lie derivatives are useful for positing constitutive equations in rate form 
because objective rates of second-rank tensors have objective Lie deriva-
tives.  The component representation of Lie derivative (2.178) for a scalar 
function f equals its material time derivative: 

   ; ; ;( )a a a
a a a

X x x

f f ff f v f fv fv
t t t

∂ ∂ ∂
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∂ ∂ ∂v
�L . (2.179) 

For vectors and tensors of higher order, the Lie derivative in components is 
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 (2.180) 

since terms involving Christoffel symbols in the covariant derivatives can-
cel by the symmetry of the Levi-Civita connection on B.  For the scalar 

( , )J X t , a direct calculation with the chain rule, (2.144), and (2.176) gives 
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In components, the Lie derivative of the spatial metric tensor ( )abg x  is 
       ( ); ; ;
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( ) / 2 2c c c
ab ab ab c a cb b ac ababx

g g t v g v g v g L D
=
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L , (2.182) 

where abD  are components of the symmetric deformation rate tensor. 

2.6.3 Rate Kinematics 

Velocity gradient L provides, to first order, the difference dv in spatial ve-
locities of two particles in the spatial frame separated by a small vector dx.  
The material time derivative applied to (2.115) results in  
       d d=v L x , 1

. . . ; .
a a a A a A b a b a b

A A b b bdv dx F dX F F dx v dx L dx−= = = = =� �� . (2.183) 
Deformation rate tensor D provides the material time derivative of the 
squared length of a differential line element dx: 
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because ( )a ba bdx dx dx dx= .  Since from (2.115), 
 ( ) . ./ ( ) /a A b B A B

A ab B ABd d d dt d F dX g F dX dt C dX dX= =x x �i , (2.185) 
time rates of right Cauchy-Green strain and deformation tensors satisfy 
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 . .
1
2

a b
AB AB A ab BE C F D F= =�� , (2.186) 

relationships that can also be derived directly from (2.153), (2.156), 
(2.176), and (2.182), without resorting to use of first-order approximation 
(2.115).  The skew covariant part of L, called the spin tensor or vorticity 
tensor and labeled W, provides the time rate of rotation of a differential 
line element dx.  In components, 
   [ ] ( ) [ ] [ ]; ; ; ,ab ab ab a b a bab a b a bW L L D v v v v= = − = − = = , (2.187) 

with the final equality following from the symmetry of the connection co-
efficients.  Appealing to the polar decomposition in the first of (2.149) and 
(2.176), the velocity gradient can be written 

 1T T−= +L RR RUU R� � . (2.188) 
From time differentiation of (2.150), the covariant version of the first term 
on the right of (2.188) is always skew: 

 . . . .
c T A c T A

ac A b bc A ag R R g R R= −� � , (2.189) 
meaning that the spatial deformation rate is comprised of the symmetric 
part of the second term on the right of (2.188): 

 1 1
. . . . . . . .2 c A B T C c A B T C

ab ac A B C b bc A B C aD g R U U R g R U U R− −= +� � . (2.190) 
Noting that =u v� , in the context of the geometrically linear theory of Sec-
tion 2.5.3, the deformation rate is equivalent to the time rate of the small 
strain tensor, and the spin is equivalent to the rate of rotation: 
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 (2.191) 

2.7 Theorems of Gauss and Stokes 

Two fundamental theorems of vector calculus associated with integration 
are used frequently later in the text.  The first, known as Gauss’s theorem 
or Green’s theorem, relates volume and surface integrals.  A particular 
case is the well-known divergence theorem.  The second is Stokes’s theo-
rem, and it relates surface and line integrals. 

2.7.1 Gauss’s Theorem 

The generalized Gauss’s theorem exhibits the form (Malvern 1969) 
 

V S

dV dS∗∇ = ∗∫ ∫A A N , (2.192) 
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where A is a scalar, vector, or tensor of arbitrary order that has continuous 
first derivatives with respect to local coordinates, ∇  is the covariant de-
rivative operator with respect to the Levi-Civita connection of these coor-
dinates, and N is the outward unit normal covariant vector to differential 
surface area element dS.  Surface S, which encloses volume V, is required 
to be piecewise smooth and exhibit a topological outside and inside, such 
that N may be clearly assigned to point from the inside to the outside of V 
for each surface element dS.  Volume V must be simply connected for a 
single continuous surface S to suffice9; otherwise, (2.192) may be applied 
over the union of disjoint surfaces completely enclosing a volume that is 
not simply connected.  The ∗  operator—not to be confused with the push-
forward ϕ∗  or pull-back  *ϕ  introduced in Section 2.5.1 that feature aster-
isks written in respective subscript or superscript positions—represents a 
general product that exhibits the distributive property.  Examples include 
the dual product  ,  , the dot product i , the vector cross product × , and 
the tensor (outer) product ⊗ .  The familiar divergence theorem of vector 
calculus is obtained from (2.192) when ∗  is the dual or dot product, e.g., 
for a spatial vector field ˆ( , )x ta ,  

 ;ˆ ˆa a
a a

v s

a dv a n ds=∫ ∫ . (2.193) 

As a second example (Hill 1972, 1984; Clayton and McDowell 2003a), 
consider cases wherein the body is simply connected, enclosed by a single 
continuous surface.  In (2.192), let ( , )X t→A x  and let V be the volume of 
the body in the reference configuration enclosed by surface S, with local 
outward normal N.  The ∗  operator is chosen to be the outer product ⊗ , 
giving 

 ;
a a
A A

V S

x dV x N dS=∫ ∫ . (2.194) 

Since (2.194) involves integration of a two-point tensor field, for the inte-
grals to represent valid quantities at any location in Euclidean space10, ba-
sis vectors ( )a xg  and ( )A XG  should be chosen as constant with respect to 
changes in position.  This requirement leads to vanishing of the Christoffel 
                                                      

9 In many texts, integration over a closed surface in (2.192) or closed curve in 
(2.197) is delineated by the explicit notation .∫v   Throughout this text, domains of 
integration are simply defined as they appear. 

10 Alternatively, the integral of a vector or tensor field can be defined in a valid 
manner at a single point in space by parallel transporting all position-dependent 
quantities within the integrand to that point using a shifter (Toupin 1956). This 
approach is pursued explicitly in Chapter 3 in the context of the Burgers circuit. 
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symbols in each configuration.  This restriction does not require that basis 
vectors in the two configurations must coincide, nor does it require that ba-
sis vectors in each configuration must be orthogonal.  In other words, 
(2.194) requires , 0ab cg =  and , 0AB CG = , but one can still have ab abg δ≠ , 

AB ABG δ≠ , and  . .
a a
A Ag δ≠ , as considered by Sedov (1966).  Thus, (2.194) 

reduces to 
 ., .

a a a
A A A

V V S

x dV F dV x N dS= =∫ ∫ ∫ . (2.195) 

Dividing (2.195) by V gives the volume average of the deformation gradi-
ent in terms of spatial position and reference orientation of surface S: 

 1 1

V S

V dV V dS− −= ⊗∫ ∫F x N . (2.196) 

Strict application of (2.196) requires 1C -continuity of ( , )X tx .   

2.7.2 Stokes’s Theorem 

The generalized Stokes’s theorem is written (Malvern 1969) 
 ( )

S C

dS d× ∇ ∗ = ∗∫ ∫N A X A , (2.197) 

where quantities introduced already in (2.192) have the same definitions, 
and where C is a closed curve with coordinates X encircling an oriented 
surface S with normal N.  Again, A must have continuous first derivatives 
with respect to coordinates corresponding to covariant derivative with gra-
dient operator ∇.  Surface S must be simply connected for a single curve C 
to suffice; otherwise the line integration must proceed over the collection 
of bounding curves interior and exterior to S.  When path C of the line in-
tegral is taken in a counterclockwise sense, the positive direction of normal 
N is defined according to the usual right-hand rule of vector calculus.  
Stokes’s theorem, like Gauss’s theorem, can be applied in either configura-
tion of the body.  For example, when ( , )x t→A v  (the spatial velocity 
field) and . , .

x
∗ → , the following equality applies: 
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 (2.198) 

where s and c denote, respectively, surfaces and bounding curves on a 
body in the spatial description.  When the curl or skew gradient of v van-
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ishes, i.e., when [ ] [ ]; , 0aca c a cv v W= = = , the integrand in (2.198) is identi-

cally zero, and the velocity field is said to be irrotational.   
Consider now the deformation gradient in the context of Stokes’s theo-

rem.  Let S and C denote, respectively, surfaces and bounding curves on a 
body in the reference description, let ( , )X t→A F , and let . , .

X
∗ → .  

Then in indicial notation, 
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where symmetry properties of the Christoffel symbols ( )
.. ..

G G
A A

BC BCΓ Γ=  have 

been exploited.  Likewise, in the spatial description, 
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Restrictions on coordinate systems may apply since (2.199) and (2.200) 
involve integration of vector fields.  Specifically, basis vectors ag  must be 
constant for all points x in the domain of integration in global equation 
(2.199), while basis vectors AG  must be constant for all points X in the 
domain of integration of (2.200).  Otherwise, integrands in (2.199) and 
(2.200) must be parallel transported to a single point (x or X) using the ap-
propriate shifter, and the integral then evaluated at that point (Toupin 
1956).  Furthermore, ( , )X tF and  1( , )x t−F  must have continuous first de-
rivatives with respect to reference and spatial coordinates, respectively.  
From (2.115), since the line integral of position about a closed loop on the 
surface of or within a simply connected body vanishes, 

 . . ,0 a a A ABC a
A A B C

c C S

dx F dX F N dSε= = = −∫ ∫ ∫ , (2.201) 

 1 1
. . ,0 A A a abc A
a a b c

C c s

dX F dx F n dsε− −= = = −∫ ∫ ∫ . (2.202) 

Since (2.201) and (2.202) must hold for any path within the body, 
             [ ] [ ] [ ]. , . ; . : 0a a a

A B A B A BF F F= = = , [ ] [ ] [ ]
1 1 1
. , . ; . : 0A A A

a b a b a bF F F− − −= = = . (2.203) 

As discussed further in Section 2.8, (2.203) can be interpreted as local 
compatibility conditions for the deformation gradient and its inverse. 
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2.8 Anholonomic Spaces and Compatibility 

The following topics associated with compatibility, or lack thereof, of arbi-
trary tangent maps and linear connections are discussed in Section 2.8: an-
holonomic deformations and anholonomic configurations, strain compati-
bility, connection compatibility, and the Jacobian determinant. 

2.8.1 Anholonomicity  

Consider a field of covariant basis vectors αg� ( 1 2 3), ,α = , spanning a tan-
gent bundle TB�  associated with arbitrary configuration B� .  By introducing 
the two-point map ( ) A

.AX ,t Fα
α= ⊗F g G� � �  that is assumed to be differenti-

able and invertible, generic vectors 0XT B∈V  are pushed forward to xT B� � : 
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 (2.204) 

Basis vectors are tangent to globally continuous coordinate curves xα�  (i.e., 
/ xα

α =g� �∂ ∂  for some coordinate parameterization ( )x X ,tα� ) if and only if 
the following integrability conditions hold for F�  (Schouten 1954): 

 
2 2

. , . ,A B B A A B B A

x xF F
X X X X
∂ ∂

= ⇔ =
∂ ∂ ∂ ∂
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α α

α α . (2.205) 

If conditions (2.205) are not satisfied, then αg�  is called an anholonomic 
basis vector, the tangent map F�  is called an incompatible map, and B�  is 
called an incompatible configuration or an anholonomic space11.  In such a 
case, anholonomic coordinates xα� , sometimes called non-holonomic co-
ordinates (Stojanovitch 1969), are available as one-to-one functions of lo-
cation X only over local patches of B� , if at all.  Anholonomic spaces can 
be interpreted as containing regions where coordinates xα�  may be multi-
valued (overlaps) or undefined (holes) functions of X (Kondo 1964).  From 
another perspective, when anholonomic, B�  can be considered a nine-
dimensional space (nine independent components of .AFα� ) in contrast to 

                                                      
11 When F�  does not have continuous first partial derivatives, (2.205) does not 

apply.  For example, a piecewise linear field of coordinates ( )x Xα�  can result in a 
piecewise constant deformation gradient ., ( )Ax Xα�  with discontinuities, as can oc-
cur physically in crystals in the context of deformation twinning (James 1981). 
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holonomic configuration 0B  parameterized by three independent coordi-
nates AX .  Since the deformation gradient and its inverse are integrable, 

[ ]. , 0a
A BF =  and [ ]

1
. , 0A

a bF − = , as indicated in (2.203) in the context of Stokes’s 

theorem.   
Because conventional differentiation with respect to anholonomic coor-

dinates does not apply, partial differentiation with respect to anholonomic 
xα�  is defined in a special manner: 
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The anholonomic object κ�  is introduced (Schouten 1954; Kondo 1964): 
 [ ] [ ] [ ]

.. 1 1 1 1 ..
. . . .. . ,

A B A B
A B B AF F F F F Fα α α α

βχ β χ β χ βχκ κ− − − −= ∂ = =� � � � � �� � , (2.207) 

a geometric construct whose components vanish if and only if F�  is inte-
grable.  Consider the transformation law for the connection coefficients 
given by (2.28), but now applied with respect to a change from holonomic 
to anholonomic coordinates AX xα→ � , where (2.206) is used to define 
partial differentiation with respect to xα� .  Arbitrary connection coeffi-
cients ..A

BCΓ  on 0B  then transform to coefficients ..α
βχΓ�  on B�  as 

 
.. 1 1 .. 1

. . . . , .

1 1 .. 1 1
. . . . . . ,      .

B C A C
A BC C

B C A B C
A BC C B

F F F F F

F F F F F F

α α α
βχ β χ χ β

α α
β χ β χ

Γ Γ

Γ

− − −

− − − −

= +

= −

� � � � ��

� � � � � �  (2.208) 

Torsion tensor T  of (2.33) pushed forward to B�  becomes, in components 
 [ ]

.. 1 1 .. .. ..
. . .

B C A
A BCT F F F Tα α α α

βχ β χ βχβχΓ κ− −= = +� � � � � � , (2.209) 

implying that [ ]
..α
βχΓ�  need not vanish for covariant components of ..A

BCΓ  to 

be symmetric.  Partial derivatives of basis vectors with respect to an arbi-
trary connection on B�  are defined as analogs of (2.56): 

 ..
,
α α χ
β βχΓ= −g g�� � , ..

,
χ

α β βα χΓ=g g�� � . (2.210) 
Relations (2.210) are treated here as general postulates, applicable regard-
less of whether or not (2.208) is used to define connection coefficients on 
B� .  However, when (2.208) does specifically apply, skew partial deriva-
tives of covariant basis vectors in (2.210) need not always vanish even if 

0..T α
βχ =� , since 

 [ ] [ ]
.. .. ..

, ( )Tχ χ χ
χ βα βα χα β βαΓ κ= = −g g g��� � � � . (2.211) 
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The expression for the Riemann-Christoffel curvature tensor of a linear 
connection, defined with respect to holonomic coordinates in 0B  as ...A

BCDR  
in (2.34) and pushed forward to anholonomic coordinates xα� , is (Schouten 
1954; Kondo 1964) 

 

[ ] [ ] [ ]

... 1 1 1 ...
. . . .

.. ..
.. .. .. .. .. ..

.. .. .. .. ..

       2

       2 2 2 ,

B C D A
A BCDR F F F F R

x x

α α
βχδ β χ δ

α α
χδ βδ α ε α ε ε α

βε χδ χε βδ βχ εδβ χ

α α ε ε α
εδβ χ δ β ε χ δ βχ

Γ Γ
Γ Γ Γ Γ κ Γ

Γ Γ Γ κ Γ

− − −=

∂ ∂
= − + − +

∂ ∂
= ∂ + +

� � � � �

� �
� � � � ��

� �
� � � ��

 (2.212) 

which, upon comparison with the holonomic representation in (2.34), dif-
fers only by the rightmost term that includes the anholonomic object. 

2.8.2 Strain Compatibility 

A second interpretation of compatibility follows from consideration of the 
Riemann-Christoffel curvature tensor.  From (2.43), Christoffel symbols of 
the second kind in the context of Riemannian geometry formed from the 
symmetric right Cauchy-Green deformation tensor ( , )X tC are 

 .. 1 ..
, , ,

1 ( )
2

C C
A AD A

BC BD C CD B BC D CBC C C CΓ Γ−= + − = . (2.213) 

A curvature tensor 
C
R  can be constructed by substituting components 

C
..A
BCΓ  

into (2.34).  Since ( )*ϕ=C g , ( )*φ=
gC

R R  follows from properties of the 
connection and curvature (Marsden and Hughes 1983).  Thus, if the de-
formation tensor field C is derivable from a motion ( )X ,tϕ , and since 

0=
g

R , it follows that (0) 0*φ= =
C
R  and C is compatible.  Section D.3 of 

Appendix D contains an alternative derivation worked out in convected 
coordinates, demonstrating vanishing of the curvature tensor formed from 

. .
a b

AB A ab BC F g F=  noting that conditions . .,
a a
A AF x=  and . , . ,

a a
A B B AF F=  apply.  

Notice that C-compatibility does not require specification of a unique 
spatial configuration, since C is independent of the rotation tensor associ-
ated with the right polar decomposition in (2.149).  Furthermore, even if C 
is compatible, integrability of an arbitrary field F generating the field 

T=C F F  may be precluded by rotations R that do not arise from rigid-
body transformations of ϕ .  For example, consider the field . .

a a
A AF R=  with 

. . .
a T A a
A b bR R δ= , such that . . . .

a b C D
AB A ab B A CD B ABC F g F R G R G= = = .  Integrability of 
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F is violated by a rotation field for which [ ]. , 0a
A BR ≠ , even though the cur-

vature tensor constructed from AB ABC G=  vanishes identically in this case.  
A material in such a condition is said to be in a state of contorted aleotropy 
(Noll 1967).  The converse of the previous theorem has also been proven, 
albeit only locally (Eisenhart 1926).  In other words, given a positive defi-
nite, symmetric, second-order tensor C whose curvature vanishes (i.e., 

0=
C
R ) then at any point 0X B∈  there exists a neighborhood 0U  of X  
endowed with a mapping 0 0: B U U B⊃ → ⊂ϕ  whose deformation tensor 
is C.  A more extensive discussion of compatibility in terms of C is given 
by Fosdick (1966), who notes that vanishing of the Ricci tensor or the Ein-

stein tensor constructed from 
C
R  is sufficient to ensure compatibility of C.  

One can consider C-compatibility an outcome of deformation gradient 
compatibility (i.e., F-compatibility): if . ( , )a

AF X t  is compatible, then it fol-
lows that . .( , ) a b

AB A ab BC X t F g F=  is also compatible, as demonstrated in Sec-
tion D.3 of Appendix D. 

It is emphasized that a Levi-Civita connection—a connection both tor-
sion-free and metric with respect to g� , where the metric has components 
gαβ α β= g g� �� i —on anholonomic space B�  may not exist, since the field of 

vectors αg�  may not be sufficiently smooth over all of B�  to admit coordi-
nate differentiation with respect to coordinates that may in fact be discon-
tinuous or multi-valued, i.e., anholonomic coordinates.  However, in an-
holonomic (e.g., intermediate or natural) configurations of elastoplasticity 
theory, each local volume element of material is often referred to an exter-
nal system of coordinates with Euclidean metric tensor, typically taken as 
Kronecker’s delta for convenience (Teodosiu 1967a, b; Simo and Ortiz 
1985), though the assumption gαβ αβδ=�  is not always necessary (Maugin 
1995; Clayton et al. 2004a).  This issue is discussed in more detail in Sec-
tion 3.2.2.  Notice also that the Riemann-Christoffel curvature tensor 
formed from the generally incompatible covariant deformation measure 

AB .A .BC F g Fα β
αβ=� � ��  does not necessarily vanish unless xα�  are holonomic, in 

contrast to the vanishing curvature tensor derived from connection (2.213) 
formed from the compatible deformation tensor C.   

Compatibility equations for the small strain tensor of (2.163) are typi-
cally expressed somewhat differently than those for C (Malvern 1969; 
Mura 1982; Teodosiu 1982).  The former are derived from differentiation 
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of the right side of (2.163) and a sequence of indicial manipulations, lead-
ing to vanishing of the incompatibility tensor with components cfs : 

 ( ) 1 1
; ; 0cfcf abc def cab fed

bd ae bd aes s g e e g e eε ε− −= = = − = . (2.214) 
The six independent equations in (2.214) ensure that symmetric tensor 

( )x,tε  with continuous second derivatives with respect to holonomic coor-
dinates ax  is integrable; i.e., (2.214) ensures that a continuously differenti-
able displacement field ( , )x tu  exists such that (2.163) applies.  Analo-
gously to (2.203),  [ ], 0a bcu =  from the commutative property the of the 

mixed second partial derivative with respect to holonomic coordinates, and 
vanishing of the curvature and torsion of the Levi-Civita connection results 
in [ ]; 0a bcu = , as concluded from (2.40). 

2.8.3 Connection Compatibility 

Consider coefficients of a special linear connection formed by spatial dif-
ferentiation of a smooth, possibly anholonomic tangent map with inverse 

1( ): x xx,t T B T B− →F , defined as follows: 

            
.. 1 1

. . . . ,

1 1 1
. , . . , . .      ,

a a a
cb c b b c

a a
c b b c

F F F F

F F F F F

α α
α α

α α β
α α β

Γ − −

− − −

= ∂ =

= − = −
 (2.215) 

where the third of (2.215) follows from 1
. . , . ,( ) 0a a

b c b cF F α
α δ− = =  and the final 

equality follows from (2.206).  Connections of the form (2.215) have spe-
cial meaning in field theories of lattice defects (Bilby et al. 1955; Kroner 
1960) and are said to exhibit the property of teleparallelism or absolute 
parallelism (Einstein 1928; Schouten 1954). 

Partial differentiation of (2.215) yields 
 1 .. 1

. , . ,( )a
a bc d c bdF Fα αΓ− −= , (2.216) 

the left side of which is expanded as 
 1 .. 1 .. 1 .. .. ..

. , . , . ,( )a a a e a
a d bc a bc d a de bc bc dF F Fα α αΓ Γ Γ Γ Γ− − −+ = + . (2.217) 

Since the order of partial differentiation on the right side of (2.216) is arbi-
trary (Schouten 1954; Le and Stumpf 1996a),  

 [ ]
1 1 .. .. .. .. .. ..

. . , ,

1 ...
.

0 2 ( )

  ,

a a a e a e
c a dc b bc d be dc de bcb d

a
a bdc

F F

F R

α α

α

Γ Γ Γ Γ Γ Γ− −

−

= ∂ ∂ = − + −

=
 (2.218) 

where ...a
bdcR  are components of the Riemann-Christoffel curvature tensor 

derived from ..a
cbΓ  of (2.215) using definition (2.34).  Upon multiplication 
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of (2.218) through by F , it is evident that 0...a
cdbR =  are conditions ensuring 

satisfaction of (2.215).  In that case (i.e., null curvature), the connection 
with coefficients ..a

cbΓ  is said to be integrable (Schouten 1954).   
Secondarily, if the connection with coefficients in (2.215) is symmetric, 

then its torsion vanishes by definition, and it follows from arguments 
analogous to those accompanying (2.205) that 1( )x,t−F  is itself integrable: 

 [ ] [ ]
.. .. 1 1

. . .,. , 0a a a
cb a a acb b cT F F F x xα α α α

αΓ − −= = = ⇔ = = ∂ . (2.219) 

When (2.219) applies, 

           .. 1
, , ,

1 ( )
2

a ad
bc bd c cd b bc dC C C CΓ −= + − , 0a bcC∇ = , (2.220) 

meaning that ..a
cbΓ  are Levi-Civita coefficients formed from a metric tensor 

with components 1 1( )ab .a .bC x,t F g F− −= α β
αβ , and the set { }..a

cb abB, ,CΓ  consti-

tutes a Euclidean space since 0...a
bdcR = .  Components of a second metric 

tensor on B  are denoted by gαβ  and can be chosen as gαβ αβδ=  for con-
venience.  The first equality in (2.220) follows from direct calculation and 
(2.219) as 

        ( ) [ ] [ ]

( )

.. 1
, , ,

1 1 1 1 1
. . . . .. , . , . ,

1
. . ,

2 ( )

        2 2

        2 ,

a ad
bc bd c cd b bc d

a a d
b cc b d c d b

a
c b

C C C C

F F F g F F F F F g

F F

α αβ χ δ χ δ
α α β χδ

α
α

Γ −

− − − − −

−

= + −

⎡ ⎤= + +⎣ ⎦
=

 (2.221) 

and the second of (2.220) is verified by substituting the first of (2.220) into 
 .. ..

, 0d d
a bc bc a ab dc ac bdC C C CΓ Γ∇ = − − = . (2.222) 

2.8.4 The Jacobian Determinant for Anholonomic Mappings 

The Jacobian determinant of anholonomic mapping F�  introduced in 
(2.204) provides, by definition, the relationship between a differential ref-
erence volume element 0dV B⊂  and its deformed counterpart in the an-
holonomic space, dV B⊂� � : 

 JdV dV=� � . (2.223) 
Analogously to (2.142), the function ( , )J X t� , regarded as a true scalar un-
der coordinate transformations, is calculated in coordinates as 
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. . . . . .

.

1 1 /
6 6
1 1    det / det( ) det( ) / det( ),
6 6

ABC ABC
A B C A B C

A AB

J F F F g Ge e F F F

g G F g G

α β χ α β χ
αβχ αβχ

α
αβ

ε ε= =

= =F

� � � � � � ��

� �� �
 (2.224) 

where det( ) det( ) 0g gαβ α β= = ≥g g� �� � i .  Requiring that the volume of any 

element must remain positive and finite implies bounds 0J∞ > >� .  Dif-
ferentiation of (2.224) produces an identity like (2.144): 

 1
. . .

.

1
2

ABC A
B C

A

J F F JF
F

−∂
= =

∂

� � � �
�

β χ
αβχ αα ε ε . (2.225) 

Taking the total covariant derivative of the first of (2.225) then gives 

 
[ ] [ ]

1
. : . : . . . :

. .. : . :

2( ) ( )

                 ( ).

A ABC
A B A C B C A

ABC
C BB A C A

JF F F F F

F F F F

β χ β χ
α αβχ

β χ β χ
αβχ

ε ε

ε ε

− = +

= +

� � � � � �

� � � �  (2.226) 

When (2.205) is not satisfied, meaning anholonomic object κ�  in (2.207) 
does not vanish, the right side of (2.226) may be nonzero and Piola identi-
ties such as those in (2.145) and (2.146) for holonomic mapping F and its 
inverse do not always hold for anholonomic mappings.  

Let oriented differential area elements referred to configurations 0B  and 
B�  be labeled dSN  and dsn� � , respectively.  Analogously to (2.148), these 
elements are related by Nanson’s formula or a Piola transformation: 

 * ,ds JF dS−=n N� �� �  *. 1
.

A A
A An ds JF N dS JF N dSα α α

− −= =� � � �� � . (2.227) 

In terms of the wedge product, [ ] / 2n ds dx dx dx dxβ χ β χ
α αβχ αβχε ε= = ∧� � � � � �  and 

a bdx dx n dsαβχ
χε∧ =� � � � , with adx�  and bdx�  components of two different in-

finitesimal vectors so their tensor product is not identically symmetric. 
Relation (2.227) can be obtained directly from (2.224), noting that 

     

1
. . .

1 1
. . .

1 1
. . .

6 ( )( )

   ( )( )

   

   ( )( ).

ABC
A B C

ABC
A B C

ABC
ABC

ABC
A B C

J F F F

ge J Ge F F F

J ge F F F Ge

α β χ
αβχ

α β χ
αβχ

αβχ
αβχ

α β χ
αβχ

ε ε

ε ε ε ε

−

− −

− −

=

=

= =

=

� � � �

� � � ��

� � � ��

 (2.228) 

Therefore, permutation tensors referred to configurations B�  and 0B  satisfy 
                   1

. . .
ABC

A B CJ F F Fαβχ α β χε ε−= � � � � , 1
. . .ABC A B CJ F F Fα β χ

αβχε ε−= � � � � . (2.229) 

Letting .
A

Adx F dX= ��α α , it follows that an oriented area element in 0B  is 
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1 1

. .

1 1
. .         ,

B C B C
A ABC ABC

A A

N dS dX dX F F dx dx

J F dx dx J F n ds

ε φ
ε φ

α β χ α
αβχ α

ε ε

ε

− −

− −

= =

= =

� � � �
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 (2.230) 

the inverse of which yields the final result in (2.227).  The same approach 
can be used to derive (2.148) directly from (2.142), as demonstrated in Se-
ction D.2 of Appendix D. 



3 Kinematics of Crystalline Solids 

Chapter 3 provides descriptions of kinematics of crystalline materials un-
dergoing various deformation mechanisms at the microscopic scale.  Spe-
cifically, such deformation mechanisms can include recoverable and resid-
ual elasticity, thermal expansion or contraction, plasticity manifesting from 
dislocation glide, and volume changes resulting from point defects and 
voids.  A description of kinematics of deformation twinning is postponed 
until Chapter 8. 

The treatment of kinematics is developed in the context of geometric 
nonlinearity; i.e., finite strains and rotations are addressed.  Finite defor-
mation theory is considered more applicable than linear or infinitesimal 
deformation theory for a number of reasons.  From a physical standpoint, a 
nonlinear theory permits consideration of the sequence of deformation 
mechanisms occurring in a crystalline solid in terms of a multiplicative se-
ries of tangent maps.  Such a description is naturally associated with a se-
ries of configurations or manifolds corresponding to real or virtual states of 
the deforming body.  For example, application of the inverse elastic tan-
gent map to a deformed crystal leads to a stress-free, unloaded state.  Such 
configurations are possibly incompatible, or anholonomic in the terminol-
ogy of Chapter 2, and their geometric description can be directly related to 
physical features such as defect content in a crystal.  In addition to the in-
creased generality and physical insight afforded by a finite deformation 
description, a nonlinear theory is essential for obtaining accurate depic-
tions of material behavior in applications of solid mechanics wherein 
strains are inevitably large, for example in ballistic impact, crashworthi-
ness scenarios, metal forming, and high pressure phenomena, with the lat-
ter encountered, for example, in geologic settings and shock physics ex-
periments.  Such nonlinear problems often require numerical solutions 
because of their complexity.  Even when average deformations remain 
small, large deformations may still arise locally in many micromechanical 
problems of interest, for example studies of defect core structures, crack 
tip mechanics, and strain localization phenomena.  Furthermore, since 
nearly all natural single crystals are anisotropic, large rotations of the lat-
tice may be of importance even when strains are small.  Finally, reduction 
of the finite deformation description to the infinitesimal deformation the-
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ory via linearization is usually straightforward (though it is noted that 
methods of linearization are often not unique), while extension of a linear 
description to the nonlinear regime is often not.  For completeness, occa-
sional comparisons are drawn in Chapter 3 with complementary geometri-
cally linear theories. 

Chapter 3 begins with an introductory description of crystal structures.  
The usual fourteen Bravais lattices comprising the seven crystal systems 
are introduced.  The Cauchy-Born hypothesis (Born and Huang 1954; 
Ericksen 1984)—a fundamental postulate stating that primitive Bravais lat-
tice vectors of a crystal structure deform according to the action of a spa-
tially constant deformation gradient acting over a homogeneously deform-
ing volume element of crystal—is then discussed.  Deformations of the 
solid induced explicitly by changes in temperature are described. 

Multiplicative inelasticity (Bilby et al. 1957; Kroner 1960; Lee and Liu 
1967) is presented next.  Characterizations of plastic deformation in the 
context of dislocation flux (i.e., discrete dislocation dynamics), slip system 
activity in single crystals (i.e., crystal plasticity), and flow in polycrystals 
(i.e., macroscopic plasticity) are presented in turn.  While plasticity mani-
festing from dislocation glide is volume-preserving, inelastic deformation 
attributed to the generation and motion of point defects, including vacan-
cies associated with dislocation climb, is generally not (Teodosiu and Si-
doroff 1976; Kroner 1990).  At a somewhat larger length scale, damage 
mechanisms such as porosity evolution (e.g., void growth or pore compac-
tion) can engender inelastic volume changes.  Such phenomena are all ad-
dressed in the kinematic descriptions of Chapter 3.  Coarse-graining prin-
ciples (Clayton and McDowell 2003a) enabling quantification of 
heterogeneous local elastic and plastic deformations within a volume ele-
ment of crystalline material are also presented.   

Defect densities, typically tensor-valued quantities (Nye 1953), are con-
sidered next, from a differential-geometric viewpoint.  In Chapter 3, de-
fects are frequently treated as continuous distributions rather than as dis-
crete entities with singularities in displacement gradients, and elastic and 
plastic tangent maps are assumed suitably smooth; specifically, these maps 
are assumed at least twice differentiable with respect to local coordinates.  
The multiplicative decomposition of elastoplasticity is used to describe the 
possibly large deformation of a volume element of crystalline material, and 
a complementary linear connection is introduced to describe spatial gradi-
ents of stretch and rotation of a field of lattice director vectors at a finer 
scale of resolution.  Geometric properties of the connection enable charac-
terization of dislocations (Bilby et al. 1955; Kroner 1960; Kondo 1963; 
Noll 1967), disclinations (Lardner 1973, 1974; Minagawa 1979, 1981; 
Clayton et al. 2005, 2006), point defects (Minagawa 1979; Kroner 1981, 
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1990; Clayton et al. 2008a), and physical origins of incompatibility of a 
more generic nature (Clayton et al. 2005).   

3.1 Crystals and Lattice Deformation 

Section 3.1 begins with an introductory description of crystal structures 
and related terminology.  This is followed by discussion of homogeneous 
deformation of an element of the crystal, i.e., the Cauchy-Born hypothesis, 
under isothermal conditions and in the absence of defects in the crystal.  
The description is then generalized to account for effects of temperature 
change, for example expansion of the lattice with increasing temperature.  

3.1.1 Crystal Structures 

In this book, a crystal is defined as a material whose majority of atoms oc-
cupies a periodically repeating arrangement called a lattice.  A crystal 
structure consists of a Bravais lattice and a basis for atoms decorating that 
lattice.  A Bravais lattice is an infinite array of points generated by re-
peated translation of a set of vectors called primitive lattice vectors.  A 
point on a three-dimensional Bravais lattice can be identified by its posi-
tion in three-dimensional vector space via the vector summation 

 
3

1 2 3
1 2 3

1
( ) i

i
i

l l l l l
=

= = + +∑R A A A A , ( 1 2 3, ,l l l ∈] ), (3.1) 

where ( )lR  denotes the Bravais lattice vector directed from the origin of a 
global Cartesian coordinate system to the lattice point corresponding to 
primitive unit cell l, iA  are the primitive Bravais lattice vectors, and il  are 
integers.  By convention, a lattice point is placed at the origin of the global 
coordinate system.  Each primitive unit cell contains exactly one lattice 
point, and each primitive unit cell occupies volume 1 2 3( )PΩ = ×A A Ai .  
An entire perfect lattice, i.e., one free of defects, can be reconstructed by 
stacking the primitive unit cells.   

In three spatial dimensions, crystals are assigned to one of fourteen dis-
tinct kinds of Bravais lattices.  Symmetry considerations enable each of the 
fourteen Bravais lattices to be grouped into one of seven crystal systems.  
Similarities among different Bravais lattices comprising a single crystal 
system become evident upon examination of conventional unit cells.  Con-
ventional unit cells may be non-primitive, i.e., they may contain more than 
one lattice point per cell; equivalently, the volume of a conventional cell is 
an integer number of primitive cell volumes.  Conventional unit cells may, 
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like primitive unit cells, be translated to exactly reconstruct an entire (infi-
nite) lattice.  The location of a corner point of any conventional unit cell in 
the lattice can be described by a linear combination of three vectors la-
beled a, b, and c.  In a non-primitive cell, however, all points of the Bra-
vais lattice are not necessarily included in the set of corner points.  For ex-
ample, lattice points may be centered inside a conventional cell or on its 
faces, in addition to those points at the corners.  Conventional lattice pa-
rameters consist of the magnitudes of conventional cell vectors: 
 1/ 2a ( )= a ai , 1/ 2b ( )= b bi , 1/ 2c ( )= c ci , (3.2) 
and of the three angles describing their relative orientations, denoted by α, 
β, and γ.  Vectors a, b, and c and angles α, β, and γ are shown in Fig. 3.1 
for a conventional unit cell.  The volume of the conventional unit cell is 

( )C PNΩ = × = Ωa b ci , with N the number of lattice points per conven-
tional unit cell. 

 
Fig. 3.1 Conventional lattice parameters 

 
In a crystal structure, each Bravais lattice point, i.e., the lattice point of 

each primitive unit cell, is decorated by an identical basis of one or more 
atoms.  A basis is a set of one or more atoms with the same stoichiometry 
(i.e., chemical composition) as the overall material.  When each lattice 
point corresponds to a single atom, the basis is said to be monatomic.  On 
the other hand, a polyatomic basis consists of multiple atoms per point on 
the Bravais lattice.  These atoms may or may not be of different elemental 
species.  The simplest example of a polyatomic structure is a diatomic 
crystal, which consists of two monatomic lattices, one differing from the 
other by a uniform translation (Ericksen 1970).  The position of each atom 
k of a polyatomic basis relative to the Bravais lattice point centered at the 
origin of a local coordinate system for each primitive unit cell is specified 
by the basis vector for atom k, labeled as 0( )kR .  Since each atom is lo-
cated within its own unit cell, its basis vector can be expressed in terms of 
fractional components of the primitive Bravais lattice vectors: 

 ( )
3

0 1 2 3
1 2 3

1

i
k i

i

m m m m
=

= = + +∑R A A A A , ( 0 1im≤ < ), (3.3) 
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The position of any atom (e.g., any one atom’s nuclear coordinates) in Car-
tesian space in a perfect lattice is then the sum of the basis vector for that 
atom and the Bravais lattice vector for that atom’s primitive unit cell: 

 ( ) ( ) ( )
3

0

1

( )l i i
k k i

i

l m l
=

= + = +∑R R R A , (3.4) 

where ( )l
kR  denotes the global position of atom k within primitive unit 

cell l.  When the structure is monatomic, basis vector 0( )kR  is redundant 
and the location of the an atom is simply ( )lR , since the number of primi-
tive unit cells and number of atoms then coincide.  A measure of atomic 
volume in an infinitely extended lattice is 0 / /( )P CK NKΩ =Ω =Ω , where 
K is the number of atoms in the basis (i.e., the number of atoms per primi-
tive cell).  The total number of atoms per conventional unit cell is the 
product NK.  Note that a polyatomic basis—and hence a primitive unit cell 
in a polyatomic structure—can contain more than one formula unit. 

The fourteen Bravais lattices are organized into crystal systems in Table 
3.1 and Fig. 3.2, following the notational scheme of Rohrer (2001).  Con-
ventional unit cells are drawn in Fig. 3.2; those labeled with a P are also 
primitive (one lattice point per cell), while those labeled with an I, F, or C 
are not.  Specifically, I refers to an inner centered lattice, F refers to a face 
centered lattice, and C refers to a lattice with a lattice point centered only 
on faces normal to conventional unit cell vector c.  Lattice points of primi-
tive unit cells are represented by spheres in Fig. 3.2; when the basis is 
monatomic, each sphere corresponds to (the nucleus of) an atom in the 
crystal.  

 
Table 3.1 Crystal systems and symmetry restrictions (Rohrer 2001) 

Crystal system Number of lattices Conventional cell parameters 
Cubic 3 a b c= = ; 90α = β = γ = °  
Tetragonal 2 a b c= ≠ ; 90α = β = γ = °  
Orthorhombic 4 a b c≠ ≠ ; 90α = β = γ = °  
Monoclinic 2 a b c≠ ≠ ; 90α = γ = ° ≠ β  
Triclinic 1 a b c≠ ≠ ; α ≠ β ≠ γ  
Rhombohedral 1 a b c= = ; 120 , 90α = β = γ < ° ≠ °  
Hexagonal 1 a b c= ≠ ; 90 , 120α = β = ° γ = °  
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Fig. 3.2 Bravais lattices 
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When a monatomic basis is added to each site of a lattice, a common 
crystal structure is often recovered.  For example, a cubic P lattice with a 
monatomic basis forms a simple cubic (SC) structure.  A cubic I lattice 
with a monatomic basis produces a body centered cubic (BCC) structure.  
A cubic F lattice with a monatomic basis produces a face centered cubic 
(FCC) structure.  On the other hand, the hexagonal close packed (HCP) 
structure consists of a basis of two atoms at each point on a hexagonal 
Bravais lattice, the first located, for example, at a corner point of the con-
ventional cell and the second in a plane spaced midway between two faces 
of the cell perpendicular to c (i.e., perpendicular to the c-axis).   

Table 3.2 lists several geometric parameters for each of the SC, BCC, 
FCC, and HCP structures wherein all atoms are of identical size (e.g., of 
the same species).  Radius r is used to denote the size of an atom in the 
structure when that atom is idealized as a rigid sphere in exact (i.e., non-
penetrating) contact with its nearest neighbors.  The coordination number 
is the number of nearest neighbors, i.e., the number of sphere centers lo-
cated at a distance 2r from the center of a given sphere.  The packing fac-
tor P is defined as the volume occupied by the spheres contained in a con-
ventional unit cell divided by the total volume of the conventional unit 
cell: 3 3 3

04 / (3 ) 4 / (3 )=4 / (3 )C PP r NK r K rπ π π= Ω = Ω Ω .  It follows that 
the volume of each hard sphere is the product of the atomic volume and 
the packing factor.  Often the c/a ratio in a material classified as HCP dif-
fers from the ideal value of 1.633 because of effects of atomic bonding. 

 
Table 3.2 Geometric characteristics of several common crystal structures 

Structure Atomic  radius r No. atoms NK Coord. no. Packing  P 
SC a / 2r =  1 6 0.52 
BCC 3a / 4r =  2 8 0.68 
FCC 2a / 4r =  4 12 0.74 
HCP a / 2 0.306cr = =  2 12 0.74 

 
Locations of atoms within a unit cell are written, in terms of fractional 

components of primitive Bravais lattice vectors in (3.4), by the notational 
convention 1 2 3( , , ) ( , , )m m m x y z⇔ .  Directions in the unit cell are written 
in terms of coefficients of the primitive Bravais lattice vectors by the nota-
tional convention 1 2 3[ ] [ ]l l l uvw⇔ , with over-bars denoting negative val-
ues.  Families of directions, i.e., directions that are indistinguishable be-
cause of particular values of the indices [ ]uvw  and symmetry of the lattice, 
are denoted by uvw .  Planes are denoted by Miller indices ( )hkl , with 
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families of crystallographically equivalent planes denoted by { }hkl .  
Miller indices of planes are reciprocals of intercepts of directional axes in-
tersecting those planes.  A zero is assigned to a Miller index when a plane 
does not intersect that axis.  In cubic crystals, Miller indices of a plane are 
the same as the indices of the direction normal to that plane.  It is common 
for one to denote corner points on the lattice of conventional unit cells by 
the position vector  
 1 2 3( )c c c c= + +R a b c , ( 1 2 3, ,c c c ∈] ). (3.5) 
In terms of conventional unit cell vectors, directions in Miller’s notation 
then obey the correspondence 1 2 3[ ] [ ]c c c uvw⇔ .  Miller indices of planes 
in the conventional unit cell description are defined as reciprocals of inter-
cepts of the 1 2 3[ ]c c c  directions.  For non-primitive unit cells, ( )cR  does 
not describe every point on the Bravais lattice. 

Miller-Bravais indices of type [ ]uvtw  are conventionally used for direc-
tions in hexagonal crystal systems, subject to the constraint 0u v t+ + = .  
This four-index notational scheme is also often used for crystals of the 
rhombohedral or trigonal system (Kronberg 1957).  Indices u, v, and t cor-
respond to directions in the basal plane spaced 120° apart, while w corre-
sponds to translation along the c-axis.  Families of directions are denoted 
by uvtw .  Individual planes and families of planes are denoted, respec-
tively, by the notation ( )hkil  and { }hkil , with the constraint 0h k i+ + = . 

The reciprocal lattice concept is often useful, especially for study of lat-
tice vibrations.  Coordinates of a point in the primitive reciprocal lattice 
are  
                           1 2 3( )hkl l h k l′ = + +R A A A , ( , ,h k l∈] ), (3.6) 
where reciprocal primitive Bravais lattice vectors are expressed in terms of 
primitive Bravais lattice vectors by (Maradudin et al. 1971) 

        1 2 32 ( )

P

×
=

Ω
A AA π , 2 3 12 ( )

P

×
=

Ω
A AA π , 3 1 22 ( )

P

×
=

Ω
A AA π , (3.7) 

or more succinctly in Cartesian space, 
                                      i ijk B C

A P ABC j kA e e A AΩ =π , (3.8) 
where upper case indices denote components of each vector referred to the 
reference coordinate system and lower case indices are placeholders.  No-
tice that the primitive Bravais lattice vectors are contravariant (indices in 
upper positions), while the primitive reciprocal lattice vectors are covariant 
(indices in lower positions).  The primitive lattice vectors and their recip-
rocals satisfy the orthogonality conditions 
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 ., , 2i i
j j=A A πδ , (3.9) 

and locations of points on the primitive Bravais lattice and the primitive 
reciprocal lattice satisfy 
 ( )1 2 3( ), ( ) 2 2hkll l l h l k l l nπ π′ = + + =R R , ( n∈] ). (3.10) 

For each set of parallel planes in the primitive Bravais lattice specified by 
Miller indices h, k, and l, there exists a point on the primitive reciprocal 
lattice.  The direction of the reciprocal vector ( )hkl l′R  of (3.6) is normal to 
the plane with Miller indices ( )hkl .  The factor of 2π  in (3.7) is omitted 
in alternative definitions by some authors (Born and Huang 1954). 

Conventional unit cell vectors can also be used to define a reciprocal lat-
tice.  In that case, analogs of (3.6), (3.7), and (3.10) are 
 ( )hkl c h k l′ ′ ′ ′= + +R a b c , ( , ,h k l∈] ), (3.11) 

 2 ( )

C

×′ =
Ω
b ca π , 2 ( )

C

×′ =
Ω
c ab π , 2 ( )

C

×′ =
Ω
a bc π ; (3.12)  

 ( )1 2 3( ), ( ) 2 2hklc c c h c k c l nπ π′ = + + =R R , ( n∈] ). (3.13) 

The direction of ( )hkl c′R  of (3.11) is normal to the plane with Miller indi-
ces ( )hkl , though some values of h, k, and l will produce reciprocal lattice 
vectors that do not correspond to points on the reciprocal lattice, and not 
all points on the primitive reciprocal lattice are described by ( )hkl c′R .  For 
cubic, tetragonal, and orthorhombic Bravais lattices, conventional unit cell 
vectors and their reciprocals are parallel: ′a a& , ′b b& , and ′c c& . 

Table 3.3 lists formulae for metric tensors, unit cell volumes, and inter-
planar spacings for each of the seven crystal systems, all in terms of con-
ventional unit cell parameters.  The metric tensor G in Table 3.3 is used to 
determine lengths of vectors ( )cR  in (3.5): 

 
3

, 1
( ) ( ) i j

ij
i j

c c c G c
=

= ∑R Ri , (3.14) 

where components of the metric are denoted by ij jiG G=  and satisfy 

 
11 12 13

21 22 23

31 32 33

G G G
G G G
G G G

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

a a a b a c
b a b b b c
c a c b c c

i i i
i i i
i i i

. (3.15) 
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Table 3.3 Metrics, unit cell volumes, and interplanar spacings (Rohrer 2001) 

System Metric G  Unit cell volume CΩ  Spacing 21/ hkld  

Cubic 2

2

2

a 0 0
0 a 0
0 0 a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

3a  2 2 2

2a
h k l+ +  

Tetragonal 2

2

2

a 0 0
0 a 0
0 0 c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

2a c  2 2 2

2 2a c
h k l+

+  

Ortho-
rhombic 

2

2

2

a 0 0
0 b 0
0 0 c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

abc  2 2 2

2 2 2a b c
h k l

+ +  

Monoclinic 2

2

2

a 0 accos
0 b 0

accos 0 c

⎡ ⎤β
⎢ ⎥
⎢ ⎥
⎢ ⎥β⎣ ⎦

 

abcsinβ  2

2 2

2 2 2

2 2

1
sin a

sin
b c

2 cos
ac

h

k l

hl

⎡
+⎢β ⎣

β
+

β⎤− ⎥⎦

 

 
Triclinic 2

2

2

a ab cos accos
abcos b bccos
accos bccos c

⎡ ⎤γ β
⎢ ⎥γ α⎢ ⎥
⎢ ⎥β α⎣ ⎦

 

]

2

2 2

1/ 2

abc 1 cos

cos cos

2cos cos cos

⎡ − α −⎣
β − γ +

α β γ

 

]

2 2 2 2
2

2 2 2 2

2 2 2 2

2

2

2

1 b c sin

a c sin
a b sin

2 abc
(cos cos cos )

2 a bc
(cos cos cos )

2 ab c
(cos cos cos )

C

h

+k
l

hk

kl

lh

⎡ α⎣Ω

β

+ γ

+ ×
α β − γ

+ ×
β γ − α

+ ×

γ α − β

 

 
Rhombo-
hedral 

2 2 2

2 2 2

2 2 2

a a cos a cos
a cos a a cos
a cos a cos a

⎡ ⎤α α
⎢ ⎥α α⎢ ⎥
⎢ ⎥α α⎣ ⎦

 

3 2

1/ 23

a 1 3cos

     2cos

⎡ − α −⎣

⎤+ α⎦
 

4

2

2 2 2

2

2

a

( )

sin
2( )

(cos cos )

C

h + k l

hk + kl + hl

×
Ω

⎡ +⎣
× α
+

⎤× α − α ⎦

 

 
Hexagonal 2 2

2 2

2

a a / 2 0
a / 2 a 0
0 0 c

⎡ ⎤−
⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎣ ⎦

 
23 a c

2
 

2 2 2

2 2
4( )

3a c
h hk k l+ +

+  
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The conventional unit cell volume is ( )CΩ = ×a b ci , as noted following 
(3.2).  Magnitudes of reciprocal lattice vectors ( )hkl c′R  are inversely pro-
portional to separation distances between planes ( )hkl , written as hkld : 

            [ ]2 2 2

1 1
4 4

hkl hkl

hkl

h
hkl k

d
l

π π

′ ′ ′ ′ ′ ′⎡ ⎤ ⎡ ⎤
′ ′ ⎢ ⎥ ⎢ ⎥′ ′ ′ ′ ′ ′= = ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥′ ′ ′ ′ ′ ′⎣ ⎦ ⎣ ⎦

a a a b a c
R R b a b b b c

c a c b c c

i i i
i i i i

i i i
, (3.16) 

where the 3×3 matrix in (3.16) is the metric of the reciprocal space.  
Analogous formulae apply when primitive Bravais lattice vectors of the 
primitive unit cell are used. 

For a more comprehensive treatment of crystallographic terminology, 
structures of various crystalline substances, and lattice orientation charac-
terization, the reader is referred to books dealing with topics in crystallog-
raphy (Schmid and Boas 1950; Wyckoff 1963; Buerger 1965; Senechal 
1990; Rohrer 2001) and texture analysis (Bunge 1982; Randle and Engler 
2000).   

3.1.2 The Cauchy-Born Hypothesis 

The Cauchy-Born hypothesis (Born and Huang 1954), also often called the 
Cauchy-Born rule or Cauchy-Born approximation, states that under a ho-
mogeneous deformation, the primitive Bravais lattice vectors of a crystal 
in the reference configuration, 0i TB∈A  of (3.1), deform in an affine man-
ner via a 3 3×  matrix F to spatial vectors i TB∈a : 
 i i=a FA , a a A

i .A ia F A= , ( 1,2,3)i = . (3.17) 
Accordingly, coordinates of points on the Bravais lattice in (3.1) are up-
dated under a homogeneous deformation as 

 
3 3

1 1

( ) ( )i i
i i

i i

l l l l
= =

= = =∑ ∑r a FA FR . (3.18) 

In an elastic body, F of (3.17) is often identified with the deformation gra-
dient of (2.112).  By the polar decomposition (2.149), stretch and rotation 
of the primitive Bravais lattice vectors are included in (3.17).  Stretch U or 
V induces a change in the lattice parameters of the primitive unit cell, and 
thus a (probable) change in inter-atomic forces sustained by the crystal.   

A homogeneous deformation for a crystal with a polyatomic basis, in 
the sense of Born and Huang (1954), is 
 ( ) ( ) ( )0l l

k k k= +r q FR . (3.19) 
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Vector 0( )kq  represents a uniform displacement (translation) of all atoms 
of type k, as might occur for example when an ionic crystal becomes polar-
ized under an electric field.  Substituting from (3.4) and (3.18), 

       

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 0

3 3
0 0 0

1 1

1 0 0 0

        [ ]

        ,

l l
k k k k k

i i i i
k i k k i

i i

l
k k k k

l

m l m m l

l
= =

−

⎡ ⎤= + = + +⎣ ⎦

= ∆ + + = ∆ + +

⎡ ⎤ ⎡ ⎤= + + = +⎣ ⎦ ⎣ ⎦

∑ ∑

r q FR q F R R

a FR r a

F F q R R F Q R

 (3.20) 

with 0( )i
km∆  a scalar translation parameter for all atoms of type k in the 

crystal structure.  In the context of coincident Cartesian coordinate systems 
in reference and deformed crystal lattices, Born and Huang (1954) call 

0( )kq  the internal displacement and 0−F 1  the external strain.  The former, 
i.e., the inner displacement or internal displacement, can arise in complex 
crystal structures subject to external deformation F via relative displace-
ments of sub-lattices, even in the absence of electric polarization (Ericksen 
1970; Wallace 1972; Cousins 1978).  A rotationally invariant version of 
inner displacement of basis atom k is represented by vector 0 1 0( ) ( )k k

−=Q F q  
(Tadmor et al. 1999).  Vector 0( )kQ  generally depends on the applied (i.e., 
far-field) deformation; in practice the set of particular values of all internal 
displacement vectors k for a given applied deformation gradient F tend to 
minimize the energy of the crystal.   Inner displacements also arise in the 
context of optical vibrations (Chen and Lee 2005).  Rigid translation of the 
entire structure is omitted in (3.19) and (3.20); such motion can be in-
cluded by adding a translation vector, independent of position, to ( )l

kr . 
Now consider the reciprocal lattice.  Assuming that in the deformed 

configuration, primitive Bravais lattice vectors and their reciprocals ja re-
main orthogonal: 
 ., 2i i a i

j a j ja a πδ= =a a , (3.21) 

reciprocal Bravais lattice vectors transform like dual vectors according to 
 i * i−=a F A , 1i A i

a .a Aa F A−= , ( 1,2,3)i = . (3.22) 
A point on the primitive reciprocal lattice has spatial coordinates 
 1 2 3 *( ) ( )hkl hkll h k l l−′ ′= + + =r a a a F R , (3.23) 
from which it follows that, analogously to (3.10), in a homogeneously de-
formed primitive Bravais lattice, 
 ( )1 2 3( ), ( ) 2 2hkll l l h l k l l nπ π′ = + + =r r , ( n∈] ). (3.24) 
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Quantities introduced in (3.17)-(3.20) are depicted in Fig. 3.3 for primi-
tive unit cell l of a triclinic Bravais lattice with diatomic basis ( 0,1k = ).  
In Fig. 3.3, parallel Cartesian coordinate systems are used for reference 
( AX ) and deformed ( ax ) configurations of the crystal structure, and ξ  is a 
vector directed from the origin of the reference frame to the origin of the 
spatial frame. 

 
Fig. 3.3 Homogeneous deformation in the sense of Born and Huang (1954) 

 
In an elastic crystal, the following notation is used in this book to indi-

cate that the local deformation gradient of the material in the continuum 
sense, F of (2.112), and the local deformation of the lattice LF , coincide: 
 ( ) ( )X ,t X ,t= LF F , (3.25) 
where dependence on position and time indicates that the deformation gra-
dient need not be homogeneous in space or static in time. For example, 
with this notation (3.18) becomes 

 
3 3

1 1

( ) ( )i i
i i

i i
l l l l

= =

= = =∑ ∑ L Lr a F A F R . (3.26) 

On the other hand, as will be demonstrated later in Chapter 3, when a crys-
talline substance deforms inelastically, for example via dislocation plastic-
ity, F and LF  do not coincide.  In the remainder of this book, LF  is re-
ferred to as the lattice deformation.  Substituting (3.25) into (3.17)-(3.20), 

( )X ,tLF  stretches and rotates the primitive Bravais lattice vectors and ba-
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sis vectors of a primitive unit cell or a collection of primitive unit cells as-
signed to “material point” X.  When a differential volume element in the 
reference configuration ( )dV X  is assumed to consist of multiple primitive 
cells, then lattice vectors and basis vectors of each cell of that volume ele-
ment deform homogeneously according to the value of ( )X ,tLF  for that 
material point centered at X.  Lattice vectors and basis vectors of unit cells 
assigned to different locations X deform heterogeneously when ( )X ,tLF  
varies with position.  Further exposition on the Cauchy-Born rule, its ex-
tensions, and related applications in crystal mechanics and multiscale mod-
eling can be found in a number of references (Ericksen 1970, 1984, 2005, 
2008; Zanzotto 1992, 1996; Tadmor et al. 1996, 1999; Knap and Ortiz 
2001; Arroyo and Belytschko 2002; Chung and Namburu 2003; Curtin and 
Miller 2003; Sunyk and Steinmann 2003; Clayton and Chung 2006). 

3.1.3 Elastic Deformation and Thermal Deformation 

In crystalline solids, lattice deformations may be introduced by forces of 
purely mechanical origin (e.g., elasticity due to bond stretching1), tempera-
ture changes, and applied electromagnetic fields (e.g., piezoelectricity, 
electrostriction, piezomagnetism, or magnetostriction).  Consider a crystal-
line solid subjected to mechanical loading and temperature variations.  
With increasing temperature, the equilibrium spacing of atomic nuclei 
tends to increase as a result of increasing vibrational energy that accompa-
nies local thermal oscillations.  This leads to thermal expansion, specifi-
cally stretching of the Bravais lattice vectors and basis vectors, even when 
no mechanical forces are applied from external agents.  Thorough discus-
sion of atomic and quantum mechanical origins of thermal expansion in 
solids can be found in treatments of condensed matter physics (Slater 
1939; Brillouin 1964).  Cooling will usually lead to the opposite effect, 
i.e., thermal contraction.  However, at a given pressure, contraction with 
increasing temperature is not impossible (Hanson et al. 1974), even in the 
absence of phase transformations.  In continuum thermoelasticity, contri-
butions from temperature change and those from mechanical stress are not 
usually explicitly delineated within lattice deformation LF  (Thurston 
1974; Marsden and Hughes 1983; Rosakis et al. 2000), as described in de-
                                                      

1 At the scale of electronic and nuclear resolution, even “mechanical” forces as-
sociated with atomic bonds result from Coulomb-type electrostatic interactions 
among electrons and nuclei.  Dynamic exchange forces associated with phonons, 
photons, protons, and electrons can also contribute to mechanical stiffness (Gil-
man 2003).    
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tail later in Chapter 5.  However, in some cases it is useful to make the dis-
tinction (Stojanovitch 1969; Lu and Pister 1975; Imam and Johnson 1998; 
Clayton 2005a, b, 2006a) 
 =L E θF F F , . . .

La E a B
A B AF F Fθ= , (3.27) 

where EF  is associated with mechanical loading and possible rigid body 
rotation of the lattice, and where θF  is attributed to stress-free thermal ex-
pansion or contraction.  For simplicity, both indices of the thermal defor-
mation are referred to the reference coordinate system in (3.27).  Introduc-
ing the absolute temperature θ  and its material time derivative θ� , a rate 
expression for thermal deformation can be written as2 
 1 θ− =θ θ

TF F α �� , 1
. . .

A C A
C B T BF Fθ θ α θ− = �� , (3.28) 

where ( , )X tTα  is a second-order tensor of thermal expansion that is gen-
erally symmetric (Nye 1957), since thermal expansion does not induce any 
spin of the lattice.  The coefficient of thermal expansion Tα  can be treated 
as a polar tensor of rank two in the terminology of Thurston (1974), with 
independent components listed for crystal classes in Table A.4 of Appen-
dix A.  For cubic crystals and isotropic materials, thermal deformation is 
isotropic: 0Tα=Tα 1 , where Tα  is a scalar coefficient of thermal expan-
sion.  In that case, and when thermal expansion/contraction is the only de-
formation mode, 
         ( )( )1 11( det ) / det / 3 TJ J d G dt G dv dvθ θ α θ− −−= = =θ θF F �� � , (3.29) 

with dv J dVθ=  the volume of a material element after thermal deforma-
tion.  In the geometrically linear theory (i.e., the small deformation theory 
of Section 2.5.3), an analog of (3.27) is 
 θ= + = + ∆L E θ E

Tε ε ε ε α , (3.30) 
where Lε  is a symmetric total lattice strain, Eε  is the mechanical elastic 
strain, the coefficient of thermal expansion Tα  is symmetric with the same 
meaning as in (3.28), and θ∆  is the change in temperature from a refer-
ence state at which thermal strain θε  vanishes. 

                                                      
2 Kinematic prescription (3.28) is not unique.  Another reasonable possibility 

consistent with (3.30) is . . .( , )A A A
B B T BF X tθ δ α θ= + ∆ , where Tα  has a similar mean-

ing and θ∆  is the change in temperature from an undeformed reference state. 
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3.2 Multiplicative Inelasticity 

Finite deformation inelasticity theory is predicated on the existence of a re-
laxed configuration of the body free of internal and/or external forces at 
some length scale of observation.  For example, a crystal may attain a 
globally unloaded state upon removal of traction along its external sur-
faces. However, a heterogeneous crystalline solid supporting residual 
stresses such as those arising from defects may simultaneously be globally 
relaxed and locally or microscopically stressed.  In such cases the body 
must be cut into small pieces, or in geometric terminology mapped to an 
anholonomic state as defined in Section 2.8, in order to relieve such inter-
nal stress fields.  From an atomic perspective, it may be physically impos-
sible to define a configuration of a defective lattice free of all internal 
forces without breaking stretched or distorted bonds in the vicinity of de-
fects.     

3.2.1 Background 

The concept of a locally relaxed, generally anholonomic state was posited 
by Eckart (1948), who introduced a metric tensor describing lengths of 
material elements in such an unloaded state and used this construction in a 
thermodynamic theory of anelasticity.  Kondo (1949) invoked the concept 
of a metric with non-vanishing curvature tensor to describe plastic yield-
ing.  Bilby et al. (1955) forwarded the idea of using a generally incompati-
ble, two-point lattice deformation map to describe the Bravais lattice vec-
tors of a crystal containing dislocations, purely from the perspective of 
crystallography and independent of the notion of stress relaxation or re-
moval of mechanical forces.   

The multiplicative decomposition of the deformation gradient (formally 
introduced in (3.31)) is perhaps the most popular postulate used to describe 
the deformation kinematics of elastic-plastic crystals subjected to large 
strains and rotations.  Bilby et al. (1957) are often credited with first ex-
plicitly proposing the two-term multiplicative decomposition for elastic-
plastic crystals, using the terminology “shape deformation”, “lattice de-
formation”, and “dislocation deformation” to describe the total deforma-
tion gradient, its elastic part, and its plastic or lattice-preserving (i.e., “lat-
tice invariant” in their terminology) part, respectively (see also Bilby and 
Smith (1956)).  Kroner (1960) posited a similar model for kinematics of 
elastic-plastic crystals.  Teodosiu (1967a, 1968) developed a generalized 
continuum theory of elasto-plasticity incorporating a multiplicative de-
composition of the deformation gradient into a product of two incompati-
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ble maps, generalizing Toupin’s theory of hyperelastic materials of grade 
two (Toupin 1964).  Fox (1968), Lardner (1969), and Teodosiu (1970) 
postulated continuum theories of finite deformation plasticity from consid-
eration of dynamics of mobile dislocation lines or loops.  The above-
mentioned studies were generally conducted in the context of continuously 
distributed dislocations, whereby internal stress fields resulting from de-
fects were of primary interest in practical applications of the theory involv-
ing solutions of boundary value problems (Kroner and Seeger 1959; Teo-
dosiu 1967b; Willis 1967).   

The multiplicative decomposition emerged somewhat independently in 
the context of macroscopic continuum plasticity theory of engineering and 
structural mechanics, a context wherein evolution of mechanical stresses 
and macroscopic state variables of solid bodies, usually polycrystalline, 
subjected to large external forces is of primary concern.  Acknowledging 
prior work by Eckart, Bilby, and Sedov, Lee and Liu (1967) introduced a 
two-term multiplicative decomposition to describe deformations of metals 
subjected to large pressures occurring in impact problems.  This early 
study of kinematics and thermodynamics was extended to general defor-
mation histories by Lee (1969), popularizing the multiplicative decomposi-
tion among the engineering mechanics community.  Shock waves in elas-
tic-plastic solids were studied using finite strain approaches by Lee and 
Wierzbicki (1967), Foltz and Grace (1969), and Germain and Lee (1973).   

In decades since, the multiplicative decomposition is the standard pre-
scription used for the nonlinear kinematics of crystal plasticity (Rice 1971; 
Teodosiu and Sidoroff 1976; Asaro 1983), wherein the generally anisot-
ropic mechanical response of single crystals is modeled via consideration 
of dislocation glide along preferred directions in the crystal lattice on a 
number of discrete slip planes.  The decomposition has also become popu-
lar for describing macroscopic plasticity (Kratochvil 1971; Simo and Ortiz 
1985; Bammann and Aifantis 1987; Moran et al. 1990; Scheidler and 
Wright 2001; Wright 2002), whereby at each volume element centered at a 
point X within a body, the response of a large number of grains, typically 
metallic, is modeled in an average sense.  Issues regarding material sym-
metries and multiple, evolving natural configurations have been addressed 
by Rajagopal and Srinivasa (1998) and Epstein and Elzanowski (2007).  

3.2.2 The Multiplicative Decomposition  

The two-term multiplicative decomposition of the deformation gradient for 
elastic-plastic solids is written 
 = L PF F F , a La P

.A . .AF F F α
α= , (3.31) 
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where LF  is the lattice deformation first mentioned in (3.25) and PF  is the 
plastic deformation.  Accompanying (3.31) are the following requirements: 
det 0>PF , det 0>LF , and inverses 1−LF  and 1−PF  exist that satisfy 
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Decomposition (3.31) suggests existence of an additional configuration of 
the body, called the intermediate configuration and labeled B�  in Fig. 3.3, 
such that globally, 0:TB TB→PF �  and :TB TB→LF � .  Although LF  and 

PF  are referred to as elastic and plastic “deformation gradients”, these two 
tangent maps need not be integrable; i.e., elastic and plastic deformation 
gradients and their inverses need not be true gradients of vector fields 
taken with respect to any spatial or material coordinates. 

 

 
Fig. 3.4 Tangent maps and configurations 

 
Plastic deformation PF  as defined here is engendered by cumulative 

motions of defects that are said to be lattice-preserving or lattice invariant 



3.2 Multiplicative Inelasticity      83 

(Bilby et al. 1957), in other words phenomena that do not significantly al-
ter the crystal structure from the length scale of resolution of the external 
observer.  In crystalline solids, PF  is most often attributed to collective 
motion of dislocations when the solid is observed at a length scale coarse 
enough that local microscopic stretch and rotation fields associated with 
individual defects may be neglected.  Such typically omitted fields may 
encompass, for example, stretch and rotation of primitive Bravais lattice 
vectors and basis vectors of the crystal structure in the immediate vicinity 
of cores of individual dislocation lines.   

From an atomistic perspective, reference configuration 0B  can be re-
lated to intermediate configuration B�  as follows (Clayton and Chung 
2006) when mapping PF  represents the cumulative deformation of the ma-
terial, but not the lattice, attributed to dislocation glide through a local vol-
ume element of a crystalline body.  Consider a fixed control volume (i.e., a 
Eulerian representation centered at spatial point x) and initially containing 
of a large number of atoms, for example the number of atoms occupying a 
basis decorating at least 103 primitive unit cells.  Once atoms have passed 
through this control volume as a result of dislocation glide, 0B  and B�  ap-
pear identical in terms of atomic coordinates if no defects remain within 
the volume element and if elastic fields of dislocations that have passed 
through this element are excluded in configuration B� .  Yet deformation of 
the material will have taken place because of dislocation motion.  For a 
purely plastic process with =LF 1 , new atoms would enter the control 
volume in identical locations as the old, to replace those that exited due to 
plastic flow, and the mass of material contained within the control volume 
element would be conserved.  The concept is illustrated in Fig. 3.5 for a 
cubic lattice, in which atoms that exit the volume are denoted by filled cir-
cles, and those that enter the cell by open circles, with the underlying ma-
terial undergoing pure “plastic” shear.  Boundaries of the fixed control 
volume through which atoms may pass are denoted by dashed lines, and 
boundaries of a Lagrangian material element (e.g., centered at X) and asso-
ciated with a fixed set of atoms are denoted by solid lines.  The mass of the 
Lagrangian element remains fixed because dislocation glide does not in-
volve mass transport, and the volume occupied by the Lagrangian element 
remains fixed because dislocation glide is isochoric.  The magnitude of the 
plastic shear shown in Fig. 3.5, upon prescription of parallel rectangular 
coordinate frames in each configuration, is 1

.2 (2 / 5)( / )PF b d= . 
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Fig. 3.5 Plastic deformation from atomic perspective 

 
The lattice deformation LF  in turn encompasses all remaining physical 

mechanisms that do affect the underlying crystal structure.  This includes 
rigid rotations of the entire solid body, as well as local rotations and local 
stretching of the Bravais lattice vectors associated with mechanical stresses 
and thermal expansion or contraction.    

The majority of theoretical developments in finite deformation inelastic-
ity seem to address plasticity in crystalline metals, perhaps since histori-
cally, inelastic behavior of these materials has garnered utmost interest in 
structural mechanics and manufacturing sciences.  However, multiplicative 
kinematics of (3.31) have been extended to describe deformations of a va-
riety of non-metallic (poly)crystalline solids, whereby LF  accounts for 
stretch and rotation of some aspect of the microstructure of the particular 
material under consideration.  Decomposition (3.31), or variations of it, 
has been used to describe finite inelasticity in brittle crystalline solids such 
as geological materials (Krajcinovic 1996; Barton and Wenk 2007; Clay-
ton 2010a) and dielectric and piezoelectric ceramics (Clayton 2009a, b, 
2010b), granular media such as soils (Ortiz and Pandolfi 2004), heteroge-
neous structural solids such as concrete (Clayton 2008), energetic crystals 
(Barton et al. 2009), and crystalline- and semi-crystalline polymers (Shep-
herd et al. 2006).  Multiplicative kinematics have also been used to model 
amorphous solids (Anand and Gurtin 2003).  However, rotation of the mi-
crostructure within an element of isotropic amorphous material, relative to 
the total rotation of that element, is of presumably less consequence to the 
mechanical response than would be expected for an anisotropic crystalline 
solid wherein the directions of the lattice vectors of the structure dictate 
thermomechanical properties such as elastic constants and thermal expan-
sion coefficients. 

The polar decomposition (2.149) applied to each of LF  and PF yields 
 = =L L P P L L P PF V R R U R U V R , (3.33) 
where LV  is the left lattice stretch, LR  is the lattice rotation that includes 
rigid body rotations of the entire body, PR  is the plastic rotation, and PU  
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is the right plastic stretch.  In the second of (3.33), LU  is the right lattice 
stretch and PV  is the left plastic stretch.  In many interpretations, deforma-
tion mapping LF , rather than being linked explicitly to the deformation of 
Bravais lattice vectors and basis vectors (Born and Huang 1954), is de-
fined in terms of a reversible or elastic unloading from a stressed configu-
ration to an unstressed configuration.  In other words, unloading via 1−LV  
maps the solid body from the stressed current configuration to an unloaded 
intermediate configuration.  In continuum plasticity models, depending on 
the constitutive formulation used to specify the evolution of plastic defor-
mation, this operation may leave the unloaded state indeterminate by a ro-
tation, as discussed more in Section 3.2.7.  Reverse decompositions, i.e., 
= P LF F F , have also been forwarded (Bilby et al. 1957; Clifton 1972; 

Lubarda 1999).  While such a reverse decomposition may pose no formal 
difficulties from a mathematical standpoint, an apparent benefit of original 
decomposition (3.31) is that unloading occurs most realistically from the 
actual (current) configuration of the body, as opposed to unloading from a 
stressed intermediate configuration as in the case of the reverse decompo-
sition.  In the former case, from (3.33) and for a compatible stretch field 

LV , an entire stressed crystalline body could conceivably be unloaded to 
an intermediate configuration in one piece, simply by removal of traction 
along its external boundaries. 

However, since LF  and PF  and their inverses are generally not com-
patible or integrable, configuration B�  is generally anholonomic or non-
holonomic.  As demonstrated later in Section 3.3.2, the mathematical an-
holonomicity conditions imply, physically, the presence of geometrically 
necessary dislocations in the crystal, induced by the incompatible nature of 

1−LF or PF .  These defects differ from those dislocations that pass through 
the crystal in a relatively homogenous manner, contributing to the com-
patible or integrable part of PF .  From the perspective of local mechanical 
unloading, the incompatibility of 1−LV  implies that the body must be cut 
into pieces to relieve internal stresses associated with heterogeneous local 
elastic deformations (Eckart 1948).   

As depicted in Fig. 3.4, tangent mappings from the material body B  to 
the reference or current configuration, :  ( 0)t tT TB t→ ≥κ B , need not be 
integrable, implying that ( 0)t t ≥χ  of Fig. 2.2 could be an anholonomic 
function of reference coordinates ( 0)t =  or spatial coordinates ( 0)t > , and 
that natural configuration B , like B� , could be anholonomic.  Incompati-
bility of 0κ  implies that the defect content differs between the actual mate-



86      3 Kinematics of Crystalline Solids 

rial body B  and its initial representation in Euclidean space 0B .  For ex-
ample, it often becomes convenient to treat the body at 0t =  as a perfect 
crystal.  If the real body B  contains defects, then 0κ  may be used to re-
move the effects of defects from the mathematical representation of the 
body at 0t = , or vice-versa.  While some authors simultaneously introduce 
both tκ  and PF  (Teodosiu 1970; Rice 1971; Tigoiu and Soos 1990; Le 
and Stumpf 1996a; Clayton et al. 2004a) in an independent manner similar 
to Fig. 3.4 (with possible differences in notation), in practice the distinc-
tion between reference configuration 0B  and natural configuration B  is 
usually omitted.  In this way, contributions of all defects towards the de-
formation gradient kinematics are embedded in LF  and PF , even though 
the crystal may be imperfect at 0t = .  For the most part, henceforward in 
this book, this practical viewpoint will be used, meaning that mappings 0κ  
and tκ  and material manifold B  will not be considered explicitly.   

Returning now to decomposition (3.31), lattice and plastic deformations 
are written fully in component form as, respectively, 
 La

. aF α
α= ⊗LF g g� , P A

.AF β
β= ⊗PF g G� , (3.34) 

where the anholonomic basis vectors αg�  and their reciprocals αg�  obey 

 .,α α
β βδ=g g� � . (3.35) 

Unless noted otherwise, it is assumed that ( , )X tLF  and ( , )X tPF  are at 
least twice differentiable with respect to reference coordinates AX , and 
that their inverses 1( , )x t−LF  and 1( , )x t−PF  are at least twice differentiable 
with respect to spatial coordinates ax .  Applying definition (2.206) for an-
holonomic partial differentiation with respect to lattice and plastic defor-
mations, along with definition (2.112) and identity (3.31), leads to 

            1 1
, . ., . .

( . ) ( . ) ( . )( . ) ( . ) P A a P A La
AA a aF x F F

X x xα α α α α
− −∂ ∂ ∂

∂ = = = =
∂ ∂ ∂

. (3.36) 

Partial coordinate derivatives of anholonomic basis vectors and reciprocal 
basis vectors, following verbatim from postulates (2.210), are 
 ..

,
α α χ
β βχΓ= −g g�� � , ..

,
χ

α β βα χΓ=g g�� � , (3.37) 
where from (2.208), either of the following definitions, not necessarily 
equivalent or exclusive3, can be used for connection coefficients on B� : 

                                                      
3 Symbols in (3.38) and (3.39) are derived in Appendix D (Section D.4) via use 

of convected anholonomic basis vectors.  Others are possible (e.g., (3.51) later). 
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Since Levi-Civita connections with Christoffel symbols 
G

..A
BCΓ  and 

g
..a
bcΓ  are 

symmetric, .. 0T χ
βα =�  in (2.209) and the skew part of the second of (3.37) is 

 [ ] [ ]
.. ..

,
χ χ

χ βα χα β βαΓ κ= = −g g g�� � � � , (3.40) 

where anholonomic objects (2.207) obtained from (3.38) and (3.39) are 
identical4: 
 [ ] [ ]

1 1 1.. La Lb L P A P B P
. . . .. b ,a . B ,AF F F F F Fα α α

βχ β χ β χκ − − −= =� . (3.41) 

On the other hand, only when B�  is holonomic, meaning that coordinates 
xα�  exist that are continuously (twice) differentiable functions of ax  or 

AX , are all of the following conditions satisfied simultaneously: 

          1L
.a a

xF
x

α
α− ∂
=
∂
�

, P
.A A

xF
X

α
α ∂
=
∂
�

, 
xα α=g�
�
∂
∂

, .. 0α
βχκ =� , [ ] 0,α β =g� . (3.42) 

3.2.3 The Metric Tensor in the Intermediate Configuration 

A generic metric tensor on anholonomic space B�  is expressed as 
g α β
αβ= ⊗g g g� � ��  and is positive definite and symmetric by definition.  

Components of this metric tensor satisfy 
 g gαβ α β β α βα= = =g g g g� � � �� �i i , (3.43) 
where i  denotes the scalar product of vectors akin to (2.9).  The scalar 
product of two arbitrary vectors , TB∈a b� ��  then becomes 
 a b a b a g bα β α β α β

α β α β αβ= = =a b g g g g� � ��� � � � �� � � �i i i . (3.44) 

                                                      
4 A different anholonomic object defined as [ ]

1.. La Lb L
. . . a ,bF F Fα α

βχ β χκ −=�  was used 

in previous work (Clayton et al. 2004a), but implications regarding the vanishing 
or non-vanishing of the Riemann-Christoffel curvature tensor introduced in an-
holonomic coordinates in (36) of that paper remain the same.  
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Components of metric tensor g�  are also used to lower indices in the con-
ventional manner, for example a contravariant vector is converted to a dual 
or covariant vector via 
 a g aβ

α αβ=� � � . (3.45) 
Transposes (see e.g., (2.125) and (2.126)) of lattice and plastic deforma-
tions are given, respectively, by  
 LT Lb L* .b

.a . ab baF g F g g F gα αβ αβ
β β= =� � , (3.46) 

 PT A P AB P*. BA
. .B BF g F G g F Gβ β
α αβ αβ= =� � , (3.47) 

where gαβ�  are components of the inverse intermediate metric 1−g� .  Jaco-
bian invariants of deformation mappings LF  and PF  providing relation-
ships among volume elements dv B⊂ , dV B⊂� � , and 0dV B⊂  also de-
pend upon g� , as in (2.141), (2.142), (2.223), and (2.224).  Letting az , zα� , 
and AZ  denote coordinates referred to local Cartesian axes associated with 
material elements in B, B� , and 0B , respectively, Jacobian determinants are 
found as (Teodosiu 1967b; Clayton et al. 2004a) 

     . .det det( ) det( ) / det( )
a

L Lb Lb
abb

dv z xJ F F g g
x zdV

β

β β αβα

⎛ ⎞∂ ∂
= = =⎜ ⎟∂ ∂⎝ ⎠

� �� �
, (3.48) 

   . .det det( ) det( ) / det( )
B

P P P
B B ABA

dV z XJ F F g G
dV x Z

α
β β

αββ

⎛ ⎞∂ ∂
= = =⎜ ⎟∂ ∂⎝ ⎠

� � �
�

, (3.49) 

where 2det( ) [det( / )]g z xα β
αβ = ∂ ∂� ��  has been used.  Introducing permutation 

tensors geαβχ αβχε =� �  and geαβχ αβχε −=� �1  and setting det( )g gαβ=� � ,  

       . . .
1
6

L La Lb Lc
abcJ F F Fαβχ

α β χε ε= � , . . .
1
6

P ABC P P P
A B CJ F F Fα β χ

αβχε ε= � ,  (3.50) 

a form consistent with (2.224).  Since LF  and PF  are required to have 
positive determinants as mentioned following (3.31), and since g�  is posi-
tive definite, 0LJ > , 0PJ > , and 0dV >� . 

Conceivable choices for metric tensor g�  and basis vectors αg�  in (3.43) 
are now discussed (Clayton et al. 2004a).  The simplest and most prevalent 
option from the literature is (Teodosiu 1967a, b; Simo and Ortiz 1985) 
         α β

αβδ= ⊗g e e� , ..
, , . . 0P P
A A AF Fβ δ β

α α β βα δΓ= = =e e e� , .. 0δ
βαΓ =� . (3.51) 

where intermediate metric tensor components are gαβ αβδ=� .  Intermediate 
Kronecker delta symbols 1αβδ α β= ∀ =  and 0αβδ α β= ∀ ≠ , and α α=g e�  
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are constant orthonormal (Cartesian) basis vectors5.  The last of (3.51) ap-
plies in the present context, instead of alternatives (3.38) or (3.39). 

Prescription (3.51) indicates that contravariant vectors defined on B�  are 
referred to a single global Cartesian frame, or equivalently, a parallel Car-
tesian frame attached to each local relaxed volume dV B⊂� � .  This implies 
either that (i) B�  is a Euclidean space or that (ii) the αg�  are not actually 
tangent to any coordinate lines inscribed on base manifold B�  since such 
coordinates do not exist, but instead correspond to some external reference 
frame.  Statement (i) is ruled out in general by a non-vanishing an-
holonomic object in (3.40), physically indicating the presence of crystal 
defects such as dislocations that render B�  anholonomic.  This leaves 
statement (ii): indices of vectors on TB�  are not referred to the actual tan-
gent spaces of any deformed material manifold but are instead referred to 
the fixed external Cartesian frame.  The intermediate metric αβδ  (or 
equivalently, the external Cartesian frame) is introduced somewhat artifi-
cially as an additional modeling assumption, accompanying introduction of 
kinematic variables LF  and PF .  Along similar lines, Simo (1988) posited 
an intermediate configuration metric A B

. AB .g Gαβ α βδ δ=� , implying a Carte-

sian metric for B�  when 0B  is described using Cartesian coordinates, and 
requiring introduction of the two-point Kronecker delta (i.e., shifter) .

A
αδ .   

Several alternatives have been proposed (Moran et al. 1990; Maugin 
1994, 1995; Le and Stumpf 1998; Miehe 1998; Clayton et al. 2004a) that, 
in contrast to (3.51), do not embed non-Euclidean space B�  within a global 
Cartesian space equipped with a Euclidean metric tensor αβδ .  It should be 

noted, however, that (3.48) and (3.49), wherein Cartesian zα�  are assigned 
to each volume element dV B⊂� � , do rely on the pointwise assumption that 
transformation formulae to intermediate Cartesian coordinates zα�  are 
available.   

One such alternative is specification of an alternative kind of intermedi-
ate metric tensor ′g�  as the covariant lattice deformation tensor LC�  (Moran 
et al. 1990; Maugin 1994; Clayton et al. 2004a): 

                                                      
5 Conditions gαβ α β αβδ= =g g� �� i  can still be imposed without requiring ( )Xαg�  

remain parallel for all X.  For example, basis vectors ( )Xαg�  of unit length could 
differ by a (jump in) rotation at distinct points; conditions , 0Aα =g�  and .. 0δ

βαΓ =�  
would not hold everywhere in that case, and the second of (3.51) would not apply.  



90      3 Kinematics of Crystalline Solids 

 . . . .( , ) L La Lb La Lb
ab a bg x t C F g F F Fαβ αβ α β α β α β′ ′ ′= = = =g g g g� � �� i i , (3.52) 

implying that an alternative set of anholonomic basis vectors can be de-
fined by 
 .( , ) ( , ) ( )La

ax t F x t xα α′ =g g� . (3.53) 
Requiring that .,α α

β βδ′ ′ =g g� �  leads to the corresponding reciprocal vectors  

 1
.( , ) ( , ) ( )L a
ax t F x t xα α−′ =g g� . (3.54) 

Since components .
LaF α  and LCαβ

�  evolve with time along with changes in 
crystal structure (i.e., stretch and/or rotation of Bravais lattice vectors), ba-
sis vectors in (3.53) and (3.54) represent a kind of convected coordinates.  
Most generally, α α′ ≠g g� �  meaning that basis vectors in (3.43) and (3.52) 

do not coincide
6
.  However, letting .( ) a

ax gα α=g g� , the first of (3.34) be-
comes 
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and is analogous to the convected coordinate representation of the defor-
mation gradient (2.128) when coordinate systems are chosen such that the 
shifter is .a a .ag ,α α αδ= =g g� .  Maugin (1995) suggested an analogous form 

of (3.52) as a metric tensor on possibly anholonomic material manifold B .  
The covariant plastic deformation PC�  can likewise be employed as a met-
ric on B�  (Miehe 1998): 

     
1 1
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1 1
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F F
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 (3.56) 

implying anholonomic basis vectors obey 1
.( , ) ( , ) ( )P A

AX t F X t Xα α
−′ =g G� .  

In (3.52) and (3.56), respectively, the standard Euclidean relations 
ab a bg = g gi  and AB A BG =G Gi  are used.   

                                                      
6 In a previous paper (Clayton et al. 2004a), the same notation was used for α′g�  

and αg�  in different sections, an ambiguity that could cause confusion.  In that pa-
per, the intended implication was that anholonomic basis vectors used in defini-
tions of elastic and plastic deformation gradients differ from those used in metric 
tensors (3.52) and (3.56).  Otherwise, setting α α′ =g g� �  in (3.34) results, recur-
sively, in null lattice deformation: 1

. . .
La L b a b

a b b aF F α
α δ−= ⊗ = ⊗LF g g g g . 
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The α′g�  in (3.52) or (3.56) are not tangent to any global coordinate 
curves xα�  since such coordinates are precluded by the anholonomicity of 
B� , but they do exist in a one-to-one manner with the set ( )a xg  and the 
map . ( , )LaF x tα  or with the set ( )A XG  and the map 1

. ( , )P AF X tα
− , respec-

tively.  In this sense, LC�  and PC�  are well-defined, but time-dependent, 
geometric quantities referred to space B� , in contrast to αβδ  of (3.51) that 
cannot be derived from components of lattice or plastic deformation maps 
and holonomic basis vectors on 0B  or B .  Regardless, basis vectors αg�  
and their reciprocals αg�  must always be prescribed by the modeler in the 
context of (3.34) so that components of .

LaF α  and .
P

AF α  can be defined.  In 
later parts of this book (e.g., (3.64), (3.65), and thermodynamic treatments 
in Chapters 6, 8, and 9), to avoid unnecessary complexity, time-
independent (extrinsic) basis vectors αg�  with metric tensor components 
gαβ α β=g g� �� i  are prescribed.  Practical sets of time-independent intermedi-
ate {basis vectors, metric tensor components} include, but are not limited 
to, the following: { , }gα α αβ αβδ= =g e� � , . . .{ , }A A B

A ABg Gα α αβ α βδ δ δ= =g G� � ,  

and . . .{ , }a a b
a abg gα α αβ α βδ δ δ= =g g� � .  Two-point Kronecker delta symbols 

obey . 1A
αδ =  for Aα =  and . 0A

αδ =  for Aα ≠ , where , 1,2,3Aα = .  

Analogous relationships apply for Kronecker delta symbols .
a
αδ . 

Consider now the rank four Riemann-Christoffel curvature tensor 
formed from connection coefficients (3.38) on anholonomic space B� , with 
components found from (2.212): 

 
[ ] [ ] [ ]

1

       2 2 2

g
... Lb Lc Ld L ...a

. . . .a bcd

.. .. .. .. ..

R F F F F R

.

α α
βχδ β χ δ

α α ε ε α
εδβ χ δ β ε χ δ βχΓ Γ Γ κ Γ

−=

= ∂ + +

�

� � � ��
 (3.57) 

Recall that 0
g

...a
bcdR =  identically since B  is a Euclidean space; hence, 

0...R α
βχδ =�  regardless of the vanishing of [ ]

1
. ,

L
a bF α− .  However, integrability 

conditions 0...R α
βχδ =�  and 0..ε

βχκ =�  hold identically and simultaneously when 
1
. .,( , )L
a aF x t xα α− = � , i.e., when B�  is homeomorphic to Euclidean space B  

and ( , )x x x tα α=� �  are holonomic coordinates with respect to which partial 
coordinate differentiation can be defined as usual.  Under such conditions, 
the anholonomic object in the first of (3.41) reduces to 
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[ ]
..

., ., ., 0a b
bax x xα α

βχ β χκ = =� � .  When . .,( , )La aF x t xα α= , the curvature tensor formed 

from the symmetric Riemannian connection with metric coefficients  
1

, , ,( ) / 2L L L LC C C Cαδ
βδ χ χδ β βχ δ

− + −� � � �  vanishes identically since this curvature 

tensor is the pull-back by a continuously differentiable motion xα� , to the 

intermediate configuration, of 
g

...a
bcdR  formed from components of the 

Euclidean spatial metric abg , analogously to the situation discussed in Sec-
tion 2.8.2.  Similar statements apply for (3.39): the Riemann-Christoffel 
curvature tensor from coefficients in (3.39) vanishes identically; an-
holonomic object following the second equality of (3.41) vanishes if 

. .,( , )P
A AF X t xα α= � , giving [ ]

..
., ., ., 0A B

BAX X xα α
βχ β χκ = =� � ; and since 0

G
...A
BCDR = , the 

Riemann-Christoffel curvature tensor constructed from coefficients 
1

, , ,( ) / 2P P P PC C C Cαδ
βδ χ χδ β βχ δ

− + −� � � �  vanishes identically when . .,
P

A AF xα α= � . 

3.2.4 Kinematics, Rates, and Kinematic Approximations 

Taking the material time derivative7 of (3.31), applying the product rule, 
and post-multiplying the result by the inverse of deformation gradient F 
leads to  
 1 1 1 1 1− − − − −= = + = +L L L P P L L L P LL FF F F F F F F L F L F� � � , (3.58) 
where L is the spatial velocity gradient of (2.176) with mixed-variant 
components . ;

a a
b bL v= .  The quantity 1−=L L LL F F�  is a mixed-variant tensor 

with components referred to spatial configuration B and is called the lattice 
velocity gradient, and 1−=P P PL F F�  is a mixed-variant tensor referred to in-
termediate configuration B�  and is called the plastic velocity gradient.  Us-
ing (3.33), the following definitions are introduced, where subscripts skew 
and symm refer to anti-symmetric and symmetric parts of covariant ingre-
dients in (3.58), i.e., skew and symmetric parts of 1

. .
c A

ab ac A bL g F F −= � : 
 ( )1 1− −= + + +L L L P P LFF W D F W D F� , (3.59) 

 ( ) ( )1T T

skew skew

−= = +L L L L L L L LW L R R R U U R� � , (3.60) 

 ( ) ( )1 T

symm symm

−= =L L L L L LD L R U U R� , (3.61) 

                                                      

7 From Section 2.6.1, .
. ( , )

P
P A
A

X

F
F X t

t

α
α ∂

=
∂

�  and .
. . ;( , )

La
La La b

b
x

F
F x t F v

t
α

α α
∂

= +
∂

� . 
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 ( ) ( )1T T

skew skew

−= = +P P P P P P P PW L R R R U U R� � , (3.62) 

 ( ) ( )1 T

symm symm

−= =P P P P P PD L R U U R� . (3.63) 

Above, LW  is the lattice spin, LD  is the lattice deformation rate, PW  is 
the plastic spin, and PD  is the plastic deformation rate.  Another strain rate 
relation analogous to (2.186) that will become useful later is 
 *=L L L LE F D F�� , L La L Lb

. ab .E F D Fαβ α β=�� , (3.64) 

where lattice strain referred to the intermediate configuration, LE� , is de-
fined analogously to the right Cauchy-Green strain introduced in (2.156): 

 1 ( )
2

= −L LE C g�� � , ( )
1 ( ) =
2

L L LE C g Eαβ αβ αβ αβ= −�� �� , (3.65) 

with symmetric lattice deformation tensor L La Lb
. ab .C F g Fαβ α β=�  as first in-

troduced in (3.52).  Conditions 0gαβ =��  are assumed in (3.64).  
Analogously to (2.114), lattice and plastic deformation gradients pro-

vide first-order approximations of the length and direction of a differential 
line element d TB∈x ��  mapped to the intermediate configuration.  For ex-
ample, for the plastic deformation: 

 . . :

. :

( ) ( )
1      
2!
1                             ...,
3!

P A P A B
A A BX X

P A B C
A BC X

dx x X x X

F dX F dX dX

F dX dX dX

α α α

α α

α

′= −

= +

+ +

� � �

 (3.66) 

where A A AdX X X′= −  is the infinitesimal vector between two reference 
points X and X ′ , and the total covariant derivative, similar to (2.116), is 

 .. ..
. : . , . . .

G
P P C P P P

A B A B BA C A BF F F F Fα α α α χ β
βχΓ Γ= − + � , (3.67) 

where ..α
βχΓ�  are connection coefficients associated with basis vectors on B� .  

Noting A B B AdX dX dX dX= , skew terms [ ]. :
P

A BF α , while generally nonzero, 

will not contribute to (3.66).  Similarly for the lattice deformation,  

 1 1
. . :

1
. :

( ) ( )
1      
2!
1                             ...,
3!

L a L a b
a a bx x

L a b c
a bc x

dx x x x x

F dx F dx dx

F dx dx dx

α α α

α α

α

− −

−

′= −

= +

+ +

� � �

 (3.68) 
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where a a adx x x′= −  is the infinitesimal vector between two spatial points 
x and x′ , and analogously to (2.116), the total covariant derivative 

 1 1 .. 1 .. 1 1
. : . , . . .

g
L L c L L L

a b a b ba c a bF F F F Fα α α α χ β
βχΓ Γ− − − − −= − + � . (3.69) 

Skew terms [ ]
1
. :

L
a bF α−  are nonzero when 1−LF  is not integrable, but will not 

affect the quadratic term in (3.68).  From (3.66) and (3.68), to first order, 
                     1d d d−= =P Lx F X F x� , 1

. .
P A L a

A adx F dX F dxα α α−= =� . (3.70) 
Because lattice and plastic deformation gradients are generally not inte-
grable, dx�  is generally not an exact differential and is sometimes referred 
to as a Pfaffian (Stojanovitch 1969).  The role of the lattice deformation 
and lattice strain tensors in the context of first-order deformed lengths of 
differential line elements is thus 

 ,d d d d= =L Lx F x x C x�� � � , (3.71) 

 2 ,d d d d d d− = Lx x x x x E x�� � � �i i . (3.72) 

Two approximations are commonly encountered pertaining to relative 
magnitudes of lattice and plastic deformations.  The first is the small lattice 
strain assumption: 
 = +L LV 1 ε , 1/ 2( ) 1=L L Lε ε :ε � , (3.73) 

where terms of the symmetric tensor Lc
ac .bg ε  are small relative to unity as 

indicated.  This assumption is often deemed relevant for ductile metallic 
crystals that deform by dislocation motion before large elastic strains are 
attained (Bammann and Johnson 1987).  The contribution of the plastic ve-
locity gradient in (3.58) is then often approximated as 
 1 1( ) ( )T T− −= + + ≈L P L L L P L L L P LF L F 1 ε R L R 1 ε R L R . (3.74) 
Neither LW  nor LD  necessarily vanishes according to approximation 
(3.73), since lattice rotation and stretch rates may still be arbitrarily large.   

The second approximation is the small deformation assumption, as in-
troduced in Section 2.5.3, with rate kinematics listed in (2.191).  The ana-
log of (3.31) in the geometrically linear theory is 
 ≈ + +L PF 1 β β , . . ( )a ab c L P

A A bc bc bcF g gδ β β≈ + + , (3.75) 
where the lattice displacement gradient is denoted by Lβ  and the plastic 
displacement gradient is denoted by Pβ , such that an additive decomposi-
tion of the total covariant displacement gradient applies: 
 ;

L P
a b ab abu β β= + . (3.76) 
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Displacement gradients in (3.76) are sometimes called distortions (Mura 
1982).  Like the lattice and plastic deformation maps of (3.31), the lattice 
and plastic distortions of (3.75) are generally incompatible, i.e. 
 [ ], 0L

a b cβ ≠ , [ ] 0P
a b,cβ ≠ , (3.77) 

even though the total distortion, since it is a true covariant derivative of a 
continuous displacement field, must satisfy [ ] [ ], ; 0a bc a bcu u= = .  Distortions 

are separated into skew rotational and symmetric strain tensors as follows: 
 ( );

L P
ab ab aba buε ε ε= = + , [ ]

L P
ab ab aba ,buΩ Ω Ω= = + ; (3.78) 

 L L L
ab ab abβ ε Ω= + , ( )

L L
ab abε β= , [ ]

L L
ab abΩ β= ; (3.79) 

 P P P
ab ab abβ ε Ω= + , ( )

P P
ab abε β= , [ ]

P P
ab abΩ β= . (3.80) 

Upon taking time derivatives of (3.78)-(3.80), linearized lattice and plastic 
rotation and strain rates are obtained: 
 ;

L L P P
a b ab ab ab abu Ω ε Ω ε= + + +� �� �� ; (3.81) 

 [ ]
L L L
ab abab WΩ β= ≈�� , ( )

L L L
ab abab Dε β= ≈�� ; (3.82) 

 [ ]
P P P
ab abab WΩ β= ≈�� , ( )

P P P
ab abab Dε β= ≈�� ; (3.83) 

where approximations in (3.82) and (3.83) hold when both lattice and plas-
tic distortions are small so that, in Cartesian coordinates, ≈L LW R� , 

≈L LD U� , ≈P PW R� , ≈P PD U� , ≈ +L LR 1 Ω , ≈ +L LU 1 ε , ≈ +P PR 1 Ω , 
≈ +P PU 1 ε , and = ≈ + + + +L P L L P PF F F 1 Ω ε Ω ε , consistent with (3.75). 

3.2.5 Dislocation Plasticity 

Dislocations are elementary line defects in crystalline solids, and their mo-
tion is often the primary source of plastic deformation in crystalline mate-
rials.  Dislocations are characterized by a tangent line and Burgers vector 
(Burgers 1939; Frank 1951).  The dimensionless tangent line ( , )X t TB∈ξ� � , 
which may be straight or curved, indicates the direction of the defect and is 
typically assigned a unit magnitude.  At any point along the dislocation 
line L, the tangent line defines the normal to a plane perpendicular to the 
defect.  Dislocation lines may intersect with other defects or free surfaces 
of the crystal, and may form loops, but do not end abruptly within an oth-
erwise perfect crystal lattice.  The Burgers vector ( , )X t TB∈b� �  (dimen-
sions of length) indicates the magnitude and direction of the closure fail-
ure, or step in the lattice, induced by mapping a closed loop in a defective 
crystal to a perfect crystal or vice-versa (Hirth and Lothe 1982; Teodosiu 
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1982; Hull and Bacon 1984).  The corresponding closed loop is called a 
Burgers circuit.  Straight dislocation lines may be of screw, edge, or mixed 
character.  Screw dislocations have parallel tangent lines and Burgers vec-
tors, while edge dislocations have perpendicular tangent lines and Burgers 
vectors.  Mixed dislocations are neither parallel nor perpendicular to their 
tangent lines.  Partial dislocations, dislocation loops, helical dislocations, 
disclinations (Frank 1958; De Wit 1973), and other more general defect 
structures such as Somigliana dislocations (Eshelby 1956; Asaro 1976) are 
also observed in some kinds of crystals.  Dislocation-like defects can also 
emerge in geologic solids (Eshelby 1973) and porous media (Pan 1991).  

The magnitude of the Burgers vector of a full (complete) dislocation is 
equal to the distance between two atoms in a perfect crystal in the direction 
of the atomic displacement, e.g., a lattice parameter in a primitive unit cell.  
In contrast, the magnitude of a partial dislocation may differ from the dis-
tance between two atoms in a perfect crystal.  The movement of an iso-
lated partial dislocation through a region of crystal leaves behind a stack-
ing fault in that region, but a perfect lattice can be restored by collective 
movement of partial dislocations (e.g., leading and trailing partial disloca-
tions separated by a stacking fault).  Mechanical twinning can also involve 
coordinated motion of partial dislocations (Christian and Mahajan 1995; 
Bernstein and Tadmor 2004).  Full dislocations tend to dissociate into par-
tial dislocations if the energy of the full dislocation exceeds the sum of en-
ergies of the partial dislocations (including their core and elastic interac-
tion energies) and the energy of the stacking fault between the partials 
(Hull and Bacon 1984). 
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Fig. 3.6 Burgers circuit surrounding single edge dislocation in cubic crystal 

 
The Burgers circuit concept is illustrated explicitly in Fig. 3.6 for a cu-

bic crystal containing a single edge dislocation.  The tangent line of the 
dislocation is directed in a positive sense out of the plane of the figure, i.e., 

3ξ G� & .  Two kinds of Burgers circuits are typically considered.  In the 
first, shown in Fig. 3.6(a), a closed circuit about the defect line in the cur-
rent configuration on the right, beginning and ending at point 0x , is 
mapped to an open circuit by counting the same steps in a perfect lattice in 
the intermediate configuration on the left.  By convention the circuit is 
taken in a clockwise sense from an observer viewing in the direction of the 
tangent line, or equivalently, via the usual right-hand rule of vector calcu-
lus.  In the perfect lattice, the circuit does not close.  The Burgers vector in 
Fig. 3.6(a) is then the vector 0= −b x x� � �  directed from the point x�  at the 
end of the circuit to the point 0x�  at the start.  In the second kind of Burgers 
circuit shown in Fig. 3.6(b), a closed circuit about the defect line in the in-
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termediate configuration on the left, beginning and ending at point 0x� , is 
mapped to an open circuit by counting the same steps in the defective lat-
tice in the current configuration on the right.  By convention, the circuit is 
again taken in the right-handed sense.  In the dislocated lattice, the circuit 
does not close.  The Burgers vector in Fig. 3.6(b) is 0= −b x x , directed 
from point 0x  at the start of the circuit to point x at the end.  Kondo (1963) 
calls the circuit of Fig. 3.6(a) “Frank’s disturbance”, and the circuit of 
3.6(b) “Read’s disturbance”.  Using a nonlinear elastic model based on 
Volterra’s construction (Volterra 1907) in which = LF F , Teodosiu (1982) 
demonstrates that after neglecting terms on the order of the square of b� , 
the two Burgers vectors are related by 
 ( , ) ( , ) ( , )X t X t X t= Lb F b� , .

a Lab F bα
α= � . (3.84) 

Willis (1967) and Teodosiu (1982) note that b�  does not depend upon the 
choice of starting point 0x , while b does depend upon choice of starting 
point 0x�  as a result of the local lattice deformation 0( )X x=LF � .  Different 
conventions exist for algebraic signs of Burgers vectors and tangent lines 
and for the positive sense of circulation about the Burgers circuit; those 
used here follow from Willis (1967) and Hull and Bacon (1984).  Volterra-
type elasticity models of discrete dislocation lines and disclination lines 
are provided in Appendix C, Section C.1.  Linear elastic models of disloca-
tion and disclination loops are discussed in Section C.2 of Appendix C.  
The Burgers circuit concept can be used for dislocation lines of screw and 
mixed character, and can be extended to describe the total summed Bur-
gers vector of a number of dislocation lines passing through an oriented 
surface in the crystal enclosed by a circuit. 

Mobile dislocations engender plastic stretch and rotation.  When acted 
on by external forces, dislocations tend to move directions normal to their 
tangent vectors.  For a single mobile dislocation, the direction of move-
ment of atoms is in the same direction as the Burgers vector.  For an edge 
dislocation, atoms move in the same direction as the motion (i.e., the ve-
locity) of the dislocation line and perpendicular to the tangent vector.  For 
a screw dislocation, atoms move parallel to the tangent line but normal to 
the velocity vector of the dislocation line.  Dislocation motion may pro-
ceed by glide or climb.  Dislocations that undergo glide are often labeled 
glissile, while dislocations that are immobile, or locked in place due to 
constraints imposed by other defects for example, are often labeled sessile.    

Glide is dislocation motion whereby the movement of the dislocation is 
restricted to a surface called the glide plane that contains both the Burgers 
vector and tangent line.  Glide is often referred to as slip, and terms glide 
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and slip are used interchangeably in this book.  Dislocation glide is an ex-
ample of conservative motion, meaning that the local volume of the crystal 
is unaffected by the process.  The surface on which the dislocation glides 
is called the slip plane or glide plane.  Unlike edge dislocations, screw dis-
locations do not exhibit a mathematically unique slip plane since the lat-
ter’s Burgers vector and tangent line are parallel.  However, in crystals a 
finite set of discrete planes upon which screw dislocations usually move is 
often dictated by the crystal structure.  Cross slip, or a change of slip 
planes, may occur during the course of plastic deformation as screw dislo-
cations seek paths of least resistance (Hirth and Lothe 1982).  The usual 
thermodynamic driving force for dislocation glide is a shear stress compo-
nent acting on the slip plane in the direction of the Burgers vector, as dem-
onstrated in explicit detail in Sections 6.2 and 6.3 of Chapter 6.   

The combination of Burgers vector or its orientation—with the latter 
denoting the slip direction—and the slip plane constitute a slip system.  
Typical slip systems for cubic and hexagonal crystal structures are illus-
trated in Fig. 3.7 and are listed in Table 3.4.  The direction of the Burgers 
vector is always parallel to the slip direction.  Dislocations tend to move in 
close-packed directions on close-packed planes, though exceptions exist 
among certain kinds of materials.  Depending on the particular material 
(e.g., element or compound), its purity, and environmental conditions (e.g., 
temperature), the most common slip system, or that with the least resis-
tance to slip, may vary.  More extensive lists of slip systems in different 
materials—including for example secondary systems activated at higher 
temperatures as well as slip systems for other crystal structures not listed 
in Table 3.4—can be found in books by Schmid and Boas (1950) and Hirth 
and Lothe (1982).  Exceptions to the slip systems in Fig. 3.7 are common 
among polyatomic structures and nonmetals, especially ionic solids 
wherein electrostatic interactions (e.g., charge imbalances) among ions 
strongly affect defect structures and mobilities (Sprackling 1976).  For ex-
ample, primary slip systems in alkali halide crystals (rock salt structure) 
are of type 110 {1 10} .  Pure ionic crystals are often very ductile, with 
high dislocation mobilities (Gilman 2003).  For hexagonal structures, di-
rection 1X  is often chosen parallel to 2 1 10  rather than 12 10  as 

shown in Fig. 3.7, though in the present context the choice is arbitrary.   
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Fig. 3.7 Slip systems for cubic and hexagonal crystal structures 
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Table 3.4 Slip systems and Burgers vectors for several crystal structures 

Structure Primary slip systems Burgers vector, magnitude 
SC 100 {010}  100 , a 

BCC 111 {1 10} , 111 {112} , 111 {123}  1/ 2 111 , a 3 / 2  

FCC 110 {1 11}   1/ 2 110 , a 2 / 2  

HCP 1120 {0001} , 1120 {1100} , 1120 {1101}  1/ 3 1120 , a 

 
Climb occurs when an edge dislocation moves out of the surface con-

taining its Burgers vector and tangent line, and is a generally non-
conservative motion since the volume of the solid is changed locally by the 
process.  Dislocation climb often involves the motion of point defects such 
as vacancies or interstitials to accommodate volume changes.  Conserva-
tive climb of prismatic dislocation loops is possible, however (Hull and 
Bacon 1984).  In engineering metals deformed at low temperatures or high 
strain rates, glide tends to prevail over climb, since diffusion mechanisms 
often require higher temperatures and longer time scales to contribute sub-
stantially to inelastic deformation. 

The intermediate configuration B�  in Fig. 3.4 differs from 0B  due to the 
influence of cumulative motion of lattice defects through the volume ele-
ment under consideration and perturbations of atomic positions resulting 
from defects contained within that volume.  Defects considered in what 
follows next in the present Section are displacement discontinuities tan-
gential to an internal surface (i.e., crystallographic plane) in the material.  
These include gliding straight or curved dislocation lines, dislocation 
loops, and partial dislocations.  Configuration B�  is considered free of ex-
ternal traction and free of all internal stresses, and hence is fictitious in the 
sense that local stress fields of defects are absent.  In the context of contin-
uum elasticity, one could view the volume element in configuration B�  at 
the stage of the Volterra process (see e.g., Appendix C) after discontinui-
ties in displacement have been introduced, but prior to the stage of reseal-
ing the body and introduction of self-stresses (Eshelby 1956; Toupin and 
Rivlin 1960; De Wit 1973; Mura 1982).   

For a crystal containing a single dislocation, a singular plastic deforma-
tion map can be defined in the vicinity of the defect in Cartesian coordi-
nates as follows (Teodosiu 1970; Rice 1971; Ortiz and Repetto 1999): 
 ( ),δ χ= + ⊗PF 1 b M X M� , (3.85) 
where 1 is the unit tensor, M is the normal to the slip plane in the reference 
configuration, (.)δ  is Dirac’s delta function, and χ  is a characteristic 
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function equal to unity at reference coordinates X on a slipped surface (i.e., 
surface of singularity) Σ  and zero elsewhere.  The coordinate system for X 
is chosen with its origin in the slip plane so that along the surface of dis-
placement discontinuity 0A

AX M = .  Plastic deformation (3.85) is singular 
on Σ  and vanishes elsewhere.  A dislocation density tensor corresponding 
to the discrete dislocation line described by (3.85) is (Teodosiu 1970) 
 ( )0 0 Lδ= ⊗α b ξ� , (3.86) 
where 0 0TB∈ξ  is tangent to dislocation line L in the reference configura-
tion.  From (3.85) and (3.86), 

 0
A

d dA
−

+
= − =∫ ∫

X P

X
b F X α N� . (3.87) 

Line integration in the first of (3.87) takes place between limiting coordi-
nates immediately above ( +X ) and below ( −X ) the slipped singular sur-
face Σ  ( + −≅X X ).  Area integration in the second of (3.87) proceeds over 
the union of oriented reference elements NdA  pierced once by the disloca-
tion line, and 0 , =ξ N dA dA  by definition at the intersection of L and A. 

Now consider the average plastic deformation gradient for a volume ele-
ment containing multiple dislocation lines.  If the dislocations are intro-
duced into the volume element sequentially, a logical non-singular exten-
sion of (3.85) is 

          ( )( ) ( )1 1

1 1

n n

m m

V dV Vδ− −

= =

= + ⊗ Σ = + ⊗ Σ∏ ∏∫PF 1 b M 1 b M� � ,         (3.88) 

where the product is taken over n dislocations, each with a possibly differ-
ent Burgers vector b�  and constant normal vector M to an assumed flat 
slipped surface (i.e., glide plane) of reference area Σ .  The volume of the 
element in the reference configuration is denoted by V.  Note that (3.88) 
depends upon the sequence in which each dislocation is introduced ( 1m =  
corresponds to the most recently generated dislocation) and hence cannot 
be used effectively if dislocations with different Burgers vectors or slip 
surfaces are generated simultaneously.  Since ⊥b M�  from the definition 
of a glide plane, (3.88) consists of a product of simple shears and volume 
is conserved, i.e., 1PJ = .  For a collection of 1,2,...i j=  straight disloca-
tion line populations of density 0 0

lim( / ) / 0ρ
→

= = ≥i i i

V
L V dL dV , Burgers 

vector ib� , reference tangent 0
iξ , and plane normal iM , dislocation density 

in (3.86) and Burgers integral in (3.87) can be extended as  

 1
0 0 0 0

1

j
i i i

iL

V dL ρ−

=

= ⊗ = ⊗∑∫α b ξ b ξ� � , (3.89) 
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 0 0 0
1

, ,ρ
=

= = ∑∫ ∫B α N b ξ N� �
j

i i i

iA A

dA dA , (3.90) 

with B�  the summed projection of all local Burgers vectors of dislocation 
lines passing through area A contributing to the closure failure of the Bur-
gers circuit corresponding to the boundary of A.  Line integration in (3.89) 
proceeds over all dislocations of total length L.  The second equation in 
(3.90) pertains to j discrete dislocation populations with the same tangent 
line and local Burgers vector for each value of i.  Using a version of Nan-
son’s formula (2.227), a differential Burgers vector from (3.90) can be de-
fined completely in terms of quantities in the intermediate configuration as 
follows: 

        
0 0 0

1

1
0 0 .

1 1

      ,

j
A i i i A

A A
i

j j
i i i A P P i i i

A
i i

dB N dA b N dA

b J F n da b n da n da

α α α

α β α β αβ
β β β

α ρ ξ

ρ ξ ρ ξ α

=

−

= =

= =

= = =

∑

∑ ∑

��

� �� �� � � � � �
 (3.91) 

where the intermediate tangent line, number of dislocations per unit vol-
ume in B� , and intermediate dislocation density tensor, are respectively, 
 . 0

α αξ ξ=i P i A
AF , 0

i P iJρ ρ=� , 1
0 .

P A P
AJ Fαβ α βα α−=� ,  (3.92) 

and the differential area element maps from reference to intermediate con-
figuration according to (see e.g., Cermelli and Gurtin (2001) and (2.227)) 
 1

.
P P A

An da J F N dAα α
−=� � . (3.93) 

Integration of (3.91) then gives 
 α α αβ

βα= =∫ ∫
� �

� � � � �
a a

B dB n da . (3.94) 

From the first of (3.92), the intermediate tangent vector with components 
αξ i  need not be of unit length when 0 0 1i A i

Aξ ξ = .  As discussed in Section 
3.2.3, the assignment of Cartesian basis vectors to intermediate configura-
tion �B  is not always necessary, and is not geometrically natural when the 
plastic deformation gradient is not integrable.  However, (3.87), (3.89), 
(3.90), and (3.94) are integrals of vector fields whose components are re-
ferred to �TB .  Thus, these integral equations are valid globally, in compo-
nent form, only when basis vectors αg�  are independent of position within 
the domains of integration, e.g., when these basis vectors are spatially con-
stant, but not necessarily orthonormal.  On the other hand, following 
Toupin (1956), such integrals can be evaluated numerically at a single 
point X by parallel transporting the integrands to that point using a shifter 

. ( , )α ′Ag X X  that is assumed to exist everywhere within the domain of inte-
gration.  For example, (3.94) evaluated at X is 
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     . .( ) ( , ) ( ) ( , ) ( ) ( )α αβ
α α βα′ ′ ′ ′ ′= =∫ ∫

� �

� � � � �A A A

a a

B X g X X dB X g X X X n X da . (3.95) 

The resultant can then be transported back to any point ′X  via  
      . . .( ) ( , ) ( ) ( , ) ( , ) ( )β β β α

α′ ′ ′ ′ ′= = ∫
�

� � �A A
A A

a

B X g X X B X g X X g X X dB X . (3.96) 

Steps such as (3.95) and (3.96) are implied henceforth in this book for in-
tegrals of vector and tensor fields when curvilinear coordinates are in-
volved, and are usually not written out explicitly. 

A more general definition of the average plastic deformation of a vol-
ume element accounts for the time history of generation and motion of 
mobile defects within it, in which case PF  is defined as the solution of the 
following differential equation with initial conditions: 
 =P P PF L F� , 

0t=
=PF 1 . (3.97) 

The average plastic velocity gradient PL  in (3.58) for the volume element, 
including both rate of deformation and spin, is dictated by the flux ς�  of 
mobile dislocations (Mura 1968; Lardner 1969; Lempriere 1970; Zbib et 
al. 2002; Clayton et al. 2006):  
 =PL ς : ε� , .

α αχδ
β χδβς ε= �PL ; (3.98) 

 1

1

j
i i i i i i i

iL

V dL ρ−

=

= ⊗ ⊗ = ⊗ ⊗∑∫ς b ξ v b ξ v� �� �� �� � , (3.99) 

where χδβε  are covariant permutation tensor components first introduced 

in (2.224) and /α α
αξ ξ=ξ g� �i i i  and iv�  are respectively the normalized unit 

tangent vector and velocity of dislocation population i, all referred to con-
figuration B� .  Since dislocation segments exhibit perpendicular velocities 
and tangent lines, i i⊥ξ v� �  and ( )i i i⊥ ×b ξ v�� � , tr 0P PJ J= =PL�  and 1PJ = , 
meaning volume is conserved by (3.98).  Relation (3.99) applies for 
straight dislocation lines; similar expressions can be formulated for dislo-
cation loops (Kroupa 1962; Teodosiu 1970), or curved lines can simply be 
discretized into a number of smaller straight segments (Zbib et al. 1998; 
Arsenlis and Parks 2002; Zbib and De La Rubia 2002).  Introducing the 
notation i i i iv× =ξ v m� �� � , | |i iv = v� � , i i ib=b s�� � , and | |i ib = b� � , where im�  is the 
unit normal to the slip plane in configuration B�  and is�  is a unit vector in 
the direction of slip, the plastic velocity gradient of (3.98) reduces to the 
form most often encountered in crystal plasticity (Rice 1971; Asaro 1983): 
 i i i i i i i i

i i
b vρ γ= ⊗ = ⊗∑ ∑PL s m s m�� � � � � �� , i i i ib vγ ρ= �� � � . (3.100) 
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The definition of the slip rate iγ�  in (3.100) is often attributed to Orowan 
(1934, 1940), Polanyi (1934), and Taylor (1934).  Implicit in (3.100) is the 
idea that only mobile dislocations ( 0iv ≠� ) contribute.  Since the product 

i i iγ ⊗s m� � �  does not depend upon the orientation of the Burgers vector rela-
tive to the tangent line, summation in (3.100) can be reduced to a sum over 
i slip systems identified by slip direction and slip plane normal, and iγ�  
then accounts for all mobile screw, edge, partial, and mixed dislocations, 
including loops, with an effective scalar Burgers vector ib� , average veloc-
ity iv� , and total mobile density iρ�  on that slip system.  Since i i⊥s m� � , 
again tr 0P PJ J= =PL�  and 1PJ = .  Thus the scalar line densities are equal 
in intermediate and reference configurations: 0

i iρ ρ=� .  Some authors 
switch positions of the tangent line and dislocation velocity in the disloca-
tion flux; in that case, (3.100) can still be recovered by defining the slip 
plane as the negative of that used in (3.100), i.e., ( ) /= ×m v ξ�� � �i i i iv .  Re-
gardless, the contravariant index of PL  always corresponds to the direction 
of atomic motion, i.e., the Burgers vector or the slip direction.  Kinematic 
relationship (3.100) is considered again in Section 3.2.6 dealing with con-
tinuum crystal plasticity theory.  Consideration of kinematics of mechani-
cal twinning resulting from the collective motion of partial dislocations 
and atomic shuffling (Christian and Mahajan 1995; Zanzotto 1996; Clay-
ton 2009a, 2010c) is deferred until Chapter 8. 
 

 
Fig. 3.8 Plastic shear resulting from a single edge dislocation 

 
Slip rate equation i i i ib vγ ρ= �� � �  in (3.100) can be derived intuitively as 

follows.  First consider the glide of a single edge dislocation with Burgers 
vector of magnitude �b , as shown in Fig. 3.8, where the volume of the 
element of crystal prior to plastic deformation is 1 2 3dV dX dX dX= .  The 
velocity of the dislocation line is = δ��v , where δ  is the distance the dislo-
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cation moves during the course of plastic deformation.  The plastic shear 
experienced by the volume element is  

 3 1 3γ ∆ δ
= =

�b
dX dX dX

. (3.101) 

When n parallel edge dislocations of the same configuration shown in Fig. 
3.8 are superposed, the plastic shear becomes 

             03 1 3 1 3
1 1

γ ρ ρ
= =

∆ δ
= = = δ = δ = δ∑ ∑

� � � ��
m mn n

m m

b n b b b
dX dX dX dX dX

, (3.102) 

where δ  is an average distance moved by the dislocations, 1
0ρ ρ−=� PJ  is 

the scalar mobile dislocation density, and 1=PJ .  Since �b  is a constant, 
time differentiation of (3.102) leads to 
 γ ρ ρ δ= +� � �� � ��bv b . (3.103) 
Typically the second term on the right side, which can be attributed to dis-
location generation or annihilation, is not treated explicitly.  However, in 
some constitutive models for plasticity (see e.g., Zerilli and Armstrong 
(1987)) the contribution of dislocation generation to the total inelastic 
strain rate is considered substantial.  When the second term on the right of 
(3.103) is omitted, Orowan’s slip rate equation written in the second of 
(3.100) is recovered for the case of a single set of parallel edge disloca-
tions.   

Relation (3.103) was modified to account for the motion of disclina-
tions, or rotational dislocations, by Li and Gilman (1970): 
 R vγ κη ω=� � � � , (3.104) 
where κ  is a scalar geometry factor, η�  is the line density of mobile dis-
clination loops per unit reference or intermediate volume of the material, 
ω�  is the magnitude of the Frank vector representing the strength of the 
disclination, R is an effective scalar disclination radius, and �v  is again the 
mean line velocity of the defects.  Das et al. (1973) and Kossecka and De 
Wit (1977) considered kinematics of mobile disclinations in the setting of 
geometric linearity.  Disclinations are further examined in the context of 
geometric theories of continuous defect distributions in Section 3.3.3, and 
elastic solutions for disclination lines and loops are given in Appendix C. 

Returning now to the plastic velocity gradient resulting only from the 
dislocation flux, (3.98) can be written as (Werne and Kelly 1978) 

 
1

j
i i

i
+

=

⎛ ⎞
= ⊗⎜ ⎟
⎝ ⎠
∑P

TL α v :ε� � , (3.105) 

with summation applied over j populations of straight dislocation lines, 
each with velocity vector j

+v� .  The total dislocation density tensor Tα�
i  is  
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 ( )ρ ρ+ − += + ⊗Tα b ξ��� � �i i i i i ,  (3.106) 

with ρ+�
i  and ρ−�

i  the densities (line length per unit volume in B� ) of posi-
tively and negatively signed dislocations, where, for each value of i, posi-
tive and negative dislocations share the same tangent ξ� i  but oppositely 
oriented Burgers vectors + −= −b b� �i i  and velocities + −= −v v� �i i .  Using 
(3.104), Clayton et al. (2006) generalized (3.105) to account for contribu-
tions of total densities of mobile dislocation and disclination lines to the 
plastic velocity gradient. 

Deformations of primitive Bravais lattice vectors and basis vectors of 
crystal structures are now considered in the context of decomposition 
(3.31) and (3.26).  Let a volume element of crystalline material of suffi-
cient size as discussed in Section 3.2.2 deform via = L PF F F , where the 
plastic deformation from dislocation flux PF  results from time integration 
of (3.98)-(3.99) or (3.100).  Let a� i  denote primitive Bravais lattice vectors 
of (3.1) mapped to �B : 
 α α=� A

i .A ia g A , ( 1,2,3)i = . (3.107) 
Basis vectors in (3.3) likewise map only via the shifter 

 ( )
3

0
.

1

i A
k A i

i

R m g A
α α

=

=∑� , ( 0 1im≤ < ). (3.108) 

Relations (3.107) and (3.108) imply that primitive lattice vectors and the 
basis vectors of the crystal structure are not affected by PF , in accordance 
with continuous dislocation theory (Bilby et al. 1957; Kroner 1960).  
However, primitive Bravais lattice vectors deform from configuration �B  
to configuration B  according to 
 = La F a�i i , α α

α α= =�a La La A
i . i . .A ia F a F g A , (3.109) 

and correspondingly, in the absence of inner displacements 0( )a
kq  and ∆ im  

of the sort described in (3.19) and (3.20), deformed basis vectors satisfy 

 ( ) ( )
3

0 0
. . . .

1

a ALa La i A
k A k A i

i

r F g R F m g Aα α
α α

=

= = ∑ . (3.110) 

However, because of plastic deformation, (3.26) cannot be used to specify 
absolute spatial coordinates of (the nucleus of) a particular atom occupying 
a point on the Bravais lattice with reference position ( )R l .  This is because 
atoms are translated in space by moving dislocations, even though primi-
tive Bravais lattice vectors and basis vectors remain fixed in magnitude 
and direction while the material undergoes plastic flow.   

Reference Bravais lattice vectors Ai  are uniform in a perfect homoge-
neous lattice.  However, when defects are contained within the volume, the 
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deformed primitive lattice vectors ai  represent suitable averages (Naghdi 
and Srinivasa 1993) of local primitive lattice vectors i′a  that may not be 
spatially constant within the deformed element of material: 
 1

i i
V

V dV− ′= ∫a a .        (3.111) 

The lattice deformation and lattice strain tensors in (3.65) thus provide 
first-order deformed lengths of primitive Bravais lattice vectors and basis 
vectors of the crystal structure: 

                    
1/ 2

. ., A L B
i i i i i A B iA g C g Aα β

αβ⎡ ⎤= = = ⎣ ⎦
L La F a a C a� �� � � ,  (3.112) 

                       ( )
1/ 23 3

0
. .

1 1

i A L i B
k A i B i

i i

m g A C m g Aα β
αβ

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑r � , (3.113) 

          . . . .( ) 2 .A L B L A B
i i i i A i i B A i i Bg A C g A g E g A A gα β α β

αβ αβ αβ− = − =a a A A � ��i i  (3.114) 

From (3.112)-(3.114), it is evident that LC�  and LE�  provide a first-order 
accurate measure of the stretch of the interatomic bond vectors in a crystal 
structure. 

3.2.6 Crystal Plasticity 

In what is referred to in this book as crystal plasticity theory, plastic de-
formation of single crystals is represented by slip on a finite number of 
glide planes, but lengths and directions of individual dislocation lines are 
not resolved explicitly.  Early studies, in this context, of potentially finite 
distortions of cubic metallic crystals were conducted by Taylor and co-
workers in the first half of the 20th century (Taylor and Elam 1923; Taylor 
1927; Taylor 1938).  A detailed account of these studies is given by Hav-
ner (1992).  More modern treatments of finite deformation crystal plastic-
ity that follow a notational scheme similar to that used here include those 
of Rice (1971), Hill and Rice (1972), Teodosiu and Sidoroff (1976), Peirce 
et al. (1982), and Asaro (1983).   
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Fig. 3.9 Crystal plasticity kinematics 

 
Fundamental variables entering the kinematic description of crystal 

plasticity theory are shown in Fig. 3.9.  Multiplicative decomposition 
(3.31) applies, with the same general premise of Fig. 3.5 implied: plastic 
deformation resulting from dislocation glide is lattice-preserving (Bilby et 
al. 1957).  Slip director unit vectors 0 0( )i

XX T B∈s  give the direction of dis-
location motion on glide planes with unit normal covectors *

0 0( )i
XX T B∈m .  

Index i refers to a slip system comprised of 0
is  and 0

im  for a particular 
value of i, where 1,2,...i n= , with n the total number of slip systems.  
Upon designation of a coordinate system, numerical values of 0

is  and 0
im  

can be assigned for particular crystal structures; for example, slip systems 
for cubic and hexagonal structures are listed in Table 3.4 and illustrated in 
Fig. 3.7.  In FCC metals, slip systems are usually of type 110 {111}, in 
which case 12n =  if positive and negative slip are both allowed on a sin-
gle system8.  By definition, 0

is  and 0
im  are orthonormal for each value of i:  

 0 0 0 0, 0i i i A i
As m= =s m . (3.115) 

From Fig. 3.9, since PF  is lattice-preserving, slip vectors and slip plane 
covectors have parallel representations in intermediate configuration B� : 
 . 0

i i A
As g s=� α α , . . 0

i A i
Am g m=� α α ; (3.116) 

 . 0 . 0 0 . 0, 0i i i i i A B i i A B i
A B A Bs m g s g m s m= = = =s m� � α α

α α δ . (3.117) 

                                                      
8 If on the other hand positive and negative slip are described by mathemati-

cally distinct slip systems, n = 24 in FCC crystals. 
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However, these quantities are pushed forward to the current configuration 
via the lattice deformation gradient: 
 ( , )i i

xx t T B= ∈Ls F s� , * 1 *( , )i i i
xx t T B− −= = ∈L Lm F m m F� � . (3.118) 

The transformation law for a slip direction is analogous to that of a primi-
tive Bravais lattice vector in (3.109), and the transformation law for a slip 
plane normal is analogous to that of a reciprocal Bravais lattice vector in 
(3.22) with F replaced by the lattice deformation.  For a particular slip sys-
tem i, is  and im  are orthogonal: 
 1

. . ., 0i i La i L i i i
aF s F m s m−= = =s m � � � �α β α β

α β α βδ . (3.119) 

However, neither is  nor im  is necessarily of unit length. 
Scalar slip rates or shearing rates iγ�  are introduced on each system so 

that the plastic velocity gradient entering (3.58) is written as in (3.100): 
 i i i

i
= ⊗∑PL s m� � �γ , (3.120) 

though Orowan’s relation in (3.100) need not be formally enforced.  Scalar 
iγ�  need not be a material time derivative of the cumulative slip on a par-

ticular glide system i.  From (3.117), plastic deformation is isochoric:  
 . , 0P P P P i i i

i

J J L J= = =∑ s m� � � �α
α γ , (3.121) 

in agreement with the microscopic observation that dislocation glide is 
volume-conservative.  From (3.118) and (3.120), the contribution from slip 
to the spatial velocity gradient of (3.58) is simply 
 1 i i i

i

− = ⊗∑L P LF L F s m�γ , (3.122) 

and plastic spin PW  and plastic deformation rate PD  tensors are com-
puted in covariant form as  
 2 ( ) ( )i i i i i

i

⎡ ⎤= ⊗ − ⊗⎣ ⎦∑PW gs m m gs� � � � � � �γ , (3.123) 

 2 ( ) ( )i i i i i

i

⎡ ⎤= ⊗ + ⊗⎣ ⎦∑PD gs m m gs� � � � � � �γ . (3.124) 

In the geometrically linear theory, stretch and rotation of the slip vectors 
are typically omitted, i.e., is  and im  are assumed of constant (unit) length 
and orthonormal for all 0t ≥ .  In such a linear theory, using g to denote 
the metric tensor of the coordinate system, time rates of plastic distortion, 
rotation, and strain (refer to (3.81)-(3.83)) are computed, respectively, as  
 i i i

i
γ= ⊗∑Pβ s m� � , (3.125) 

 2 ( ) ( )i i i i i

i

⎡ ⎤= ⊗ − ⊗⎣ ⎦∑PΩ gs m m gs� �γ , (3.126) 
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 2 ( ) ( )i i i i i

i

⎡ ⎤= ⊗ + ⊗⎣ ⎦∑Pε gs m m gs�� γ . (3.127) 

3.2.7 Macroscopic Plasticity 

In what is labeled in this book as macroscopic plasticity, a volume element 
of material undergoing inelastic deformation is assumed to contain a large 
number of single crystals or grains.  Deformation map PF  thus depicts the 
net contribution of local plastic responses of individual grains to that of the 
aggregate.  In this representation of macroscopic plasticity, evolution of 
plastic deformation is prescribed without explicit consideration of individ-
ual grains and hence, without explicit consideration of individual glide sys-
tems or discrete defects corresponding to those systems. 

Macroscopic plasticity is distinguishable from what is termed typically 
as polycrystal plasticity.  In polycrystal plasticity, various averaging or 
homogenization schemes are used to construct the response of the aggre-
gate from that of its constituent single crystals (Taylor 1938; Bishop and 
Hill 1951; Kocks 1970).   

Consider the polar decompositions entering (3.33).  Often the following 
requirements are stipulated for individual terms entering this kinematic de-
scription, in the context of macroscopic plasticity: plastic deformation PF  
is lattice-preserving (i) and hence is volume-preserving (ii).  Some meas-
ure of applied stress is work conjugate to LV  (iii), such that a relaxed in-
termediate configuration B�  can be achieved via local unloading of the 
volume element by 1−LV  (iv).  This unloading scenario (iv) is in agreement 
with lattice preservation requirement (i), since mechanical stresses are as-
sociated with stretch of the interatomic bond vectors (primitive Bravais lat-
tice vectors and basis vectors) at the atomistic level, as discussed at the end 
of Section 3.2.5.  Requirement (ii) that 1PJ =  is in agreement with the mi-
croscopic observation that dislocation glide is a conservative motion.   

Regarding the first equality of (3.33), if total deformation F is applied, 
and if symmetric plastic stretch PU  is known from a constitutive or kinetic 
relation, then since 1− =P L L PFU V R R , it follows that LR  and PR  are not 
known uniquely (Bammann and Johnson 1987), but their product L PR R  
is.  In such circumstances, elastically unloaded intermediate configuration 
B�  is non-unique up to a rotation.  Uniqueness of B�  can only be ensured 
by prescription of skew rotation rate TP PR R�  for all 0t ≥  or plastic spin 

PW  of (3.62), in addition to the symmetric plastic deformation rate PD  of 
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(3.63)9.  However, in implementations of macroscopic plasticity wherein 
the stress-strain response of the material of interest is isotropic, plastic spin 
is often not prescribed explicitly since the stress state can be deduced from 
knowledge of elastic and plastic stretch tensors and/or their time deriva-
tives.  This is in contrast to single crystal plasticity, wherein the plastic 
spin is prescribed explicitly by (3.123) and the intermediate configuration 
B�  is always defined uniquely.  In particular, the choice of orientation of 
intermediate configuration and corresponding plastic rotation is usually 
thought unimportant for isotropic polycrystals, e.g., large numbers of ran-
domly oriented grains whose individual anisotropies have no net effect on 
the mechanical response of the polycrystal.  Kratochvil (1971) and Mandel 
(1973) suggested the intermediate configuration be associated with the 
substructure or a representative lattice in the polycrystalline material; 
Mandel (1973) labeled one such relaxed intermediate configuration an iso-
clinic space.  Proper choices of constitutive functions or kinetic relation-
ships for the plastic spin have been addressed by a number of researchers 
(Bammann and Aifantis 1987; Dafalias 1998; Scheidler and Wright 2003). 

3.2.8 Inelastic Volumetric Deformation 

While dislocation glide is volume-preserving, in general the contribution 
of other kinds of lattice defects to the deformation gradient need not be.  
Consider a volume element of solid material containing a uniformly dis-
tributed collection of spherical defects, which could include isotropic point 
defects of local dimensions on the order of the lattice spacing: vacancies, 
interstitial atoms, or substitutional atoms.  At a coarser scale of resolution, 
spherical defects could also include voids, defined as holes in the material 
of volume much greater than the atomic volume, or inclusions, defined as 
embedded inhomogeneities of dimensions much greater than the atomic 
volume.  These defects can induce an isotropic, i.e. spherical or purely 
volumetric, deformation in the crystal, as modeled in what follows, though 
in general the deformation resulting from point defects, voids, or inclu-
sions of arbitrary shape will be anisotropic. 

Finite deformation kinematics of crystalline solids with point defects 
was modeled by Teodosiu and Sidoroff (1976) and Kroner (1990), while 
large deformation kinematics of void growth in metallic crystals was ad-

                                                      
9 Alternatively, one could prescribe a separate constitutive equation for skew 

lattice spin tensors  TL LR R�  or LW  in order to specify a unique intermediate con-
figuration, but this approach seems rarely used since LR  is usually presumed to 
include rigid body rotations of the entire solid. 
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dressed by Bammann and Aifantis (1989).  Nunziato and Cowin (1979) 
formulated a geometrically nonlinear model of elastic solids with voids in-
corporating a multiplicative decomposition of the mass density.  In solids 
of geologic origin such as many crystalline rocks, pore compaction (i.e., 
void shrinkage and collapse accompanying pressure loading) and dilatancy 
(i.e., inelastic volumetric expansion accompanying shear loading) are fre-
quently observed (Brace et al. 1966; Rudnicki and Rice 1976; Goodman 
1989).  The pore compaction mechanism occurring in crushable brittle sol-
ids has been modeled with finite multiplicative kinematics (Clayton 2008).   

Unlike lattice-preserving dislocation glide, the deformation induced by 
volumetric mechanisms generally does affect the lattice spacing in the 
(poly)crystal and hence is embedded in lattice deformation gradient LF : 
 =L E VF F F , (3.128) 
where =E E EF V R  is the elastic deformation associated with mechanical 
loading introduced in (3.27) and ( , )X tVF  accounts for volume changes 
from the reference configuration that remain in an element of the solid af-
ter mechanical loads are removed.  Stresses applied to the volume element 
are associated with the stretch EV , so that unloading by 1−EV  maps the 
element to a new stress-free intermediate configuration B .  Proper or-
thogonal tensor ER  includes rigid body rotation of the entire body.  De-
formation VF  is not reversed when mechanical loads are removed from 
the volume element, e.g., when traction on the surface of the element is re-
laxed.  

The contribution of defects to mechanically irreversible volume changes 
of the solid may be written as (Bammann and Aifantis 1989; Clayton et al. 
2005; Clayton 2009b)  
 .

α β
β αδυ= ⊗VF g g , (3.129) 

with the scalar ( , )X tυ  given by 
 1/ 3(1 )φυ −= − , (3.130) 
where ( , )X tφ  will be defined shortly.  Requiring 0 υ< < ∞  leads to the 
limits 1φ−∞ < < .  Consider differential volume elements dV B⊂� �  and 
dV B⊂ , where the generally anholonomic tangent map :TB TB→VF � .  
The relationship between volume elements is  

 det 1   det
det 1

VdV J dV dV dV
φ

= = =
−

Vg F
g

� � �
�

, (3.131) 



114      3 Kinematics of Crystalline Solids 

upon assuming coincident coordinate systems and equivalent metric ten-
sors g�  and g  in B�  and B , respectively, as implied by . .gα α

β βδ=  in 

(3.129).  Thus the scalar φ  is defined by 

 dV dV
dV

φ −
=

�
. (3.132) 

When defects are introduced into a volume element of fixed mass within 
the body, φ  is interpreted as a fraction of defects in the intermediate con-
figuration B , per unit intermediate configuration volume: 
 ( )dV dV dV dV dV dV dVφ αξ αξ= − = + − =� � � , (3.133) 
where ( , )X tξ  and ( , )X tα  are the number of defects per unit volume and 
the volume change induced by each defect, respectively, contained within 
dV .  When volume increases as a result of defects, for example from nu-
cleation and growth of voids, then 0>α .  This condition is not required, 
however.  For example, for an isotropic distribution of interstitial atoms, 
there could result a net decrease in volume due to VF , since the volume 
occupied per atom can decrease with increasing number density of intersti-
tial atoms if the mass of the volume element is held fixed.  Volume could 
also decrease if voids present in the reference configuration are compacted 
irreversibly as a result of applied pressure.  In such cases 0<α .  Thus by 
(3.133), defects decrease the mass density of the solid when 0>α , while 
defects increase the mass density when 0<α .   

A different interpretation of deformation induced by vacancies or inter-
stitials is possible if the mass of the volume element is not required to re-
main constant when such defects are introduced (Kroner 1990; Clayton et 
al. 2005).  In such instances, introduction of a vacancy by removal of an 
atom from the crystal structure will typically cause contraction of the re-
maining atoms towards the defect as a result of attractive interatomic 
forces among atoms surrounding the vacancy, and the introduction of an 
interstitial atom into an otherwise perfect crystal will typically engender 
expansion of the remaining atoms away from the defect as a result of re-
pulsive interatomic forces between the interstitial atom and its neighbors. 
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Fig. 3.10 Kinematics of crystal element of fixed mass containing vacancies 

 
Models of discrete point defects based on continuum linear elasticity are 

described in Section C.3 of Appendix C.  A general expression for the total 
volume change per vacancy defect, when modeled as a rigid sphere in an 
isotropic elastic medium, is   
 0 (1 ) vα = Ω + + Γ ∆ , (vacancy), (3.134) 
where 0 0Ω >  is the atomic volume introduced in Section 3.1.1, 0v∆ ≤  is 
the relaxation volume introduced in (C.188) or (C.195), and ( , )X tΓ  is a 
scalar correction factor, ordinarily satisfying | | 1Γ < , accounting for elastic 
nonlinearity (Eshelby 1954; Holder and Granato 1969) formally derived 
later in Section 7.4 of Chapter 7.  Often for vacancies, 00.1 / 0v− ≤ ∆ Ω ≤  
(Hull and Bacon 1984), though in materials with strong interatomic forces 

0<α  is possible, leading to a net increase in mass density (Garikipati et 
al. 2006).  For insertion of an interstitial atom of the same species as the 
surrounding medium, (3.134) is replaced with 
 0 (1 ) vα = −Ω + + Γ ∆ , (interstitial), (3.135) 
where typically 00.1 / 1.0v≤ ∆ Ω ≤  (Hull and Bacon 1984).  Decomposition 
(3.128) is illustrated in Fig. 3.10 for a cubic crystal with vacancies.  Dark 
circles represent atoms and open circles represent vacancies.  Mass is con-
served since the volume element in each configuration contains the same 
number of atoms.  Atoms neighboring each vacancy exhibit attraction to-
wards the defect, leading to negative relaxation 0v∆ <  in (3.134).  For a 
substitutional atom, the net volume change is simply (1 ) vα = + Γ ∆ , with 

v∆  positive in algebraic sign when the volume of the substitutional atom 
exceeds the atomic volume of the atom it replaces and negative when the 
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volume of the substitutional atom is less than that of the atom it replaces.  
Insertion of a substitutional atom almost always involves a mass change. 

The preceding discussion applies primarily towards monatomic struc-
tures.  In polyatomic crystals, distinct volumes are associated with defects 
(e.g., missing or extra atoms) of each species.  In ionic crystals, defects of-
ten carry an electric charge that can significantly affect the imparted vol-
ume change (Mott and Littleton 1938; Sprackling 1976).  For example, it 
is possible that a charged vacancy can induce local expansion ( 0v∆ > ) as 
a result of repulsive Coulomb interactions among surrounding ions. 

Vacancies can arise in several ways that involve multiple atoms (Mott 
and Gurney 1948).  Consider a simple monatomic lattice.  A Frenkel de-
fect consists of an interstitial atom together with a vacant lattice site, with 
these two individual defects spaced far enough apart so that their interac-
tion is negligible.  A Schottky defect consists of a vacancy and correspond-
ing missing atom placed at a normal lattice site on a free surface of the 
crystal.  The total volume of a crystal with Schottky defects will be greater 
than that of a perfect crystal with the same number of atoms provided that 
contraction of neighboring atoms towards each vacancy is not too large.  

From (3.129) and (3.130), the contribution to the time rate of deforma-
tion from inelastic volumetric deformation is also spherical: 

 1

3(1 )
φ
φ

− =
−

V VF F 1
�

� , 1
. . .3(1 )
V VF Fα χ α
χ β β

φ δ
φ

− =
−

�
� . (3.136) 

Since VF  is generally incompatible, conditions .[ , ] 0≠α
β χδ φ  may apply. 

3.2.9 Residual Deformation and a Multiscale Description 

As introduced in (3.26) and (3.31), lattice deformation LF  accounts for all 
mechanisms that affect the primitive Bravais lattice vectors. When applied 
to an element of finite volume of a single crystalline or polycrystalline 
solid, deformation of the lattice may consist of contributions from multiple 
sources.  Following Kratochvil (1972) and Clayton and McDowell 
(2003a), (3.31) may be expanded as a sequence of three terms:  
 = E I PF F F F , = =L E I E E IF F F V R F , (3.137) 
where intermediate deformation map ( , )X tIF  accounts in some way for 
residual lattice deformation, distinct from the recoverable elastic stretch 

EV  associated with mechanical loading, and also distinct from the average 
rigid body rotation of the element embedded within elastic rotation ER .  
Mapping IF  is attributed to deformation induced by defects or micro-
scopic heterogeneities within the element of crystal distinct from lattice-



3.2 Multiplicative Inelasticity      117 

preserving plastic flow associated with PF .  These defects may include de-
formation twins, dislocation substructures and subgrain boundaries, and 
point defect or void distributions of the sort described already by (3.128) 
and (3.129).  Thermal deformation can be distinguished from mechanical 
elastic deformation via a similar decomposition, as discussed in Section 
3.1.3.  Even a single dislocation, in isolation, will contribute to the local 
positions of atoms, as indicated in Fig. 3.11, which depicts the physics be-
hind (3.137) in the context of a simple cubic lattice.   

 

 
Fig. 3.11 Volume element of cubic crystal containing a single edge dislocation 

 
In Fig. 3.11, traction applied to the volume in B is denoted by vector 

( , )x tt , formally defined later in (4.2) of Chapter 4.  The displacement dis-
continuity in the wake of the dislocation is sealed by residual lattice de-
formation IF .  Prior to the application of IF , for the body labeled B� , 
elastic strain fields are absent, and plastic deformation PF  is associated 
with relative rigid motion of the two halves of the lattice on opposite sides 
of the slip plane (dotted line).  Note also that B�  is anholonomic in the vi-
cinity of the slip plane: lattice vectors are discontinuous across this plane.  
The element in this configuration contains displacement (slip) discontinui-
ties but no lattice strains, and is considered free of internal residual stress 
fields.  This is in contrast to B , which may contain residual stress and 
strain fields but includes no discontinuities in displacements or displace-
ment gradients except for those in the immediate vicinity of the individual 
defect line (i.e., the dislocation core) contained within the volume. 

Though not necessary, some authors make the additional assumption 
that EF , but not LF , be integrable at some scale of observation, or physi-
cally that its stretch be associated with external loads applied to solid body 
at that scale (Bilby and Smith 1956).  Similar ideas have been forwarded in 
more recent strain gradient plasticity formulations (Bammann 2001; 
Regueiro et al. 2002).  In that case, the contribution to the anholonomicity 
of 1( , )x t−LF  arises strictly from skew gradients of 1( , )x t−IF  (Clayton et al. 
2004b): 
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since [ ]
1
. , 0E

a bF β− =  are compatibility conditions for 1−EF .  Other authors 

have suggested that IF  be limited to a rotation T−=I IR R , for example ac-
counting for irreversible rotations of Bravais lattice vectors attributed to 
disclination defects (Lardner 1973, 1974; Pecherski 1983, 1985), as dis-
cussed in greater depth in Section 3.3.3. 

An explicit expression for IF  can be derived in terms of volume aver-
ages—over an element of crystalline material of finite size—of micro-
scopic residual lattice and plastic deformations, following multiscale 
analysis (Clayton and McDowell 2003a; Clayton et al. 2004b).  In such a 
multiscale interpretation of (3.137), continuous elastic and plastic defor-
mation mappings describe the motion of the material at two length scales: 
a larger scale corresponding to the average or coarse-grained behavior of 
the volume element, and a smaller scale corresponding to sub-volumes 
within this larger volume element.  

Continuum elements serving as domains for volume integration are 
shown in Fig. 3.12.  Symbols andV , V ,  v  describe respective crystalline 
volume elements in reference, unloaded intermediate, and current configu-
rations.  The lineal size of V is denoted by l, the latter presumed to far ex-
ceed the lattice parameters.  However, the upper bound of l is left unspeci-
fied, such that V may encompass a region within a single crystal or 
numerous grains within a polycrystal.  Corresponding reference, interme-
diate, and current configurations of the element are labeled 0B , B , and B , 
respectively.  All of these configurations are described in more detail later 
in the text.  Local, scalar differential volume elements within reference, in-
termediate, and current configurations are labeled dV , dV , and dv , re-
spectively.  These so-called differential elements are required to be smaller 
than their associated volume elements and should consist of no more than 
one grain of a polycrystalline aggregate, but should still be of dimensions 
larger than the atomic spacing in a perfect crystal.    
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Fig. 3.12 Configurations, local volumes, and coordinate systems in reference con-

figuration 0B , intermediate configuration B , and current configuration B  
 
The motion of material points within element V from reference to cur-

rent configurations is written ( )a ax X ,tϕ= , where 0: B Bϕ →  is continu-
ously differentiable within V .  Local intermediate configuration coordi-
nates ( )x x X ,tα α=  are also assumed to be continuously differentiable 
within V .  Additional remarks on availability of continuously differenti-
able coordinates xα  follow later.  In what follows, basis vectors, basis 
covectors, and metric tensors are restricted to be constant, but not neces-
sarily Cartesian, within each element in each configuration, such that co-
variant and partial differentiation are equivalent operations.  However, 
these objects are permitted to vary smoothly across neighboring macro-
scopic volume elements V , V , and v  if curvilinear coordinates are useful 
at the macroscale, and also from configuration to configuration.   

Configurations shown in Fig. 3.12 are now defined precisely.  The ref-
erential volume V  consists of the crystal structure as it existed prior to ap-
plication of external forces, i.e., at initial time 0t = , such that it is free of 
traction along its external boundary S .  It may or may not contain disloca-
tions, internal residual elastic strains, or residual plastic deformation.  The 
current configuration volume element, v , is the elastically and plastically 
deformed single crystal or polycrystal, supporting possibly non-vanishing 
traction vector t on its external boundary s . The local or nested micro-
scopic deformation gradient f for material points with coordinates AX  
within volume element V is defined as the tangent mapping 

 
a

A
X aAT

X
ϕϕ ∂

= = ⊗
∂

f g G . (3.139) 

The volume averaged deformation gradient F for the macroscopic element 
of volume V is then defined by the motion of its external boundary, 
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equivalent to the volume averaged local deformation gradient upon use of 
Gauss’s theorem as in (2.194)-(2.196), with a slight change in notation: 
 1 1 1

. ., .
a a a a
A A A A

S V V

F V x N dS V x dV V f dV− − −= = =∫ ∫ ∫ . (3.140) 

In (3.140), AN dS  is an oriented differential surface element of S , with N  
an outward unit covector normal to the surface, as shown in Fig. 3.12.   

An elastic stretch tensor EV  is associated with the traction or stress ap-
plied to s .  A new intermediate configuration B̂  is reached upon hypo-
thetical instantaneous unloading via the inverse of the elastic stretch 1−EV , 
corresponding to null traction conditions on the external boundary of the 
element V̂  (i.e., the traction 0ˆ =t  along ŝ ), as shown in Fig. 3.13.  The 
left elastic stretch tensor EV  is determined explicitly from 

 
1

S S

ˆdS dS
−

⎛ ⎞⎛ ⎞
= ⊗ ⊗⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∫ ∫EV x N x N , (3.141) 

where x̂  are local coordinates of the external boundary of the element in 
configuration B̂ .  Thus, configuration B̂  arises from instantaneous re-
moval of traction along the boundary of V̂ , constrained in such a way that 
global rotation of the volume element, 1−ER , does not occur upon stress re-
laxation.  Furthermore, during unloading by 1−EV , plastic rearrangements 
of the solid are idealized as rate independent and inertial effects are ex-
cluded. 

Elastic rotation tensor ER  is determined from solution of the following 
integro-differential equation arising purely from local lattice rotations 
along with the following initial conditions: 
 1 1 1

V

V dV− − −= ∫E E E ER R r r� � , 
0 0t t= =
= =E ER r 1 . (3.142) 

Denoted by Er  is the local elastic and rigid body rotation exhibited by mi-
croscopic element of volume dV  as it is deformed to its current represen-
tation dv .  Note that 1T −=E ER R  and 1T −=E Er r , since the anti-symmetric 
property of the spin is preserved by volume averaging. 
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Fig. 3.13 Configurations of macroscopic material element in context of multiscale 

three-term decomposition of macroscopic deformation gradient 
 
Intermediate configuration B̂  is achieved by the net unloading proce-

dure 1 1T− −=E E EF R V , i.e., unloading of the macroscopic element in the 
current configuration by removal of external forces then and subsequent 
rotation by the inverse (equivalently, the transpose) of the elastic rotation.  
After this unloading procedure, local coordinates xα  describe positions of 
material particles within volume element V .  The microscopic residual de-
formation gradient f  is the tangent mapping 

 A
X AT

X

α

α
ϕϕ ∂

= = ⊗
∂

f g G , (3.143) 

with 0( ): x X ,t B Bα αϕ= →  the local motion for differential volume ele-
ments between reference and intermediate configurations.  The volume av-
eraged residual deformation F  for the macroscopic crystal element is de-
duced from intermediate configuration coordinates of its external 
boundary.  This definition of F  is equivalent to the volume-averaged re-
sidual local deformation gradient upon invocation of Gauss’s theorem, 
analogously to (3.140): 
 1 1 1

. ., .A A A A
S V V

F V x N dS V x dV V f dVα α α α− − −= = =∫ ∫ ∫ . (3.144) 

Two additional assumptions, following kinematics of single crystalline 
elastoplasticity in Section 3.2.6, are made on a pointwise basis, for each 
differential volume element (Bilby et al. 1957): 
 = E Pf f f , = E Pf f f . (3.145) 
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Denoted by =E E Ef v r  is the total lattice stretch ( Ev ) and rotation ( Er ) for 
a differential volume element deformed to the current configuration, and 

Pf  is the remaining plastic deformation attributed to the history of motion 
of dislocations within or traversing that local element.  Local elastic rota-
tion Er  was first introduced in (3.142).  In the second equality listed in 
(3.145), Ef  embodies residual elastic stretch and rotation for a sub-volume 
dV  contained within externally unloaded volume V , and Pf  is the resid-
ual plastic deformation arising from dislocation motion.  Microscopic vol-
umes dV V⊂ , dV V⊂ , and dv v⊂  are shown in Fig. 3.14, each visually 
enlarged relative to its surrounding macroscopic volume element for clar-
ity.  Local deformations of (3.145) then are interpreted as mappings be-
tween tangent spaces of local configurations associated with each micro-
scopic element.  Of the six tangent mappings entering (3.145), only 

 and f f  are necessarily compatible deformation gradient fields, as is clear 
from the integrands in (3.140) and (3.144).  Furthermore, these six map-
pings are each regarded as constant (e.g., spatial averages) over their cor-
responding microscopic or differential volumes.  Volumes whose bound-
ary coordinates are generally anholonomic are denoted by dashed curves in 
Fig. 3.14, while holonomic coordinates are presumed available over exter-
nal boundaries of elements depicted by solid curves in Fig. 3.14. 

Macroscopic plastic deformation PF  emerges in the present multiscale 
context from the following integro-differential equation written in terms of 
the volume averaged local plastic velocity gradient (Clayton et al. 2004b): 
 1 1 1

V

V dV− − −= ∫P P P PF F f f�� , 0 0t t= == =P PF f 1 . (3.146) 

Initial conditions in (3.146) presume that plastic deformation vanishes at 
the initial time.  Notice that if the local plastic flow is isochoric such that 

1 0P P- A
.A .f fα

α =� , then the volume averaged plastic flow of (3.146) is volume-
conserving as well, since 1 0P P P P- A

.A .J J F Fα
α= =� �  then follows automati-

cally from (3.146).  In an earlier work (Clayton and McDowell 2003a), al-
ternative definition 1V dV−= ∫P PF f  was suggested; however, according to 

that definition, PF  is isochoric only to first order in terms of local plastic 
distortions if Pf  is isochoric but heterogeneous because volume averaging 
and the determinant operation do not generally commute. 
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Fig. 3.14 Volumes, tangent maps, and configurations at two length scales 
 
Upon assuming a three-term multiplicative decomposition along the 

lines of (3.137) for total macroscopic deformation gradient F: 
 = =E I P EF F F F F F , (3.147) 
net residual deformation gradient F  enters the decomposition in accor-
dance with (3.140), (3.141), and (3.144).  Combining (3.144), (3.145), and 
(3.147) then leads to a representation of IF  (Clayton and McDowell 
2003a; Clayton et al. 2004b): 

 1 1 1

V

V dV− − −⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∫I P E P PF FF f f F . (3.148) 

Deformation map IF  can be interpreted as an indicator of residual elastic-
ity in configuration B , along with corresponding residual stresses and 
stored elastic strain energy in the solid (Clayton et al. 2004b).  Two-point 
deformation tensor IF  defined according to (3.148) contains both residual 
elastic ( Ef ) and plastic ( Pf , 1−PF ) contributions.   

It is clear from (3.148) that →IF 1  as →Ef 1  and →P Pf F , as would 
be the case for homogeneous deformation of the entire macroscopic 
(poly)crystalline element, such that external unloading by 1−EV  relieves all 
local internal stresses and plastic rearrangements do not occur upon instan-
taneous unloading.  On the other hand, if elastic and plastic deformation 
fields are heterogeneous throughout the macroscopic volume element, IF  
and commensurate residual stresses may not vanish.  This is the usual cir-
cumstance when V encompasses a polycrystalline sample whose grains are 
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misoriented by a non-negligible amount (Clayton and McDowell 2003a).  
Such heterogeneity may arise within single crystals when cellular or lami-
nar dislocation substructures misoriented from one other by finite lattice 
rotations, embodied here by the orthogonal part Er  of Ef , evolve and re-
fine for example in FCC metals (Hughes et al. 1997; Kuhlmann-Wilsdorf 
1999; Ortiz and Repetto 1999; Ortiz et al. 2000) and BCC metals (Valiev 
et al. 2002) deformed to very large strains.  Thus, when volume element V 
encompasses an entire single crystal, IF  can represent the contribution of 
grain subdivision processes to the total deformation gradient F, as pro-
posed by Butler and McDowell (1998).  Additionally, if heterogeneity of 
local deformation and stresses (e.g., increased slip system activity and 
stress concentrations) are intensified in the vicinity of misoriented grain 
and subgrain boundaries—see for example experimental and numerical re-
sults for polycrystalline copper subjected to finite strains (Clayton et al. 
2002; Clayton and McDowell 2003a)—then the largest contributions to IF  
would presumably emerge from these regions.   

Deformation tensor IF  represents, in an average sense, the incompati-
bility of local microelastic deformation 1−Ef  within an element of refer-
ence volume V.  If local elastic unloading 1−Ef  is uniform and hence inte-
grable throughout spatial volume v , then =E Ef F , =Ef 1 , and if 
plasticity is locally homogeneous so that = = = =P P PF f f f F , then 

=IF 1  (refer to Fig. 3.14).  However, IF  reveals nothing about the com-
patibility, or lack thereof, of the average recoverable elastic deformation 

1( , )x t−EF  from macroscopic volume element to neighboring macroscopic 
volume element.  If each macroscopic volume element V  is regarded as an 
entire single crystal, then the incompatibility of 1−EF  measures intergranu-
lar incompatibility among neighboring grains, while if each V  is regarded 
as a subgrain, then incompatibility of 1−EF  is an intragranular measure.  
Here incompatibility of 1−EF  refers to a lack of continuous, single valued 
coordinates ( , )x x tα  spanning the union of i intermediate configuration 
volume elements ( )iV∪ .  Thus, while the xα  are assumed to be available 
and differentiable within each volume element ( )iV , they may not be so 
over global configuration B .  If in fact xα  are multi-valued or discontinu-
ous over this global configuration, they are anholonomic in the sense of 
Section 2.8.1.   

An alternative definition of residual lattice deformation tensor IF  is de-
rived in Chapter 7.  In the approach of Chapter 7, IF  is defined in covari-
ant Cartesian indices as the sum of the unit tensor and the average taken 
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over a reference volume element of material displacement gradients asso-
ciated with residual stress fields of defects.  Self-equilibrium conditions 
provide analytical expressions for the symmetric part of IF  in the context 
of continuum nonlinear elasticity or anharmonic lattice statics.  The 
nonlinear elastic approach of Chapter 7 builds on previous work of a num-
ber of authors (Zener 1942; Seeger and Haasen 1958; Toupin and Rivlin 
1960).  A detailed discussion of the approach is deferred until later (Chap-
ter 7) because the derivation requires elements of thermomechanics and 
nonlinear elasticity developed in Chapters 4 and 5, respectively.  This is in 
contrast to the derivation of IF  in (3.148) that is purely kinematical. 

3.2.10 Multiplicative Atomistic Plasticity 

An alternative perspective of finite crystal kinematics is achieved upon 
consideration of motions of individual atoms (Clayton and Chung 2006; 
Chung and Clayton 2007).  Assume that in reference configuration 0B , the 
representative Lagrangian volume element under consideration consists of 
a majority of atoms arranged on a lattice, but perhaps imperfectly due to 
the presence of defects within that volume element.  Furthermore, assume 
that in configuration B�  of Fig. 3.4, the same mass and number of atoms 
exist in this representative volume, for example after propagation of dislo-
cations across the volume.  Atomic coordinates in 0B  and B�  may not co-
incide, even though the crystal structure may look the same to an external 
observer in each of these two configurations because of the lattice-
preserving nature of dislocation glide.  For simplicity, considered in the 
present Section are monatomic crystal structures for which basis vectors of 
the crystal structure vanish.  Generalization of the present approach to 
polyatomic lattices is straightforward but requires introduction of addi-
tional mathematical machinery and notation.  Furthermore, the treatment 
of Section 3.2.10 is restricted to coincident Cartesian coordinates in all 
configurations.  Generalization to curvilinear coordinates is possible but 
requires additional cumbersome notation, e.g., shifter tensors. 

The position vector for arbitrary atom i in evolving intermediate con-
figuration B�  is denoted by ir� , where angled brackets are reserved for 

atomic labels, and 1,2,...i n= , with n the total number of atoms contained 
within the volume element.  Spatial positions of atoms (e.g., nuclear coor-
dinates) in current configuration B , written as ir , are then found as 

 .
a a a
i i ir R qα

αδ= +� , (3.149) 
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with iq  the Cartesian displacement vector between intermediate and cur-

rent locations of atom i.  Vectors separating atoms i and j in respective 
configurations B�  and B are denoted by 
 \i j j i= −R R R� � � , \i j j i= −r r r . (3.150) 

Let the spatial position of atom i be updated according to  

 
1

n
a L a a
i ij j i

j

r F R rα
α

=

= + ∆∑ � . (3.151) 

The first term on the right side of (3.151) accounts for the projection, over 
the volume element of atoms, of the macroscopic lattice deformation field 
to each atom within. 

Assuming that the Cauchy-Born approximation of (3.26) applies only 
for the first term on the right side of (3.151), operator L a

ijF α  can be decom-

posed multiplicatively into the product of a continuum tangent map 
. ( , )L aF X tα  akin to that in (3.31) and a discrete Kronecker delta operator 

ijδ , with the latter satisfying  1ijδ =  for i j=  and 0ijδ =  otherwise: 

 .
L a L a
ij ijF Fαα δ= . (3.152) 

The second term on the right side of (3.151), i∆r , is the atomic scale per-

turbation in displacement attributed to microscopic heterogeneity in the vi-
cinity of lattice defects, written here for atom i.  This perturbation meas-
ures discrepancies in local atomic coordinates from those that would be 
predicted under homogeneous deformation of a monatomic crystal struc-
ture under the Cauchy-Born hypothesis such as given in (3.109) for the 
primitive Bravais lattice vectors.  From (3.151) and (3.152), spatial separa-
tion vectors introduced in (3.150) are updated according to 
 \ \i j i j j i= + ∆ − ∆Lr F R r r� . (3.153) 

The perturbation in atomic displacement from an atom’s position in the in-
termediate configuration B�  is measured by i∆r .  However, if PF , the 

plastic deformation gradient of (3.31), is assumed to leave the geometry of 
the lattice unaltered as illustrated in the periodic domain of Fig. 3.5, then 
displacement perturbation i∆r  may be considered equivalent, from the 

standpoint of mechanical properties of the crystal, to a displacement per-
turbation measured from reference configuration 0B .  The perturbation in 
this case would correspond to that of a different atom that may have en-
tered a corresponding Eulerian control volume (dotted boundary in Fig. 
3.5) during the course of plastic slip.  Immobile defects such as pinned dis-
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locations, grain or subgrain boundaries, and fixed point defects may also 
be present in configurations 0B  and B� ; such defects are represented 
mathematically by perturbed atomic coordinates in the reference configu-
ration. 

The description afforded by (3.149)-(3.153) has been used to study ef-
fects of point, line, and surface defects upon stored energy and tangent 
elastic stiffness of the lattice in BCC crystals in the context of single slip 
(Clayton and Chung 2006) and to facilitate comparisons between predic-
tions of molecular statics calculations (see Section B.2 of Appendix B) and 
continuum theories of lattice defects (Chung and Clayton 2007).  The at-
omistic description follows from earlier work (Chung and Namburu 2003; 
Chung 2004) that considered perturbations in atomic displacements from 
their predicted positions under the Cauchy-Born approximation in elastic 
solids—for example perturbations attributed to point defects—without re-
course to introduction of an evolving intermediate configuration B�  needed 
to describe dislocation-based plasticity at finite deformations. 

3.3 A Linear Connection for Lattice Defects 

The two-term multiplicative decomposition of the deformation gradient of 
(3.31), = L PF F F , was proposed by Bilby et al. (1957) and Kroner (1960) 
for modeling the deformation of single crystals within the framework of 
continuously distributed dislocations.  Here in Section 3.3, the description 
afforded by (3.31) is enhanced via consideration of a special class of linear 
connection (Section 2.2) describing physics of crystalline solids at a length 
scale more refined than that associated with (3.31).  Such connections en-
able description of higher-order gradients of stretch and rotation in the lat-
tice, or equivalently, enable more accurate approximation of atomic posi-
tions at microscopic spatial locations between two representative volume 
elements of crystal, each of whose average set of deformed, primitive Bra-
vais lattice vectors is encapsulated by the nine degrees of freedom corre-
sponding to a particular value of ( , )X tLF  according to (3.109)-(3.114). 

Discovery of the relationship between the density of continuously dis-
tributed dislocations and Cartan’s torsion tensor of the crystal connection 
is usually credited to Kondo (1953, 1963), Bilby et al. (1955), and Kroner 
(1960).  The crystal connection is defined in terms of a spatial gradient of 
the lattice deformation.  Specifically, .. 1 1

. . , . , .
a La L La L

cb b c c bF F F Fα α
α αΓ − −= = −  are 

coefficients of the crystal connection, integrable according to (2.218) as 
will be later demonstrated explicitly.  The non-Riemannian geometric 
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space associated with the crystal connection is said to possess a distant 
parallelism or a teleparallelism (Einstein 1928; Schouten 1954), and exhib-
its the special property that covariant derivatives of vectors taken with re-
spect to this connection vanish if these vectors comprise a spatially con-
stant vector field when pulled back to the intermediate configuration.  The 
null curvature property of the crystal connection, together with knowledge 
of its torsion and a certain covariant plastic or elastic strain tensor is suffi-
cient to uniquely specify the relaxed intermediate configuration (Le and 
Stumpf 1996a).  Berdichevski and Sedov (1967), Noll (1967), Teodosiu 
(1967a), De Wit (1968), Toupin (1968), and Steinmann (1996) provided 
detailed viewpoints of dislocation kinematics using linear connections and 
geometric ideas.   

Since dislocations associated with the crystal connection are required to 
sustain compatibility of the total deformation, they are often labeled geo-
metrically necessary dislocations in the sense of Ashby (1970).  This is in 
contrast to absolute dislocations (Lardner 1969; Werne and Kelly 1978) 
that, when mobile, enable a nonzero dislocation flux and hence a nonzero 
rate of plastic deformation in (3.105).  Nye (1953) associated a dislocation 
density tensor with the gradient of lattice rotation, i.e., the stress-free lat-
tice curvature.  Lardner (1969) showed that vanishing of the torsion tensor 
of the crystal connection corresponds to vanishing of excess dislocations 
of the same sign.  Grain boundary, surface, and interface dislocations have 
been investigated from the standpoint of differential geometry and/or com-
patibility conditions (Bullough and Bilby 1956; Marcinkowski and Sadan-
anda 1975; Hartley and Blachon 1978; Cermelli and Gurtin 1994; 
Dluzewski 1996; Gupta et al. 2007).  Experimental techniques for measur-
ing lattice curvature, redundant defect populations associated with geomet-
rically necessary dislocations, and statistically stored dislocations have 
emerged and advanced in recent years (El-Dasher et al. 2003; Hughes et al. 
2003; Taheri et al. 2006) 

Kondo (1949, 1953, 1963, 1964) proposed general frameworks for 
yielding and plastic deformation allowing nonzero Riemann-Christoffel 
curvature associated with a connection different from the crystal connec-
tion.  Kondo’s frameworks admit different non-unique anholonomic (i.e., 
incompatible) intermediate configurations, or “tearings” in his terminol-
ogy, for the same crystal.  These configurations differ from the unique in-
termediate configuration favored by Bilby et al. (1955), for which the cur-
vature tensor of the associated crystal connection vanishes and 
teleparallelism is enforced.  Kondo (1964) associated nonzero curvature 
with the presence of rotational anomalies in the lattice, which can be inter-
preted as disclinations (Nabarro 1967; De Wit 1971, 1973).  Connections 
admitting non-vanishing curvature tensors have since been used by many 
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for modeling disclinations in Bravais lattices (Anthony 1970; Lardner 
1973, 1974; Minagawa 1979, 1981; Amari 1981; De Wit 1981).  Rota-
tional defects falling under the general category of Somigliana dislocations 
(Eshelby 1951, 1956; Asaro 1976; Teodosiu 1981) were addressed in 
terms of a path-dependent integral of a non-vanishing curvature tensor by 
Pecherski (1983; 1985).  Non-metric connections admitting extra-matter 
defects (e.g., interstitial atoms, vacancies, or other point defects) were in-
troduced in continuum theories by Kroner (1960, 1980, 1983), Minagawa 
(1979), and De Wit (1981).  A brief early history of generalized continuum 
theories—for example theories with kinematic descriptions addressing ori-
entations in addition to positions of material particles—was given by Erin-
gen (1968).      

The remainder of Section 3.3 is organized as follows.  First, a general 
linear connection is introduced in Section 3.3.1, capable of describing a 
variety of defects in the crystal in its deformed configuration.  Particular 
forms of this connection, corresponding to various classes of admitted de-
fects, are then examined in detail.  The crystal connection and geometri-
cally necessary dislocations are described in Section 3.3.2.  The represen-
tation of distributions of disclinations in terms of a linear connection is 
developed in Section 3.3.3.  Isotropic defects are considered in a differen-
tial-geometric context in Section 3.3.4.  Finally, the geometric description 
of kinematics of crystals with defects is summarized in Section 3.3.5.  The 
remaining content of Section 3.3 parallels, refines, and substantially ex-
tends earlier work for modeling lattice defects (Clayton et al. 2005, 2006, 
2008a). 

3.3.1 General Form and Properties of the Connection 

Consider a volume element of a crystalline solid whose average deforma-
tion gradient F follows decomposition = L PF F F  of (3.31).  As was the 
case in Section 3.2, this volume element is required to be of lineal dimen-
sions much larger than the lattice parameters of the unit cell of the crystal 
structure, so that many dislocations or other defects may be contained 
within it.  However, in Section 3.3, the volume element is restricted to ei-
ther be embedded within a single crystal, or to consist of an entire single 
crystal.  This restriction implies that when defects are absent, the orienta-
tion of each of the primitive Bravais lattice vectors in (3.1) does not vary 
with position within the element in its undistorted reference configuration.  
Recall from Section 3.2.2 that intermediate configuration B�  is generally 
anholonomic, with associated anholonomic coordinates xα� , while refer-
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ence and spatial configurations 0B  and B  are holonomic, spanned by con-
tinuously differentiable coordinates ( , )AX x t  and ( , )ax X t , respectively.  
Note that (3.137) also applies here in general, though in Section 3.3 no de-
composition of the total lattice deformation into recoverable and residual 
parts is necessary.   

Introduced next are continuously differentiable vector fields of director 
triads (Fox 1966) referred to tangent spaces of each configuration:  
            0A TB∈d , TBα ∈d � , ( , )a x t TB∈d , ( 1 2 3A, ,a , ,α = ). (3.154) 
Vectors of each triad in (3.154) are all dimensionless.  From the last of 
(3.154), within a single crystal only the deformed directors referred to the 
spatial configuration are assumed to vary with position and time.  Direc-
tors are mapped across configurations via the relations 
 .=d dΑ

α α Αδ , 1 1
. . .( , )L L

a a aF x t F− −= =d d dα α Α
α α Αδ ,   (3.155) 

with summation implied over repeated indices.  Plastic deformation PF  is 
assumed lattice-preserving as discussed in Section 3.2.1 such that the di-
rectors are physically the same in reference and intermediate configura-
tions, as is clear from the first of (3.155).  According to the second of 
(3.155), each director vector αd  is pushed forward to the current configu-
ration by the lattice deformation as the individual component of a covari-
ant vector, analogously to (2.133).  Reciprocal directors to (3.154) are in-
troduced, satisfying  
              *

0
A T B∈d , *T Bα ∈d � , *( , )a x t T B∈d , ( 1 2 3A, ,a , ,α = ); (3.156) 

                       .,A A
B Bδ=d d , .,α α

β βδ=d d , .,a a
b bδ=d d . (3.157) 

It follows that transformation formulae for the reciprocal directors are 
 .

A
A=d dα αδ , . . .( , )a La La A

AF x t Fα α
α αδ= =d d d . (3.158) 

Thus, each reciprocal director is pushed forward by the lattice deformation 
like the component of a contravariant vector analogously to (2.131).  By 
analogy with basis vectors of coordinate systems in (2.2) and (2.3), direc-
tor vectors with indices in lower positions (3.154) are referred to as covari-
ant director vectors or covariant lattice directors, while those with indices 
in upper positions (3.158) are referred to as contravariant director vectors 
or contravariant lattice directors. 

It is assumed that director vectors in configuration B�  are of unit length 
and are orthogonal:  
 d g dχ δ

α β α χδ β αβδ= =d d �i , (3.159) 

with αβδ  emerging as a natural Euclidean metric on B� .  A generally non-

Euclidean metric ( , )x tLC  with components referred to spatial configura-
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tion B and associated with the director strain is obtained from (3.155) and 
(3.156) as 
 1 1 1 1L L L L L

ab a b .a .b .a .bC F F F Fα β α β
α β αβδ− − − −= = =d d d di i . (3.160) 

The contravariant version of (3.160) provides the inverse metric: 
 1L ab a b La Lb La Lb

. . . .C F F F F− = = =d d d di iα β αβ
α β α βδ , (3.161) 

where the following orthonormality conditions have been applied: 
 d g d= =d d �iα β α χδ β αβ

χ δ δ . (3.162) 
It follows that covariant and contravariant lattice directors are related by 
 B

A AB=d dδ , =d dβ
α αβδ , L b

a abC=d d , 1a L ab
bC −=d d . (3.163) 

In crystals with cubic, orthorhombic, or tetragonal structures (refer to 
Table 3.1 and Fig. 3.2), it is instructive to assign each reference director 
parallel to a reciprocal lattice vector, e.g., i

AiΑ δd A& , and to assign a coin-
cident Cartesian coordinate system in each configuration with axes aligned 
with the referential reciprocal lattice vectors.  In that case, 

 

11 1
. . .

1 11
. .    .

L L i i
a a a i

L B i i a i i
a B

F F

F A

α Α α
α Α α

α
α

δ δ

δ

−− −

− −−

= =

= =

d d A A

A g a A
 (3.164) 

From (3.164), director vectors in the current configuration ad  are equiva-
lent to reciprocal basis vectors ia  in the current configuration, normalized 
by their original lengths.  In crystal structures wherein primitive reciprocal 
vectors are not necessarily orthogonal, directors of (3.154) are not neces-
sarily parallel to the primitive translation vectors of the unit cell, but are 
instead an external construct.  In that case, directors ad  and strain metric 
(3.160) still provide a measure of the lattice deformation.  Components of 
lattice deformation and its inverse can be recovered directly from the sca-
lar products 
      . . ,La La aF F β

α β α α= =d d d di , 1 1
. . ,L L b
a b a aF Fα α α− −= =d d d di , (3.165) 

implying that knowledge of the vector fields in (3.155) and (3.156) is suf-
ficient to characterize the first-order deformation of the lattice. 

At a microscopic scale of resolution, absolute changes in lattice direc-
tors ad  are described in terms of a covariant derivative executed with re-
spect to a linear connection with coefficients ..ˆ ( , )a

bc x tΓ .  The absolute 
change of director vector ad  with spatial position is defined in terms of the 
corresponding covariant derivative operation  ∇̂ , treating the index of the 
director as that of a component of a covector in (2.30):  
 .. ..

,
ˆ ˆ ˆc c

b a a b ba c b a ba cΓ Γ∇ = − = ∂ −d d d d d , (3.166) 
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with the subscripted comma denoting partial differentiation with respect to 
spatial coordinates ( , )ax X t .  Similarly, for a contravariant director ad , 

 .. ..
.,

ˆ ˆ ˆa a a c a a c
b b bc b bc∇ = + = ∂ +d d d d dΓ Γ . (3.167) 

Coefficients of the connection in (3.166) and (3.167) are defined by (Mi-
nagawa 1979, 1981; Clayton et al. 2005, 2006, 2008a) 
 .. 1 .. .. ..

. . ,
ˆ a La L a a a

cb b c cb cb cbF F Q Q−= + = +α
αΓ Γ , (3.168) 

where .. 1 1
. . , . , .

a La L La L
cb b c c bF F F Fα α

α αΓ − −= = −  are coefficients of the crystal con-
nection of non-Riemannian dislocation theories (Bilby et al. 1955; Noll 
1967; Le and Stumpf 1996a), and ..a

cbQ  are micromorphic degrees of free-
dom representing additional contributions of defects to spatial gradients of 
the lattice director fields.  Upon assuming 0b a∇̂ =d  (Minagawa 1981; 
Clayton et al. 2006), the connection of (3.166)-(3.168) enables one to in-
terpolate for directions and magnitudes of lattice directors at spatial loca-
tions between centroids of neighboring volume elements within a crystal-
line solid.  In the trivial situation when 0..a

cbΓ̂ = , lattice directors are 
spatially constant since in that case , 0a b =d .  The crystal connection ( ..a

cbΓ ) 
component of (3.168) accounts for effects of first-order spatial gradients of 
(the inverse of) LF , while micromorphic variable Q of (3.168) accounts 
for additional spatial variations of lattice directors not captured by the first-
order gradient of 1−LF .  The deformation of a representative set of director 
vectors located at spatial position x corresponding to the volume element’s 
centroid is determined by LF , as indicated by (3.155).  Stretch and rotation 
gradients of the lattice at spatial position x, for example at the scale of sub-
grain cells and cell blocks within a severely deformed single crystal (See-
feldt 2001; Hughes et al. 2003), are represented by coefficients of (3.168).   

Covariant components of Q are defined via lowering by the metric LC : 
 ..d L

cba cb daQ Q C= . (3.169) 
The covariant derivative of LC  with respect to the connection coefficients 
in (3.168) is found by direct invocation of (2.30) as 

        
( )

.. .. .. ..
,

1 1 1 1
. . , . , .

1 1 1 1 1 1
. , . . . , . .

ˆ

          2

             

          2

L L d L d L d L d L
c ab ab c ca db cb ad ca db cb ad

L L L L
a b c a c bc ab

Ld L L L Ld L L L
a c d b b c a d

c

C C C C Q C Q C

Q F F F F

F F F F F F F F

Q

− − − −

− − − − − −

∇ = − − − −

⎡= − + +⎣
⎤− − ⎦

= −

α β α β
αβ

χ α β χ α β
χ χ

Γ Γ

δ

( ).ab

 (3.170) 

Components of the torsion tensor of the connection are obtained from ap-
plication of (2.33):  
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 [ ] [ ]
..a ..a ..a ..a

cb cbcb cb
ˆ ˆT T Q= = +Γ , (3.171) 

where [ ]
..a ..a

cb cbT Γ=  are components of the torsion of the crystal connection.  

Mixed-variant components of the Riemann-Christoffel curvature tensor, 
...a
bcdR̂ , formed from connection coefficients ..a

cbΓ̂  are computed from (2.34): 

 
[ ] [ ]

... .. .. .. .. .. ..
, ,

.. .. ..

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ      2 2 ,

a a a a e a e
bcd cd b bd c be cd ce bd

a a e
b c d b e c d

R = − + −

= ∂ +

Γ Γ Γ Γ Γ Γ

Γ Γ Γ
 (3.172) 

which, because of additive decomposition (3.168), can be expressed as the 
following sum (Schouten 1954): 

 
[ ] [ ]

[ ] [ ] [ ]

[ ]

... ... .. .. .. .. ..

1 .. .. .. .. ..
. .

.. .. .. .. .. .. ..

ˆ ˆ ˆ2 2 2

ˆ ˆ      2 2 2 2

ˆ ˆ      2 2 .

a a a e a e a
bcd bcd bc edb c d b d c e

La L a e a e a
d bc edb c b c d b d c e

a e a e a e a
bc ed cd be bd ceb c d

R R Q T Q Q Q

F F Q T Q Q Q

Q T Q Q Q Q Q

α
α

−

= + ∇ + −

= ∂ ∂ + ∇ + −

= ∇ + + −

 (3.173) 

In (3.173), the curvature from the crystal connection, ...a
bcdR , vanishes iden-

tically since the crystal connection is integrable, as follows from the ge-
neric derivation in (2.215)-(2.218).  The fully covariant curvature tensor 
corresponding to (3.173) is obtained directly using (3.170) and the product 
rule as follows: 

         

[ ] [ ]

[ ] ] [ ]

[ ] ]( ) [ ]

[ ]

2 2 2

        2 2 2 2

        2 2 4 2

        2 2 2

..e L ..e ..e .. f L
bcda ae bc eda afb c d b d c e

..e ..e L ..e
bc eda aeb c da b b d c eac d

..e ..e ..e
bc eda aeb c da c b d c eab d

..e
bc edab c da

ˆ ˆ ˆR Q C T Q Q Q C

ˆ ˆ ˆQ T Q Q C Q Q

ˆ ˆQ T Q Q Q Q Q

ˆ ˆQ T Q Q

⎡⎣

⎡⎣

= ∇ + −

= ∇ + − ∇ −

= ∇ + + −

= ∇ + + [ ]
..e
b d c aeQ .

 (3.174) 

From (3.173) and (3.174), curvature tensor R̂  vanishes identically when 
the supplementary degrees of freedom vanish, i.e., when 0=Q .  Decom-
posing (3.174) into an antisymmetric part over the final two indices gives 

   

[ ][ ] [ ][ ] [ ] [ ] [ ]

[ ][ ] [ ] [ ] [ ]

[ ][ ] [ ] [ ] [ ]

[ ][ ]

.. 1

.. 1

.. 1

ˆ ˆ ˆ2 2

ˆ ˆ           2 2

ˆ ˆ           2 2

ˆ           2 2

e L ef
bcbc da b c da e da b df c ae b af c de

e L ef
bcb c da e da b de c af b af c de

e L fe
bcb c da e da c af b de c af b de

b c da

R Q T Q C Q Q Q Q

Q T Q C Q Q Q Q

Q T Q C Q Q Q Q

Q

−

−

−

⎡ ⎤= ∇ + + −⎣ ⎦
⎡ ⎤= ∇ + + −⎣ ⎦
⎡ ⎤= ∇ + − −⎣ ⎦

= ∇ + [ ]
..ˆ .e

bc e daT Q

 (3.175) 

The symmetric part of (3.174) over the final two covariant indices is ob-
tained from identity (2.49) and (3.170):   
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          [ ]( ) [ ] [ ]( ) ( )2 2L ..e L ..e
da bc e da bc e dabc da b c b c da

ˆ ˆ ˆ ˆ ˆ ˆ ˆR C T C Q T Q= −∇ ∇ − ∇ = ∇ + . (3.176) 

The notion of a Cartan displacement (Schouten 1954; Brillouin 1964; 
Wang and Truesdell 1973; Minagawa 1979) is often used to provide a geo-
metric interpretation of non-integrability of a space or manifold with pos-
sibly non-vanishing torsion and curvature.  Cartan’s displacement about a 
curve c encircling area a with differential element a b abc

cdx dx n daε∧ =  is 
derived using Stokes’s theorem of Section 2.7.2.  While the general treat-
ment of Section 3.3 permits arbitrary curvilinear coordinates in the spatial 
configuration, the derivation given immediately below in (3.177) in indi-
cial notation is restricted to spatial coordinates ax  wherein corresponding 

Christoffel symbols .. 0
g

a
bcΓ =  by definition (e.g., Cartesian coordinates), 

since integration of a vector field is involved.  Cartan’s displacement is de-
fined as the following line integral: 

      

. ., . .,

..
. ,

..
. , ,

.. ..
,

.. ..
,

ˆ ( )  =

ˆ    

ˆ    ( )

ˆ ˆ    ( )

ˆ ˆ    (

a a a e a e a e
e e e e

c c c

a e b a c e
e b ec

a c

a e b a c e b
e b ec b

a a

a e b a c e b
eb ec b

a a

a e b
eb ec b

a

B x dx dx x dx

dx dx x dx

dx dx x dx dx

dx dx x dx dx

T dx dx

δ δ

δ Γ

δ Γ

Γ Γ

Γ

= − + − −

= ∧ +

= ∧ − ∧

= − ∧ + ∧

= − ∧ +

∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫

[ ] [ ]

..
.,

.. .. .. ..
,

.. .. .. ..

.. ... ..

ˆ )

ˆ ˆ ˆ ˆ    ( )

ˆ ˆ ˆ ˆ    ( )

1ˆ ˆ ˆ    ( ) (
2

a c a c e b
ec b

a

a e b a c a c d e b
eb ec b ec bd

a a

a e b a a c d e b
eb b e d b c e d

a a

a a d b e bec a
be bed be

a

x x dx dx

T dx dx x x dx dx

T dx dx x dx dx

T R x dx dx T

Γ

Γ Γ Γ

Γ Γ Γ

ε

+ ∧

= − ∧ + − ∧

= − ∧ + ∂ + ∧

= − + ∧ = −

∫

∫ ∫

∫ ∫

∫ ...1 ˆ ) .
2

a d
bed c

a

R x n da+∫

 (3.177) 

The following special definitions10 that presume a kind of modified parallel 
transport of Kronecker’s delta .

a
eδ  and spatial position dx  with respect to 

(3.168) are also used to compute the Cartan displacement in (3.177): 
     .. ..

. . , . . ,
ˆ ˆ ˆ 0a a a c a a

b e e b bc e e b beδ δ Γ δ δ Γ′∇ = − = − = , ..
.,

ˆ ˆ 0c c c d
b b bdx x xΓ′∇ = + = . (3.178) 

Using (3.174)-(3.177), the Cartan displacement can be written as the sum 

                                                      
10 Notice that ˆ

a′∇  as defined in (3.178) does not obey (2.30); i.e., ˆ ˆ
a a′∇ ≠ ∇ . 
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 [ ] ( )
.. 11ˆ ˆ ˆ ˆ( )

2
a a L ae d b c

bc bc debc de
a

B T C R R x dx dx−⎡ ⎤= − + + ∧⎢ ⎥⎣ ⎦∫ . (3.179) 

Cartan displacement ˆ aB  will be associated later in Sections 3.3.2, 3.3.3, 
and 3.3.4 with a total Burgers vector (i.e., incompatibility measure) result-
ing from effects of all defects (e.g., dislocations, disclinations, and point 
defects) threading or situated on oriented area a encircled by circuit c.  
Application of Stokes’s theorem in (3.177) requires that connection coeffi-
cients have continuous first derivatives with respect to spatial coordinates, 
implying that lattice deformation and its inverse must have continuous 
second derivatives with respect to spatial coordinates.   

It is often instructive to consider a linearized theory.  In that case, the 
distinction between intermediate and spatial coordinate systems is omitted, 
and the lattice deformation gradient and lattice distortion are related by  
 . . .

La a La
b b bF δ β= + , 1

. . .
L a a La

b b bF δ β− = − . (3.180) 
Clayton et al. (2008a) considered a partially nonlinear regime wherein ap-
proximation (3.180) applies for lattice deformation, but wherein gradients 
of lattice directors may be arbitrarily large, thus retaining fully nonlinear 
forms of connection (3.168), torsion (3.171), and curvature (3.172).  On 
the other hand, a fully linear description omits all second-order terms in 
the connection coefficients, torsion, and curvature.  In the context of such a 
fully linear theory, the connection (3.168) becomes 
         .. .. .. .. ..

. . . , . ,
ˆ ( )a a La Ld a La a a a

cb d d b c cb b c cb cb cbQ Q QΓ δ β β β Γ= − + + ≈ − + = + , (3.181) 
where the linearized crystal connection and its torsion are, respectively, 
 ..

. ,
a La

cb b cΓ β= − , [ ]
..

. ,
a La

cb b cT β= − . (3.182) 

The linearized metric of (3.160) is 

 
( )

1 1
. . . . . .

.

( ) ( )

     ( ) 2 .

L L L d Ld e Le
ab a b a a de b b

L L L Le L
ab ab ba ea b ab ab

C F Fα β
αβδ δ β δ δ β

δ β β β β δ β

− −= = − −

= − − + ≈ −
 (3.183) 

Similarly, the linearized inverse metric of (3.161) is 

 
( )

1
. . . . . .

.

( ) ( )

         ( ) 2 .

L ab La Lb a La de b Lb
d d e e

abab Lab Lba Lae Lb ab L
e

C F Fαβ
α βδ δ β δ δ β

δ β β β β δ β

− = = + +

= + + + ≈ +
 (3.184) 

Covariant components of connection (3.181) are then approximated as 

 ( )
.. ..

. , . ,

..

ˆ ( ) ( )( 2 )

       .

Ld d L Ld d L
cba b c cb da b c cb da da

L d
c ab cb da

Q C Q

Q

Γ β β δ β

β δ

≈ − + ≈ − + −

≈ −∂ +
 (3.185) 

Connection coefficients in (3.185) can then be partitioned as 

 ( ) ( ) ( )
1ˆ
2

L
cc ba ba c baC QΓ ≈ ∂ + , [ ] [ ] [ ]

ˆ L
cc ba ba c baQΓ β≈ ∂ + . (3.186) 
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The torsion tensor of (3.181) is simply 
 [ ] [ ]

.. ..
. ,

ˆ a La a
cb c b cbQΤ β≈ + . (3.187) 

The curvature tensor of (3.172) is approximated successively as follows by 
neglecting products of two and higher in the connection coefficients: 
 [ ] [ ] [ ] [ ]

... .. .. ..
.

ˆ ˆ2 2 2 2 .a a La a a
bcd eb c d c b b c d b c dR Q QΓ β≈ ∂ = ∂ ∂ + ∂ = ∂  (3.188) 

Fully covariant approximations of the curvature tensor are then 
 [ ]2bcda b c daR̂ Q≈ ∂ , [ ] [ ][ ]2bc da b c daR̂ Q≈ ∂ , ( ) [ ]( )2bc da b c daR̂ Q≈ ∂ . (3.189) 

The Cartan displacement in (3.177) can then be obtained in the linear ap-
proximation via use of (3.187) and (3.188). 

Association of the mathematical framework of Section 3.3.1 is made 
with the physics of continuous distributions of lattice defects in what fol-
lows in the remainder of Section 3.3.  This association is accomplished by 
considering three limiting cases: traditional (geometrically necessary) dis-
location theory in Section 3.3.2, characterized by 0cbaQ = ; disclination 
theory in Section 3.3.3, characterized by [ ]cba c baQ Q= ; and a theory for 

isotropically distributed point defects in Section 3.3.4, characterized by 
L

cba c baQ Cϒ= .  Superposition of ideas set forth in each of the three cases 
then enables description of crystals containing dislocations, disclinations, 
and point defects.   

3.3.2 Dislocations and the Crystal Connection 

The description of Section 3.3.1 encompasses only traditional, translational 
dislocations if 0cbaQ = , for which (3.168) reduces to the crystal connec-
tion (Bilby et al. 1955; Kroner 1960; Noll 1967): 

         
.. .. 1

. . ,

1 1 1
. , . . , . .

ˆ

      ,

a a La L
cb cb b c

La L La L L
c b c b

F F

F F F F F

α
α

α β α
α α β

Γ Γ −

− − −

= =

= − = −
 (3.190) 

where the third equality follows from 1
. . , . ,( ) 0La L a

b c b cF F α
α δ− = = .  The torsion 

tensor obtained from connection coefficients in (3.190) is then  
 [ ] [ ]

1 1..a ..a La L La L
cb cb . .. b,c c .bT̂ T F F F Fα α

α α
− −= = = ∂ , (3.191) 

The torsion in (3.191) vanishes by (2.219) when the lattice deformation is 
integrable: 
 [ ]

.. 1 1
. .,. ,0 0a L L

cb a ab cT F F xα α α− −= ↔ = ⇔ = � , (3.192) 
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in which case ( , )x x x tα α=� � .  Recall from (3.170) that the connection is 
metric, 0L

a bcC∇ = , and from (3.173) that the connection is integrable, 
... 0a
bcdR = , both following from prescription 0cbaQ =  in (3.190).   
Consider partial derivatives of the lattice director vectors and their re-

ciprocals obtained following (3.155) and (3.158): 
                        1 1 ..

, . , . , .
L L Lc c

a b a b a b c ba cF F Fα α
α α Γ− −= = =d d d d , (3.193) 

        1 1 ..
., . , . , . . . ,
a La La L c La L c a c
b b b c c b bcF F F F Fα α α

α α α Γ− −= = = − = −d d d d d , (3.194) 
since by definition, , 0bα =d  and ., 0b

α =d .  Relations (3.193) and (3.194) 
denote parallel transport of the lattice directors with respect to the crystal 
connection: 
                 ..

, 0c
b a a b ba cΓ∇ = − =d d d , ..

., 0a a a c
b b bcΓ∇ = + =d d d , (3.195) 

and are analogous to relationships for partial coordinate derivatives of 
holonomic basis vectors in (2.59). 
 

 
Fig. 3.15 Defective cubic lattice as described by the crystal connection 

 
A two-dimensional visual interpretation of the crystal connection is 

given in Fig. 3.15 for a simple cubic lattice.  Inscribed on the image of the 
body on the left side of Fig. 3.15 are two orthogonal fields of constant con-
travariant vectors in configuration B� —denoted by u�  and v� —that form a 
rectilinear grid representative of the field of primitive Bravais lattice vec-
tors.  More specifically, each vector u�  or v�  is parallel to a primitive Bra-
vais lattice vector of (3.1), but is of magnitude of a Bravais lattice vector 
multiplied by a factor of eight.  In a simple cubic lattice, u�  and v�  are also 
parallel to slip directions and perpendicular to slip planes, as deduced from 
Table 3.4.  The representation of a perfect lattice in B�  is in agreement 
with dislocation-based plasticity theory (Section 3.2.5) and crystal plastic-
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ity theory (Section 3.2.6), for example, wherein 0:TB TB→PF �  is assumed 
to leave the slip directions and slip planes unperturbed.  Notice that the 
crystal may have undergone slip with respect to its position relative to ref-
erence configuration 0B , as indicated by the dotted unit cell boundaries on 
the left side of Fig. 3.15.  For clarity, these slip steps are not shown on the 
right side of Fig. 3.15, though they do exist in configuration B.  Since vec-
tors u�  and v�  are independent of position in the intermediate configura-
tion,  
 ( ) ( )A B=u u� � , ( ) ( )A B=v v� � , (3.196) 
where A and B are two points on the lattice in the relaxed configuration 
separated by a small distance ( ) ( )d B A= −x x x  when their positions are 
mapped onto the deformed image of the crystal.  Focusing for the moment 
on the field u� , both sides of the first of (3.196) are pre-multiplied by 

( )BLF , the value of the deformation at the location corresponding to point 
B on the lattice, to obtain 
 . .( ) ( ) ( ) ( )La LaF B u A F B u B=� �α α

α α . (3.197) 

Expanding ( )BLF  with a first-order (i.e., linear) approximation in x gives 
 . . . ,( ) ( ) ( )La La La b

bF B F A F A dx≈ +α α α , (3.198) 
which is then substituted into (3.197) to yield 
 1

. , .( ) ( ) ( ) ( ) ( )a a La L c b
b cu B u A F A F A u A dx−= + α

α , (3.199) 
where vectors u�  are pushed forward via  
 .( ) ( ) ( )a Lau A F A u A= �αα , .( ) ( ) ( )a Lau B F B u B= �αα . (3.200) 

Using the identity 1
. . ,( ) 0La L

c bF F − =α
α , (3.199) is rewritten as 

 1
. . ,0 ( ) ( ) ( ) ( ) ( )a a La L b c

c bu B u A F A F A dx u A−= − + α
α . (3.201) 

Making the linear approximation 
 .,( ) ( ) ( ) ( ) ( ) ( )a a a b b a b

b bu B u A u A x B x A u A dx⎡ ⎤− ≈ ∂ − =⎣ ⎦ , (3.202) 

and dropping notation signaling localization to point A, (3.201) becomes 
 1

., . . ,0 a b La L b c
b c bu dx F F dx uα

α
−= + . (3.203) 

This is the structure of a null covariant derivative, i.e., parallel transport 
with respect to the crystal connection of (3.190): 
 0a a ..a c

b .,b bcu u uΓ∇ = + = , (3.204) 

because bdx  is now arbitrary.  Since connection coefficients corresponding 
to ∇  in (3.204) are equivalent to those given in (3.190), parallel transport 
of vectors u with respect to the crystal connection physically corresponds 
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to a reconstruction of the deformed lattice from a rectilinear grid in relaxed 
configuration B� .  Analogously, field v in Fig. 3.15 obeys 
 0a a ..a c

b .,b bcv v vΓ∇ = + = , (3.205) 

i.e., the vector field TB= ∈Lv F v�  constructed by pushing forward from 
the uniform reference grid TB∈v ��  obeys the rule of parallel transport with 
respect to the connection in (3.190).  It is now clear why the crystal con-
nection is said to possess the property of teleparallelism in the context of 
geometric field theories (Einstein 1928; Schouten 1954). 

The closure failure or Cartan displacement B̂  of the area a shown in 
Fig. 3.15—i.e., the area of the parallelogram enclosed by ( )Au , ( )Bu , 

( )Av , and ( )Cv , with C a third location in the deformed crystal—is 
equivalent to the integral of a field of local Burgers vectors ( , )x tb  (Kroner 
1980).  Consider first the vector addition relation that follows from visual 
inspection of Fig. 3.15: 
 ˆ ( ) ( ) ( ) ( )a a a a aB u A u B v C v A= − + − . (3.206) 
Comparison with Fig. 3.6(b) demonstrates that B̂  represents the sum of 
local Burgers vectors of dislocations traversing area a, when the tangent 
lines of dislocations are defined in a right-handed sense when the Burgers 
circuit is taken as counterclockwise.  In configuration B in Fig. 3.15,   
 ( ) ( ) ( )b b bx B x A v A− = , ( ) ( ) ( )b b bx C x A u A− = . (3.207) 
Upon making the linear approximations 
          .,( ) ( ) ( ) ( )a a a b

bu B u A u A v A− ≈ , .,( ) ( ) ( ) ( )a a a b
bv C v A v A u A− ≈ , (3.208) 

and invoking (3.204) and (3.205), the closure failure of (3.206) becomes 
            .. ..

., .,
ˆ ( ) ( ) ( ) ( )a a b a b a b c a b c

b b bc bcB u A v A v A u A v u u v= − + = −Γ Γ , (3.209) 
which can be written as 
 [ ]

[ ]2 2 c ba ..a b c ..a
bcbcB̂ v u T u vΓ= = . (3.210) 

Making the identification 

    

[ ] 1 1( )
2 2
1 1         ,
2 2

c b c b b c c b

a

cbd cbd
d d

a

u v u v u v dx dx

n da n aε ε

= − = ∧

= =

∫

∫
 (3.211) 

equality (3.210) is then rewritten as 
 ..ˆ a bcd a

bc dB T n a= −ε , (3.212) 
which is identical to the Cartan displacement in (3.177) when the curvature 
tensor vanishes (recall that ... 0a

bcdR =  is always true for the integrable crys-
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tal connection) and when the normal to the area enclosed by the Burgers 
circuit is constant, as is the case in the two-dimensional scenario shown in 
Fig. 3.15. 

More generally, the Cartan displacement or total Burgers vector in 
(3.177) is written as 

         

..

..

ˆ

    ,

a a a c d
cd

a a

a bcd ab
cd b b

a a

B b da T dx dx

T n da n daε α

= = − ∧

= − =

∫ ∫

∫ ∫
 (3.213) 

with the geometrically necessary dislocation density tensor11 referred to B: 
 .. 1

. . ,
ab bcd a La bcd L

dc c dT F F α
αα ε ε −= = , 2 ..a ab

dc cdbT = ε α . (3.214) 
Formally, field ( , )ab x t  is assumed continuous and differentiable, in the 
context of theories of continuously distributed dislocations (Bilby et al. 
1955; Willis 1967; Teodosiu 1982).  On the other hand, Burgers vectors in 
real crystals measure discrete steps in the lattice.  In continuum field theo-
ries (Bilby et al. 1955; Willis 1967; Teodosiu 1982), one often considers a 
volume element of a body in which the number of discrete dislocations 
tends towards infinity while the Burgers vector of each tends to zero such 
that their product remains finite.  In this limiting process, the radius of 
each dislocation core, and the total volume occupied by core regions is 
also assumed to approach zero (Willis 1967).   

In terms of straight defect lines, analogously to (3.89), the dislocation 
density tensor in the spatial configuration is written (Lardner 1974) 

 
1

j
i i i

i=
= ⊗∑α b ξρ , 

1

j
ab i ia ib

i
bα ρ ξ

=

=∑ , (3.215) 

with iρ , ib , and iξ  the non-negative line length per unit current volume, 
Burgers vector, and tangent line in the spatial configuration for dislocation 
population i.  Complete and partial dislocations may contribute to (3.214) 
and (3.215).  Nye (1953) is credited with equating the dislocation density 
tensor of (3.215) with that of (3.214) when the lattice deformation reduces 
to a small rotation: 

                                                      
11 Depending on the sign convention used to define the Burgers circuit, positive 

line direction of dislocations, and positive orientation of the area enclosed by the 
circuit, the algebraic sign of the total Burgers vector and dislocation density tensor 
may vary (Minagawa 1979; Teodosiu 1982; Clayton et al. 2005).  The relationship 
between the dislocation density tensor and torsion may differ by a factor of two 
depending on the definition used for the torsion tensor.  The transpose of (3.214) 
is often used as a definition of the dislocation density tensor (Minagawa 1979). 
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          [ ]. . . , . , ,

., ., .,

(

     ,

ab a La bcd Le bcd La ae bcd L
e e c d c d ec d

ae cdb L f ab Ld ad Lb
cfe d d d

g

g w g w g w

α δ β ε β ε β ε Ω

ε ε

= − + ) ≈ − ≈ −

= = −
 (3.216) 

where / 2La abc L
bcw = −ε Ω  is a lattice rotation vector obtained via an axial 

transformation such as (2.166). 
Now consider relaxed intermediate configuration B� , which is generally 

anholonomic as discussed in Section 3.2.2.  The anholonomicity of B�  may 
be represented in terms of the non-integrability of either of tangent maps 

1−LF  or PF  via a non-vanishing anholonomic object in (3.41), or equiva-
lently, with a net Burgers vector TB∈B� � , defined in terms of closure fail-
ure of the line integral of pseudo-differential vector element (i.e., Pfaffian)  

1d d d−= =L Px F x F X�  over a loop c�  in B�  (Bilby et al. 1955; Kroner 1960): 
 1

c c C

d d d−= − = − = −∫ ∫ ∫L PB x F x F X
�

� � , (3.217) 

where c and C are closed images of Burgers circuit c�  mapped to current 
and reference configurations, respectively12.  The opposite sign convention 
for B�  is used by some authors (Teodosiu 1970, 1982; Clayton et al. 
2004a).  Comments regarding integration of vector fields over TB�  in the 
context of (3.95) and (3.96) and general curvilinear coordinates apply here 
as well.  Using the generalized Stokes’s theorem of Section 2.7.2, and re-
placing F with PF  in (2.199) and 1−F  with 1−LF  in (2.200), leads to 
            [ ]. . ,. ;

P A P A B CAB P
A A B CA B

C A A

F dX F dX dX F N dAα α αε− = ∧ =∫ ∫ ∫ , (3.218) 

              [ ]
1 1 1

. . ,. ;
L a L a b cab L

a a b ca b
c a a

F dx F dx dx F n daα α αε− − −− = ∧ =∫ ∫ ∫ . (3.219) 

Similarity of (3.219) with the geometric interpretation (3.213) is evident:   

     
[ ]

1
. ,

1 .. 1
. .     .

dab L
da b

a

dab L c L cd
c ba d c d

a a

B F n da

F T n da F n da

α α

α α

ε

ε α

−

− −

=

= =

∫

∫ ∫

�

 (3.220) 

Two-point dislocation density tensors 0α  and Lα  are introduced as  
 0

A a

dA  da= =∫ ∫ LB α N α n� ;     (3.221) 

       0 . ; . ,
A ABC P ABC P

B C B CF Fα α αα ε ε= = , 1 1
. ; . ,

a abc L abc L
L b c b cF Fα α αα ε ε− −= = . (3.222) 

                                                      
12 Designation of c�  as “closed” is somewhat abstract since configuration B�  is 

anholonomic.  The first equality in (3.217) can be omitted without consequence. 
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Symmetries of Levi-Civita connections are exercised in (3.218), (3.219), 
and (3.222).  The first of (3.222) exhibits a discrete version (3.89), analo-
gously to (3.215).  Using Nanson’s formula (2.227), surface integrals in 
(3.221) are mapped to integrals over area a�  in configuration B� : 
          1 1

0
A P P a L L

.A L .a
a a a

B J F n da J F n da n da− −= = =∫ ∫ ∫
� � �

� �� � � � � �α α β α β αβ
β β βα α α ,  (3.223) 

where LJ  and PJ  are defined in (3.48) and (3.49), and where components 
of the dislocation density tensor referred to the intermediate configuration 
 1 1

0
P A P L a L

.A L .aJ F J F− −= =�αβ α β α βα α α . (3.224) 
The first of (3.224) is consistent with the last of (3.92). The second equal-
ity in (3.224) can be derived directly from (2.142) and (3.31) as follows: 

         

1 1 1 1
. . , . . . . ,

1 1 1
. . . , .

1 1 1
. . . . . ,

( )

                               

                               ( )

P P ABC P L L a ABC L b
A B C a A b B C

L L a ABC L b
a A b C B

L L ABC a b c L
a A B C b c

J F F J J F F F F

J F J F F F

J F J F F F F

β α β α

β α

β α

ε ε

ε

ε

− − − −

− − −

− − −

=

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

1 1
. . ,                               .L L abc L
a b cJ F Fβ αε− −=

 (3.225) 

In terms of discrete lines, terms entering various intermediate and spatial 
dislocation densities are related by   

 

1

1

1

      

      ,

j
a i i ia

L a a
i

j
i i i

i

j
ba i ib ia

a a
i

dB n da b n da

n da b n da

n da b n da

=

=

=

= =

= =

= =

∑

∑

∑

��

�� �� � � �

α α α

αβ α β
β β

α ρ ξ

α ρ ξ

α ρ ξ

 (3.226) 

where tangent lines, scalar numbers of dislocations per unit volume, and 
local Burgers vectors are mapped across configurations as  
         . . 0

ia La i a i A
AF F= =α

αξ ξ ξ , 1 1
0

i L i iJ J− −= =�ρ ρ ρ , .
ib Lb ib F b= � α

α .  (3.227) 
From the first of (3.227), the tangent vector is generally only of unit length 
in one configuration.  From the second of (3.227), since 1PJ =  when slip 
is lattice-preserving, the scalar densities satisfy 0

i L i iJ = =�ρ ρ ρ .  The third 
of (3.227) is consistent with the relationship between intermediate and spa-
tial Burgers vectors in (3.84).   

In the context of the geometrically linear theory, all line and surface in-
tegrals effectively take place in the same (e.g., spatial) configuration; a to-
tal Burgers vector B�  in this configuration is found in terms of plastic dis-
tortion = −P Pβ F 1  as 
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           ( ) ( )

. . . ;

.. ..
. , . .

. ,

( )

    ( )

    .

a a Pa b Pa b c
b b b c

c c

g g
Pa a Pd d Pa bcd

b c b d dcd cb
c

bcd Pa ad
b c d d

c c

B dx dx dx

n da

n da n da

= − + = ∧

= + −

= =

∫ ∫

∫

∫ ∫

� δ β β

β Γ β Γ β ε

ε β α

. (3.228) 

Similarly, the total Burgers vector in terms of the elastic distortion is 

 
. . . ;

. ,

( )

    .

a a La b La b c
b b b c

c c

bcd La ad
b c d d

c c

B dx dx dx

n da n da

= − − = − ∧

= − =

∫ ∫

∫ ∫

� δ β β

ε β α
 (3.229) 

Comparing (3.228) and (3.229), the linearized dislocation density tensor 
satisfies 
 . , . ,

ad bcd Pa bcd La
b c b c= = −α ε β ε β . (3.230) 

The dislocation density in terms of the skew gradient of the elastic distor-
tion is consistent with derivation (3.216).  Analogously to (3.225), the sec-
ond of (3.230) can be derived directly from the compatibility conditions: 

         
( )

. , . ; . ; . ; ; . ;

. ; . ; . ,;

( ) ( )

               ( ) .

bcd Pa bcd Pa bcd a La bcd a La
b c b c b c b c bc b c

bcd a La bcd La bcd La
b c b c b cbc

u

u

= = − = −

= − = − = −

ε β ε β ε β β ε β

ε β ε β ε β
 (3.231) 

Returning to the nonlinear description, continuity equations for the two-
point dislocation densities defined in (3.221) are deduced by integrating 
the fields of local Burgers vectors over closed oriented surfaces with area 
elements AN dS  and an ds  enclosing volume elements dV and dv in 0B  and 
B , respectively: 
  0 0;

A A
A A

S V

N dS dVα αα α=∫ ∫ , ;
a a

L a L a
s v

n ds dvα αα α=∫ ∫ , (3.232) 

where Gauss’s theorem of Section 2.7.1 has been used to convert from sur-
face to volume integration.  Considering definitions (3.222), localized con-
tinuity equations become   
 ( )0; . ; 0A ABC P

A B CAFα αα ε= = , ( )
1

; . ; 0a abc L
L a b caFα αα ε −= = , (3.233) 

where symmetries of torsion-free Christoffel symbols ..
G

A
BCΓ  and ..

g
a

bcΓ  have 
been exploited.  Since dislocation density tensors are divergence-free, 
(3.233) implies that dislocation lines cannot terminate abruptly inside the 
crystal (De Wit 1971, 1981), but instead must terminate at other defects or 
at free surfaces (Teodosiu 1982; Hull and Bacon 1984).  Linearized global 
and local continuity equations are, respectively, 
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 ( ); . ; 0ad ad bcd Pa
d d b cd

s v s

n ds dv dsα α ε β= = =∫ ∫ ∫ , ; 0ad
dα = . (3.234) 

Following Lardner (1969, 1974) the fully intermediate dislocation den-
sity tensor α�  is readily decomposed into contributions from positively 
signed dislocations ( +α� ) and negatively signed dislocations ( −α� ): 

 ( )
1

j
i i i i

i
+ − + − +

=

= + = − ⊗∑α α α b ξ��� � � � �ρ ρ ,  (3.235) 

                             
1

j
i i i

i
+ + +

=

= ⊗∑α b ξ��� �ρ , 
1

j
i i i

i
− − −

=

= ⊗∑α b ξ��� �ρ , (3.236) 

with ρ+�
i  and ρ−�

i  the densities (line length per unit volume in B� ) of posi-
tively and negatively signed dislocations, where, for each value of i, posi-
tive and negative dislocations share the same unit tangent ξ� i  (defined fol-
lowing (3.99)) but opposite Burgers vectors + −= −b b� �i i  and line velocities 

+ −= −v v� �i i .  Recall also from Section 3.2.5 that edge dislocations are char-
acterized by ⊥b ξ�� , while screw dislocations are characterized by b ξ�� & .  

Thus when a set of dislocations all sharing the same tangent line iξ�  (but 
different Burgers vectors ib� ) is considered, and when orthogonal coordi-
nate axes are introduced in B�  with one axis aligned along iξ� , screw dislo-
cations comprise the diagonal components of  α�  and edge dislocations 
comprise the off-diagonal components of α� .   

Werne and Kelly (1978) call α�  the net dislocation density tensor.  In 
contrast, the absolute or total dislocation density tensor Tα�  is defined as  

 ( )
1 1

j j
i i i i i

i i
+ − + − +

= =

= − = + ⊗ =∑ ∑T Tα α α b ξ α��� � � � � �ρ ρ , (3.237) 

where i
Tα� , the absolute dislocation density for straight dislocation line 

population i, is defined in (3.106).  Notice from (3.105) the explicit de-
pendence of the plastic velocity gradient 1−=P P PL F F�  on the summation of 
contributions from mobile dislocations comprising absolute dislocation 
density tensors i

Tα� .  Net and absolute dislocation density tensors can be 
further decomposed into contributions from mobile and immobile disloca-
tions (Lardner 1969), with the latter characterized by 0i

/+ − =v�  and thus not 
affecting dislocation flux (3.99) or plastic velocity gradient (3.105).  When 
the conditions 0+ −= + =α α α� � � , then 2 2+ −= = −Tα α α� � � .  When such condi-
tions hold for all 0t > , then the dislocation flux of (3.99) and plastic ve-
locity gradient of (3.105) may be nonzero, but the geometrically necessary 
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dislocation density vanishes.  In such cases, dislocation content of the crys-
tal is limited to statistically stored dislocations (Ashby 1970; Arsenlis and 
Parks 1999).  Statistically stored dislocations, also called redundant dislo-
cations (Arsenlis and Parks 1999), consist of closed loops, dislocation di-
poles, and other self-terminating dislocation structures that give no contri-
bution to the total Burgers vector of (3.217) or the dislocation density 
tensor (3.235).  A formal definition extending that given in a linear frame-
work by Arsenlis and Parks (1999) is 
              i i i

S T= −� � �ρ ρ ρ , 1 1( )i i i L i L i i
S T S TJ J− −= − = = −� � �ρ ρ ρ ρ ρ ρ , (3.238) 

where i
Sρ�  is the scalar statistically stored dislocation density per unit in-

termediate volume for dislocation population i, and the total scalar density 
of segments of orientation i and length iL  is 

 
0

1lim 0
i

i i
T V

L

dLdL
V dV→

= = ≥∫�
� � �ρ . (3.239) 

Summation over all populations leads to the following definitions: 

         
01

1lim
j

i
T T SVi L

dL
V→=

= = = +∑ ∫�
� � � ��ρ ρ ρ ρ , 

1

j
i

i=
= ∑� �ρ ρ , 

1

j
i

S S
i=

=∑� �ρ ρ .  (3.240) 

The scalar Tρ�  measures the total line density of all dislocations per unit 
volume in the intermediate configuration. 

Returning to the crystal connection of (3.190), note that by (2.218), 
 [ ]

... 1 1
. . ,2 0a L L

bdc a c bdR F Fα α− −= − = , (3.241) 

where ...a
bdcR  are the components of the Riemann-Christoffel curvature ten-

sor derived from ..a
bcΓ .  Conditions 0...a

bdcR =  ensure satisfaction of (3.241), 
meaning that the crystal connection is integrable (Schouten 1954).  Since 
the crystal connection is also metric (Section 2.1.3) with respect to LC  
from (3.170) with 0bcaQ = , and since its curvature tensor vanishes identi-
cally, the set { B , ..a

cdΓ , L
abC } constitutes a metric, non-Riemannian space.  

From (2.221), 
 ( )

..
, , ,2 L a L L L

ab cb d db c dc bcdC C C C= + −Γ . (3.242) 

In the particular instance wherein the torsion vanishes, i.e., 0..a
cdT =  such 

that ( )
..a ..a
cd cdΓ Γ= , the following statements apply: the crystal connection is 

symmetric (i.e., { B , ..a
cdΓ , L

abC } becomes a non-Cartan space), geometri-
cally necessary dislocations are absent, (3.242) defines a set of Levi-Civita 
connection coefficients akin to (2.58) on the current configuration with as-
sociated metric tensor LC , and the set { B , ..a

cdΓ , L
abC } constitutes a Euclid-
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ean space.  In that case, (3.192) applies, meaning 1
. .,

L
a aF xα α− = � .  The lattice 

director vectors then satisfy ( )
..

, ,
c

a b c b aba= =d d dΓ  and [ ], 0a b =d , and are tan-

gents to holonomic curves ( , )a x tλ : ., ., / / a
a a ax x= = =d d �� �α α α

α λ λ∂ ∂ ∂ ∂ . 

3.3.3 Disclinations 

The disclination concept is used to describe rotational defects in crystals.  
In a general sense, such defects may encompass low-angle, high-angle, and 
twin boundaries.  Disclinations can be interpreted as equivalent arrays of 
dislocations with net Burgers vectors that collectively can be used to repre-
sent grain and phase boundaries.  Limiting these boundaries to finite strain 
energy necessitates that they be composed of disclinations of finite size, 
i.e., partial disclinations compensated by disclination dipoles, termed dis-
clination structural units by Nazarov et al. (2000).  Finite elastoplasticity 
theory has been extended (Clayton et al. 2006) to incorporate continuous 
distributions of disclinations since such defects can describe size effects 
and self-organization of dislocation substructure, physical phenomena be-
coming increasingly evident in experimental characterization of ductile 
metallic crystals at finer length scales (Pantleon 1996; Hughes et al. 1998; 
Valiev et al. 2002).  By including both dislocations and disclinations in a 
geometric modeling framework, distinctions naturally emerge among dif-
ferent classes of geometrically necessary defect densities reflecting incom-
patible deformation modes at multiple length scales.  For example, Hughes 
and co-workers (Hughes et al. 1997, 1998) observed, within deforming 
ductile FCC metals, the formation of cells of relatively small misorienta-
tion organized collectively into larger cell blocks, with average misorienta-
tions between blocks usually greater in magnitude than those between 
cells.  With increasing applied strain, cell block sizes generally decrease at 
a faster rate than do cell sizes (Hughes et al. 1997).  In the context of the 
present geometric theory, the disclination concept can be used to capture 
gradients of lattice rotation (or alternatively, smoothed variations in orien-
tations of Bravais lattice vectors) in the vicinity of cell block boundaries 
that arise from organization and superposition of relatively small misorien-
tations between cells.  Lattice curvature (i.e., rotation gradients) resulting 
from the latter (small) misorientations are reflected by geometrically nec-
essary dislocations (Nye 1953).  The disclination concept has also been 
used (Clayton et al. 2008a) to describe misorientations across domain 
walls in polarized dielectric solids such as ferroelectric ceramic crystals 
wherein gradients of the polarization field may reflect domain wall ener-
gies (Maugin 1988; Shu and Bhattacharya 2001; Xiao et al. 2005). 
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In the early 20th century, Volterra (1907) introduced six fundamental 
types of defects in elastic bodies: three types of translational displacement 
discontinuities, known as edge and screw dislocations, and three types of 
rotational incompatibilities, later termed disclinations by Frank (1958) and 
further classified as either wedge or twist disclinations.  A detailed treat-
ment of Volterra models of straight dislocation and disclination lines is 
given in Section C.1 of Appendix C, including linear elastic solutions for 
isolated line defects embedded in isotropic bodies of infinite extent.   

Disclination theory has been applied to numerous problems of interest.  
These include descriptions of micropolar rotations in liquid crystals (Frank 
1958; Cermelli and Fried 2002), rotational defect substructures and strain 
hardening in metal forming (Romanov 1993; Valiev et al. 2002), grain 
boundary structure in crystalline solids (Li 1972; Gertsman et al. 1989), 
deformation twins (Mullner and Romanov 1994; Christian and Mahajan 
1995), and polycrystalline triple junctions (Bollmann 1991).  Disclinations 
have also been recognized as characteristic defects in polymers (Li and 
Gilman 1970) and nanocrystals (Nazarov et al. 1993; Konstantinidis and 
Aifantis 1998).  Molecular dynamics simulations incorporating disclina-
tion concepts (Shenderova and Brenner 1999; Nazarov et al. 2000) have 
been undertaken to characterize grain boundary energy distributions over a 
range of intergranular misorientations.  Spearot et al. (2005) proposed a 
partial disclination dipole model of distorted lattices in the vicinity of me-
tallic grain boundaries undergoing dislocation emission. 

Continuum theories of distributed disclinations can be found in geomet-
rically oriented works of Anthony (1970), Lardner (1973), Kossecka and 
De Wit (1977), Minagawa (1979, 1981), Amari (1981), and De Wit 
(1981).  In a series of three papers, De Wit (1973) provides a comprehen-
sive account of linear elastic solutions for discrete disclination lines and 
loops in isotropic and anisotropic solids.  Texts of Nabarro (1967), Lardner 
(1974), Mura (1982), Maugin (1993), and Zubov (1997) also include 
mathematical descriptions or elastic solutions.  Lazar and Maugin (2004) 
describe the stress field of a wedge disclination using higher gradient elas-
ticity theory.  Pecherski (1983, 1985) employs disclination concepts in 
continuum formulations describing finite elastic-plastic kinematics, strain 
hardening, dislocation substructure development, and geometrical soften-
ing, the latter resulting from local lattice rotations and acting as a potential 
precursor to shear localization.  An extensive review of disclination theory 
focusing upon kinetics and contributions to plastic strain hardening is pro-
vided by Seefeldt (2001), who suggests partial disclination dipoles be used 
to describe the collective effects of dislocations comprising misoriented 
subgranular interfaces (i.e., cell block boundaries) manifesting with dislo-
cation substructure refinement in advanced stages of plastic deformation.  
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Seefeldt et al. (2001) use dislocation-disclination models to predict texture 
diffusion and cellular refinement commensurate with grain subdivision.  
Panin (1998) and Makarov et al. (2000) emphasize the role of disclination 
structures accompanying finite rotations of the microstructure in metals of-
ten occurring in conjunction with shear localization triggered by micro-
scopic heterogeneity.   

Classification of disclinations as fundamental defects in Bravais crystals 
has been an occasional subject of debate in the literature (Kroner 1983; 
Marcinkowski 1990; Kroner and Lagoudas 1992).  This argument arises 
because one generally must consider a larger length scale of observation—
e.g., in a discrete disclination model the distance R from the axis of rota-
tion to the point where the discontinuity in displacement is measured—to 
define the displacement jump associated with a single disclination in a 
solid crystal than is required for an isolated dislocation, whose effects 
manifest at a scale on the order of the lattice parameter (i.e., the Burgers 
vector of a single dislocation).  In fact, one may construct a nearly equiva-
lent lattice configuration by replacing disclinations with organized arrays 
of translational dislocations (Li 1972; De Wit 1981; Seefeldt 2001).  While 
such a reconstruction in terms of dislocations may be capable of capturing 
the stress fields associated with the original distribution of disclinations, 
the lattice curvature may not always be identically reproduced (De Wit 
1981).   

Figure 3.16 shows how a simple tilt boundary may be represented either 
in terms of edge dislocations (Li 1960; Hull and Bacon 1984) or partial 
disclination dipoles (Li 1972).  In Fig. 3.16, θ  is the angle of misorienta-
tion, b is the magnitude of the Burgers vector, ω  is the magnitude of the 
Frank vector (i.e., the strength of the individual disclination), h is the spac-
ing between edge dislocations, l is the spacing between disclination di-
poles, and 2R is the characteristic spacing between partial wedge disclina-
tions comprising each disclination dipole.  The tangent line of each defect, 
directed out of the plane of the figure, is denoted by ξ .  Pure twist bounda-
ries may be constructed from either screw dislocations or partial twist dis-
clination dipoles in an analogous fashion (Seefeldt 2001), and general 
grain boundaries—including all types of coincident-site interfaces such as 
deformation twins—can be built up from a mixture of dislocation or dis-
clination types.   
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Fig. 3.16 Tilt boundary (left) comprised of edge dislocations (center) or partial 

disclination dipoles (right) 
 

Partial disclinations are needed to describe lattice misorientations of 
strength less than 90° in cubic crystal structures and of strength less than 
60° in hexagonal crystal structures.  Full wedge disclinations ( 3/ω π= ) 
with tangent lines normal to basal planes have been observed experimen-
tally in hexagonal structures (Anthony et al. 1968).   

In Fig. 3.17, director vector ad  is parallel transported about a closed 
loop to a new vector a′d  that differs from ad  by a finite rotation (Lardner 
1974).  The Cartan displacement about a Burgers circuit corresponding to 
the dashed line in Fig. 3.17 measures incompatibility induced by the dis-
clination.  The disclinated crystal structure exhibits a characteristic pen-
tagonal shape for both (i) a negative wedge disclination with tangent line 
normal to a {001} plane in a cubic lattice (shown in Fig. 3.17), corre-
sponding to insertion of a 90° wedge of material and (ii) a positive wedge 
disclination with tangent line normal to a basal {0001} plane in a hexago-
nal lattice (not shown), corresponding to removal of a 60° wedge of mate-
rial (De Wit 1971; Clayton et al. 2006).  Atomic coordinates differ in these 
two cases, however, as do elastic stress and strain fields induced by the de-
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fect since the algebraic sign and magnitude of ω  are different in each case 
(as are anisotropic elastic constants). 

Disclination dipole descriptions are generally required to allow termina-
tion of misoriented interfaces over finite distances, providing for bounded 
elastic energies (Li 1972; Seefeldt 2001).  Since the strain energy of a dis-
clination line or loop is proportional to 2( )Rω —see, e.g., the linear elastic 
isotropic solutions (C.149), (C.167), and (C.170) in Sections C.1 and C.2 
of Appendix C—disclinations tend to organize into dipoles to minimize 
(i.e., screen) the contribution of R to this energy, and tend to disocciate 
into partials (De Wit 1981) to minimize the contribution of ω  to this en-
ergy.  Partial disclinations have an associated surface energy (Li 1972), 
analogous to the stacking fault energy associated with partial dislocations. 

 

 
Fig. 3.17 Full negative (90°) wedge disclination in cubic lattice (Lardner 1974) 

 
A differential-geometric description of crystalline solids containing both 

dislocations and disclinations, based on general concepts introduced in 
Section 3.3.1, is given in what follows.  The linear connection coefficients 

..a
cbΓ̂  in the dislocation-disclination version of the present framework are 

given by (3.168), with the covariant components of Q restricted to be anti-
symmetric (Minagawa 1979, 1981; Clayton et al. 2006): 
 [ ]

..d L
cba cb da cab c baQ Q C Q Q= = − = , ( ) 0c baQ = . (3.243) 

Kinematic variable Q, termed here a micro-rotation or micropolar rotation, 
describes spatial gradients of lattice rotation within a crystalline volume 
element arising from distributed disclinations.  The absolute change of di-
rector vector ad  is then expressed in terms of the corresponding covariant 

derivative ∇̂ as in (3.166):  
 [ ]

1
. .

ˆ Lc L c
b a b a b a c b acF F Qα

α
−∇ = ∂ − ∂ −d d d d , (3.244) 

where (3.163) has been used.  Similarly, for contravariant field ( , )a x td , 
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 [ ]
1 1

. .
ˆ a a La L c L ad c

b b b c b cdF F C Qα
α

− −∇ = ∂ + ∂ +d d d d . (3.245) 

Although (3.154) and (3.155) apply for representative sets of director vec-
tors at the centroid of the volume element under consideration, differential 
equations (3.193) and (3.194) do not apply when Q is non-zero.  Instead, 
micro-polar rotation Q augments the description of spatial gradients of the 
director vectors obtained from direct differentiation of (3.154) and (3.155).   

Consider parallel transport of a covariant lattice director ad , over small 
oriented distance dx  to a new orientation a′d , conducted with respect to 
covariant derivative (3.244).  For illustrative purposes, attention is tempo-
rarily restricted to the special case when ≈LF 1  and spatial gradients of 
lattice deformation tensor LF  are negligible.  In that case, [ ]

c
b a b acQ∂ =d d , 

and     
   [ ] [ ], ( )b b c b c

a a a b a ac ac cb ac b acdx Q dx dx Qδ Φ′ = + = + = + =d d d d d d d , (3.246) 

where rotation matrix acΦ  satisfies 1T −≈Φ Φ  and det 1≈Φ  for small 
magnitudes of [ ]

b
b acdx Q , i.e., small relative lattice rotations such as those 

occurring across low-angle grain or subgrain boundaries (Brandon 1966).  
Notice from (3.246) that bacQ  acts in effect as a gradient of rotation in the 
direction of bx .  However, since Q is not required to satisfy the following 
compatibility conditions, it is not a true gradient:  
 [ ] [ ] [ ] [ ], , ,0b ac d d ac b b ac ac bQ Q Q ψ− ≠ → ≠ , (3.247) 

where [ ]acψ  is a skew matrix that exists only when [ ] [ ], ,b ac d d ac bQ Q= .    

In general situations, components of LF  and its spatial gradient may be 
arbitrarily large.  From (3.170), connection (3.168) restricted by conditions 
(3.243) is metric, since the covariant derivative of LC  vanishes: 
 ( )2 0L

c ab c ab
ˆ C Q∇ = − = . (3.248) 

Components of the torsion tensor of connection ..ˆ a
bcΓ  are given by  

 [ ] [ ] [ ]
.. .. .. 1 ..

. . ,
ˆ a a a La L a
bc bc bc c b bcT T Q F F Qα

α
−= + = + , (3.249) 

where ..a
cbT  is the torsion of the crystal connection discussed in Section 

3.3.2.  Covariant components of the Riemann-Christoffel curvature tensor 
are, from (3.175) and (3.176),  

 [ ] [ ][ ] [ ]

( ) [ ]( ) ( )

2 2

2 2 0

..e
abab cd a b cd e cd

..e
abab cd e cda b cd

ˆ ˆ ˆR Q T Q ,

ˆ ˆ ˆR Q T Q .

= ∇ +

= ∇ + =
 (3.250) 
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Thus, from the second of (3.250), the curvature tensor of the connection 
with micropolar rotations consists of up to nine independent components: 

[ ][ ]abcd ab cd
ˆ ˆR R= . 

Consider a Burgers circuit c in the current configuration, enclosing area 
a comprised of oriented differential elements bcf b c

fn da dx dxε = ∧ .  A total 
Burgers vector accounting for incompatibility induced by torsion and cur-
vature may be identified with the Cartan displacement of (3.179) (Kondo 
1964; Lardner 1973; Minagawa 1979): 

 
[ ]

[ ]

.. 1

.. 1

1ˆ ˆ ˆ
2

1ˆ ˆ    .
2

a a b c L ae d b c
bc bc de

a a

bcf a bcf L ae d
bc f fbc de

a a

B T dx dx C R x dx dx

T n da C R x n daε ε

−

−

= − ∧ − ∧

= − −

∫ ∫

∫ ∫
 (3.251) 

Total Burgers vector (3.251) reduces to that of (3.213) when disclinations 
are absent (i.e., when ..a ..a

bc bcT̂ T= , 0..a
bcQ = , and 0...a

bcdR̂ = ) . One can re-write 
(3.251) in terms of the second-order geometrically necessary dislocation 
tensor α  and second-order geometrically necessary disclination tensor θ , 
each referred to spatial configuration B: 
 1ˆ ( )a af L ae hf d

ehd f
a

B C x n daα ε θ−= +∫ , (3.252) 

where components of the defect density tensors are, in indicial notation13, 

 af fbc ..a
cbT̂α ε= , 1

4
gf gde fbc

cbdeR̂θ ε ε= . (3.253) 

The disclination density tensor of the second of (3.253) becomes equiva-
lent to the negative transpose of Einstein’s tensor of (2.38) when 

1/ 2(det )cab cabeε −⇒ LC .  Rank two defect density tensors α  and θ  of 

(3.253) enable full reconstruction of rank three torsion tensor T̂  and rank 
four curvature tensor R̂ : 

 [ ]
1
2

..a ..a ad
cb bcdcb

ˆ ˆT T ε α= = , [ ][ ]
fe

abcd bae cdfab cd
ˆ ˆR R ε ε θ= = . (3.254) 

The tensors of (3.252) are related to summed contributions of discrete 
defects as  

 
1

j
i i i

i
ρ

=

= ⊗∑α b ξ , 
1

l
k k k

k

η
=

= ⊗∑ ω ξθ . (3.255) 

                                                      
13 As with the dislocation density, the algebraic sign and placement of indices 

used to define the disclination density tensor vary among authors (Minagawa 
1979, 1981; De Wit 1981; Clayton et al. 2005, 2006, 2008). 
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In (3.255), iρ , ib , and iξ  are the scalar dislocation line density, Burgers 
vector, and tangent line, respectively, for dislocation population 

1,2,...i j= , while kη , kω , and kξ  are the scalar disclination line density, 
Frank vector, and tangent line, respectively, for disclination population 

1,2,...k l= .  Complete and partial disclinations may contribute to θ .  The 
physical definition of the dislocation density tensor α  in the first of 
(3.255) is identical to (3.215), but the mathematical definition in the first 
of (3.253) differs from that in (3.214) when [ ] 0..a

cbQ ≠ .  For an element of 

crystal containing a single dislocation population with uniform Burgers 
vector and tangent line, and a single disclination population with uniform 
Frank vector and tangent line, substitution of (3.255) into (3.252) gives 
 1ˆ ( ) ( )a a f h d L ae f

f ehd f
a a

B b n da x C n daρξ ε ω ηξ−= +∫ ∫ , (3.256) 

which in turn is the nonlinear analog of displacement jump relation (C.5) 
for a single Volterra line defect given in Section C.1 of Appendix C. 

Complete pull-backs of α  and θ  to the intermediate configuration B�  
are written 

              
[ ]

1 1
. .

1 1 1 .. 1
. , . . .     ,

L L ab L
a b

L bcd L L L L bcd a L
c d b a bdc

α J F F

J F F J F Q F

αβ α β

α β α β

α

ε ε

− −

− − − −

=

= +

�
 (3.257) 

              [ ][ ]
1 1 1 11

4
L L ab L L L adg bce L

.a .b .a .bce gd
ˆJ F F J F R Fαβ α β α βθ θ ε ε− − − −= =� , (3.258) 

with LJ  the Jacobian determinant of LF  found from (3.48).  Notice that 
(3.257) is consistent with (3.224), and hence (3.226) and (3.227) apply as 
transformation formulae for dislocation tangent lines, scalar numbers of 
dislocations per unit volume, and local Burgers vectors.  Analogous trans-
formation formulae can be assigned to disclination tangent lines, scalar 
numbers of disclinations per unit volume, and local Frank vectors in 
(3.255): 
      . . 0

k a La k a k A
AF Fα

αξ ξ ξ= =� , 1 1
0

k L k kJ Jη η η− −= =� , .
k b Lb kF α

αω ω= � ,  (3.259) 
where tilded quantities are defined on B� , and quantities with zero sub-
scripts are defined in reference configuration 0B .  The analog of (3.226) is 
then 

        
1 1

l l
ba k kb k a k k k

a a
k k

n da n da n da n daβ α βα
α αθ η ω ξ η ω ξ θ

= =

= = =∑ ∑ � �� � � � � � . (3.260) 

Kinematic variables α�  and θ�  may be regarded as “elastic” in the sense 
that they are derived completely from lattice kinematic quantities LF  and 



154      3 Kinematics of Crystalline Solids 

Q and/or spatial gradients of LF  and Q, and not from plastic deformation 
PF  or its higher-order gradients. 
As discussed in Section 3.3.2, α�  does not account for curved defect seg-

ments and combinations of defect lines that do not contribute to the total 
Burgers vector.  Hence, the same definitions introduced in (3.235)-(3.240) 
can be used to define total dislocation density tensors, scalar total disloca-
tion densities, and scalar statistically stored dislocation densities.  The 
same statements apply to the geometrically necessary disclination density 
tensor θ� : this tensor does not account for combinations of defect lines and 
loops whose local Frank vectors cancel and hence do not contribute to the 
total Burgers vector (3.252).  The disclination density can be decomposed 
into contributions from positively signed disclinations ( +θ� ) and negatively 

signed disclinations ( −θ� ): 

 ( )
1

l
k k k k

k

η η+ − + − +
=

= + = − ⊗∑θ θ θ ω ξ�� � � � � � ,  (3.261) 

where 

                             
1

l
k k k

k

η+ + +
=

= ⊗∑θ ω ξ�� � � , 
1

l
k k k

k

η− − −
=

= ⊗∑θ ω ξ�� � � , (3.262) 

with kη+�  and kη−�  the densities (line length per unit volume in B� ) of posi-
tively and negatively signed disclinations, where, for each value of k, posi-
tive and negative disclinations share the same tangent kξ�  but opposite 
Frank vectors k k

+ −= −ω ω� �  and if mobile, line velocities k k
+ −= −v v� � .  As ex-

plained in Section C.1 of Appendix C, twist disclinations are characterized 
by ⊥ω ξ�� , while wedge disclinations are characterized by ω ξ�� & .  Thus 
when a set of disclinations all sharing the same tangent line kξ�  (but differ-
ent Frank vectors kω� ) is considered, and when orthogonal coordinate axes 
are introduced in B�  with one axis aligned along kξ� , wedge disclinations 
comprise the diagonal components of θ�  and twist disclinations comprise 
the off-diagonal components of θ� .   

In contrast to (3.261), an absolute or total disclination density tensor Tθ�  
is defined as (Clayton et al. 2006) 

 
1
( )

l
k k k k

k
η η+ − + − +

=

= − = + ⊗∑Tθ θ θ ω ξ�� � � � � � . (3.263) 

When the conditions 0+ −= + =θ θ θ� � �  apply, then 2 2+ −= = −Tθ θ θ� � � .  When 
such conditions hold, then the total disclination line length L in the crystal 
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may be nonzero, but the geometrically necessary disclination density van-
ishes.  In such cases, the disclination content of the crystal is limited to sta-
tistically stored disclinations, analogous to statistically stored dislocations 
(Ashby 1970; Arsenlis and Parks 1999) discussed in Section 3.3.2.  Statis-
tically stored disclinations give no contribution to the total Burgers vector 
of (3.252) or the disclination density tensor (3.261).  A formal definition 
for the scalar density k

Sη�  of statistically stored disclinations of population k 
per unit intermediate volume is 
 k k k

S Tη η η= −� � � , 1 1( )k k k L k L k k
S T S TJ Jη η η η η η− −= − = = −� � � , (3.264) 

where the total scalar density of segments of orientation k and length kL  is 

 
0

1lim 0
k

k k
T V

L

dLdL
V dV

η
→

= = ≥∫�
� � � . (3.265) 

Summation over all l populations leads to the following definitions analo-
gous to those given for scalar dislocation densities in (3.240): 

 
01

1lim
l

k
T T SVk L

dL
V

η η η η
→=

= = = +∑ ∫�
� � � �� , 

1

l
k

k
η η

=

=∑� � , 
1

l
k

S S
k

η η
=

=∑� � .  (3.266) 

Notice that disclination dipoles, when summed over a finite volume, give 
no contribution to the value of θ�  or θ  for that volume, and hence no con-
tribution to the total Burgers vector.  In order to measure the misorienta-
tion attributed to a wall of disclination dipoles as in Fig. 3.16, one must 
consider in (3.252) the local field ( )xθ  consisting of contributions of in-
finitesimal Frank vectors ( )xω  with tangent lines ( )xζ  piercing area a en-
closed by the Burgers circuit.  Even though the average Frank vector of the 
disclination density tensor may vanish over the entire area, e.g., 

0ab
bn daθ =∫ , the distribution of disclinations within the area can still pro-

duce a nonzero total Burgers vector because of the presence of coordinates 
dx  in (3.252).  Alternatively, by treating each dipole as a single disclina-

tion with terminated radius of influence and effective Frank vector of 
magnitude 2 /R lω  (refer to Fig. 3.16), one can use an average value of 
(3.261) to compute the non-zero contribution of an array of disclination 
dipoles to the total Burgers vector or to the lattice misorientation across a 
boundary, as discussed at the conclusion of Section 3.3.3.  The stress field 
and strain energy of such an array of dipoles would differ from that of a 
distribution of disclinations of the same sign producing the same total Bur-
gers vector. 

Continuity equations for dislocation and disclination density tensors in 
the current configuration follow from Schouten’s identity (2.48) and Bian-
chi’s identity (2.50): 
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 [ ] [ ] [ ]
... .. .. ..ˆ ˆ ˆ ˆ ˆ2 4a a e a
bcd b cd bc d eR T T T= ∇ − , [ ] [ ]

... .. ...ˆ ˆ ˆ ˆ2a f a
e bc d eb c fdR T R∇ = . (3.267) 

Substitution of (3.254) gives for the first of (3.267): 
 [ ] [ ] ]

1 ˆL ae fg ae ag ef
bc g d ef b cd e d egbc fC ε ε θ α ε ε ε α α−

⎡⎣
= ∇ + , (3.268) 

and for the second of (3.267): 
 [ ] [ ]

1 1ˆ ( )L ag fh fk L ag mh
dgf dgme cb h be k c hfC Cε ε θ ε α ε ε θ− −∇ = . (3.269) 

The geometrically linear dislocation-disclination theory is now formally 
considered.  From (3.181), (3.186), (3.187), and (3.189), using (3.243): 
 .. ..

. ,
ˆ a La a

cb b c cbQΓ β≈ − + ; (3.270) 

 ( ) ( )
1ˆ
2

L
cc ba baCΓ ≈ ∂ , [ ] [ ] [ ]

ˆ L
cc ba ba c baQΓ β≈ ∂ + ; (3.271) 

 [ ] [ ]
.. ..

. ,
ˆ a La a
cb c b cbQΤ β≈ + ; (3.272) 

 [ ] [ ][ ]2bc da b c daR̂ Q≈ ∂ , ( ) 0bc daR̂ = . (3.273) 

The second of (3.271) can be written as 
 [ ] [ ] [ ]. .ˆ ba ba baL abd L

c c c dcQΓ Ω ε κ≈ ∂ + = , (3.274) 
where elastic bend-twist Lκ  and micropolar rotation ϕ  are defined by 

 [ ]
..,

1
2

L cdL
ab acd b abκ ε Ω ϕ= − − , [ ].1

2
cd

ab acd bQϕ ε= . (3.275) 

The dislocation density tensor of (3.253) becomes 
 ..

. , . ,( ) ( )af fbc La a fbc La dae
c b cb c b bd ecQα ε β ε β δ ε ϕ= + = + , (3.276) 

while the disclination density tensor in (3.253) can be expressed as 

 [ ][ ] [ ] . ,.
1 1
2 2

gf gde fbc gde fbc h fbc g
deh b cc b de c bQθ ε ε ε ε ε ϕ ε ϕ= ∂ = ∂ = . (3.277) 

Continuity equations in the linearized case can then be obtained by direct 
substitution into (3.268) and (3.269), replacing covariant derivatives with 
partial derivatives and omitting higher-order terms: 
 [ ] [ ]

ae fg ae
bc g d ef b cd eδ ε ε θ α ε= ∂ , (3.278) 

 [ ] 0fh
daf e bc hε θ ε∂ = . (3.279) 

In the context of a geometrically linear formulation, De Wit (1981) in-
ferred from equations analogous to (3.279) that disclination lines cannot 
end abruptly within a crystalline body, and from equations analogous to 
(3.278) that disclinations may act as sources or sinks for dislocations. 

Consider now the three-term decomposition of (3.137), wherein the lat-
tice deformation is decomposed as = =L E I E E I IF F F V R R U .  Following 
Lardner (1973, 1974), the rotational part IR  of IF , when the former is at-



3.3 A Linear Connection for Lattice Defects      157 

tributed solely to disclinations within a volume element of crystal, can be 
associated with the change in orientation of a vector with unit components 
( 1dx →  in (3.251)) upon parallel transport around a closed circuit of area 
a containing a non-vanishing disclination density θ  (Clayton et al. 2006): 

                   

...
. . . .

1
. . .

1
. . .

1
. . .

.

1 ˆ
2

      

      

ˆ      
ˆ      ( ),

I a a b c d
a d bcd

a

d L ae hf
a ehd f

a

d L ae hf
a ehd f

a

d L ae h
a deh

e d h
de deh

R g R dx dx g

g g C n da

g g C n da

g g C

g g

α α
β β

α α
β β

α α
β β

α α
β β

α
β

δ

δ ε θ

δ ε θ

δ ε Ω

δ ε Ω

−

−

−

⎛ ⎞
= − ∧⎜ ⎟

⎝ ⎠

= +

≈ +

= +

≈ +

∫

∫

∫  (3.280) 

and where in the third equality of (3.280), a constant lattice stretch has 
been assumed over a, such that the net Frank vector ˆ h hf

fn daΩ θ= ∫  acts 

in Cartesian coordinates as the axial vector of −IR 1 , meaning that IR  is 
truly orthogonal only in the limit of small lattice stretch and small rotations 
as implied in the final expression.  Notice that (3.280) is non-unique in the 
sense that IR  depends on choice of oriented area element dan .  In a crys-
tal plasticity framework (Section 3.2.6), one possible means of addressing 
this integral involves a discrete sum over area elements on representative 
set of crystallographic planes (e.g., low-index or slip planes) (Clayton et al. 
2006).  A more general approach advocated here, accounting for all possi-
ble orientations n, is prescription of the domain of integration in (3.280) as 
a spherical half-shell (in orientation space) of radius l :   

            2 1
. . . .

0 0

(sin )( )( )I d L ae hf
a ehd fR g g C n d d

π π
α α α
β β βδ ε θ φ φ ϕ−= + ∫ ∫l , (3.281) 

where hfθ  is expressed in rectangular coordinates, unit normal compo-
nents are 2 2

1 sin cosn φ ϕ= , 2 2
2 sin sinn φ ϕ= , and 2

3 cosn φ= , and 2l  corre-
sponds to the effective area over which the disclinations act.  In the limit 
that the crystal volume element shrinks to infinitesimal size (see Fig. 3.12), 

0→l , and effects of disclinations cannot be resolved by the multiplicative 
decomposition of the deformation gradient (3.137).   

Dislocation-disclination theory may be applied to describe evolution of 
cellular defect substructures observed in ductile metallic crystals deformed 
at low homologous temperatures to relatively large total strains (Stout and 
Rollett 1990; Pantleon 1996; Hughes et al. 1997, 1998; Valiev et al. 2002).  
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As shown in the left part of Fig. 3.18, this substructure consists of nearly 
equiaxed cells with interiors of relatively low defect density, separated by 
incidental dislocation boundaries (IDBs) across which lattice misorienta-
tions are generally of the low-angle variety, for example, limited to less 
than 10° in aluminum and nickel cold-rolled to 100% effective strain 
(Hughes et al. 2003).  With increasing applied strain, the cells tend to or-
ganize collectively into bands or cell blocks, often elongated in shape in a 
direction depending upon the initial texture and loading conditions.  The 
cell blocks are separated by dislocation walls termed geometrically neces-
sary boundaries (GNBs), across which misorientations can reach high-
angle magnitudes, i.e., in excess of 15°.  Both GNBs and IDBs are thought 
to contain mixed populations of statistically stored and geometrically nec-
essary dislocations (Hughes et al. 2003).  

 

 
Fig. 3.18 Dislocation substructure (left) and lattice director vectors (right) in a 

severely plastically deformed (SPD) single crystal 
 
In the context of the present geometric framework, kinematics of defect 

substructure can be described as follows.  Redundant dislocations and dis-
clinations that contribute no net misorientation are grouped collectively 
into statistically stored dislocation and disclination scalars: line lengths per 
unit spatial volume Sρ  and Sη , respectively, as introduced following 
(3.238) and (3.264), respectively.  Geometrically necessary dislocations 
comprising α  represent non-redundant defects corresponding to fluctua-
tions in lattice orientation in the vicinity of the cell boundaries, i.e., IDBs.  
Micropolar rotation variable Q (in conjunction with associated net discli-
nation density tensor θ ) measures the non-redundant defect content of the 
cell block boundaries, i.e., GNBs.   Fractions of dislocations and disclina-
tions that are non-redundant or geometrically necessary as opposed to re-
dundant or statistically stored may differ since they represent different fea-
tures of the microstructure. 
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The general theory developed in Section 3.3.3 places no restriction on 
characteristic spacing or strength (i.e., magnitude of angle) of the misori-
ented boundary to which is attributed a particular type of defect density.  
For example, dislocations could alternatively comprise GNBs and disclina-
tions could comprise IDBs, or a mixture of defect types could comprise 
each kind of boundary.  The decision to model GNBs with the disclination 
density and IDBs with the dislocation density stems from both conven-
ience and from physical considerations in agreement with models set forth 
in prior literature (Panin 1998; Seefeldt 2001).  Thus, the rotational units 
that serve to accommodate inelastic deformation and subgranular incom-
patibility seen at comparatively large strains are associated with disclina-
tions (GNBs), with geometrically necessary dislocations capturing the lo-
cal misorientations across IDBs arising at a smaller length scale.  From this 
standpoint, with inelastic straining, dislocations accumulate first, and then 
later organize into disclination structures at larger applied deformations 
(Seefeldt 2001; Valiev et al. 2002).   

The micro-rotation concept in the context of GNBs and IDBs is illus-
trated on the right side of Fig. 3.18.  Let x  and ′x  be spatial coordinates of 
material points in neighboring cell blocks, with corresponding lattice di-
rector vectors ad  and a′d .  Recall that by definition, in configuration B�  
director vector triads are parallel, leading to 
 α α′=d d . (3.282) 

Let LF  and ′LF  denote the local lattice deformations at x  and ′x , respec-
tively.  Pre-multiplying both sides of (3.282) by 1−′LF  results in 

 
1 1

1 . .
. .( )

L L
L c c Lba a

a a bc c

F FF x x F
x x

α α
α

α

− −
−

⎡ ⎤′ −′ ′= + −⎢ ⎥
′ −⎢ ⎥⎣ ⎦

d d . (3.283) 

From (3.166), (3.168), and assertion of parallel transport (i.e., 0b a∇̂ =d ), 
 1 1 1 ..

. . , . .( )L L c L d c Lb
a a a c d ca bF F dx F Q dx Fα α α

α
− − −′ = + +d d , (3.284) 

where c c cdx x x′= −  and b
a a a,bdx′ − ≈d d d .  Comparing (3.283) and 

(3.284), Q reflects the possible inability of the first spatial gradient of 1−LF  
to capture the change in the directors over small distance cdx :   

 
1 1

.. 1. .
. . ,

L L
d Ld La a

ca a cc

F FQ F F
dx

α α
α

α

− −
−

⎛ ⎞′ −
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

. (3.285) 

One can think of Q as implicitly representative of cumulative effects of all 
higher than first-order gradients of the (inverse) lattice deformation 1−LF  
on the spatial variation of the lattice directors.  In many higher-order gra-
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dient crystal plasticity theories from the more recent literature (Naghdi and 
Srinivasa 1993; Le and Stumpf 1996a, b, c; Shizawa and Zbib 1999; 
Acharya 2001; Bammann 2001; Regueiro et al. 2002; Garikipati 2003; 
Clayton et al. 2004b), the first-order gradient of the elastic or plastic de-
formation influences the material response, for example through its mani-
festation in the dislocation density tensor.  However, by including the mi-
cro-rotation variable Q, potentially nonlinear spatial variations in lattice 
directors between neighboring material points are captured.  This nonlin-
earity arises in the dislocation density α  and in the disclination density θ  
through variable Q and its spatial gradient, respectively.  It is noted that 

..a
bcQ  is not an explicit function of higher-order lattice deformation gradi-

ents 1
. ,

L
a bcF α− , 1

. , ,...L
a bcdF α− ; rather, Q is an independent kinematic variable.  

The disclination concept has been extended to describe domain bounda-
ries in spontaneously polar perovskite crystals (Clayton et al. 2008a).  
Consider a finite wedge disclination density—e.g., a set of partial wedge 
disclination dipoles (Li 1972)—with net nonzero component 11θ ηω= , 
meaning both the axis of rotation ( ζ ) and the effective rotation vector (ω ) 
are aligned along the x1-direction in the sample.  An effective disclination 
density tensor in this case can be used to represent a tilt boundary with 
misorientation vector aligned along the x1-direction.  In this construction, 
each dipole is replaced with a single disclination line of strength ω  whose 
Frank vector terminates at a distance R from the core of the defect, i.e., at 
the position of the other disclination line comprising the dipole in Fig. 
3.16.  To represent domain walls in barium strontium titanate (BST), for 
example, let 21/ Dη ∝ l  where Dl  is the typical domain or grain size, on the 
order of 50 nm in representative BST thin films (Cole et al. 2003).  Refer-
ring to Fig. 3.16, for a standard low-angle boundary, /12πθ ≤  (Brandon 
1966), while / 2πθ =  and πθ =  are energetically favorable misorienta-
tions across domain walls in non-cubic phases of some kinds of ferroelec-
tric crystals (Shu and Bhattacharya 2001).  For closely packed disclination 
dipoles, R l2 =  and ωθ =  in Fig. 3.16. 

3.3.4 Point Defects 

Attention is now focused on a geometric representation of uniformly dis-
tributed point defects within a volume element of a crystal structure.  Re-
call that the contribution VF  of such defects to the lattice deformation 

LF of the total deformation gradient F for such an element is described in 
Section 3.2.8, specifically in (3.128)-(3.136).  The corresponding micro-
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scopic description, at a more refined length scale of explicitly resolved 
gradients in the lattice directors, is given in what follows.  The same con-
nection coefficients ..ˆ ( , )a

bc x tΓ  listed in (3.168) are used, but the form of Q 
is restricted as (Minagawa 1979, 1981; Clayton et al. 2005, 2008a) 
                 1..a La L ..a ..a a

cb . .b ,c cb cb c .b
ˆ F F Qα

αΓ Γ ϒ δ−= + = + , ..a a
cb c .bQ ϒ δ= ,   (3.286) 

while the covariant version of Q is ( )
L L

cba c ba c baQ C Cϒ ϒ= = .  From (3.166), 

 ..
,

ˆ c c b c c
c a a c ca b c adx dx dx dxΓ ϒ∇ = − −d d d d , (3.287) 

implying that the contribution from point defects to derivative c a∇̂ d  is an 
isotropic stretch of magnitude | |c

cdxϒ .  Considering for the moment the 
case when the crystal connection coefficients vanish and the directors un-
dergo parallel transport, and letting c c cdx x x′= − , (3.287) results in  
 , (1 )c c

a a a c c adx dxϒ′ = + = +d d d d , c a c aϒ∂ =d d . (3.288) 
The connection in (3.286) is non-metric, since by (3.170),  
 2L L

c ab c ab
ˆ C Cϒ∇ = − , (3.289) 

meaning physically that vacancies, interstitials, or voids alter the counting 
of atomic steps in the crystal (Kroner 1981, 1990).  The torsion tensor is, 
upon substitution of (3.286) into (3.171), 
 [ ]

..a ..a a
cb cb c .bT̂ T ϒ δ= + , (3.290) 

From (3.174) or (3.175), skew components of the covariant Riemann-
Christoffel curvature tensor vanish identically since L

abC  is symmetric: 
 [ ][ ] [ ] [ ] [ ]

..ˆ ˆ ˆ2 2 0L e L
bc ebc da b c da daR C T Cϒ ϒ= ∇ + = . (3.291) 

From (3.176), symmetric components of the curvature tensor are 

     [ ]( ) [ ] [ ] [ ]

[ ]

.. .. ..ˆ ˆ ˆ ˆˆ2( ) 2( )

           2 .

e L e e L
bc e da e bc e dabc da b c b c bc

L
dab c

R T C T C

C

ϒ ϒ ϒ Γ ϒ ϒ

ϒ

= ∇ + = ∂ − +

= ∂
 (3.292) 

The total Burgers vector resulting from Cartan displacement (3.179) is 

 

( )

[ ] [ ]

[ ] [ ]

.. 1

..
. ,

..
. ,

1ˆ ˆ ˆ
2

    ( )

    ( )

    ,

a a L ae d b c
bc bc de

a

a a b c a b c
bc b c b c

a a

bce a a bce a
bc e eb c b c

a a

ae a e
e e

a a

B T C R x dx dx

T dx dx x dx dx

T n da x n da

n da x n da

ϒ δ ϒ

ε ϒ δ ε ϒ

α ϑ

−⎡ ⎤= − + ∧⎢ ⎥⎣ ⎦

= − + ∧ + ∧

= − + +

= +

∫

∫ ∫

∫ ∫

∫ ∫

 (3.293) 
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where the dislocation density tensor α  is defined in terms of the torsion in 
the same way as in (3.253) and (3.254): 
         .. 1

. . , .
ˆae cbe a cbe La L cbe a
bc c b c bT F F α

αα ε ε ε ϒ δ−= = − , ..ˆ2 a ae
bc cbeT ε α= ,  (3.294) 

and components of the point defect vector (Clayton et al. 2008a) satisfy14 

     

[ ]

[ ]

[ ] ( )

[ ]( )

..
,

..
.

1 ..

1

ˆ ˆ( )

1 ˆ ˆ    ( )
3
1 ˆ ˆ    (2 2 )
6
1 ˆ    .
6

e ebc ecb e
b c bc eb c

a ecb e
a bc eb c

L ad ecb e L
bc e dab c

L ad ecb
bc ad

T

T

C T C

C R

ϑ ε ϒ ε ϒ ϒ

δ ε ϒ ϒ

ε ϒ ϒ

ε

−

−

= = ∇ +

= ∇ +

= ∇ +

=

 (3.295) 

When (3.291) applies, the disclination density of (3.253) and (3.254) van-
ishes.  Dislocation density α  has the same physical interpretation as that 
given in (3.215) of Section 3.3.2, but differs mathematically from (3.214) 
by the term [ ].

bce a
c bε ϒ δ .  From (3.295), it follows that [ ],2 d

bcdb cϒ ε ϑ= .   

A local differential Burgers vector induced by the point defect vector is 

       ,
ˆ

e
a a b c a e a a

b c e eb
b

dB x dx dx x n da x n da x
dx dx
δχϒ ϑ δχ

⎡ ⎤
= ∧ = = =⎢ ⎥

⎣ ⎦
, (3.296) 

where the following definitions apply: 
    e e e e b

bn da dx dxδχ δχ ϑ ϑ= = = , e
eδχ δχ δχ= , b

bda dx dx= . (3.297) 
From (3.296) and (3.297), one then may write 
 ˆ (1 ) (1 )a a a e a

ex dB x n da xδχ ϑ+ = + = + , (3.298) 
where δχ  represents a microscopic isotropic expansion ( 0δχ > ) or con-
traction ( 0δχ < ).  Consider the case when the point defects correspond to 
atomic vacancies in the lattice.  Analogous to the situation for continuous 
distributions of dislocations discussed in Section 3.3.2, let the radius of 
each vacancy shrink to zero and the number of vacancies in each volume 
element tend to infinity, such that their product remains finite.  Let δχ  
represent a constant spherical stretch of the lattice produced by a concen-
tration of vacancies at the origin 0ax = .  Coordinates of a nearby point x′  
after application of this microstretch are then (1 ) axδχ ′+ .  A ,simple physi-
cally motivated assumption is that δχ  is equivalent to the vacancy concen-

                                                      
14 A factor of 1/6 was unintentionally omitted in (23)1 of Clayton et al. (2008a).  

That misprint is corrected here in (3.295).  The opposite sign convention was used 
in that work for the Cartan displacement. 
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tration at x  minus that at x′  (Clayton et al. 2008a).  Bianchi’s identity in 
the second of (3.267) becomes for the present case 
 [ ] [ ] [ ] ]

..
,

ˆ ˆ ˆf a fa
f fe c b eb c e cb a cbe aTϒ ϒ ϑ ε ε α ϒ⎡⎣

∇ = ∂ ⇔∇ = ∂ , (3.299) 

providing a continuity equation for the point defect vector.  
The geometrically linear theory is now reconsidered for crystals with 

dislocations and point defects.  From (3.181), (3.186), (3.187), and (3.189), 
using (3.286): 
 ..

. , .
ˆ a La a

cb b c c bΓ β ϒ δ≈ − + ; (3.300) 

 ( ) ( ) ( )
1ˆ
2

L L
c cc ba ba baC CΓ ϒ≈ ∂ + , [ ] [ ]

ˆ L
cc ba baΓ β≈ ∂ ; (3.301) 

 [ ] [ ]
..

. , .
ˆ a La a
cb c b c bΤ β ϒ δ≈ + ; (3.302) 

 [ ] 0bc daR̂ = , ( ) [ ]
ˆ 2 dabc da b cR ϒ δ≈ ∂ . (3.303) 

The dislocation density tensor of (3.294) and point defect vector of (3.295) 
are 
 [ ]. , .( )af fbc La a

c b c bα ε β ϒ δ≈ + , [ ],
e ebc

b cϑ ε ϒ= ,  (3.304) 

where the latter evidently is the same in both linear and nonlinear descrip-
tions.  The linear disclination density tensor in (3.277) vanishes.  The con-
tinuity equation (3.299) in linearized form is 
 [ ] [ ], 0 0a

e c b e cb aϒ ϑ ε∂ = ⇔ ∂ = . (3.305) 

Consider now a linear connection formed by superposition of compo-
nents of the crystal connection with skew and symmetric components of Q 
introduced, respectively, in (3.243) and (3.286): 
 [ ]

.. .. 1
.

ˆ a a L ad a
cb cb c bc bdC QΓ Γ ϒ δ−= + + , (3.306) 

where [ ]
1L ad

c bdC Q−  accounts for disclinations according to Section 3.3.3 

and .
a

c bϒ δ  accounts for point defects as discussed above.  In this case,  
 2L L

c ab c ab
ˆ C Cϒ∇ = − , (3.307) 

 [ ]
.. .. 1

.
1ˆ ( )
4

a a L ae a
cb cb cbe bce ceb bec c bT T C Q Q Q Q ϒ δ−= + − − + + . (3.308) 

Skew components of the covariant Riemann-Christoffel curvature tensor 
are identical to the first of (3.250): 

 [ ][ ] [ ][ ] [ ] [ ] [ ]

[ ][ ] [ ]
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ˆ ˆ ˆ2 2

ˆ ˆ          2 2 .

e L
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e
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R Q T Q C

Q T Q

ϒ ϒ= ∇ + +

= ∇ +
 (3.309) 

From (3.176), symmetric components of the curvature tensor are identical 
to (3.292): 
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  [ ]( ) [ ] [ ]
..ˆ ˆ ˆ2( ) 2 .e L L

bc e da dabc da b c b cR T C Cϒ ϒ ϒ= ∇ + = ∂  (3.310) 

The total Burgers vector resulting from Cartan displacement (3.179) is  
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where spatial components of the defect density tensors are, in indicial no-
tation, 

 af fbc ..a
cbT̂α ε= , 1

4
gf gde fbc

cbdeR̂θ ε ε= ; (3.312) 

 [ ]( )
1

,
1 ˆ
6

f bcf L de fbc
b c cb deC Rϑ ε ϒ ε−= = . (3.313) 

Definitions (3.312) and (3.313) agree with (3.253) and (3.295), and can be 
inverted to reconstruct the torsion and curvature tensors: 
 ..ˆ2 a af

cb bcfT ε α= , [ ]
gf

fbc gdecb deR̂ ε ε θ= , ( )
ˆ f L

bcf decb deR Cε ϑ= . (3.314) 

Substitution of (3.314) into identities (3.267) then provides continuity 
equations relating dislocation and disclination density tensors, the point 
defect vector, and their covariant derivatives: 
     [ ] [ ] [ ] ]

1
.

ˆL ae fg a f ae ag ef
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3.3.5 Summary 

The theory presented in Section 3.3 is founded upon two major assump-
tions, the first being multiplicative decomposition (3.31), = L PF F F , of the 
average deformation gradient F for a volume element of a crystalline solid, 
where plastic deformation attributed to the flux of mobile crystal defects, 

PF , is lattice-preserving or lattice invariant, and where LF  accounts for 
stretch and rotation of the lattice.  Lattice deformation LF  can be further 
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decomposed into recoverable and residual parts according to (3.137), but 
such an enhanced description is not necessary in the context of Section 3.3.  
The second major assumption is an additive decomposition of a linear 
connection describing spatial gradients of lattice director vectors between 
neighboring crystalline elements, i.e., a microscopic description.  Coeffi-
cients of this connection, introduced in (3.168), may be written as 

[ ] N ( )
.. 1 1 1

. . .

micro-crystal          micro-strainmicro-rotation dilatancyconnection (Somigliana disloca(disclinations) (point defects)(dislocations)

ˆ ( )a La L L ad a L ad L
cb c b b c c bdc bdc bdF F C Q C Q Cα

αΓ δ ϒ ϒ− − −= ∂ + + + −��	�
 ��	�

tions)

����	���

 (3.317) 

where the first term on the right side of (3.317) describes gradients of the 
director vectors attributed to first-order spatial gradients of the average lat-
tice deformation tensor LF  at the centroid of the volume element, follow-
ing Bilby et al. (1955), as discussed in Section 3.3.2.  Micromorphic vari-
able Q (Minagawa 1979; De Wit 1981; Clayton et al. 2005, 2008a) 
participates in the remaining three terms on the right of (3.317): a micro-
rotation associated with disclinations as discussed in Section 3.3.3, a 
spherical micromorphic expansion or contraction associated with point de-
fects as discussed in Section 3.3.4, and a general micromorphic strain that 
may be used to represent arbitrary lattice director deformations when com-
bined with the other terms in (3.317).  Defect densities then follow from 
contributions of the torsion and curvature of the connection to the Cartan 
displacement defined generically in (3.177).  When the rightmost term is 
absent in (3.317) and ( )

L
c bdc bdQ Cϒ= , then suitable definitions for defect 

densities are given in (3.312)-(3.313).  On the other hand, when 

( )
L

c bdc bdQ Cϒ≠ , alternative definitions of defect densities are possible. 

Table 3.5 provides classifications of the affine geometries correspond-
ing to various crystal defects (Clayton et al. 2005), following the geometric 
terminology of Section 2.1.1 and motivated by Steinmann (1996).  The 
present framework has been developed with the primary intent of describ-
ing crystalline solids that deform plastically by dislocation glide, most 
typically exhibiting a Bravais lattice structure and most often realized in 
engineering metals in a face centered cubic, body centered cubic, or hex-
agonal close packed arrangement (Tables 3.2 and 3.4).  Concepts that have 
been forwarded here are most naturally applied to cubic lattices, wherein 
the director vectors of (3.155) may be assigned parallel to primitive trans-
lation vectors of the Bravais lattice as in (3.164) (recall from Section 3.1.1 
that primitive Bravais lattice vectors and their reciprocals are parallel in 
cubic crystals).  The framework is valid for crystal structures of lower 
symmetry (e.g., hexagonal Bravais lattices) so long as the Cauchy-Born 
rule (Section 3.1.2) applies for deformation of the inter-atomic bond vec-
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tors.  In such cases, while the covariant directors of relations (3.155) as-
signed to each crystalline volume element are not parallel to physical 
edges of primitive or conventional unit cells of the Bravais lattice, they are 
assumed to fully characterize the stretch and rotation of interatomic vec-
tors comprising the primitive cells contained in that volume element, as is 
clear from (3.165).  On the other hand, for more complex structures 
wherein recoverable (i.e., elastic) deformation is non-uniform within the 
unit cell, e.g., polyatomic structures such as non-centrosymmetric crystals 
with a basis undergoing inner displacements among sub-lattices (Cousins 
1978; Garikipati 2003), additional degrees of freedom not included in Sec-
tion 3.3 may prove useful for characterizing certain kinds of defects that 
affect the geometry of each sub-lattice differently.   

 
Table 3.5 Geometric classifications, kinematic quantities, and lattice defects 

Geometry Torsion Curva-
ture 

Metric Defects 

Euclidean 
( B� holonomic) 

0ˆ =T  0ˆ =R  0∇̂ =LC  
 

Statistically stored defects 15 

Cartan and non-
Riemannian 

0ˆ ≠T  0ˆ =R  0∇̂ =LC  
 

Geometrically necessary  
dislocations 

Riemannian  
and symmetric 

0ˆ =T  0ˆ ≠R  0∇̂ =LC  
 

Geometrically necessary  
disclinations 

Metric, Cartan, 
and Riemannian 

0ˆ ≠T  0ˆ ≠R  0∇̂ =LC  
 

Dislocations and disclinations 

Non-metric, 
Cartan, and 
Riemannian 

0ˆ ≠T  0ˆ ≠R  0∇̂ ≠LC  
 

Any point and line defects 
 

 
 

                                                      
15 Admissible for all geometries in Table 3.5.  All straight non-terminating dis-

locations are geometrically necessary when considered in isolation; collections of 
SSDs produce no net Burgers vector and no contribution to the torsion tensor. 

 



4 Thermomechanics of Crystalline Solids 

Chapter 4 addresses fundamental thermomechanical relationships neces-
sary for describing physical behavior of crystalline materials.  Meant by 
the term thermomechanics are the balance principles from continuum me-
chanics and thermodynamics that dictate the response of the solid when 
subjected to mechanical forces, temperature variations, or other physical 
stimuli.  Accordingly, the state of the material, for example equilibrium 
positions of atoms within a crystal and local vibrations of atoms about 
these positions, may change reversibly or irreversibly during a thermome-
chanical process.  Complementary to the geometrically nonlinear descrip-
tion of kinematics in Chapter 3, the content of Chapter 4 focuses on de-
scriptions of solid bodies subjected to finite deformations.  Reductions of 
the nonlinear theory to the case of geometric linearity are included in many 
instances.   

The behavior of crystalline solids generally consists of a combination of 
a (thermo)elastic response corresponding to recoverable deformation and 
the inelastic response corresponding to plastic deformation such as that re-
sulting from the generation and motion of defects.  Elastic materials with 
viscosity and heat conduction were examined from a continuum thermo-
dynamic viewpoint by Coleman and Noll (1963), who developed a method 
for exploiting the entropy production inequality to deduce thermodynamic 
relationships among field variables and restrictions on constitutive laws.  
Coleman (1964) extended this approach to materials with memory.  In ear-
lier work, Eckart applied similar, but apparently less mathematically for-
mal, approaches towards deducing thermodynamic restrictions on behav-
iors of simple fluids (Eckart 1940) and elastic-anelastic bodies undergoing 
potentially large deformations (Eckart 1948).  Anelasticity in a general 
sense refers to any thermodynamically irreversible deformation and en-
compasses viscoelasticity and plasticity, for example.  Viscoelastic media, 
both solid and fluid, were a primary focus of the study of Coleman and 
Noll (1963). 

The internal state variable concept is used in continuum theories to rep-
resent features of the material distinct from those addressed by conven-
tional field variables (i.e., external variables) such as deformation and 
temperature.  Internal state variables for crystalline solids often represent 
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microscopic features of the crystal structure that may evolve with strain or 
temperature.  For example, internal state variables can often include scalar- 
or tensor-valued measures of defect densities such as the number of point 
defects per unit volume in (3.133) or the dislocation density tensor of 
(3.224).  Evolution refers to a change of a variable with time.  Coleman 
and Gurtin (1967) developed a formal procedure using the balance of en-
ergy and dissipation inequality to impose restrictions on evolution of inter-
nal state variables.  Internal state variable concepts were applied by Rice 
(1971) in an examination of inelastic constitutive relationships for crystal-
line solids.  A critical comparison of competing theories of thermodynam-
ics of irreversible processes is outside the scope of this text; a concise 
overview is given by Maugin (1988, pp. 99-115).  Other relevant works 
that feature treatments of continuum thermodynamics include those of 
Gurtin (1965), Truesdell and Noll (1965), Malvern (1969), Germain et al. 
(1983), Ericksen (1991), Grinfeld (1991), and Maugin and Muschik 
(1994a, b). 

Chapter 4 is organized as follows.  Continuum concepts of mass density, 
traction, and stress referred to reference and current configurations are in-
troduced.  Thermodynamic potentials are defined.  Classical balance equa-
tions of thermomechanics in continuous media undergoing potentially 
large deformations are reviewed: conservation of mass, momentum, and 
energy.  A brief introduction to internal state variable theory is provided, 
including discussion of possible choices of internal variables for crystalline 
solids, followed by presentation of the dissipation inequality.  Chapter 4 
concludes with a short treatment of general kinetic relationships for irre-
versible processes, including dissipation potentials for inelastic rates.  
Much of the material presented in Chapter 4 applies to any continuous 
body in the framework of continuum mechanics; i.e., much of the forth-
coming treatment in Chapter 4 is not restricted to crystalline solids and 
also applies to amorphous solids and fluids, for example. 

Developments in Chapter 4 are, however, restricted to classical continua 
as opposed to generalized continua.  Generalized continua do not always 
obey standard balance laws of momentum and energy presented in Chapter 
4.  Generalized continua include materials supporting couple stresses 
(Cosserat and Cosserat 1909; Toupin 1962, 1964; Malvern 1969).  Be-
cause balance laws of generalized continua differ among various theories, 
balance laws for generalized continua are addressed in this book on a case-
by-case basis.  Specifically, governing equations for generalized elasticity 
(Toupin 1964) are discussed in Section 5.7 of Chapter 5, for generalized 
elasticity with an evolving intermediate configuration (Teodosiu 1967a, 
1968) in Section 6.7 of Chapter 6, and for micropolar elastoplasticity 
(Clayton et al. 2006) in Section 9.4 of Chapter 9.   
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Possible electromagnetic contributions to governing equations are omit-
ted from the presentation of Chapter 4 and are deferred until Chapter 10.  
In continuum electromechanical theories (Stratton 1941; Toupin 1956, 
1963; Eringen 1963; Tiersten 1971; Maugin 1988), electromagnetic forces 
may influence balances of momentum and energy and the reduced entropy 
inequality. 

4.1 Classical Balance Laws and Definitions 

The present Section discusses what are termed classical balance laws of 
continuum mechanics: mass conservation, linear and angular momentum 
conservation, and the balance of energy.  Though applicable to continuous 
bodies of an arbitrary nature, these relationships are used in later Chapters 
to enable rigorous descriptions of physical phenomena in crystalline solids 
deforming by one or more physical mechanisms (e.g., elasticity, disloca-
tion-based plasticity, void growth, fracture, and so forth).  Definitions of 
thermomechanical variables are presented first, followed by the aforemen-
tioned conservation and balance laws.  Introduction of the dissipation ine-
quality, i.e., the Second Law of Thermodynamics, follows later in Section 
4.2.2.  For additional insight, the reader is referred to other books dealing 
with nonlinear continuum mechanics (Truesdell and Toupin 1960; Eringen 
1962; Truesdell and Noll 1965; Malvern 1969; Gurtin 1981; Marsden and 
Hughes 1983).  Omitted from the discussion is treatment of surfaces of 
discontinuity1 occurring in the context of shock waves (e.g., discontinuous 
particle velocity, deformation gradient, and stress) or acceleration waves 
(e.g., discontinuous particle acceleration, velocity gradient, and second-
order position gradient).  In other words, sufficient differentiability of field 
variables is presumed unless noted otherwise. 

4.1.1 Definitions 

Definitions are provided for fundamental local quantities associated with 
mass, force, energy, and entropy.  When forces or energies are measured 
on a per unit area or per unit volume basis, multiple definitions are needed 
to represent such quantities corresponding to each configuration of a de-
formable body.  At a minimum, two definitions are needed for complete-
ness: one referred to reference configuration 0B  and another referred to 
                                                      

1 Surfaces of discontinuity are formally addressed by Truesdell and Toupin 
(1960). 
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spatial configuration B.  For tensor-valued entities such as stress, the num-
ber of possible definitions increases because of the possibility of two-point 
tensors.  

Reference mass density 0 ( )Xρ  and current mass density ( , )x tρ  of an 
element of mass 0m ≥  are defined by 

 0 0
lim
V

m dm
V dV

ρ
→

= = , 
0

lim
v

m dm
v dv

ρ
→

= = , (4.1) 

with V and v that element’s volume in configurations 0B  and B, respec-
tively.  Mass m (or dm) of a particular material particle, or of a fixed set of 
atoms, is assumed the same in (4.1) for corresponding reference and de-
formed volume elements.  In continuum mechanics, mass density is sub-
ject to the constraints 00 ρ≤ < ∞  and 0 ρ≤ < ∞ . 

Traction vectors measure directed forces per unit area acting on oriented 
surfaces, either external or internal, to the body.  The reference traction 

0 ( , )X tt  and current traction (or simply the traction vector) ( , )x tt  satisfy 
 0 xdS ds d T B= = ∈t t P , 0

a a at dS t ds dP= = , (4.2) 
where dS and ds are differential area elements in configurations 0B  and B, 
respectively, and dP  is the force acting on the surface element.  The refer-
ence traction 0t  is thus the force per unit reference area, while the traction 
vector t measures the force per unit spatial area.  In either case, the index 
on the vector is referred to the current configuration.  Thus indices of both 
traction vectors in (4.2) are referred to basis vectors ( )a xg  of spatial tan-
gent bundle TB.  

 

 
Fig. 4.1 Deforming material element 

 
Stress tensors relate traction vectors of (4.2) and unit normal covectors 

N and n (Fig. 4.1) associated with differential area elements dS and ds, re-
spectively.  Cauchy stress tensor ( , ) x xx t T B T B∈ ×σ  and first Piola-
Kirchhoff stress tensor 0( , ) x XX t T B T B∈ ×P  satisfy  

 =t σn , a ab
bt nσ= ; (4.3) 

 0 =t PN , 0
a aA

At P N= . (4.4) 
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Relations (4.3) and (4.4) are often referred to either as versions or out-
comes of Cauchy’s theorem (Truesdell and Toupin 1960; Eringen 1962; 
Marsden and Hughes 1983).  The linear function relating traction and the 
unit normal is the stress tensor.  From (4.2)-(4.4) and Piola transform 
(2.148), 

 1
. 0

a ab A ab aA a
b b A At ds n ds JF N dS P N dS t dSσ σ−= = = = , (4.5) 

implying that the two stress tensors in (4.3) and (4.4) are related by  
 *J −=P σF , 1

.
aA ab A

bP J Fσ −= . (4.6) 
Second Piola-Kirchhoff stress tensor 0 0( , ) X XX t T B T B∈ ×Σ  and nominal 
stress tensor 0( , ) X xX t T B T B∈ ×S  are defined by pulling back and trans-
posing P, respectively, while Kirchhoff stress tensor ( , ) x xx t T B T B∈ ×τ  is 
simply the Cauchy stress normalized by the Jacobian determinant as an en-
ergy per unit reference volume: 

 1−=Σ F P , T=S P , J=τ σ . (4.7) 
Relationships among contravariant components of the five stress tensors 
introduced in (4.3)-(4.7) are listed in Table 4.1 for ease of reference2.  In 
the geometrically linear theory of continuum mechanics (i.e., infinitesimal 
strain theory of Section 2.5.3), distinctions between first Piola-Kirchhoff 
stress aAP  and Kirchhoff stress . . ; .( )ab aA b aA b b aA b

A A A AP F P u Pτ δ δ= = + ≈  are 
conventionally omitted (Malvern 1969), as explained in more detail in the 
context of the balance of linear momentum in Section 4.1.3. 

 
Table 4.1 Relationships among stress tensors 

Stress  σ τ P Σ S 
Cauch. σ abσ  1 abJ τ−  1

.
aA b

AJ P F−  1
. .
a BA b
B AJ F FΣ−  1

.
Aa b

AJ S F−  
Kirch. τ abJσ  abτ  .

aA b
AP F  . .

a BA b
B AF FΣ  .

Aa b
AS F  

1st PK P 1
.

ab A
bJ Fσ −  1

.
ab A

bFτ −  aAP  .
a BA
BF Σ  AaS  

2nd PK Σ 1 1
. .

A ab B
a bJF Fσ− −  1 1

. .
A ab B

a bF Fτ− −  1
.
A aB
aF P−  ABΣ  1

.
Ba A

aS F −  
Nom. S 1

.
A ab

bJF σ−  1
.

A ab
bF τ−  aAP  .

BA a
BFΣ  AaS  

                                                      
2 Placement of indices in stress tensors varies among authors.  For example, Er-

ingen (1962) and Malvern (1969) use the transpose of the definition used in this 
book for the Cauchy stress, expressing (4.3) as a ba

bt n σ= .  In such cases, the 
summation convention used for stress divergence in momentum balance (4.17) is 
modified accordingly.  The distinction is irrelevant when the Cauchy stress is 
symmetric as occurs in classical continuum mechanics, but is important in gener-
alized continuum theories (e.g., Sections 5.7 and 6.7) and nonlinear electrome-
chanical theories (Chapter 10) wherein the Cauchy stress is not always symmetric. 
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Absolute temperature ( , ) 0X tθ ≥  and entropy per unit mass ( , )X tη  are 
introduced.  Temperature θ  traditionally is associated with local vibra-
tions of atomic nuclei about their equilibrium positions, though the total 
(e.g., free) energy of an unstrained solid will also contain electronic con-
tributions.  Entropy in a qualitative sense measures the disorder of the sub-
stance or the ability of a system to perform work; more formal interpreta-
tions following from statistical mechanics principles and atomic systems 
are possible (Slater 1939; Phillips 2001) but are not included here.  As will 
be demonstrated later in Sections 4.2.2 and 4.3, entropy production is as-
sociated with dissipative or irreversible thermodynamic processes.    

Also introduced are the following thermodynamic potentials, defined on 
a per unit mass basis: internal energy ( , )e X t , enthalpy ( , )h X t , Helmholtz 
free energy ( , )X tψ , and Gibbs function ( , )g X t . Interrelationships among 
thermodynamic potentials for elastic bodies are listed in Table 4.2, follow-
ing the scheme of Thurston (1974).  Definitions of enthalpy and the Gibbs 
function depend upon the appropriate work-conjugate thermodynamic ten-
sion or stress (e.g., the second-Piola Kirchhoff stress Σ  of (4.7)) and de-
formation (e.g., the right Cauchy-Green strain E of (2.156)) measures.  By 
allowing each of the thermodynamic potentials to depend on a particular 
set of independent variables—for example deformation gradient (2.112) 
and temperature, or stress (4.6) and entropy—additional relationships 
among thermodynamic quantities can be deduced from partial cross-
derivatives of the potentials.  In later Chapters dealing with constitutive 
theory, Helmholtz free energy ψ , often simply called the free energy, is 
featured prominently since it is conventionally assumed a function of the 
deformation gradient and temperature in the Gibbs formalism, and since 
deformation gradient and temperature are variables that are conveniently 
controllable in solid mechanics experiments, as opposed to entropy and en-
thalpy, for example (though in certain dynamic experiments, such as those 
involving wave propagation, that can be idealized as adiabatic, use of in-
ternal energy is often more convenient).  Different definitions of the vari-
ous thermodynamic potentials, particularly h and g, are possible for gen-
eral states of stress (Malvern 1969), and traditional thermodynamic 
potentials of thermoelasticity (Thurston 1974) may require modification to 
account for inelastic deformation (Scheidler and Wright 2001; Wright 
2002) as well as electromechanical effects (Devonshire 1954; Thurston 
1974; McMeeking et al. 2007). 
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Table 4.2 Thermodynamic potentials for elastic solids  

Potential [energy per unit mass] Relationship to internal energy e 
Internal energy e e  
Enthalpy h 1

0
AB

ABh e Eρ Σ−= −  
Helmholtz free energy ψ  eψ θη= −  
Gibbs function g 1

0
AB

ABg e Eρ Σ θη−= − −  

 
It sometimes becomes useful to define thermodynamic potentials and 

entropy on a per unit volume basis: 
 Ν ρη= , E eρ= , H hρ= , Ψ ρψ= , G gρ= ; (4.8) 
 0 0Ν ρ η= , 0 0E eρ= , 0 0H hρ= , 0 0Ψ ρ ψ= , 0 0G gρ= . (4.9) 

In (4.8), capitalization denotes a quantity defined on a per unit current vol-
ume basis in spatial configuration B.  The zero subscript introduced in 
(4.9) is used in conjunction with capitalization for an energetic or entropic 
quantity measured per unit volume in reference configuration 0B .   

4.1.2 Mass Conservation 

Mass m of an element of material is said to be conserved when that ele-
ment’s mass does not vary with time, i.e., when m is the same in referential 
and spatial descriptions.  Eliminating dm from (4.1) and using (2.141), 
mass densities in spatial and reference configurations are related by 

 0 Jρ ρ= . (4.10) 
Since volume elements are non-negative and of finite size in both configu-
rations, 0 J< < ∞  as noted already following (2.141), and 10 J −< < ∞ .  
Thus 0ρ =  if and only if 0 0ρ =  and the mass of the corresponding ele-
ment vanishes.  The continuity equation expresses the time rate of change 
of current mass density ρ .  This equation can be derived in a number of 
ways, for example integration over a control volume supporting fluxes of 
mass across its external surfaces followed by localization, or direct time 
differentiation of local conservation law (4.10).  Taking the latter approach 
and using (2.181), 

 0 ;0 ( )a
aJ J J J J vρ ρ ρ ρ ρ ρ ρ= = + = + = +v

�� � � �L , (4.11) 
where the first equality follows from the assertion that mass density in the 
reference configuration is time-independent.  From the definition of the 
material time derivative in (2.169), continuity equation (4.11) can be writ-
ten in either of two forms upon division by J as 
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 ; 0a
avρ ρ+ =� , ;( ) 0a

a
x

v
t
ρ ρ∂

+ =
∂

. (4.12) 

A material for which 0( ( , ), ) ( )x X t t Xρ ρ=  at all material points X, and 
hence for which ( , ) 1J X t =  for all X and for all 0t > , is called incom-
pressible.  In the geometrically linear theory, use of (2.164) in (4.10) and 
(4.11) produces the following first-order approximations for mass density 
and its time rate of change: 0 ;(1 )a

auρ ρ≈ +  and ; 0a
auρ ρ+ =� � . 

Reynolds transport theorem accounts for the time rate of change of a 
given quantity carried by a deformable mass of material occupying an 
evolving volume v in configuration B.  The rate of change of generic quan-
tity â , which may be any differentiable scalar, vector, or tensor of higher 
order, is computed as follows: 

 ( )ˆ ˆ ˆ ,
v v s

da dv adv a ds
t dt

ρ ρ ρ∂
= −

∂∫ ∫ ∫ v n , (4.13) 

where s is the external surface of v with oriented unit normal covector 
( , )x tn .  Applying the divergence theorem of (2.193) in conjunction with 

(4.12), Reynolds transport theorem is written more compactly as 

  
( ) ( ) ( )

( )

;

;;

ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ                = .

a a
a a

v v s v v

a a
aa

v v v

d adv a dv av n ds a dv av dv
dt t t

av adv a v dv adv
t t

ρ ρ ρ ρ ρ

ρ ρ ρ ρ

∂ ∂
= + = +

∂ ∂

∂ ∂⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ �
 (4.14) 

Recall from Section 2.6.1 that /d dt  denotes the material time derivative 
(i.e., reference particle at X held fixed during time differentiation), and 

/ t∂ ∂  denotes the partial time derivative taken with spatial position x held 
fixed.   

4.1.3 Momentum Conservation 

Traditional conservation laws of momentum consist of balances of linear 
and angular momentum.  The global spatial balance of linear momentum is 

 
v v s

d dv dv ds
dt

ρ = +∫ ∫ ∫v b t , (4.15) 

where ( , )x tv  is the spatial velocity of (2.168), ( , )x tb  is the body force 
vector (measured here as a force per unit spatial volume), and integration 
proceeds over the body in current configuration B with volume v enclosed 
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by surface s.  From (4.3), (4.14), and application of the divergence theo-
rem, (4.15) can be written as 

 ;( )a ab a
b

v v

v dv b dvρ σ= +∫ ∫� . (4.16) 

Localization of (4.16) and use of (4.12) then provides a spatial balance of 
linear momentum that can be expressed in two forms: 

 ; ;( ) ( )ab a a ab a b a a
b bb a v v b v

t
σ ρ σ ρ ρ∂

+ = ⇔ − + =
∂

, (4.17) 

with ( , )a aa x t v= �  the spatial acceleration of (2.173).   
The global material balance of linear momentum is written as follows: 

 0 0
V V S

d dV dV dS
dt

ρ = +∫ ∫ ∫V B t , (4.18) 

where ( , )X tV  is the material velocity of (2.167) and ( , )X tB  is the body 
force per unit reference volume.  Application of (4.4) and the divergence 
theorem gives (Eringen 1962; Malvern 1969; Marsden and Hughes 1983) 

 0 :
a a aA

A
V V V

V dV B dV P dVρ = +∫ ∫ ∫� , (4.19) 

with the total covariant derivative (more specifically, divergence) of the 
first Piola-Kirchhoff stress P found via application of (2.73), (2.117), and 
inclusion of only the referential partial derivative of ( , )aAP X t : 

 

.. ..
: .., .

..
.., , .

1 1 1
. : . : . :

: ;

      (ln )

      ( ) ( )

      .

gG
aA aA A aB a cA b
A A AB bc A

g
aA aA a cA b
A A bc A

A ab A ab A ab
b A b A b A

ab ab
b b

P P P P F

P G P P F

JF JF JF

J J

Γ Γ

Γ

σ σ σ

σ σ

− − −

= + +

= + +

= = +

= =

 (4.20) 

Application of Piola’s identity (2.146), i.e., 1
. :( ) 0A
b AJF − = , to the stress di-

vergence, and use of properties of the total covariant derivative in (2.117), 
enable derivation of the final three equalities in (4.20).  The local material 
balance of linear momentum following from (4.19) is 

 : 0
aA a a
AP B Aρ+ = , (4.21) 

where ( , )aA X t  is the material acceleration of (2.174).  It follows from 
(4.10), (4.20), and a aB Jb=  that the local material momentum balance 
can be obtained from local spatial momentum balance (4.17) via multipli-
cation of the latter by J  (Truesdell and Toupin 1960).  While local forms 
of the balance of linear momentum in (4.17) and (4.21) apply for any 
choice of spatial coordinates, global coordinate forms (4.16) and (4.19) in-
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volve integrals of vector fields over the spatial manifold with current tan-
gent bundle TB.  Thus the latter are valid only for coordinate systems 
wherein spatial basis vectors ag  are independent of position x, e.g., Carte-
sian coordinates.  Alternatively, following Toupin (1956) and discussion in 
Section 3.2.5, resultant forces and total linear momentum can be evaluated 
at a particular point x via parallel transport of integrands to that point using 
appropriate shifter tensors.   

   
Table 4.3 Spatial momentum balance in physical cylindrical coordinates  

Quantity R-component θ−component Z-component 
Momentum 1

, ,

1
, ( )

RR R R

RZ Z RR

R R

R

R

a b

θ θ

θθ

σ σ

σ σ σ

ρ

−

−

+

+ + −

= −

 

1
, ,

1
, 2

R R

Z Z R

R

R

a b

θ θθ θ

θ θ

θ θ

σ σ

σ σ

ρ

−

−

+

+ +

= −

 

1
, ,

1
,

ZR R Z

ZZ Z ZR

Z Z

R

R

a b

θ θσ σ

σ σ

ρ

−

−

+

+ +

= −

 

Acceleration 
1

, ,

1 2
,

/

( )

R R

R R R R

Z R Z

a v t

v v R v v

v v R v
θ θ

θ

−

−

= ∂ ∂

+ +

+ −

 1
, ,

1
,

/

R R

Z Z R

a v t

v v R v v

v v R v v

θ θ

θ θ θ θ

θ θ

−

−

= ∂ ∂

+ +

+ +

 1
, ,

,

/Z Z

R Z R Z

Z Z Z

a v t

v v R v v
v v

θ θ
−

= ∂ ∂

+ +

+

 

Velocity 
Rv R= �  v Rθ θ= �  Zv Z= �  

 
Table 4.4 Spatial momentum balance in physical spherical coordinates  

Quantity R-component θ−component ϕ-component 
Momentum 1

, ,

1
,

1

( sin )

(2
cot )

RR R R

R

RR

R

R R

R

R

R

a b

θ θ

ϕ ϕ

θθ

ϕϕ θ

σ σ

θ σ

σ σ
σ σ θ

ρ

−

−

−

+

+

+ −
− +

= −

 

1
, ,

1
,

1

( sin )

[3 (
)cot ]

R R

R

R

R

R

a b

θ θθ θ

θϕ ϕ

θ θθ

ϕϕ

θ θ

σ σ

θ σ

σ σ
σ θ

ρ

−

−

−

+

+

+ +
−

= −

 

1
, ,

1
,

1

( sin )

(3
2 cot )

R R

R

R

R

R

a b

ϕ ϕθ θ

ϕϕ ϕ

ϕ

ϕθ

ϕ ϕ

σ σ

θ σ

σ

σ θ

ρ

−

−

−

+

+

+

+

= −

 

Acceleration 
1

, ,

1
,

1 2 2

/

( sin )

[( ) ( ) ]

R R

R R R R

R

a v t

v v R v v

R v v

R v v

θ θ

ϕ ϕ

θ ϕ

θ

−

−

−

= ∂ ∂

+ +

+

− +

 
1

, ,

1
,

1 2

/

( sin )

[ ( ) cot ]

R R

R

a v t

v v R v v

R v v

R v v v

θ θ

θ θ θ θ

ϕ θ ϕ

θ ϕ

ϕ

θ

−

−

−

= ∂ ∂

+ +

+

+ −

 
1

, ,

1
,

1

/

( sin )

[ cot ]

R R

R

a v t

v v R v v

R v v

R v v v

ϕ ϕ

ϕ θ ϕ θ

ϕ ϕ ϕ

ϕ θ

ϕ

θ

−

−

−

= ∂ ∂

+ +

+

+ +

 

Velocity 
Rv R= �  v Rθ θ= �  sinv Rϕ ϕ θ= �  

 
Procedures for deriving the balance of linear momentum in terms of 

physical components of vectors and tensors are given by Eringen (1962) 
and Malvern (1969).  Tables 4.3 and 4.4 provide spatial balances of linear 
momentum in cylindrical coordinates of Section 2.4.2 and spherical coor-
dinates of Section 2.4.3.  Components of velocity (2.168) and acceleration 
(2.173) in corresponding physical components are also listed in Tables 4.3 
and 4.4.  In Table 4.5, components of velocity gradient (2.176) that enter 
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the convective part of the spatial acceleration are listed, following Malvern 
(1969).  In contrast to Section 2.4 in which physical components corre-
spond to the reference configuration, indices of cylindrical and spherical 
coordinates are referred to the spatial configuration B in Tables 4.3-4.5.  
The summation convention does not apply over repeated indices in Tables 
4.3-4.5. 

 
Table 4.5 Velocity gradient components in cylindrical and spherical coordinates  

Coordinate 
system Velocity gradient 

g
a

ab bL v< >
< > < >= ∇  

Cylindrical 1
, , ,

1
, , ,

1
, , ,

( )
( )

           

RR R R R R RZ R Z

R R R Z Z

ZR Z R Z Z ZZ Z Z

L v L R v v L v
L v L R v v L v
L v L R v L v

θ θ θ

θ θ θθ θ θ θ θ

θ θ

−

−

−

= = − =
= = + =
= = =

 

Spherical 1 1 1
, , ,

1 1 1
, , ,

1 1 1
, , ,

( ) ( sin )                    
( ) ( sin ) cot           

          ( sin ) ( cot )

RR R R R R R R

R R R

R R R

L v L R v v L R v R v
L v L R v v L R v R v
L v L R v L R v R v v

θ θ θ ϕ ϕ ϕ

θ θ θθ θ θ θϕ θ ϕ ϕ

ϕ ϕ ϕθ ϕ θ ϕϕ ϕ ϕ θ

θ
θ ϕ
θ θ

− − −

− − −

− − −

= = − = −
= = + = −
= = = + +

 

 
The global balance of angular momentum referred to the spatial con-

figuration is 

 
v v s

d dv dv ds
dt

ρ× = × + ×∫ ∫ ∫x v x b x t , (4.22) 

where ×  is the vector cross product.  In indicial notation, (4.22) is written 

 b c b c b c
abc abc abc

v v s

d x v dv x b dv x t ds
dt

ε ρ ε ε= +∫ ∫ ∫ . (4.23) 

Using divergence theorem (2.193), Cauchy’s theorem (4.3), and Reynolds 
transport theorem (4.14), (4.23) becomes 

 
; ;

( )

          ( ) ( ) .

b c b c b c b cd
abc abc d

v s

b cd cb b cd
abc d abc d

v v

v v x v x b dv x n ds

x dv x dv

ε ρ ρ ε σ

ε σ ε σ σ

+ − =

= = +

∫ ∫

∫ ∫

�
 (4.24) 

Collecting terms gives 
 ;( ) ( )b c c cd cb b c

abc d abc
v v

x v b dv v v dvε ρ σ ε σ ρ− − = −∫ ∫� . (4.25) 

The left side of (4.25) vanishes by (4.17), and the last term in the integrand 
on the right of (4.25) vanishes from symmetry of the dyad ( )b cb cv v v v= .  
This leaves the local requirement 

 ( )0 abcb ab
abcε σ σ σ= ⇔ = , [ ] 0abσ = , (4.26) 
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i.e., the Cauchy stress tensor is symmetric in classical continuum mechan-
ics.  From (4.6) and (4.7), the local balance of angular momentum can also 
be expressed in any of the following forms as 

 . .
a bA aA b
A AF P P F= , AB BAΣ Σ= , . .

Ab a b Aa
A AS F F S= , ab baτ τ= . (4.27) 

In geometrically linear theories of continuum mechanics, with the as-
sumption .

aA ab A
bP τ δ≈  (Malvern 1969), the balance of linear momentum 

(4.21) in terms of force per unit reference volume is ; 0
ab a a
b B uτ ρ+ = �� .  

Similarly, ;
ab a a
b b uσ ρ+ = ��  in terms of force per unit current volume (4.17).  

Together, 1
; ; ; ; ;( )ab ab ab ab ab
b b b b bJ J J Jσ τ τ σ τ−= = − ≈  is implied if both mo-

mentum balances are assumed to apply simultaneously in the linear theory.  
Thus, formally, two linear momentum balances would seem necessary in 
the linear theory even though the distinction between reference and spatial 
coordinates is not enforced explicitly.  This issue arises when mass density 
is permitted to change with deformation in the linear theory, as noted fol-
lowing (4.12).  In the geometrically linear theory, angular momentum bal-
ances (4.26) and (4.27) remain unchanged from those of the nonlinear the-
ory: ab baσ σ=  and ab baτ τ= . 

Like the coordinate form of the global balance of linear momentum, the 
indicial expression of the global balance of angular momentum is re-
stricted to spatial coordinate systems for which holonomic basis vectors 
are independent of position.  Local forms (4.26) and (4.27), however, ap-
ply for any choice of coordinate system, e.g., curvilinear coordinates.  Lo-
cal forms of conservation of mass (4.12), balance of linear momentum 
(4.17), and balance of angular momentum (4.26) can be obtained without 
resorting to the global (i.e., integral) forms via prescription of an energy 
balance that is presumed invariant under rigid body motions (Green and 
Rivlin 1964a).  This alternative approach towards derivation of local bal-
ance laws, which does not require assignment of particular kinds of coor-
dinate systems, is formally discussed by Marsden and Hughes (1983). 

4.1.4 Energy Conservation 

The global form of the balance of energy or First Law of Thermodynamics 
for a continuous body is written  

 ( )d
dt

+ = +E K P Q , (4.28) 

where E  is the global internal energy, K  is the global kinetic energy, P  
is the mechanical rate of working, and Q  is the rate of work of non-
mechanical sources.  These quantities are defined as follows for a body in 
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spatial configuration B occupying volume v and enclosed by surface s, 
with the latter’s orientation defined by outward unit normal covector n: 

 
v

edvρ= ∫E , (4.29) 

 ( / 2)
v

dvρ= ∫ v viK , (4.30) 

 
v s

dv ds= +∫ ∫b v t vi iP , (4.31) 

 ,
v s

rdv dsρ= −∫ ∫ q nQ . (4.32) 

In (4.32), ( , )r x t  is the scalar heat source per unit mass that may arise from 
non-mechanical phenomena (e.g., a radiation field), and ( , ) xx t T B∈q  is 
the heat flux vector associated with heat conduction.  Source r vanishes 
identically in most typical boundary value problems.  The sign convention 
for q is specified such that when , 0a

aq n= >q n , energy flows out of the 
body so that the contribution from heat flux to energy rate Q  is negative.  

The local version of (4.28) is derived as follows.  Using (4.14) and the 
divergence theorem to convert surface integrals in (4.31) and (4.32) to vol-
ume integrals, 

   
;

; ; ;

( ) ( )

                        ( ) ( ) .

b b ba a
b b b a

v v v v

b ba ba a
b a b a a

v v v

e v v dv b v dv v q dv rdv

v b dv v q dv rdv

ρ σ ρ

σ σ ρ

+ = + − +

= + + − +

∫ ∫ ∫ ∫

∫ ∫ ∫

� �
 (4.33) 

Then from (4.17), terms associated with stress divergence, linear momen-
tum, and body forces cancel.  Localizing, the remaining terms comprise 
the spatial balance of energy: 

 ; ;
ab a

a b ae v q rρ σ ρ= − +� , (4.34) 
or in direct notation 

 , ,e rρ ρ= − ∇ +
g

σ D q� , (4.35) 

where (4.26) has been used and (1/ 2)= vD gL  is the deformation rate ten-
sor of (2.182).  The skew part of the velocity gradient, i.e., the spin tensor 
W of (2.187), does not contribute to balance of energy (4.35) because of 
the symmetry of the Cauchy stress tensor.   

The local balance of energy is expressed in material form as follows.  
Heat flux q is mapped to 0( , ) XX t T B∈Q  via Nanson’s formula (2.148): 

 1 1
. .

A A a a A A a
A A a a aQ N dS Q J F n ds q n ds Q JF q− −= = → = . (4.36) 

Using Piola’s identity (2.145), the divergence of the heat flux satisfies 
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 1 1 1 1
; . ; . : . : ;( ) ( )a a A a A a A A
a A a A a A a Aq J F Q J F Q J F Q J Q− − − −= = + = . (4.37) 

Scalars e and r are defined on a per unit mass basis and hence remain sta-
tionary with respect to changes in configuration, while the mass density 
changes according to (4.10).  From (2.186), (4.6), and (4.7), the stress 
power per unit current volume can be written 

 1 1 1
. .

ab ab A B AB
ab a AB b ABD F E F J Eσ σ Σ− − −= =� � , (4.38) 

where the right Cauchy-Green strain tensor E is defined in (2.156).  Multi-
plying (4.35) by J and using (4.10), (4.37), and (4.38) gives the local mate-
rial balance of energy: 

          0 ; 0
AB A

AB Ae E Q rρ Σ ρ= − +�� . (4.39) 
In the context of the geometrically linear theory of (2.191), deformation 
rate and strain rate are equivalent, and the local balance of energy of (4.34) 
reduces to  

 ;
ab a

ab ae q rρ σ ε ρ= − +�� . (4.40) 
When body forces are conservative, global energy balance (4.28) can be 

expressed in an illustrative form (Eringen 1962).  Conservative forces are 
derivable from a local potential energy function ( )xΦ  that depends only 
on position, and not explicitly on time: 

 ,( ) ( )a a ab b x xρ Φ⇒ = − , 
v

dvΦ ρΦ= ∫ . (4.41) 

In the first of (4.41), b is a body force per unit mass, and the dimensions of 
the local potential energy ( )xΦ  are energy per unit mass.  The second of 
(4.41) defines a global potential energy.  From (4.41) the latter’s rate is 

 , ,
a a a

a a a
xv v v v

dv v dv v dv b v dv
t

ΦΦ ρΦ ρ Φ ρΦ ρ
⎛ ⎞∂

= = + = = −⎜ ⎟∂⎝ ⎠
∫ ∫ ∫ ∫� � . (4.42) 

The global rate of mechanical working in (4.31) becomes 
 a a a

a a a
v s s

b v dv t v ds t v dsρ Φ= + = −∫ ∫ ∫ �P . (4.43) 

Global energy balance (4.28) then becomes 
 a

a
s

t v dsΦ+ + = +∫�� �E K Q . (4.44) 

When the right side of (4.44) vanishes, constantΦ+ + =E K , meaning 
that the sum of internal, kinetic, and potential energies is conserved.  Spe-
cific scenarios for which this holds are conditions in which the body is in-
sulated (i.e., adiabatic or vanishing heat flux q with no heat sources r) and 
when either velocities or tractions vanish on boundary surface s.  The 
analogous situation for conservative discrete particle systems is derived in 
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Section B.1, specifically relations (B.13) and (B.15), in the context of the 
Hamiltonian representation of governing equations of molecular dynamics.  

4.2 Internal State Variables and the Dissipation Inequality 

A number of formal philosophical interpretations exist regarding consid-
eration of thermodynamic quantities, balance equations, and fundamental 
inequalities in the context of modern continuum mechanics (Germain et al. 
1983; Maugin and Muschik 1994a).  What is often called classical thermo-
dynamics deals with equilibrium states of materials.  A system is said to be 
in thermodynamic equilibrium if it is isolated, does not evolve with time, 
and hence contains no unbalanced internal forces.  Classical thermody-
namics is thus sometimes referred to as thermostatics (Thurston 1974).  In 
thermostatics, temperature and entropy of a material and thermodynamic 
potentials introduced in Section 4.1.1 have clear origins in statistical me-
chanics (Slater 1939; Malvern 1969).  On the other hand, in many physical 
problems of interest the situation is more complex, and one often seeks de-
scriptions of the condition of the material as it attains various non-
equilibrated states, i.e., descriptions afforded by non-equilibrium thermo-
dynamics.  In such circumstances, traditional thermostatic definitions do 
not readily apply, and the system cannot be adequately described by a fi-
nite collection of state variables.  To overcome this difficulty, the notion of 
local accompanying equilibrium states or constrained equilibrium states is 
often introduced (De Groot and Mazur 1962; Lubliner 1990; Kestin 1992).  
In this context, the material is treated as if it were in local equilibrium at 
any given instant, even when undergoing an irreversible process, and thus 
can be described by the thermodynamic temperature, thermodynamic po-
tentials, and a finite set of state variables.  This is often deemed an appro-
priate assumption when time scales for irreversible processes are fast rela-
tive to those for incremental changes in driving forces such as mechanical 
stresses or temperature gradients (Rice 1971; McDowell 2005).  The con-
cept is also appropriate when such driving forces change rapidly enough 
that changes in internal variables associated with irreversibility do not 
have time to occur.  Though the formal definition of constrained equilib-
rium states does not apply in situations wherein time scales associated with 
internal variables and their driving forces are similar, the state variable 
concept is still used regularly in modern applications of continuum ther-
momechanics, albeit in the context of non-equilibrium thermodynamics, to 
describe various behaviors of deformable continuous bodies (Maugin and 
Muschik 1994a, b). 
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The condition or state of the material, for example its energy content 
and constitutive response, is assumed from a mathematical perspective to 
depend upon a number of independent state variables.  These may include 
kinematic variables such as volume or strain, intrinsic field variables such 
as temperature or entropy, and any number of internal state variables.  An 
internal state variable refers to an intrinsic quantity that is required to fully 
characterize the state of the material and that can be varied, albeit often ir-
reversibly, without changing the other independent state variables.  In 
crystalline solids, such variables are typically used to reflect influences of 
the microstructure on the state of the system, for example energies attrib-
uted to lattice defects, or phenomena at a finer length scale not represented 
by strain or temperature fields at the coarser scale of immediate considera-
tion.  For example, dislocation densities were treated as internal state vari-
ables in an early continuum plasticity theory of Kroner (1963a).  The tran-
sition of the material from one state (i.e., one particular set of values of 
state variables) to another is called a thermodynamic process.  If applica-
tion of the inverse of the external stimuli invoked during a given thermo-
dynamic process returns the material to its original state, such a process is 
said to be reversible.  On the other hand, if the inverted stimuli do not re-
turn the material to its original condition, the material is said to have un-
dergone an irreversible process.  Irreversible processes involve dissipation 
of energy and production of entropy.  The reversibility of a thermody-
namic process, or lack thereof, may depend upon the scale at which the ob-
server views the process (Germain et al. 1983).  For example, a crystal 
structure undergoing small, slow deformations may appear reversible (i.e., 
elastic) at the macroscale, but could be irreversible at the scale of the mo-
tion of some individual atoms, particularly those in the vicinity of imper-
fections (i.e., defects) in the material. 

The Clausius-Duhem inequality and various renditions of it are alterna-
tively referred to as the Second Law of Thermodynamics, the entropy pro-
duction inequality, or the dissipation inequality.  This relationship reduces 
to an equality for thermodynamically reversible processes.  In solids un-
dergoing irreversible processes, a local version of this inequality, in com-
bination with the local balance of energy, provides an indication of contri-
butions of various mechanisms to energy stored in the material and to 
energy dissipated by the material.  Constitutive equalities and thermody-
namic restrictions on constitutive and kinetic relationships can be derived 
by appealing to the First and Second Laws of Thermodynamics, as for-
mally demonstrated for heat conducting media with viscosity by Coleman 
and Noll (1963) and continua with generic internal state variables by 
Coleman and Gurtin (1967).  Such methods of thermodynamic analysis 
have become commonplace for constructing nonlinear theories of elasto-
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plasticity of crystalline solids (Scheidler and Wright 2001), including those 
incorporating internal variables associated with higher-order deformation 
gradients reflecting dislocation content (Teodosiu 1970; Steinmann 1996; 
Bammann 2001; Regueiro et al. 2002; Clayton et al. 2004b, 2006).  

Section 4.2.1 describes considerations for selection of constitutive vari-
ables (including both dependent and independent variables) and internal 
state variables that together describe the thermodynamic state of a body.  
Particular attention is paid to variables appropriate for crystalline solids 
undergoing potentially large deformations. 

4.2.1 Constitutive and Internal Variables for Crystalline Solids 

Constitutive laws are mathematical relationships that describe properties of 
particular materials or particular classes of materials.  Such relationships 
emerge from the constitution of the material, e.g., its composition and 
structure, hence the term “constitutive law”.  In the context of continuum 
thermomechanics, constitutive laws describe relationships between inde-
pendent and dependent state variables and/or their rates of change.  A 
number of possibilities exist with regards to selection of which variables 
should be used as independent quantities and which should be dependent 
quantities.  For example, various formulations treating temperature, en-
tropy, or internal energy as either independent or dependent variables exist 
(Eringen 1962; Coleman and Noll 1963; Coleman and Gurtin 1967; Mal-
vern 1969; Thurston 1974; Wright 2002), all of which are mathematically 
and physically valid.   

Selections of independent and dependent variables in thermodynamic 
processes are labeled in this book as constitutive assumptions.  Though 
more general assumptions are possible, for crystalline solids under consid-
eration in this text the following forms are perhaps most common3: 

      , , , , , AXψ ψ α θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g
LF G , ( ). ,, , , , ,La

a AF Xαψ ψ α θ θ= G ; (4.45) 

       , , , , , AXη η α θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g
LF G , ( ). ,, , , , ,La

a AF Xαη η α θ θ= G ; (4.46) 

                                                      
3 Not included in (4.45)-(4.49) is a dependence on higher-order deformation 

gradients, e.g., . : :
a a
A B ABF x=  of (2.116).  A material is often said to be of grade N, 

where N is the highest order of deformation gradient present in the list of depend-
ent state variables (Toupin 1964).  Thus, when . ., .

La a A
AF x gα α=  such as in an elastic 

solid described by (3.25), relations (4.45)-(4.49) describe a material of grade 1. 
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     , , , , , AXα θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g
Lσ σ F G , ( ). ,, , , , ,ab ab La

a AF Xασ σ α θ θ= G ; (4.47) 

      , , , , , AXα θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g
Lq q F G , ( ). ,, , , , ,a a La

a Aq q F Xα α θ θ= G ; (4.48) 

       , , , , , AXα α α θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g
LF G� � , ( ). ,, , , , ,La

a AF Xαα α α θ θ= G� � . (4.49) 

Dependent variables in (4.45)-(4.49) are Helmholtz free energy per unit 
mass ψ , entropy per unit mass η , Cauchy stress σ , heat flux vector q, 
and the material time derivative of a generic scalar internal state variable 

( , )X tα .  Extension of the treatment to multiple state variables of scalar, 
vector, or tensor character is straightforward, and is pursued by example 
later in Chapters 8 and 9.  Independent variables are lattice deformation 
gradient LF  of (3.31), absolute temperature θ  and its spatial gradient ,aθ , 
and internal state variable α .  Additionally, dependence on position of 
material particle X is included, as is dependence on basis vectors ( )A XG  
in the reference configuration.  Dependence on X is required to describe 
variations, with changes in position, of properties in a heterogeneous mate-
rial, while dependence on AG  is required to describe anisotropy, or de-
pendence of the response on orientation of a body with certain symmetries 
(see Appendix A) relative to the chosen system of coordinates4.   

As discussed in Section 3.1.2, in defect-free elastic crystals LF  corre-
sponds to deformation gradient F.  More generally, as indicated in (3.31), 
for a crystal featuring inelastic deformation, 1−= ≠L PF FF F .  The ration-
ale for dependence of free energy and stress upon lattice deformation fol-
lows from (3.109)-(3.114): lattice deformation provides a first-order accu-
rate measure of stretch and rotation of interatomic bond vectors in a crystal 
structure.  In dielectric solids, the list of independent variables may be sup-
plemented with a measure of the electric polarization (e.g., measuring rela-
tive translations among charged nuclei in a polyatomic ionic crystal), and 
dependent variables then may include the electric field or electric dis-
placement, as described in detail in Chapter 10. 

It is possible to write (4.45)-(4.49) in terms of variables defined partially 
or entirely with respect to coordinate charts of different configurations 

                                                      
4 Often dependence on X and AG  is not written out explicitly, but rather is in-

cluded implicitly in the material coefficients (e.g., thermoelastic moduli) entering 
series expansions of the thermodynamic potentials.  This will become clear in 
Chapter 5 in the context of thermoelastic crystalline solids. 
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(e.g., spatial configuration B or reference configuration 0B ), and with de-
pendent energetic and entropic variables measured on a per-unit-volume 
basis following (4.8) or (4.9), as opposed to a per-unit-mass basis.  Certain 
choices of configuration may result in different constitutive laws or differ-
ent predicted behaviors, and some choices may be more physically moti-
vated than others, as considered later for elastic-plastic crystals in Chapters 
6, 8, and 9. 

Response functions (4.45)-(4.49) are often presumed to adhere to a col-
lection of formal, fundamental principles or postulates.  These include the 
principle of equipresence (Truesdell 1951) that suggests that all independ-
ent variables should be present in each constitutive equation unless contra-
dicted by physical laws or symmetry properties of the material.  The latter 
requirement is often delineated as a separate principle, that is functions 
(4.45)-(4.49) should respect symmetry properties of the substance, as ad-
dressed explicitly here by presence of basis vectors AG  (Eringen 1962).   

The response should also satisfy an objectivity, frame-indifference, or 
covariance principle, versions of which have been considered for a number 
of years in the mathematical mechanics literature (Noll 1958; Coleman and 
Noll 1963; Coleman and Gurtin 1967; Marsden and Hughes 1983; Yavari 
et al. 2006).  Objectivity as defined here implies that physical behavior is 
independent of the reference frame of the observer.  Specifically, the 
physical behavior of an event should not change under a change of spatial 
coordinate system (Coleman and Noll 1963; Coleman and Gurtin 1967).  
Objective constitutive functions can be formulated in a number of ways.  
Perhaps the easiest way involves replacing the list of independent variables 
by constructs of these variables that are invariant under appropriate rigid 
body motions (i.e., rigid rotations and translations) of the spatial coordi-
nate system, and by choosing complementary forms of dependent variables 
that are likewise spatially invariant.   

Consider the choice of lattice deformation gradient LF  as an independ-
ent variable entering functions (4.45)-(4.49).  Under a change of spatial 
frame ˆ→ +x Qx c , where ˆ ˆ( ) ( )Tt t−=Q Q  is a spatially constant, proper or-
thogonal rotation matrix and ( )tc  is a spatially constant translation vector, 
the deformation gradient ˆ→F QF  and the lattice deformation ˆ→L LF QF .  
More general kinds of space-time transformations involving time shifts 
and additional translations are possible (Malvern 1969; Gurtin 1981; 
Maugin 1988), but consideration of ˆ→ +x Qx c  is sufficient for the pre-
sent discussion.  Often, a number of possible sets of reduced constitutive 
equations exist that fulfill the objectivity requirement.  For example, re-
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placing dependent variable ( , )X tLF  with ( , )X tLC�  of (3.52) satisfies the 
objectivity requirement that is not unequivocally satisfied by use of inde-
pendent variable LF , since under a change of frame, 

           . . . . . .

. . . . . .

ˆ ˆ( )( )
ˆ ˆ      .

L La Lb La LT a Lc T d LT
ab a c a d

T d a Lc L d Lc L Ld L L
a c d c d d

C F g F F F Q F Q F

Q Q F F F F F F C
αβ α β α β α β

α β α β α β αβδ

= = →

= = = =

�

�
 (4.50) 

Spatial metric tensor g(x) is unaffected by such an orthogonal transforma-
tion since . . . .

ˆ ˆ ˆ ˆ ˆ ˆc d c T c
ab a cd b a cb bc a ba abg Q g Q Q Q Q Q g g→ = = = = .   

Similarly, spatial temperature gradient , ( , )a X tθ  is not frame indifferent.  
One of several possible substitutions that fulfills the objectivity require-
ment is the reference gradient , , .,

a
A a Axθ θ=  (Coleman and Noll 1963): 

 
, ,

, , ., . .

, ,
. . , ., ,

ˆ ˆ

ˆ ˆ    .

a a T a c T T d
A a A Aa c Ad a

T d a c T c T c
a c Ad Ac c A A

x F Q F Q

Q Q F F x

θ θ θ θ

θ θ θ θ

= = →

= = = =
 (4.51) 

In classical continuum mechanics, response functions (4.45)-(4.49) are 
also required to satisfy a principle of locality, meaning that dependent vari-
ables corresponding to a particular material particle at X are functions of 
independent variables at point X and not values of independent variables at 
other material points X ′ .  However, in many generalized continuum theo-
ries, the assertion of locality is relaxed (Eringen 1972; Bazant 1991). As an 
example, consider a material that exhibits time evolution of internal state 
variable α .  Classes of nonlocal internal variable theories include those 
with evolution equations of the general type 

 ( ). ,( , ) , , , , , ,La
a AX t f F X Xαα α θ θ ′= G� , (4.52) 

where the value of α�  at X is affected by the values of state quantities at 
different points 0X B′∈  entering function f.  Integral formulations, inher-
ently nonlocal, are also possible, e.g. 

 ( )1
. ,( , ) , , , , , ,La

a A
V

X t V f F X X dVαα α θ θ− ′ ′= ∫ G� , (4.53) 

where the domain of integration may encompass some local region (e.g., 
volume V) in the vicinity of point X in the body (Hall and Hayhurst 1991), 
or may engulf the entire solid.  Finally, theories of the higher-gradient type 
are often labeled nonlocal in character (Voyiadjis and Deliktas 2009).  For 
example, consider an evolution equation of the form 

 ( ). , ,( , ) , , , , , ,La
A a AX t f F Xαα α α θ θ= G� . (4.54) 

Expanding α  in a Taylor series approximation about point X  gives 
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;

1
2!

1                 ...,
3!

A A B
A ABX X X X

A B C
ABC X

dX dX dX

dX dX dX

α α α α

α

′ = + +

+ +
 (4.55) 

where A A AdX X X′= − .  Omitting second- and higher-order terms in dX, 
the material gradient of α is expressed via local and nonlocal values of α: 

 , ( , ) ( , ) ( , )A
A X t dX X t X tα α α′= − , (4.56) 

implying that (4.54) exhibits a particular form encompassed by nonlocal 
equation (4.52).  Constitutive functions depending on first-order, but not 
higher-order, spatial gradients of position and temperature are considered 
to describe materials categorized as classical rather than generalized con-
tinua.  Elastic solids of grade 2 (see Section 5.7), as a matter of semantics, 
can be labeled local (Epstein and Elzanowski 2007) or nonlocal. 

Particular choices of internal state variables should satisfy physical and 
practical considerations.  Internal state variables may be directly measur-
able or observable to allow straightforward construction of evolution laws 
such as (4.49) from experimental data, or they can be “hidden” variables 
that influence the response in a measurable way but lack a precise micro-
scopic interpretation.  Examples of the former include measures of disloca-
tion density in plastically deforming crystals (Kroner 1963a; Teodosiu 
1970) and direct measures of porosity or crack density in damaged media 
(Bammann and Aifantis 1989; Kachanov 1992; Nemat-Nasser and Horii 
1998).  Examples of the latter include generic variables representing strain 
hardening in plastic crystals (e.g., thermodynamic conjugate variables to a 
yield stress or back stress) and generic scalar or tensor damage measures 
that reflect mechanical stiffness reduction, for example (Germain et al. 
1983; Lemaitre 1985).  However, while an internal variable or its effects 
should be measurable, its value should not be controllable simply by im-
mediate application of external boundary conditions (e.g., mechanical trac-
tion and heat flux), since in that case it would be an external as opposed to 
internal variable.  In such a case, the so-called internal variable would not 
be independent of other state variables such as stress, strain, and tempera-
ture, and would be redundant for characterizing the state of the material.  
Instead, instantaneous values of internal state variables tend to depend on 
initial conditions and the cumulative history of boundary conditions ap-
plied to the body.   

Internal state variables should be chosen to adhere to underlying physics 
of the microstructure of the material, and their evolution should reflect cor-
responding changes in forces or energies supported in the substance.  For 
example, accumulating dislocations tend to increase the energy stored in 
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the crystal as a result of their local stress and strain fields, and damage 
mechanisms such as voids or cracks tend to affect the energy of a strained 
crystal via a reduction in the effective elastic stiffness.  On the other hand, 
non-cumulative measures of plastic flow such as plastic deformation gra-
dient PF  of (3.31) or plastic strain tensor Pε  of (3.80) are not always real-
istic choices for internal state variables.  From a microscopic perspective 
(Sections 3.2.1, 3.2.2, and 3.2.5-3.2.7), plastic deformation is regarded as 
lattice-preserving or lattice invariant (Bilby et al. 1957), and dislocations 
may pass completely through a volume element of the crystal, engendering 
significant plastic deformation without leaving behind any defects that 
would render the energetic state of the crystal different from that of an ini-
tially perfect lattice.  From a macroscopic perspective, prescription of PF  
(or, for example, Pε in the linear case) as a state variable fails in applica-
tions wherein external loading is not monotonic.  For example, a crystal-
line specimen can be deformed plastically and then deformed plastically 
again to its original shape.  Under such a sequence, the material in its final 
state will often contain larger internal residual stresses, more defects, and 
greater energy of cold work (Farren and Taylor 1925; Taylor and Quinney 
1934; Rosakis et al. 2000) than the specimen in its initial state, yet such 
changes will not be reflected by PF  or Pε , since these variables are negli-
gible both at the start and the end of the cyclic experiment. 

Finally, particular forms of constitutive assumptions (4.45)-(4.49) 
should not lead to violations of the fundamental balance principles of con-
tinuum thermomechanics: balances of mass, momentum, and energy.  In 
addition, thermodynamic processes should be thermodynamically admissi-
ble, meaning they should satisfy the Clausius-Duhem inequality. 

4.2.2 The Clausius-Duhem Inequality 

The Clausius-Duhem inequality, alternatively referred to as the entropy 
production inequality or dissipation inequality, is the particular form of the 
Second Law of Thermodynamics usually considered in continuum me-
chanics.  The global form of the Clausius-Duhem inequality is written for a 
continuous body in spatial configuration B as 

 
,

v v s

d rdv dv ds
dt

ρρη
θ θ

≥ −∫ ∫ ∫
q n

, (4.57) 

where heat flux vector ( , )x tq  and heat source scalar ( , )r x t  were intro-
duced in (4.32).  Applying the divergence theorem to the rightmost term,  
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             2

, 1 1, , ,
s v v v

ds dv dv dvθ
θ θ θ θ

= ∇ = ∇ − ∇∫ ∫ ∫ ∫
g g gq n q q q , (4.58) 

or in indicial notation, 
            1 1 1 2

; ; ,( )a a a a
a a a a

s v v v

q n ds q dv q dv q dvθ θ θ θ θ− − − −= = −∫ ∫ ∫ ∫ . (4.59) 

The local form of (4.57) becomes, upon using Reynolds transport theorem 
(4.14) and (4.59), 
                             1 1

; ,( ) 0a a
a aq r qΓ ρη θ ρ θ θ− −= + − − ≥� . (4.60) 

Above, Γ  is the total entropy production rate per unit spatial volume that, 
according to the Second Law of Thermodynamics, must be non-negative.  
The entropy production rate is often written on a per unit mass basis by di-
viding (4.60) by mass density ( , ) 0x tρ >  (Malvern 1969).  When 0Γ = , 
the corresponding thermodynamic process is said to be thermodynamically 
reversible or conservative; when 0Γ > , the process is said to be irreversi-
ble or dissipative. 

Entropy production law (4.60) is often partitioned into two separate, 
more restrictive inequalities (Truesdell and Noll 1965): 

 1
;( ) 0a

L aq rΓ ρη θ ρ−= + − ≥� , 2
, 0a

C aqΓ θ θ−= − ≥ ,   (4.61) 
where LΓ  is the rate of local entropy production and CΓ  is the rate of en-
tropy production attributed to heat conduction.  The first inequality in 
(4.61) is often referred to as the strong form of the Clausius-Duhem ine-
quality, and it requires that the specific entropy rate η�  be non-negative in 
the absence of heat supply r and heat conduction q.  The second inequality 
of (4.61) prevents heat from spontaneously flowing from regions of low 
temperature to high temperature.  Though more general constitutive equa-
tions for heat flux are possible (Truesdell and Noll 1965), the following 
constitutive assumption in the spatial frame is standard for many solids: 

 θ= − ∇
g

q k , ,
a ab

bq k θ= − , 2
, , 0ab

C a bkΓ θ θ θ−= ≥ , (4.62) 
where ( , ) x xx t T B T B∈ ×k  is the contravariant tensor of thermal conductiv-
ity, assumed symmetric and positive semi-definite.  Conductivity k may 
generally depend on temperature, deformation, other state variables, posi-
tion, and orientation of the material element.  When all entries of abk  are 
constants, (4.62) is often referred to as Fourier’s law of heat conduction. 

From differentiation of the free energy in Table 4.2, eθη ψ θη= − − �� �� , so 
that after multiplying by θ , (4.60) can be written 
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−

−
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���

 (4.63) 

For classical continua, substitution of energy balance (4.35) into (4.63) 
then gives 

 1
, 0ab a

ab aD qσ ρψ ρθη θ θ−− − − ≥�� . (4.64) 
Expanding the rate of free energy ψ  of (4.45) using the chain rule (Cole-
man and Noll 1963) gives 

 .
. ,

La
aLa

a

F
F α

α

ψ ψ ψ ψψ θ γ α
θ θ α

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
��� � , (4.65) 

where as noted following (2.129), ( ) 0A X =G�  since convected reference 
coordinates are not considered.  The rate of temperature gradient is  

   
1 1

, , . , , .

1
, , . , , ; , , .
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� �

� � ��  (4.66) 

Substitution of (4.65) into (4.64) then results in a local form of the Clau-
sius-Duhem inequality that accounts for constitutive dependencies allotted 
in (4.45): 

  1
. ,

. ,

ab La a
ab a aLa

a

D F q
F α

α

ψ ψ ψ ψσ ρ η θ γ α θ θ
θ θ α

−⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞− + + + + ≥⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
�� � . (4.67) 

Quantity /ρ ψ α− ∂ ∂  is often referred to as a conjugate thermodynamic 
force or conjugate driving force to thermodynamic flux α� .  Thermody-
namic processes for which 0θ =�  are called isothermal processes.  Proc-
esses for which 0η =�  are labeled isentropic processes.  Processes for 
which 0aq =  are referred to as adiabatic processes.   

The Clausius-Duhem inequality exhibits an analogous representation in 
reference configuration 0B .  The referential representation can be derived 
starting from a global principle like (4.57), but couched in the reference 
frame, or by converting local quantities using appropriate pull-back and 
Piola transform operations.  The latter approach is pursued here.  Local 
dissipation inequality (4.60) becomes, upon multiplying by ( , ) 0J X t > , 
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�

�
 (4.68) 

where mass density 0 Jρ ρ=  by (4.10), heat flux 1
.

A A a
aQ JF q−=  by (4.36), 

and ; ;
a A
a AJq Q=  by (4.37).  A heat conduction law of the following form in 
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the reference configuration can be prescribed, so that the rightmost term in 
(4.68) associated with conduction is always non-negative: 

     θ= − ∇
G

Q K , ,
A AB

BQ K θ= − , 2 2
, , , 0A AB
A A BQ Kθ θ θ θ θ− −− = ≥ , (4.69) 

where 0 0( , ) X XX t T B T B∈ ×K  is a symmetric and positive semi-definite 
matrix of thermal conductivity.  Similarly to k of (4.62), K of (4.69) may 
depend on temperature as is often the case in crystalline solids, strain, lo-
cation and orientation of the material element (heterogeneity and anisot-
ropy), as well as internal state variables.  Consistency with (4.62) implies 
that spatial and referential matrices of thermal conductivity are related by 

1
. .

ab a AB b
A Bk J F K F−= . 

From (4.68) and eψ θη= − , an analog of (4.63) measured as an energy 
rate per unit reference volume is 

 1
0 ; ,( ) 0A A

A Ae r Q Qρ ψ θη θ θ−− − − + − ≥��� . (4.70) 
Substituting referential energy balance (4.39) into (4.70) gives  

 1
0 0 , 0AB A

AB AE QΣ ρ ψ ρ θη θ θ−− − − ≥�� � . (4.71) 
Then upon expanding the rate of free energy per unit mass ψ�  using (4.65), 
the referential form of (4.67) is 
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 (4.72) 

In the case of geometric linearity, i.e., small deformations with (4.40), dis-
sipation inequality (4.67) is simply 

    1
,

,

ab L a
ab ab a aL

ab a

qψ ψ ψ ψσ ε ρ β η θ γ α θ θ
β θ θ α

−
⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞− + + + + ≥⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

� �� � , (4.73) 

where dependence of free energy ψ  on lattice distortion L
abβ  of (3.75) re-

places dependence of free energy on lattice deformation gradient .
LaF α  in 

constitutive assumption (4.45).  

4.3 Kinetics and Inelastic Rates 

The term kinetics is used generically in this book to denote thermodynami-
cally irreversible processes involving rates or fluxes of matter or energy.  
For example, kinetic processes in crystals include defect generation and 
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motion, such as dislocation nucleation and glide or vacancy production and 
diffusion.  Other irreversible processes include damage evolution in the 
form of micro-cracking in brittle solids or pore collapse in crushable sol-
ids.  Kinetic processes are contrasted to reversible processes in crystalline 
solids such as mechanically elastic deformation in the absence of viscosity 
or internal friction.  Kinetic processes involve dissipation of energy, for 
example heat produced by the conjugate pair of dislocation velocity and 
lattice friction (Kocks et al. 1975), or the rate of work of crack sliding con-
jugate to frictional forces along fracture surfaces in contact. 

In the context of (4.67) or (4.72), dissipation may result from three 
physical mechanisms: heat conduction, mechanical deformation, and time 
rates of internal state variables.  As noted in Section 4.2.1, internal state 
variables typically account for irreversible structural rearrangements 
within crystalline solids, often at a microscopic scale of resolution.  Re-
gardless of mechanism or physical origin, dissipative energy changes in 
the solid can often be written in the generic form 

 
1

k
i i i

i
d ,λ

=

= ∑ Z J , (4.74) 

where d is the time rate of energy change or dissipation, iJ  is a general-
ized rate or flux, iZ  is a generalized conjugate force to iJ , and 0iλ ≥  is a 
scalar multiplier, each for flux-force pair i.  Summation in (4.74) runs over 

1,2,...i k=  generalized flux-force pairs that may be scalars, vectors, or ten-
sors of higher order.  To ensure that energetic changes associated with 
(4.74) are always dissipative, or always contribute positively to the rate of 
entropy production Γ  in (4.60) for example, the dissipation potential con-
cept is often invoked (Ziegler 1963; Germain et al. 1983): 
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i

Θ∂
=

∂
Z

J
, i

i

Ω∂
=

∂
J

Z
,   (4.75) 

where scalar potentials Θ  and Ω  are constructed such that 0d ≥  in 
(4.74).  A straightforward way to guarantee positive dissipation is prescrip-
tion of the quadratic forms 
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i , j
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= ∑ J O J , 
1

1
2

k
i ij j

i , j
,Ω

=

= ∑ Z o Z , (4.76) 

where operators O and o are symmetric with respect to i and j and are posi-
tive definite.  Potentials (4.76) lead to linear relationships between fluxes 
and forces known as Onsager’s relations (Onsager 1931a, b): 

 
1

k
i ij j

j=

= ∑Z O J , 
1

k
i ij j

j=

= ∑J o Z . (4.77) 

The rate of dissipated energy of (4.74) in these cases is  
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Kinetic relations of the form (4.77) are convenient and physically realistic 
in some, but not all, circumstances (Onsager 1931a, b).  Ziegler (1963) 
demonstrated that Onsager’s relations correspond to a principle of maxi-
mum entropy production or maximum dissipated energy, an appealing 
concept if one follows the viewpoint that kinetic processes in materials 
take place in such a way that stored energy in the substance tends to evolve 
towards a minimum value.  However, linear relations of the form (4.77) 
are not the most general kinetic laws that simply ensure positive entropy 
production, and in many cases more physically realistic alternatives exist. 

Energetic changes attributed to heat conduction often follow the scheme 
outlined in (4.74)-(4.78).  From (4.61), dissipation from conduction is  

 ,
1 a

C ad qθΓ θ
θ

= = − . (4.79) 

In the scheme of (4.74), 1 0λ θ −= > , heat flux a aJ q= , and ,a aZ θ= −  is a 
conjugate thermodynamic force.  A dissipation potential can be defined:  

 , ,
1
2

ab
a bkΩ θ θ= , (4.80) 

where in the context of (4.76), =o k  is the symmetric thermal conductiv-
ity.  Using (4.75), this potential leads to Fourier conduction:  

 ,
, ,( )

a ab
b

a a

q kΩ Ω θ
θ θ

∂ ∂
= = − = −

∂ − ∂
, (4.81) 

and to unconditionally non-negative dissipation in (4.78): 

 , ,
1 0ab

a bd kθ θ
θ

= ≥ . (4.82) 

Next consider energetic changes associated with evolution of internal 
state variables.  Following (4.67), the time rate of change of a single inter-
nal state variable α produces a rate of change in free energy 

 d ψρ α
α

∂
= −

∂
� , (4.83) 

where in the notation of (4.74), 1λ = , the flux is the rate of the internal 
variable J α= � , and the conjugate force is the negative free energy deriva-
tive Z /ρ ψ α= − ∂ ∂ .  In this context, 0d >  implies that the material dis-
sipates energy as a result of structural rearrangements associated with rates 
of internal variables, leading to a decrease in Helmholtz free energy ψ .  
Structural rearrangements need not always be dissipative, however, and in 
many cases lead to an increase in free energy of the solid, such that 0d < .  
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An example of such an energetic storage process in a crystal is an increase 
in defect density and corresponding increase in residual elastic energy as-
sociated with stress fields of individual defects.  However, to ensure posi-
tive dissipation when physically appropriate, a dissipation potential can 
still be used along the lines of (4.74)-(4.78) to dictate rates of internal vari-
ables or their conjugate thermodynamic forces.  

Finally, consider energetic changes stemming from rates of inelastic de-
formation.  For illustrative purposes, consider specifically the time rate of 
plastic deformation gradient PF  of multiplicative decomposition (3.31), 
and its work conjugate stress measure labeled here as PZ .  More precise 
definitions of appropriate inelastic rates and conjugate stress measures are 
derived in Chapter 6 dealing with elastoplasticity, but a generic description 
suffices for now.  The dissipation associated with this stress-deformation 
rate pair is  

 P A P
. .Ad , Z F α
α= =P PZ F� � , (4.84) 

or in the terminology of (4.74), 1λ = , flux = PJ F� , and the driving force 
= PZ Z .  A dissipation potential can be constructed to ensure positive dis-

sipation, i.e., 
 . .2 , ( )

N P A P P B N N
ABZ Z Zαβ

α βΩ λ= = =P P PZ λ : Z , (4.85) 

where Pλ  is a positive semi-definite operator of order four and is clearly a 
two-point tensor.  Exponent N (subject to constraint 0N > ), when given a 
value other than unity, accounts for situations when a linear dependence of 
the dissipation potential on scalar product Z  is physically inappropriate.  
The rate of plastic deformation becomes, from the second of (4.75), 
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= =

∂
� , (4.86) 

and the dissipation of (4.78) is always non-negative: 
 1 0N Nd NZ , NZ−= = ≥P P PZ λ : Z . (4.87) 

When the matrix Pλ  is isotropic, i.e., P P
AB ABg Gαβ αβλ λ= , the rate of plastic 

deformation gradient is coaxial with driving stress PZ : 
 1N PNZ λ−=P PF Z� , 1P N P P B

.A AB .F NZ g G Zα αβ
βλ−=� , (4.88) 

and Pλ  is the plastic multiplier found by squaring both sides of (4.88): 
 2 1 2 2 1 2P N N P AB P

.A .BN Z N Z F g G Fα β
αβλ − − − −= =P PF : F� � � �� , (4.89) 

As demonstrated by example in Section 6.4 of Chapter 6, a description 
similar to (4.88) is often used in macroscopic plasticity theories for ductile 
metals, such that the time rate of plastic deformation and its driving force 
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always share the same direction.  A distinct kinetic relation, or a constitu-
tive assumption such as the consistency condition of associative plasticity 
(see Section 6.4), specifies the magnitude of the plastic deformation gradi-
ent rate via the instantaneous value of ( , )P X tλ .  In plasticity theory, the 
explicit prescription of the rate of plastic deformation is often labeled a 
flow rule.  When derived from the gradient of a plastic potential, e.g., Ω  
of (4.86), plastic deformation is said to obey a normality principle.     

When each rate α�  of an internal variable representing a microscopic 
structural rearrangement—for example dislocation position or cumulative 
slip—is dictated solely by its conjugate driving force /ρ ψ α− ∂ ∂ , the tem-
perature θ , and the current values of the set of such structural variables, a 
generalized normality structure similar to that depicted in (4.86) emerges 
for increments of plastic strain (Rice 1971).  However, derivation of such a 
normality structure seems to require that the increment of plastic deforma-
tion gradient (or plastic strain) be characterized by a kinematic equation of 
the form ( / )

α
δ α δα= ∂ ∂P PF Σ F , with summation applied over all structural 

variables α, an equation which may not always be physically realistic if α  
are interpreted as internal state variables in the usual energetic sense of 
continuum thermomechanics.  Recall that plastic slip is often not a valid 
internal state variable associated with energetic changes in the crystal, as 
explained in Section 4.2.1, so a direct correspondence between PF  and 
usual internal state variable(s) may not always exist5. 

                                                      
5 More precisely, Rice (1971) defines an increment in a symmetric plastic strain 

tensor as the change in total strain resulting from changes in microscopic struc-
tural variable(s) with macroscopic stress and temperature held constant.  The 
number of such structural variables may thus far exceed the number of internal 
state variables of the averaging type (i.e., α) needed to characterize the average 
free energy of a volume element of the solid.  



 



5 Thermoelasticity 

Deformation of a crystalline solid is labeled, in this book, as purely elastic 
in the absence of defect motion and temperature changes.  In an elastic ma-
terial of grade one, the mechanical stress supported by a material particle 
located at a particular point in space and the deformation gradient or strain 
in the material at that point are related by a constitutive law, e.g., a local 
tensor-valued version of Hooke’s law relating force and stretch.  A hypere-
lastic material of grade one can be defined as a material possessing a strain 
energy density function depending on the first-order deformation gradient, 
or on a symmetric deformation tensor or strain tensor constructed from this 
deformation gradient (Truesdell and Noll 1965).  In such a material, the 
partial derivative of strain energy density with respect to a deformation 
gradient component produces a corresponding stress component, more 
precisely a component of the first Piola-Kirchhoff stress tensor.  Thermoe-
lasticity by definition addresses recoverable mechanical deformation (i.e., 
elastic deformation from body and surface forces) and thermal effects 
(e.g., temperature rates, temperature gradients, heat sources, and heat flux) 
as well as their couplings (e.g., thermal expansion or contraction). 

Two alternative formulations of finite deformation thermoelasticity of 
grade one are presented in Chapter 5.  In both cases, following the theme 
of this book, the focus is geared towards crystalline solids, though many 
aspects of these theories apply for arbitrary solid bodies, regardless of 
crystallinity.  Both formulations rely on balance laws for classical continua 
presented in Section 4.1 and the general treatment of dissipation in Section 
4.2.  Viscoelasticity, a rate-dependent elastic response that may involve lo-
cal entropy production (i.e., entropy production even in the absence of heat 
conduction), is not addressed in this book.  Discussion of electromechani-
cal coupling effects present in elastic dielectric crystals is deferred until 
later in Chapter 10.   

In the first formulation—which can best be labeled traditional nonlinear 
thermoelasticity—presented in Sections 5.1-5.4, the contribution to the de-
formation gradient arising from temperature changes is not explicitly de-
lineated in the kinematic description, and independent, time-dependent 
variables entering constitutive response functions consist of the total de-
formation gradient and temperature.  Dependence of strain energy of the 
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material upon the first-order deformation gradient, and not higher-order 
gradients of position or strain, indicates a hyperelastic response of grade 
one, as noted in Section 4.2.1.  As explained in Section 4.2.1 and discussed 
explicitly later in Chapter 5, objectivity requirements reduce dependence 
of thermodynamic potentials and response functions on deformation gradi-
ent to a dependence on a stretch tensor (or a symmetric deformation or 
strain tensor) derived from the deformation gradient.  This formulation fol-
lows classical treatments of hyperelasticity with temperature changes 
(Truesdell and Noll 1965; Thurston 1974; Marsden and Hughes 1983; Ro-
sakis et al. 2000).  Materially nonlinear and materially linear constitutive 
models are discussed.  Relationships among material coefficients derived 
from thermodynamic potentials are presented in Section 5.2 for general 
three-dimensional stress states (Section 5.2.1) as well as hydrostatic stress 
states (Section 5.2.2), following earlier work of Thurston (1974).  Symme-
try properties of material coefficients are discussed, with a brief focus on 
isotropic behavior representative of non-textured polycrystals; the reader is 
directed to Appendix A for an extensive treatment of symmetry properties 
of all thirty-two crystal classes.  In Section 5.3, a free energy function ac-
counting for large thermoelastic volume changes but small elastic shape 
changes, applicable for example at large hydrostatic pressures observed in 
some shock physics experiments, is described.  In Section 5.4, reduction of 
the finite strain theory to the geometrically linear case is considered for 
completeness.   

In a second, alternative or non-traditional formulation of nonlinear ther-
moelasticity presented in Section 5.5, purely thermal deformation induced 
by temperature changes is explicitly delineated in the kinematic descrip-
tion from the mechanical deformation associated with applied stresses.  In-
dependent state variables in thermodynamic potentials consist of mechani-
cal elastic deformation and temperature.  The deformation gradient is 
decomposed multiplicatively into an elastic part associated with mechani-
cal loading and a thermal part associated with temperature changes, fol-
lowing the qualitative discussion of Section 3.2.2.  Such a formulation, 
while not following what may be termed classical thermoelasticity, offers a 
more detailed depiction of the kinematics and provides different thermo-
dynamic relationships among independent and dependent state variables 
(Stojanovitch 1969; Lu and Pister 1975; Imam and Johnson 1998; Clayton 
2005a, b, 2006a).  Thermal strain can be expressed via an evolution equa-
tion associated with the temperature rate (Lee et al. 1997), and additional 
thermoelastic couplings emerge via higher-order thermal stress coeffi-
cients, e.g., those reflecting dependence of elastic moduli on temperature. 

Dissipative effects are omitted in the final two Sections of Chapter 5.  
Section 5.6 presents the Lagrangian field theory of elasticity, wherein the 
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linear momentum balance and constitutive laws of hyperelasticity of grade 
one are deduced from Euler-Lagrange equations of the appropriate action 
integral.  Section 5.7 discusses hyperelastic bodies of grade two, following 
the variational approach of Toupin (1964).  Such materials may support 
hyperstresses (including couple stresses) and do not obey the classical bal-
ance laws of continuum mechanics presented in Chapter 4 apart from the 
conservation of mass of Section 4.1.2 which is presumed identical for elas-
tic materials of grades one and two.   

This Chapter, while providing detailed descriptions of selected topics in 
thermoelasticity, does not provide a comprehensive account of the whole 
subject of elasticity to which numerous books have been entirely devoted.  
For completeness, a few other relevant references include Love (1927), 
Landau and Lifshitz (1959), Marsden and Hughes (1983), and Ogden 
(1997).  References specifically dealing with nonlinear elasticity of anisot-
ropic crystals include Thurston (1974) and Teodosiu (1982). 

5.1 Nonlinear Elasticity and Thermoelasticity 

In a thermoelastic crystalline material not containing mobile defects, or in 
which contributions from defects to deformation are negligible, the defor-
mation gradient is asserted to follow (3.25): 

 
. ., . . . . . .

( , ) ( ) ( , ),
.

X
a a La La B La
A A A B A A

X t T t X t
F x F g F g g Fα α

α α

ϕ= =
= = = =

LF F
 (5.1) 

In this context, there is no need for introduction of an evolving intermedi-
ate configuration, since the lattice deformation serves as the local tangent 
map 0( , ) : X xX t T B T B→LF .  Recall that superscript L indicates deforma-
tion of the lattice (e.g., deformation of primitive Bravais lattice vectors and 
basis vectors in (3.109)-(3.110)) in the volume element of crystal associ-
ated, symbolically, with material point X, under the Cauchy-Born hypothe-
sis.  From (5.1), this superscript is dropped from the notation for the lattice 
or total deformation gradient F in the remainder of Chapter 5 without con-
sequence.     

5.1.1 Constitutive Assumptions 

Applying (5.1), and prior to consideration of objectivity requirements, ap-
propriate versions of functional dependencies of dependent state variables 
(4.45)-(4.48) for a hyperelastic material of grade one are 
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                , , , , AXψ ψ θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g

F G , ( ). ,, , , ,a
A a AF Xψ ψ θ θ= G ;  (5.2) 

                  , , , , AXη η θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g

F G , ( ). ,, , , ,a
A a AF Xη η θ θ= G ; (5.3) 

               , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g

σ σ F G , ( ). ,, , , ,ab ab a
A a AF Xσ σ θ θ= G ; (5.4) 

                 , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g

q q F G , ( ). ,, , , ,a a a
A a Aq q F X Gθ θ= . (5.5) 

Independent quantities (in parentheses) are deformation gradient, tempera-
ture, spatial temperature gradient, position or choice of material particle at 
X, and reference basis vectors.  The present definition of a hyperelastic 
material includes no internal state variables, meaning that (4.49) is not 
needed.  Dependence on deformation gradient follows arguments given in 
Section 4.2 and relations (3.109)-(3.114) of Chapter 3.  Specifically, F re-
flects, to first order, the stretch of interatomic bonds since primitive Bra-
vais lattice and basis vectors in a volume element of a crystal structure at 
point X deform according to the value of ( , )X tF  at that point at time t.  
Since changes in interatomic bond distances and angles result in mechani-
cal stresses and corresponding changes in energy stored in the crystal, as 
explained in detail in Appendix B in the context of discrete lattice statics, 
dependence of Cauchy stress and free energy on F is appropriate1.  De-
                                                      

1 In polyatomic structures, internal (i.e., inner) displacements discussed in Sec-
tion 3.1.2 also affect bond distances and angles, and hence free energy and other 
response functions.  Recall from (3.20) that 0( )kQ  denotes the inner displacement 
vector for basis atom k, with K the total number of atoms in the basis.  Without 
loss of generality, let the primitive Bravais lattice and 0k =  coincide, so 

0
0( ) 0=Q .  Since 0( )kQ  can be determined if the other independent state variables 

(e.g., deformation gradient and temperature) are known, internal displacement(s) 
need not be included in the list of independent state variables entering (5.2)-(5.5).  
For example, the free energy of a homogeneous material in the athermal case can 
be written as ( ) ( )0ˆ , ( )( )kψ ψ=F F Q F .  Inner displacement vector(s) at a given de-
formation gradient F can then obtained as the solution of (Tadmor et al. 1999) 

   0

ˆ
0

( )k

ψ∂
=

∂
F

Q
 ( 1,... 1)k K∀ = − ; 

2

0 0

ˆ
positive definite

( ) ( )k l

ψ∂
∂ ∂Q Q

. 

It follows that at the equilibrium conditions corresponding to this solution, 

  
0 0

01

0
1( ) ( )

ˆ ˆ ˆ( )
( )

k k

K
k

k k

ψ ψ ψ ψ−

=

∂∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂∂∑
Q QF

Q
F F F FQ

. 
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pendence of entropy and heat flux on deformation gradient is written out 
following the equipresence principle.  Dependence of free energy and en-
tropy on temperature depicts well-known phenomena, e.g., from physical 
chemistry, of the specific heat capacity of the material to account for 
changes in energy and entropy that accompany local thermal vibrations of 
atoms as well as possibly significant electronic contributions.  Dependence 
of stress on temperature enables a description of thermal expansion, while 
dependence of heat flux on temperature enables a description of tempera-
ture-dependent conductivity.  Dependence of heat flux on temperature gra-
dient enables, for example, use of Fourier’s law of (4.62).  Dependence of 
the other state variables on temperature gradient is written out in (5.2)-
(5.4) for completeness, but will be eliminated following thermodynamic 
considerations in Section 5.1.2.  As discussed in Section 4.2.1, dependence 
of response functions on X is included to permit description of a heteroge-
neous body, that is a body whose properties such as elastic stiffness, mass 
density, or thermal conductivity vary with position in the undeformed 
state.  Dependence on basis vectors ( )A XG , often implied rather than 
written out explicitly in other presentations of elasticity theory, is used to 
describe solids exhibiting an anisotropic response, as explained more in 
Section 5.1.5.    

Under superposed rigid body motions of the spatial frame ˆ→ +x Qx c , 
where ˆ ˆ T−=Q Q  is a spatially constant rotation matrix and c is a spatially 
constant translation vector, vector- and tensor-valued variables entering 
(5.2)-(5.5)  transform as 

        . . .
ˆa a b

A b AF Q F→ , . .
ˆ ˆab a cd b

c dQ Qσ σ→ , .
ˆa a b

bq Q q→ , , ,
.

ˆa a b
bQθ θ→ . (5.6) 

Scalars (i.e., free energy, entropy, and temperature) associated with a given 
material particle X, as well as reference basis vectors ( )A XG , are all in-
variant under such spatial coordinate transformations.  From (5.6), it is 
clear that constitutive assumptions of the general form (5.2)-(5.5) are not 
always objective, since independent and dependent variables transform dif-
ferently under a change of spatial basis.  To conform to objectivity re-
quirements, constitutive assumptions for thermoelastic solids should sat-
isfy the following requirements (Coleman and Noll 1963; Coleman and 
Gurtin 1967), where the spatial temperature gradient is expressed in con-
travariant vector form following the last of (5.6): 

                  ˆ ˆ, , , , , , , ,A AX Xψ θ θ ψ θ θ⎛ ⎞ ⎛ ⎞∇ = ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

g g

F G QF Q G , (5.7) 

                   ˆ ˆ, , , , , , , ,A AX Xη θ θ η θ θ⎛ ⎞ ⎛ ⎞∇ = ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

g g

F G QF Q G , (5.8) 
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               ˆ ˆ ˆ ˆ, , , , , , ,T
A AX Xθ θ θ θ⎛ ⎞ ⎛ ⎞∇ = ∇⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

g g

Qσ F G Q σ QF Q G , (5.9) 

                ˆ ˆ ˆ, , , , , , , ,A AX Xθ θ θ θ⎛ ⎞ ⎛ ⎞∇ = ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

g g

Qq F G q QF Q G . (5.10) 

A number of possible variations of (5.2)-(5.5) satisfy (5.7)-(5.10).  The 
forms suggested below are straightforward and are frequently encountered: 

             , , , , AXψ ψ θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
C G  , ( ),, , , ,AB A AC Xψ ψ θ θ= G ; (5.11) 

              , , , , AXη η θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
C G , ( ),, , , ,AB A AC Xη η θ θ= G ; (5.12) 

         , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
Σ Σ C G , ( ),, , , ,AB AB

AB A AC XΣ Σ θ θ= G ; (5.13) 

           , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
Q Q C G , ( ),, , , ,A A

AB A AQ Q C Xθ θ= G . (5.14) 

where symmetric deformation tensor . .
a b

AB A ab BC F g F=  by (2.153), symmet-
ric second Piola-Kirchhoff stress tensor 1 1

. .
AB A ab B

a bJF FΣ σ− −=  according to 
(4.6)-(4.7) and the identities listed in Table 4.1, referential heat flux vector 

1
.

A A a
aQ JF q−=  by (4.36), and referential temperature gradient , . ,

a
A A aFθ θ=  

as in (4.51).  All variables of order one or greater in (5.11)-(5.14) exhibit 
indicial components referred to reference configuration 0B  and are invari-
ant under spatial coordinate transformations (see e.g., (4.50)-(4.51)).   

For purposes of constructing strain energy functions in constitutive 
models of thermoelastic response, the following versions of (5.11)-(5.14) 
are often useful, and will be invoked frequently in Chapter 5: 

             , , , , AXψ ψ θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
E G  , ( ),, , , ,AB A AE Xψ ψ θ θ= G ; (5.15) 

               , , , , AXη η θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
E G , ( ),, , , ,AB A AE Xη η θ θ= G ; (5.16) 

           , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
Σ Σ E G , ( ),, , , ,AB AB

AB A AE XΣ Σ θ θ= G ; (5.17) 

            , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
Q Q E G , ( ),, , , ,A A

AB A AQ Q E Xθ θ= G ; (5.18) 

where symmetric right Cauchy-Green strain tensor 2 AB AB ABE C G= −  by 
(2.156) and is also invariant under rigid body transformations of the spatial 
coordinate system, since 
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    . . . .

.

ˆ ˆ2

        2 .

T a T T b a c
AB Aa B AB Ab a c B AB

T b
Ab B AB AB

E F F G F Q Q F G

F F G E

= − → −

= − =
 (5.19) 

Dependence of response functions on strain tensor E rather than on defor-
mation tensor C is useful for linearization of the energy density about a 
strain-free reference state, since 0=E  at a reference state in which =F 1  
and =C 1 . 

5.1.2 Thermodynamics 

Using kinematic assumption (5.1) and constitutive assumptions (5.2)-(5.5), 
dissipation inequality (4.67) referred to spatial configuration B becomes 

 1
. ,

. ,

0ab a a
ab A a aa

A a

D F q
F
ψ ψ ψσ ρ η θ γ θ θ

θ θ
−⎡ ⎤∂ ∂ ∂⎛ ⎞− + + + − ≥⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

�� . (5.20) 

The stress power per unit current volume can be written as follows: 
 1 1 .

. .
ab ab ab A A a

ab ab aA b a AD L F F J P Fσ σ σ − −= = =� � , (5.21) 
with P the first Piola-Kirchhoff stress of (4.6).  Substituting into (5.20), 

   1 . 1
. ,

. ,

0A a a
a A a aa

A a

J P F q
F
ψ ψ ψρ ρ η θ ρ γ θ θ

θ θ
− −⎛ ⎞⎛ ⎞∂ ∂ ∂⎛ ⎞− − + − − ≥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

�� . (5.22) 

Presuming that rates of deformation gradient, temperature, and tempera-
ture gradient (i.e., F� , θ� , and γ ) can be prescribed arbitrarily—i.e., inde-
pendently of each other and of their coefficients in a thermodynamic proc-
ess—such coefficients (in parentheses in (5.22)) should vanish identically 
(Coleman and Noll 1963).  Presumably, judicious application of body 
force ab  of (4.17) and heat source r  of (4.34) enables this arbitrary pre-
scriptions of rates F� , θ� , and γ .  Such reasoning leads to the constitutive 
relations 

 .
0

.

A
a a

A

P
F
ψρ ∂

=
∂

, ψη
θ

∂
= −

∂
, 

,

0
a

ψ
θ

∂
=

∂
. (5.23) 

Notice from (5.2)-(5.4) that free energy, entropy, and stress do not depend 
on F� , θ� , or γ .  If, on the other hand, the dependent state variables were 
permitted to depend on rates of deformation gradient, temperature, or tem-
perature gradient, it would not be possible to vary such rates independently 
of their coefficients in (5.22), and hence (5.23) would not necessarily fol-
low.  Because the heat flux vector and temperature gradient are explicitly 
related through (5.5), neither can be varied arbitrarily in (5.22), and neither 
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must vanish in a generic heat conductor.  From (4.6), the Cauchy stress 
tensor satisfies 

 1 .
. .

ab ac A b b
c A A

aA

J g P F F
F
ψσ ρ− ∂

= =
∂

. (5.24) 

It follows from (5.23) that free energy, entropy, and stress do not depend 
explicitly on the spatial temperature gradient: 

   ( ), , , AXψ ψ θ= F G , ( ), , , AXη η θ= F G , ( ), , , AXθ=σ σ F G . (5.25) 
Since 0θ > , the local entropy production inequality reduces to the con-
duction inequality in the second of (4.61). 

 1
, 0a

C aqθΓ θΓ θ θ−= = − ≥ . (5.26) 
The rate of local entropy production vanishes in a hyperelastic material: 

 ; 0a ab
L a abq r DθΓ ρθη ρ σ ρψ ρθη= + − = − − =�� � . (5.27) 

A similar procedure can be followed with the entropy inequality (4.72) 
referred to the reference configuration taken as a starting point, which be-
comes, using (5.1) and (5.11)-(5.14), 
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 (5.28) 

where 2 AB ABE C= �� .  The reference rate of temperature gradient satisfies 

         ,
. 0 0 .

, , , , ,

A a a
a a A a A A A a

a A a A A

F F
θψ ψ ψ ψγ γ γ γ γ γ

θ θ θ θ θ
∂∂ ∂ ∂ ∂

= = = ⇔ =
∂ ∂ ∂ ∂ ∂

. (5.29) 

The following stress-strain and temperature-entropy relations are then de-
duced for hyperelastic materials, using (2.158): 

  0 0 02AB BA

AB AB BAC E E
ψ ψ ψΣ ρ ρ ρ Σ∂ ∂ ∂

= = = =
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, ψη
θ

∂
= −

∂
, 

,

0
A

ψ
θ

∂
=

∂
. (5.30) 

It follows that in addition to the free energy, the entropy and stress do not 
depend explicitly on the referential temperature gradient: 

  ( ), , , AXψ ψ θ= C G , ( ), , , AXη η θ= C G , ( ), , , AXθ=Σ Σ C G . (5.31) 
Since 0θ > , the entropy production inequality reduces to the conduction 
inequality: 

 1
, 0A

C AJ J QθΓ θΓ θ θ−= = − ≥ . (5.32) 
The rate of local entropy production vanishes: 

 0 ; 0 0 0 0A AB
L A ABJ Q r EθΓ ρ θη ρ Σ ρ ψ ρ θη= + − = − − =��� � . (5.33) 
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Writing the free energy as ( )( ( , ), ( )), , , AX t x Xψ ψ θ= C F g G  and using 
(2.158) with (5.23) and (5.30), the following relationships emerge: 

  . 0 . 0 . 0 .2 2aA a BA a a aCD
B B B B

AB CD AB BA

EP F F F F
C E C E
ψ ψ ψΣ ρ ρ ρ

∂∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
, (5.34) 

        1 1
. . . .
a b A BAB
A B a b

ab AB ab AB AB ab

C F F F F
g C g C C g
ψ ψ ψ ψ ψ− −∂∂ ∂ ∂ ∂ ∂

= = ⇔ =
∂ ∂ ∂ ∂ ∂ ∂

, (5.35) 

  1
. . . .2 2 2ab a AB b a b ba
A B A B

AB ab ba

J F F F F
C g g
ψ ψ ψσ Σ ρ ρ ρ σ− ∂ ∂ ∂

= = = = =
∂ ∂ ∂

. (5.36) 

Notice from (5.30) and (5.36) that angular momentum balances (4.26) and 
(4.27) are satisfied identically: T=Σ Σ  and T=σ σ .  The first of (5.30) 
provides the relationship between the reference second Piola-Kirchhoff 
stress Σ  and a pull-back of the spatial metric g, while (5.36) provides the 
relationship between a push-forward of the reference stress Σ  and the spa-
tial metric g.  Relation (5.36) is often called the Doyle-Ericksen formula 
(Doyle and Ericksen 1956; Yavari et al. 2006).  From (2.182) and (5.36), 
in a hyperelastic material the spatial stress power can be expressed com-
pactly in terms of the scalar product of the derivative of the free energy 
with respect to metric g and its Lie derivative with respect to the velocity 
field: 

 , ,ψρ ∂
=

∂ vσ D g
g

L . (5.37) 

Relation (5.34) can also be deduced directly from (2.158) and (5.23):    

         .
0 0 . . 0 .

.

2 2A A b bBC
a ab B C ab Ba

BC A BC AB

CP g F g F
C F C C
ψ ψ ψρ ρ δ ρ∂∂ ∂ ∂

= = =
∂ ∂ ∂ ∂

. (5.38) 

As noted in Section 4.2, alternative choices of independent and depend-
ent state variables are possible.  One typical prescription regards the en-
tropy as an independent variable and temperature as a dependent variable, 
with the internal energy e used as the primary thermodynamic potential: 

      ( ), , , Ae e Xη= F G , ( ), , , AXθ θ η= F G , ( ), , , AXη=σ σ F G , (5.39) 
where the partial Legendre transform (Marsden and Hughes 1983) 

 ( ) ( ), , , , , ,A Ae X Xθ η η ψ θ= +F G F G . (5.40) 
From the second of (5.30) and the chain rule, 
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. . .
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A A A A
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∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂⎛ ⎞= + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (5.41) 
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so that constitutive relationships for the first Piola-Kirchhoff stress, second 
Piola-Kirchhoff stress, and Cauchy stress in terms of internal energy are 

      .
0

.

A
a a

A

eP
F

ρ ∂
=

∂
, 0 02AB

AB AB

e e
C E

Σ ρ ρ∂ ∂
= =

∂ ∂
, 2ab

ab

e
g

σ ρ ∂
=

∂
. (5.42) 

The thermodynamic analysis of (5.20)-(5.42) is often labeled the Coleman-
Noll procedure, after Coleman and Noll (1963).  In the present Section, 
this procedure is applied to hyperelastic crystalline solids, following Teo-
dosiu (1982) for example, though formal analytical methods of Coleman 
and co-workers have been applied to numerous classes of materials 
(Coleman and Noll 1963; Coleman 1964; Coleman and Mizel 1964; 
Coleman and Gurtin 1967; Maugin 1988).  It is also noted that constitutive 
relations among stress, deformation gradient, free or internal energy, tem-
perature, and entropy need not be derived for hyperelastic bodies using the 
Second Law of thermodynamics or the Coleman-Noll procedure.  For ex-
ample, Marsden and Hughes (1983) obtain (5.30) by applying principles of 
locality, the balance of energy, and covariance.  Other approaches can be 
found in Eringen (1962) and Truesdell and Noll (1965).  Alternatively, 
stress and entropy can simply be assigned in hyperelastic solids as deriva-
tives of thermodynamic potentials, taking (5.30) as basic definitions 
(Thurston 1974). 

When temperature rates and temperature gradients are omitted from the 
description, the body is said to be elastic as opposed to thermoelastic.  In 
such a description, let constantθ =  such that 0θ =�  and , 0Aθ = , and let 
the heat flux q and heat source r vanish.  Conduction inequality (5.32) is 
identically zero, and the entropy production (5.27) becomes  

 0LθΓ ρθη= =� . (5.43) 
Since temperature and entropy are treated as constants, there is no need to 
include them explicitly in the thermodynamic description.  General expres-
sions (5.31) for free energy and stress become 

   ( ), , AXψ ψ= C G , ( ), , AX=Σ Σ C G , (5.44) 
and the resulting constitutive equations are 

          .
0

.

A
a a

A

P
F
ψρ ∂

=
∂

, 0 02AB

AB ABC E
ψ ψΣ ρ ρ∂ ∂

= =
∂ ∂

, 2ab

abg
ψσ ρ ∂

=
∂

. (5.45) 

The temperature-independent thermodynamic potential ( , , )AXψ ψ= C G  
is called the strain energy density.  Relations (5.45) along with the balance 
of linear momentum and boundary conditions can also be obtained from 
Hamilton’s principle of stationary action, as demonstrated later in Section 
5.6. 
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The specific heat capacity at constant deformation gradient F (i.e., at 
constant strain E) is introduced as 

 
2

2

e e ec η ψ ψθ
θ η θ η θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= = = − = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
, (5.46) 

since from the second of (5.23) and (5.40), 

 ( )e θ ψθη ψ θ η θ
η η η η θ

∂ ∂ ∂ ∂ ∂⎛ ⎞= + = + + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
. (5.47) 

Also often used for thermoelastic solids is Fourier’s Law of conduction, as 
first introduced in (4.69), leading to non-negative dissipation from conduc-
tion: 

 ,
A AB

BQ K θ= − , , , , 0A AB
A A BQ Kθ θ θ− = ≥ . (5.48) 

From (5.33) and (5.48), the local energy balance can be expressed as 

 0 , ; 0( )AB
B A

d K r
dt

ψθ ρ θ ρ
θ

∂⎛ ⎞− = +⎜ ⎟∂⎝ ⎠
. (5.49) 

Note that, by the chain rule, 

 0 0

0                         ,
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d E
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��

��
 (5.50) 

where (5.15) has been used and where the symmetric contravariant tensor 
2

0/ /θ ρ ψ θ= −∂ ∂ = − ∂ ∂ ∂β Σ E  accounts for thermoelastic coupling.  Equat-
ing (5.49) and (5.50) results in a rate equation for the temperature: 

 0 , ; 0( )AB AB
B A ABc K E rρ θ θ θβ ρ= − +� � . (5.51) 

In the absence of strain rate E�  (e.g., a rigid body) and heat sources r, and 
when AB ABK KG=  with K a constant (e.g., an isotropic homogeneous con-
ductor), (5.51) becomes the transient heat equation 

   ( )2 1
, ; , ,

0 0 0

( )
G

AB AB
A B A B

K K KG G GG
c c c

θ θ θ θ
ρ ρ ρ

−= ∇ = =� , (5.52) 

where the Laplacian is given by (2.77). 

5.1.3 Materially Nonlinear Hyperelasticity 

Differentiation of (5.23) and (5.30) results in definitions of second-order 
elastic stiffness coefficients: 

 
. 2
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. . .

A ( , , , )
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a b A b a b

B A B

PX
F F F

ψθ ρ∂ ∂
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F G , (5.53) 
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ABCD
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CD AB CD

X
E E E
Σ ψθ ρ∂ ∂
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∂ ∂ ∂

E G^ . (5.54) 

Coefficients in (5.53) and (5.54) are generally not constants and are la-
beled as tangent moduli when evaluated at particular values of the state 
variables.  Third-order coefficients are defined via further differentiation: 
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Tangent moduli of orders four and higher can be defined by straightfor-
ward extension, i.e., additional differentiation with respect to deformation 
gradient or strain.  The following symmetries follow automatically from 
definitions (5.53)-(5.54) and symmetry of ( )AB ABE E= : 

 . . . .
. .A AA B B A

a b b a= , ( )( )AB CDABCD CDAB= =^ ^ ^ . (5.57) 
Tensor . .

.A A B
a b  consists of 45 independent entries before consideration of 

material symmetry, while ABCD^  consists of up to 21 independent entries.  
Similarly, 
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= = =^ ^ ^ ^
 (5.58) 

In particular, third-order tangent stiffness ABCDEF^  consists of up to 56 in-
dependent entries.   

Transformation formulae among elastic coefficients are deduced as fol-
lows.  Since from (2.158), 
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it follows from (5.57) that 
 1 1 1 1

. . . .AACBD A aCbD B AB C ab D
a b a bF F F g FΣ− − − −= −^ . (5.60) 

Similarly, the relationship between third-order tangent elasticity coeffi-
cients is, using (5.58), 

      .
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 (5.61) 

Expressing free energy (5.31) of a hyperelastic material with thermal ef-
fects in a Taylor series of multiple variables (cf. Hoffman (1992)) about a 
reference state wherein . .

a a
A AF g= , AB ABC G= , 0ABE = , and 0 0θ θ= >  
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produces the following result per unit reference volume, where free energy 
per unit reference volume 0Ψ  is introduced in (4.9): 

        

( )0 0

0

, , ,
1 1     + +
2! 3!

1               ...
4!
1 1               ...
2! 8
1               
2!

AB A

AB ABCD ABCDEF
AB AB CD AB CD EF

ABCDEFGH AB
AB CD EF GH AB

ABCD ABCDEF
AB CD AB CD EF

AB

E X

E E E E E E

E E E E E

E E E E E

E

Ψ ρ ψ θ

Ψ

β θ

β θ β θ

β

=

= +

+ + − ∆

− ∆ − ∆ −

′−

G

^ ^ ^

^

( )

2 3

2
0

1( ) ( ) ...
8

1               ( ) ... , .
4

AB
AB AB

ABCD
AB CD

E

E E Y X

θ β θ

β θ θ

′′∆ − ∆ −

′− ∆ +

 (5.62) 

Temperature change from the reference state 0θ θ θ∆ = −  can be positive, 
zero, or negative.  Presuming sufficient differentiability of 0Ψ  with re-
spect to independent state variables, quantities in (5.62) are defined as fol-
lows:  

                    ( ) ( ) ( )0 0 0 0 00, , , , 0AX X Y XΨ θ Ψ θ= + =G , (5.63) 
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The total free energy at the reference state is chosen as a zero datum in 
(5.63) for convenience ( 0 0 0( ) ( , )X Y XΨ θ= − ), since from inspection of the 
derivations in Section 5.1.2, the dependent variables stress, entropy, and 
heat flux only depend on derivatives of the free energy and not its absolute 
value.  First-order elastic constants AB^  are zero by definition in (5.64) so 
that by (5.30) and (5.34), stress vanishes in the reference state.  Coeffi-
cients in (5.65)-(5.67) are referred to, respectively, as isothermal second-
order elastic constants, isothermal third-order elastic constants, and iso-
thermal fourth-order elastic constants.  Stress-temperature coefficients of 
various orders are defined in (5.68)-(5.73); some of these can be inter-
preted as temperature derivatives of the elastic moduli at the reference 
state as indicated.  All constants in (5.65)-(5.73) can depend on position X 
in a heterogeneous body as well as orientation ( )A XG , but have fixed 
values at each point X.  Stress-strain and entropy-temperature relations be-
come 
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The thermal energy 0Y  is not expanded in a polynomial series in (5.62) 
since such an expansion is usually deemed more appropriate for internal 
energy rather than free energy.   

Two early models for thermal energy of solids include Einstein’s model 
(Einstein 1907) and Debye’s model (Debye 1912).  A thermal internal en-
ergy is defined as 

 ( ) 0
0 0, YU X Yθ θ

θ
∂

= −
∂

. (5.76) 

According to Einstein’s model (Born and Huang 1954), 
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, (5.77) 

where 0 ( )C θ  is a specific heat per unit reference volume and 
 E /ξ θ= Θ , E E Bh / kνΘ = , (5.78) 

with Einstein’s temperature EΘ  presently assumed constant for a given 
substance with characteristic vibrational frequency Eν , measured here in 
units of cycles per second.  Planck’s constant and Boltzmann’s constant 
are written as h 2π= =  and Bk , respectively.  The number of degrees of 
freedom per unit reference volume is 3n.  For a monatomic crystal 

03 3/n = Ω , with 0Ω  the atomic volume introduced in Section 3.1.1.  Ac-
cording to Debye’s model, considered more accurate for many crystalline 
solids (Born and Huang 1954; Brillouin 1964), thermal internal energy and 
specific heat are given by 
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where Debye’s temperature DΘ  is here assumed constant2 for a substance 
with characteristic maximum frequency Dν  of vibrational modes: 

 D D Bh / kνΘ = . (5.81) 
At relatively high temperatures Dθ Θ� , the energy 0U  in (5.79) is linear 
in temperature, and the specific heat in (5.80) is constant: 
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∫ , 0 B3 kC n≈ . (5.82) 

At relatively low temperatures Dθθ � , (5.79) and (5.80) become (Bril-
louin 1964) 
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with C a material constant reflecting the cohesive or total ground state in-
ternal energy of the undeformed material at 0θ = . 

Methods of derivation of elastic coefficients in (5.53)-(5.61), and elastic 
constants in (5.65) and (5.66), using atomistic models (i.e., lattice statics) 
are provided in Sections B.2.4-B.2.6 of Appendix B.  Derivations of ther-
moelastic and thermal properties of matter (e.g., stress-temperature coeffi-
cients, thermal conductivity, and caloric equations of state), apart from the 
brief treatment in (5.76)-(5.83), from atomistic or quantum mechanical 
models fall outside the scope of this book.  Such derivations can instead be 
found in books by Slater (1939), Born and Huang (1954) and Brillouin 
(1964), while Slater (1955) gives a historical account of quantum theories 
of specific heats of condensed matter.  Methods of extending or combining 
Debye and Einstein models for specific heats of polyatomic substances 
wherein effects of intramolecular vibrations are significant are also dis-
cussed by Slater (1939). 

                                                      
2 Debye’s temperature DΘ  is constant for a given substance according to the 

model of (5.79) that omits coupling between vibrational energy and specific vol-
ume.  Frequency Dν  can be related to sound speeds and hence elastic constants 
(Hearmon 1956).  More generally, D D ( , )J θΘ = Θ , where dependence on absolute 
temperature is most evident at very low temperatures (Born and Huang 1954; Bian 
et al. 2008).  Volumetric (i.e., J) dependence of Debye and Einstein temperatures 
is considered explicitly in Section 5.2.2 in the context of Gruneisen’s parameter. 
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5.1.4 Materially Linear Hyperelasticity 

Material coefficients of orders three and higher (e.g., third- and fourth-
order elastic constants) can be of importance for crystalline solids in high 
pressure events such as shock physics experiments wherein elastic defor-
mations can be large, or high temperature events wherein nonlinear ther-
mal expansion can be significant (Thurston 1974; Hiki 1981; Graham 
1992).  Higher-order elastic constants also affect elastic wave speeds in 
pressurized media, and provide insight into anharmonic atomic interactions 
(Appendix B, Section B.2.5).   

On the other hand, in many practical applications, higher-order coeffi-
cients can be omitted from the series expansion of the free energy while 
still maintaining a reasonably accurate depiction of thermoelastic behavior.  
In such cases, (5.62) becomes 
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= − ∆ −^ , (5.84) 

where elastic constants ABCD^ , stress-temperature coefficients ABβ , and 
specific heat c  are defined as second derivatives of the free energy at null 
strain and reference temperature: 
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At a particular material point X, parameters in (5.85) are all constants.  The 
thermal energy comprising the rightmost term in (5.84) depends only on 
temperature.  This term (Abeyaratne and Knowles 1993) is consistent with 
a thermal internal energy 0U  measured per unit reference volume depend-
ing linearly on temperature: 
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ρ θ
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. (5.86) 

Stress and entropy measured in the reference configuration are 
 AB ABCD AB

CDEΣ β θ= − ∆^ , (5.87) 

 0 0 0
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ln 1AB
ABN E c θρ η β ρ

θ
⎛ ⎞

= = + +⎜ ⎟
⎝ ⎠

. (5.88) 

In (5.87), the first term on the right accounts for stress due to strain and the 
second accounts for changes in stress resulting from changes in tempera-
ture 0θ θ θ∆ = − .  This is a geometrically nonlinear but materially linear 
constitutive relationship; i.e., second Piola-Kirchhoff stress is linearly re-
lated to (finite) right Cauchy-Green strain and the temperature change. 
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At a fixed reference temperature 0θ θ= , the requirement that the free 
energy 0Ψ  be positive for all nonzero strains E implies that the fourth-
rank tensor ABCD^  should be positive definite.  From the first of (5.85), it 
follows that at 0θ θ= , in the material linear case addressed in (5.84), 0Ψ  is 
a strictly convex function3 of E.   

Stress equation (5.87) applies for any choice of reference configuration 
coordinate system, including Cartesian coordinates and general curvilinear 
coordinates.  In physical components of orthogonal curvilinear coordinates 
(Section 2.4), the stress-strain law exhibits the same general form (Mal-
vern 1969): 

 
3

, 1
AB ABCD CD AB

C D
EΣ β θ

=

= − ∆∑ ^ , (5.89) 

where indices in angled brackets are referred to physical components of or-
thogonal curvilinear coordinates such as cylindrical coordinates of Section 
2.4.2 and Table 4.3 or spherical coordinates of Section 2.4.3 and Table 4.4.  
Transformation formulae relating quantities in (5.89) to their counterparts 
in Cartesian coordinates are lengthy and are given by Malvern (1969).   

5.1.5 Symmetry 

Following from (5.65) and (5.68), matrices of second-order elastic con-
stants ABCD^  and thermal stress constants ABβ exhibit the following sym-
metries: 

 ABCD CDAB BACD ABDC= = =^ ^ ^ ^ , AB BAβ β= , (5.90) 
meaning that ABCD^  contains up to 21, as opposed to 43 81= , independent 
entries, and ABβ  contains up to 6 as opposed to 23 9=  independent en-
tries.  Appealing to such symmetry considerations, (5.87) is often written 
in reduced matrix form as (Nye 1957; Hirth and Lothe 1982) 

                                                      
3 In nonlinear elasticity in three spatial dimensions, convexity is not always 

necessary, and may be overly restrictive for addressing certain physical phenom-
ena such as buckling associated with non-uniqueness of solutions (Marsden and 
Hughes 1983).  Less restrictive assumptions such as polyconvexity and quasi-
convexity may be more appropriate for strain energy functions of some kinds of 
materials.  Also not addressed in Chapter 5 are non-convex, multi-well strain en-
ergy potentials that may emerge in continuum theories of phase transformations 
(Ericksen 1975; Ball and James 1987; Abeyaratne and Knowles 1993). 
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^ ^ ^ ^ ^ ^
^ ^ ^ ^ ^ ^
^ ^ ^ ^ ^ ^

11

22

33

23

31

12

β
β
β

θ
β
β
β

⎡ ⎤
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥

− ∆⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥ ⎣ ⎦

, (5.91) 

where components of the symmetric 6×6 matrix of elastic constants are 

  

11 1111

12 1122 22 2222

13 1133 23 2233 33 3333

14 1123 24 2223 34 3323 44 2323

15 1113 25 2213 35 3313 45 2313 55 1313

16 1112 26 2212 36 3312 46 2312 56 1312 66

= − − − − −
= = − − − −
= = = − − −
= = = = − −
= = = = = −
= = = = = =

^ ^
^ ^ ^ ^
^ ^ ^ ^ ^ ^
^ ^ ^ ^ ^ ^ ^ ^
^ ^ ^ ^ ^ ^ ^ ^ ^ ^
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^1212

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (5.92) 

The indicial form of (5.92) is often referred to as Voigt’s notation 
(Voigt 1928).  Nine components of symmetric second-order tensors reduce 
to six according to the correspondence  

 
11 ~ 1, 22 ~ 2, 33 ~ 3,

23 32 ~ 4, 31 13 ~ 5, 12 21 ~ 6.= = =
 (5.93) 

In the compact notation of Brugger (1964), Thurston (1974), and Teodosiu 
(1982), components of the stress and thermoelastic moduli are re-written to 
take advantage of these symmetries: 

 ( ) ~AB AΣ Σ , ( )( ) ~AB CD AB^ ^ , AB Aβ β∼ . (5.94) 
Barred single indices span 1,2,…6 and correspond to unbarred pairs of in-
dices as indicated in (5.93).  Consistent with (5.91) and (5.94), strains are  

 ( )2 (1 )ABAB AE Eδ= + . (5.95) 

As a consequence of hyperelasticity, second-order elastic constants have 
the remaining symmetries 

 ( )ABAB =^ ^ . (5.96) 
Using (5.94), Helmholtz free energy per unit reference volume in the mate-
rially linear case, (5.84), is expressed as 

 0 0
0

1 ln
2

AB A
BA AE E E c θΨ β θ ρ θ

θ
= − ∆ −^ , (5.97) 

and the second Piola-Kirchhoff stress of (5.87) is written compactly as 
 A AB A

BEΣ β θ= − ∆^ . (5.98) 
Voigt’s notation can also be used for tangent moduli ABCD^  of (5.54) in the 
materially nonlinear regime, since tangent moduli exhibit the same sym-
metries as the constants in (5.90).  Voigt’s notation is likewise often ap-
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plied to third-order elastic constants, as described in Section A.3 of Ap-
pendix A. 

In many practical applications, the material axes (e.g., the conventional 
unit cell (lattice) vectors in a cubic crystal) and the reference coordinate 
axes do not coincide.  In such cases, a rotation or reflection operation is 
required to represent the matrix of elastic constants in the reference coor-
dinate system as opposed to the crystallographic frame.  Let AX ′  denote 
coordinates in the crystallographic frame, and let AX  denote coordinates 
in the reference configuration.  The transformation 

 .
A A B

BX Q X ′=
�

 (5.99) 
describes the relationship between coordinate systems, with orthogonal 
matrix Q

�
 satisfying 1

. .
TA A
B BQ Q−=
� �

 and .| det | 1A
BQ =
�

.  When .det 1A
BQ = +
�

, the 
rotation is said to be proper orthogonal; otherwise, when .det 1A

BQ = −
�

, the 
operation is said to be improper orthogonal, i.e., a reflection.  The elastic-
ity tensor then transforms from its representation ABCD′^  in the crystal co-
ordinate system to its representation ABCD^  in the reference coordinate sys-
tem as a fourth-order tensor, while the thermal stress coefficients transform 
from ABβ ′  to ABβ  as components of a rank two tensor: 

 . . . .
ABCD A B C D EFGH

E F G HQ Q Q Q ′=
� � � �

^ ^ , . .
AB A B CD

C DQ Qβ β ′=
� �

. (5.100) 
Analogous formulae apply for tangent moduli in (5.54) and higher-order 

material coefficients in (5.62).  In practice, the 6 6×  square matrix of elas-
tic moduli in crystallographic coordinates must often be converted to 
fourth rank ( 3 3 3 3× × × ) form by appealing to (5.92), and then the first of 
(5.100) can be applied.  Finally, the resulting fourth-order elasticity tensor, 
now based in reference coordinates AX , can be converted back to 6 6×  
form by again using (5.92).   

In fields of crystallography and texture analysis, the three independent 
components of the matrix Q

�
 are often represented in terms of Euler angles 

describing successive angular rotations about particular directions in the 
sample (Bunge 1982; Kocks et al. 1998; Randle and Engler 2000; Cermelli 
and Gurtin 2001).  One particular representation is (Cermelli and Gurtin 
2001) 

 ( ) ( ) ( )1 2exp exp exp= ⎡ −ϕ ⎤ ⎡ −ψ ⎤ ⎡ −ϕ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦Q εk εi εk
�

, (5.101) 
where the Euler angles in Bunge’s notation are limited to the range 

 1 2, [0,2 )πϕ ϕ ∈ , [0, ]πψ ∈ , (5.102) 
and ( , , )i j k  form an orthonormal basis for the AX ′  coordinate system.  
Arguments of matrix exponentials in (5.101) are skew, e.g. 
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 ( )1 1
C

ABCAB
kε−ϕ = −ϕεk . (5.103) 

The matrix exponential of a second-order tensor A is 

 
2

0

1exp ....
! 2

k

k k

∞

=

= = + + +∑ AA A 1 A  (5.104) 

If A is skew (i.e., if AB BAA A= − ), then its matrix exponential exp A  is a 
(proper) orthogonal tensor, i.e., a rotation.  In that case, to first order in A, 
the difference exp −A 1  is also skew. 

Recall from (5.7)-(5.18) and (5.31) that the thermodynamic potentials 
and response functions generally depend on reference basis vectors 

( )A XG , following the notational convention of Eringen (1962).  Such de-
pendence can be made explicit by considering effects of orthogonal trans-
formations of reference coordinates along the lines of (5.99).  Under such 
rotations or reflections Q

�
, basis vector AG  and metric tensor G(X) trans-

form as 
     .

B
A B AQ→G G

�
, . . . . .

C D TC D C
AB A CD B AC D B AC B ABG Q G Q G Q Q G Gδ→ = = =

� � � �
. (5.105) 

Dependence of response functions on basis vectors is conventionally as-
sumed to result only from dependence of independent state variables on 
the basis vectors, so that (5.31) can be written 

 
( ) ( )

( )
( , ), , ,  ( , ), , ,

                        ( , ), , .
A A

A

X X X X

X X

ψ ψ θ η η θ

θ

= =

=

C G C G

Σ Σ C G
 (5.106) 

Similarly, heat flux equation (5.14) becomes 

 ( , ), , ( , ),A AX X Xθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
Q Q C G G . (5.107) 

Deformation gradient F, right Cauchy-Green deformation tensor C and 
Lagrangian strain tensor E transform as 
 . . .

a B a
A A BF Q F→

�
, . .

T C D
AB AC D BC Q C Q→

� �
, . .

T C D
AB AC D BE Q E Q→

� �
. (5.108) 

Heat flux Q and reference temperature gradient transform as 
 .

A A B
BQ Q Q→
�

, ,
, , .

B T B
A B A ABQ Qθ θ θ→ =

� �
. (5.109) 

It follows that for all rotations and reflections ∈Q
�
_  within symmetry 

group _  of the considered material, the following identities apply: 
 ( ) ( ), , , ,TX Xψ θ ψ θ=C Q CQ

� �
, (5.110) 

 ( ) ( ), , , ,TX Xη θ η θ=C Q CQ
� �

, (5.111) 

 ( ) ( ), , , ,T TX Xθ θ=QΣ C Q Σ Q CQ
� � � �

, (5.112) 
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 , , , , , ,T TX Xθ θ θ θ⎛ ⎞ ⎛ ⎞∇ = ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G G
QQ C Q Q CQ Q
� � � �

. (5.113) 

Regarding the heat flux vector, when Fourier’s law (5.48) applies, 
 , . , . . , .( ) ( )( )A AB A CB A CD E B

B C B C D B EQ K Q K Q K Q Qθ θ θ= − → − = −
� � �

. (5.114) 
Relations (5.110)-(5.113) may result in a reduction of the number of inde-
pendent components of material coefficients that can be defined as deriva-
tives of thermodynamic potentials with respect to independent state vari-
ables couched in the reference configuration and listed as arguments of 
these potentials.  Without loss of generality, C can be replaced by E in 
(5.110)-(5.113).  Such material coefficients include tangent elastic moduli 
(5.54) and (5.56), thermal stress coefficients, and elastic and thermal stress 
constants of all orders in (5.62)-(5.73).  Symmetric conductivity matrix K, 
while not the derivative of a thermodynamic potential, transforms in 
(5.114) as a second-order tensor under changes of reference coordinates 
and thus should exhibit the same symmetries as material tensors that are 
second-order derivatives of thermodynamic potentials (e.g., ABβ  of 
(5.100)). 

Specifically, when _  consists only of the identity map and the inver-
sion, there is no reduction in the number of independent elasticity coeffi-
cients due to material symmetry; in this case, the crystalline material is 
said to be triclinic.  The crystal class of a given crystal structure deter-
mines symmetry properties of thermoelastic material coefficients for that 
structure.  Recall from Section 3.1, Table 3.1, and Fig. 3.2 that the seven 
crystal systems encompass fourteen different kinds of Bravais lattices.  
The symmetry of a crystal is further described by its crystal class or point 
group of symmetry operations comprising _ .  Thirty-two crystal classes 
exist for natural crystal structures, each falling into one of eleven Laue 
groups.  Mechanical elastic properties such as second- and third-order elas-
tic constants depend only on the Laue group of the crystal, while other ma-
terial coefficients such as vectors and tensors of odd rank (e.g., pyroelec-
tric and piezoelectric coefficients emerging in electromechanical theories, 
as discussed in Chapter 10) can depend on the particular crystal class 
within a Laue group.  A detailed discussion of symmetry of crystals in the 
context of material coefficients is provided in Appendix A.  In particular, 
Tables A.3-A.7 list the independent material coefficients for tensors of 
ranks one, two, three, and four, while Tables A.8 and A.9 list second- and 
third-order elastic constants for all Laue groups. 

When the symmetry group _  of the material contains all orthogonal 
transformations, the response is independent of the choice of AG , and the 
material is said to be isotropic.  Isotropy is extremely rare among single 
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crystalline solids.  However, the macroscopic response of polycrystals con-
taining a large number of randomly oriented grains can often be accurately 
represented as isotropic, so that isotropic behavior is of keen interest in the 
general study of crystalline solids.  In an isotropic solid, (5.52) applies for 
heat conduction in the context of Fourier’s law, and (5.106) reduces to 

 
( ) ( )

( )
1 2 3 1 2 3

1 2 3

, , , , ,  , , , , ,

                        , , , , .

I I I X I I I X

I I I X

ψ ψ θ η η θ

θ

= =

=Σ Σ
 (5.115) 

Three scalar invariants of C are defined as 

  1 .
A
AI C= , 1

2 . . . .
1(det )tr( )
2

A B A B
A B B AI C C C C− ⎡ ⎤= = −⎣ ⎦C C , 3 detI = C . (5.116) 

For isotropic materials, it follows from (5.30) and (5.115)-(5.116) that the 
second Piola-Kirchhoff stress can be written 

 

3

0 0
1

.
0 1 2

2 2

       .

AB

AB AB
AB AB AD B

D

I
C I C

G C C C

λ

λ λ

ψ ψΣ ρ ρ

α α α
=

∂∂ ∂
= =

∂ ∂ ∂

= + +

∑  (5.117) 

where the scalar functions λα  generally depend on the invariants of C, the 
temperature, and location in the material (Marsden and Hughes 1983): 

 ( )1 2 3, , , ,I I I Xλ λα α θ= , ( 0,1,2)λ = . (5.118) 
The tangent elastic stiffness of (5.54) becomes, for an isotropic material, 

 

2 2

0 0

1 2
2 2

3 4

2 2 2 2
5 6

7

8

4

          ( )

            ( )

            ( )

            ( )

            

ABCD

AB CD AB CD

AB CD AB CD AB CD

AB CD AB CD AB CD

AB CD AB CD AB CD

AC BD BC AD

E E C C

G G C G G C

C G G C C C

C C C C C C

G G G G

ψ ψρ ρ

γ γ

γ γ

γ γ

γ

γ

∂ ∂
= =

∂ ∂ ∂ ∂

= + +

+ + +

+ + +

+ +

+

^

( ),AC BD BC AD AD BC BD ACG C G C G C G C+ + +

 (5.119) 

where the notation 2 2 .( )AB AB AC B
CC C C= =C  and coefficients are scalar 

functions of the following form:  
 ( )1 2 3, , , ,I I I Xχ χγ γ θ= , ( 1,2,...8)χ = . (5.120) 

Thus the maximum number of independent components of ABCD^  at mate-
rial point X is reduced from 21 to 8 in a nonlinear isotropic thermoelastic 
solid. 

Now consider a materially linear, isotropic hyperelastic solid.  In that 
case, the second-order elastic constants in (5.85) become 
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0 0

2 2

0 04

          ( ) ,

ABCD

AB CD AB CD

AC BD AD BC AB CD

E E C C

G G G G G G
θ θ θ θ

ψ ψρ ρ

µ λ

= =
= =

∂ ∂
= =

∂ ∂ ∂ ∂

= + +

E 0 C G
^

 (5.121) 

with 7( )Xµ γ=  the shear modulus and 1( )Xλ γ=  Lamé’s constant, both 
evaluated at the reference state.  The remaining parameters χγ  in (5.119) 
are redundant in the materially linear theory and can be set to zero.  Thus, 
the elasticity tensor consists of two independent components, and in 6×6 
matrix form is written as 

    

2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

µ λ λ λ
λ µ λ λ
λ λ µ λ

µ
µ

µ

+⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

^ . (5.122) 

Second-order thermal stress coefficients for an isotropic material exhibit 
the form 

 
0 0

2 2

0 02AB AB

AB AB

G
E C

θ θ θ θ

ψ ψβ ρ ρ β
θ θ= =

= =

∂ ∂
= − = − =

∂ ∂ ∂ ∂E 0 C G
, (5.123) 

with β  a constant.  For isotropic solids, transformation formulae are not 
needed among orthogonal reference coordinate frames since (5.100) de-
generates to ABCD ABCD′=^ ^  and AB ABβ β ′= .  Stress-strain-temperature 
relations exhibit the form 

 .2 ( )AB AB C AB
CE E GΣ µ λ β θ= + − ∆ . (5.124) 

Defining the bulk modulus for a materially linear, isotropic elastic solid as 
2 / 3K µ λ= + , (5.124) can be inverted to give  

        . .
1 12
3 3

C C
AB C AB AB C ABE E G Gµ Σ Σ⎛ ⎞− = −⎜ ⎟

⎝ ⎠
, .

. 3

A
A A
AE

K K
Σ β θ= + ∆ . (5.125) 

The first of equality of (5.125) is recognizable as a relationship between 
the deviatoric (i.e., traceless) stress ABΣ ′  and deviatoric strain ABE′ : 

   2AB ABEΣ µ′ ′= , .
1
3

C
AB AB C ABGΣ Σ Σ′ = − , .

1
3

C
AB AB C ABE E E G′ = − . (5.126) 

The second of (5.125) relates traces of strains and stresses and temperature 
change.  When deformations are small, . ;1A a

A aE J u≈ − ≈  accurately reflects 
volume changes in the material, as is clear from (2.162)-(2.164).  From in-
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version of the second of (5.125) and assuming stress-free strain from iso-
tropic thermal expansion of the form . . 3A A

A T A TE α θδ α θ= ∆ = ∆  with 

. 0A
AΣ = , the relationship between the coefficient of thermal expansion Tα  

and β  is obtained:  
 3 TKβ α= . (5.127) 

Elastic isotropy is discussed in more detail in Section A.3.3 of Appendix 
A, including representations of third-order elastic constants and a complete 
table of algebraic relationships among various second-order elastic con-
stants (Table A.10). 

5.2 Thermostatic Relationships 

A number of material coefficients, and relationships among these coeffi-
cients, can be derived from thermodynamic potentials of Table 4.2 and re-
sults of the analysis of Section 5.1.2.  Such derivations are given in Section 
5.2, primarily following from the presentation of Thurston (1974).  Wal-
lace (1972) offers a similar account.  The general situation involving three-
dimensional states of stress is considered first in Section 5.2.1, while the 
special scenario of a spherical state of Cauchy stress (i.e., hydrostatic pres-
sure without deviatoric or shear stresses) is considered in Section 5.2.2.   

5.2.1 Three-dimensional Stress States 

Consider thermostatic potentials, measured as energy per unit reference 
volume as in (4.9), of the following functional forms: 

          ( )0 0 0, , ,AB AE E E N X= G , ( )0 0 0, , ,AB
AH H N XΣ= G , (5.128) 

              ( )0 , , ,AB AE XΨ θ= G , ( )0 0 , , ,AB
AG G XΣ θ= G , (5.129) 

where the entropy per unit reference volume is of the functional form 
                                ( )0 0 0, , ,AB AN N E E X= G . (5.130) 

In the remainder of Section 5.2, dependence of potentials on material 
symmetry (e.g., via AG ) and position of material particle X is implied and 
not written out explicitly, and partial derivatives of functions are assumed 
to take place with AG  and X fixed.  With this reduction in notation, and 
using Voigt’s notation (5.93)-(5.95) with barred indices spanning 1,2,...6 , 

                          ( )0 0 0,AE E E N= , ( )0 0 0,AH H NΣ= , (5.131) 
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                         ( )0 0 ,AEΨ Ψ θ= , ( )0 0 ,AG G Σ θ= , (5.132) 

                                    ( )0 0 0,AN N E E= . (5.133) 

Multiplying the relationships in Table 4.2 by 0 ( )Xρ  produces 
                          0 0 0

AB A
AB AH E E E EΣ Σ= − = − , (5.134) 

                                      0 0 0E NΨ θ= − , (5.135) 
                                      0 0 0G H Nθ= − . (5.136) 

Differentials of the potentials are found from (5.131)-(5.136): 
             0 0

A
AdE dE dNΣ θ= + , 0 0

A
AdH E d dNΣ θ= − + , (5.137) 

            0 0
A

Ad dE N dΨ Σ θ= − , 0 0
A

AdG E d N dΣ θ= − − . (5.138) 
First derivatives then provide the following thermostatic relationships: 

            0 0
0

GN Ψ
θ θ

∂ ∂
= − = −

∂ ∂E Σ

, 0 0

0 0

E H
N N

θ
∂ ∂

= =
∂ ∂

E Σ

, (5.139) 

          
0

0 0A

A AN

E
E E

θ

Ψ
Σ

∂ ∂
= =

∂ ∂
, 

0

0 0
A A A

N

H GE
θΣ Σ

∂ ∂
= − = −

∂ ∂
, (5.140) 

                           0

0

1 N
Eθ

∂
=

∂
E

, 
0

0A

A E

N
E

Σ θ
∂

= −
∂

. (5.141) 

Specific heats per unit reference volume at constant strain, EC , and 
constant stress, CΣ  are defined respectively as 

                    
2

0 0 0
2E

E NC Ψ
θ θ

θ θ θ
∂ ∂ ∂

= = = −
∂ ∂ ∂E E E

, (5.142) 

                    
2

0 0 0
2

H N GCΣ θ θ
θ θ θ

∂ ∂ ∂
= = = −

∂ ∂ ∂Σ Σ Σ

. (5.143) 

From (5.46), EC  is related to specific heat per unit mass c via 0EC cρ= .  
Subscripts on specific heat coefficients in (5.142) and (5.143) are labels of 
scalar quantities and are not subject to the Einstein summation convention.   

Second derivatives provide isothermal and isentropic elastic stiffness 
coefficients (i.e., tangent moduli) of second order: 

    
2

0
A

AB

B BAE E E
θ θ

ΨΣ ∂∂
= =
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^ , 

2
0

AB
ABCD

CD AB CDE E E
θ θ

ΨΣ ∂∂
= =

∂ ∂ ∂
^ ; (5.144) 

 
0 0

2
0

A
AB

B BAN N

E
E E E
Σ ∂∂

= =
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^ , 
0 0

2
0

AB
ABCD

CD AB CDN N

E
E E E
Σ ∂∂

= =
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^ . (5.145) 
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Isothermal second-order coefficients are identical to those introduced in 
Section 5.1.3.  Isentropic coefficients are denoted by an underscore and are 
sometimes referred to as adiabatic coefficients (e.g., adiabatic elastic 
moduli) in applications wherein heat conduction and (radiative) heat sup-
ply do not arise, since in that case, (5.27) results in 0 0 0.N Jρ η ρη= = =� � �   
Notice the symmetry conditions AB BA=^ ^  and AB BA=^ ^  follow identi-
cally from the assumption of hyperelasticity.  Isothermal coefficients are 
typically used for elastostatic problems, while isentropic coefficients are 
typically deemed appropriate for studies of wave propagation (Thurston 
1974). 

Isothermal and isentropic elastic compliances are defined, respectively, 
as 

    
2

0S A
AB B A B

E G

θ θΣ Σ Σ
∂ ∂

= = −
∂ ∂ ∂

, 
2

0S AB
ABCD CD AB CD

GE

θ θ
Σ Σ Σ

∂∂
= = −

∂ ∂ ∂
; (5.146) 
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E H
Σ Σ Σ
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= = −
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, 

0 0

2
0S AB

ABCD CD AB CD
N N

HE
Σ Σ Σ

∂∂
= = −
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. (5.147) 

Symmetry relations S SAB BA=  and S SAB BA=  apply.  Second-order elastic 
stiffness and compliance tensors are related by 

 .S
A

AB AB
CBC C

B

E
E θθ

Σ δ
Σ

∂∂
= =

∂ ∂
^ , 

00

.S
A

AB AB
CBC C

NB N

E
E
Σ δ

Σ
∂∂

= =
∂ ∂

^ ; (5.148) 

   . . . .2 SABCD A B A B
CDEF E F F Eδ δ δ δ= +^ , . . . .2 SABCD A B A B

CDEF E F F Eδ δ δ δ= +^ . (5.149) 
Third-order elastic stiffness coefficients are defined via further differen-

tiation of (5.144)-(5.145) with respect to strain: 
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B BC A CE E E E E
θ θ

ΨΣ ∂∂
= =
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^ . (5.151) 

Isothermal third-order elastic stiffness coefficients are identical to those of 
Section 5.1.3.  Notice the symmetry conditions ABC BAC ACB= =^ ^ ^  and  

ABC BAC ACB= =^ ^ ^ .  Isothermal and isentropic third-order compliances 
are, respectively, 

          
3

0SABC A B C

G

θΣ Σ Σ
∂

= −
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, 
3

0SABCDEF AB CD EF

G

θ
Σ Σ Σ

∂
= −
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; (5.152) 
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0

3
0SABC A B C
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H
Σ Σ Σ

∂
= −
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, 

0

3
0SABCDEF AB CD EF

N

H
Σ Σ Σ

∂
= −
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. (5.153) 

Symmetry relations S S SABC BAC ACB= =  and S S SABC BAC ACB= =  apply. 
Relationships among third-order stiffness and compliance coefficients 

can be derived as follows.  Differentiation of the first of (5.148) by the 
strain tensor leads to 

                
S

( S ) S

                       S S 0.

E
AB ABD AB BC

BC BC E
D D

ABD AB ED
BC BCE

E E
Σ

Σ
∂∂ ∂

= +
∂ ∂∂

= + =

^ ^ ^

^ ^ ^
 (5.154) 

Multiplying (5.154) by CF^ and using (5.148) and symmetry properties of 
the elastic coefficients gives 

         SABC AD BE CF
DEF= −^ ^ ^ ^ , SABC AD BE CF

DEF= −^ ^ ^ ^ , (5.155) 
where the second of (5.155) applies analogously for the isentropic coeffi-
cients.  Analogous differentiation of (5.148) by the stress leads to 

            S S S S DEF
BEABC AD CF= − ^ , S S S S DEF

BEABC AD CF= − ^ . (5.156) 
Second-order thermal expansion coefficients are defined as 

       
2

0A
T A A

E G
α

θ θ Σ
∂ ∂

= = −
∂ ∂ ∂Σ

, 
2

0( ) AB
T AB AB

GEα
θ θ Σ

∂∂
= = −

∂ ∂ ∂Σ

, (5.157) 

and second-order thermal stress coefficients are defined as 

       
2

0
A

A

AE
ΨΣβ

θ θ
∂∂

= − = −
∂ ∂ ∂

E

, 
2

0
AB

AB

ABE
ΨΣβ

θ θ
∂∂

= − = −
∂ ∂ ∂E

. (5.158) 

Thermal stress coefficients in (5.158) are identical to those introduced in 
(5.50).  The T subscript on thermal expansion coefficients in (5.157) is 
used as a label and is not subject to the Einstein summation convention. 

Maxwell equations provide additional relationships among thermostatic 
coefficients.  For example, using (5.143) and (5.157), 

 
0 0

TA A AE E
N N CΣ

α θθ
θ

∂ ∂ ∂
= =

∂ ∂ ∂ΣΣ Σ

. (5.159) 

Similarly, from (5.142) and (5.158), 

 
0 0

A A A

EN N C
Σ Σ θ β θ

θ
∂ ∂ ∂

= = −
∂ ∂ ∂

E E E

. (5.160) 

From the chain rule, thermal stress coefficients and thermal expansion co-
efficients are related by the following identity that incorporates isothermal 
second-order elastic coefficients: 
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   0 0
A B B

A BAB
T BB A A
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EN N
E E Eθ θ θθ

Σ Σ Σβ α
θ θΣ

∂∂ ∂∂ ∂ ∂
= − = = = =

∂ ∂ ∂∂ ∂ ∂ΣE

^ . (5.161) 

Multiplying (5.159) by the second-order isentropic elastic stiffness coeffi-
cients gives 
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 (5.162) 

Relation (5.162) can be written as 

                              AB A A
T RA

E

C C
C

Σα β β= =^ , (5.163) 

where the ratio of specific heats satisfies, from (5.161), 
                                   AB AB

R T TA AC α α=^ ^ . (5.164) 
It can be shown (Thurston 1974) from Maxwell relations that the differ-
ence between specific heats at constant stress and constant strain is 

          A AB AB
E T T T T TB BA A A

R

C C
CΣ
θθβ α θα α α α− = = =^ ^ . (5.165) 

Isentropic and isothermal second-order elastic stiffnesses are related by 
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A A A
AB AB A B
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E E E C
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Σ Σ Σ θ θ β β
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∂ ∂ ∂ ∂
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^ ^ . (5.166) 

Similarly, for isentropic and isothermal second-order elastic compliances, 

   
00

S SA A A
T T BAB AB AB B B

NN

E E E
CΣθ

θ θ α α
θΣ Σ Σ

∂ ∂ ∂ ∂
= = + = −

∂∂ ∂ ∂Σ

. (5.167) 

Thus, differences between isentropic and isothermal second-order elastic 
coefficients result from the dyadic (tensor) product of thermal expansion 
or thermal stress coefficients.  Such differences are often overlooked in 
practical applications at low to moderate temperatures, since differences 
between isentropic and isothermal constants can typically be of the same 
order of magnitude as uncertainties in experimental measurements of the 
elastic coefficients. 

Gruneisen numbers (i.e., Gruneisen’s tensor components) are dimen-
sionless quantities written in full as 

  
0

0

0

1 1 1 AB AB
AB

AB AB E EN

N
E N E C C

θ

θ θ Σ βΓ
θ θ θ

∂∂ ∂ ∂
= − = = − =

∂ ∂ ∂ ∂ EE

, (5.168) 
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or in reduced Voigt notation, using (5.161)-(5.164), 

              
0

1 BA BAA
A T TB B

E EA N
E C C CΣ

α αθ βΓ
θ

∂
= − = = =

∂
^ ^

. (5.169) 

It follows from Maxwell’s relations that Gruneisen parameters satisfy the 
following equalities: 
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0
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1 1 1 1A A
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E EA AN

N
N E C C E

θ

Σ θ ΣΓ
θ θ θ
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∂ ∂ ∂ ∂
E E

, (5.170) 

and the ratio of specific heats at constant strain to constant stress can be 
expressed in terms of absolute temperature, thermal expansion coeffi-
cients, and Gruneisen numbers as 

     
1

    1 1 ( ) ,

AB
R T T BA

E

A AB
T T ABA

CC
C C

Σ

Σ

θ α α

θΓ α θΓ α

= = +

= + = +

^
 (5.171) 

where (5.165) and (5.169) have been used. 
The number of independent components of all tensor-valued material 

coefficients, defined specifically as derivatives with respect to thermody-
namic potentials evaluated at some undistorted reference state (i.e., polar 
tensors in the terminology of Thurston (1974)), can be reduced as a result 
of material symmetries of the particular crystal class (i.e., the point group) 
to which the substance under consideration belongs, as discussed in Ap-
pendix A.  Forms of symmetric second-rank polar tensors such as thermal 
stress constants, thermal expansion constants, and Gruneisen’s constants 
for all eleven Laue groups encompassing the 32 crystal classes are pro-
vided in Table A.5.  Forms of second-order elastic constants (which in-
clude isothermal and isentropic moduli and compliances) are listed in Ta-
ble A.8.  Forms of third-order elastic stiffness constants (which include 
isothermal and adiabatic moduli only) are listed in Table A.9. 

5.2.2 Hydrostatic Stress States 

In certain applications, the pressure-volume response of a material may be 
of great importance while deviatoric (i.e., shear) stresses may not be.  Such 
situations occur in some fluids that cannot support significant shear 
stresses, for example.  Furthermore, in many high pressure applications, 
the deviatoric stress response may be insignificant compared to the hydro-
static stress response.  The Cauchy pressure ( , )p x t , which will often be 
called the hydrostatic pressure or simply the pressure,  is defined as 
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 .
1 1tr
3 3

a
ap σ= − = −σ . (5.172) 

The relationship between pressure and Piola-Kirchhoff stresses is 

 .
1 1

3 3
aA a BA

aA B aAp P F F F
J J

Σ= − = − . (5.173) 

Using kinematic identity (2.144) and constitutive relationship (5.42), for a 
hyperelastic material, holding the deviatoric part of F constant, 
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 (5.174) 

Similarly from (5.23), in terms of Helmholtz free energy per unit reference 
volume, the pressure satisfies 

 
1/3

0

J

p
J

Ψ
−

∂
= −

∂ F

. (5.175) 

Relations (5.172)-(5.175) hold regardless of dimensionality of the stress 
state.  In the remainder of Section 5.2.2, the focus is on hydrostatic stress 
states for which the Cauchy stress tensor satisfies, by definition, 

            ab abpgσ = − , .
1 0
3

ab ab c ab ab ab
c g pgσ σ σ σ′ = − = + = , (5.176) 

where ′σ  is the deviatoric part of the Cauchy stress.  Piola-Kirchhoff 
stresses are generally not spherical under conditions (5.176): 

          1
.

aA A ab
bP JpF g−= − , 1 1 1

. .
AB A ab B AB

a bJpF g F JpCΣ − − −= − = − . (5.177) 
Using (5.176), the stress power per unit reference volume becomes 

 . ;
ab a a

ab a aJ D JpL pJv pJσ = − = − = − � . (5.178) 
In general anisotropic materials, no particular strain components ABE  need 
vanish when the Cauchy stress state is hydrostatic; only in elastic materials 
with isotropic or cubic symmetry does a spherical deformation gradient 

1/ 3
. .
a a
A AF J g=  with 2/ 3

AB ABC J G=  always result in a hydrostatic state of 
stress.  For example, for an isotropic, nonlinear hyperelastic material, 
(5.117) results in 1/ 3 1/ 3 1/ 3

. . 0 1 2( )ab a AB b ab
A BJ g g J J J gσ Σ α α α− −= = + +  when 

the deformation gradient is spherical. 
Thermostatic potentials of Section 5.2.1 are redefined for spherical 

stress states with p−  replacing Σ  and J replacing E.  In this context, all 
independent and dependent state variables in the thermostatic framework 
are scalars, and (5.131)-(5.133) are replaced with 
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 ( )0 0 0,E E J N= , ( )0 0 0,H H p N= , (5.179) 
 ( )0 0 ,JΨ Ψ θ= , ( )0 0 ,G G p θ= , (5.180) 
 ( )0 0 0,N N J E= . (5.181) 

The relationships in Table 4.2 are redefined as 
 0 0H E pJ= + , 0 0 0E NΨ θ= − , 0 0 0G H Nθ= − , (5.182) 

where in general, enthalpies in (5.134) and (5.182) do not coincide since 
AB

ABpJ EΣ≠ − .  Differentials of the potentials are  
 0 0dE pdJ dNθ= − + , 0 0dH Jdp dNθ= + , (5.183) 
 0 0d pdJ N dΨ θ= − − , 0 0dG Jdp N dθ= − . (5.184) 

First derivatives then provide the following thermostatic relationships: 
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∂ ∂
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∂ ∂
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, (5.185) 
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∂
=

∂
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0

0

E

Np
J

θ
∂

=
∂

. (5.187) 

Isothermal (B) and isentropic ( B ) bulk moduli are defined as follows: 
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J J

∂∂
= − =

∂ ∂
, (5.188) 

Isothermal and isentropic compressibilities are defined, respectively, as 

     1 1 J
B J p θ

χ ∂
= = −

∂
, 

0
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B J p

χ ∂
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∂
. (5.189) 

Recalling from the conservation of mass (4.10) that 0 Jρ ρ= , partial de-
rivatives with respect to Jacobian determinant J can be expressed as 
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Defining specific volume as 1 1
0Jυ ρ ρ− −= = , derivatives can also be writ-

ten 

      
1
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υ υ ρ υ υ ρ υ υ υ

−
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. (5.191) 

The absolute spatial volume v can be substituted for the specific volume: 
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Thus isothermal and isentropic bulk moduli in (5.188) can be written 
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A volumetric expansion coefficient at constant pressure, i.e., an isotropic 
coefficient of thermal expansion, is defined as 
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GJA
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. (5.194) 

It follows from mass conservation that 
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From (5.193) and (5.195) and noting that [ ( , ), ]p p pρ θ θ= , 

0
p p J

p p p p p pAB AB
ρ ρ ρθ

ρ
θ θ ρ θ θ θ θ
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= = + = − ⇒ = =
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. (5.196) 

Definitions at a reference state of null strain and zero stress are instruc-
tive and useful for formulating constitutive models in terms of measured 
thermoelastic properties.  In this state, the deformation gradient, strain, and 
Jacobian determinant are 

 . .
a a
A AF g= , AB ABC G= , 0ABE = , 1J = , (5.197) 

and the stress state is, by definition, 
 0ABΣ = , 0aBP = , 0abσ = , 0p = . (5.198) 

Let the temperature at the reference state be 0θ , which can be of arbitrary 
positive value.  From the second of (5.177), 
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Also from (2.160), in the reference state 
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Tensors of thermal expansion coefficients (5.157) and thermal stress coef-
ficients (5.158) evaluated at the reference state are then 
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From (5.194) and (5.200), the scalar expansion coefficient at null pressure 
and reference temperature is the trace of the corresponding tensor coeffi-
cient of thermal expansion: 
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For the isothermal compressibility of the first of (5.189) at the reference 
state, from (5.199) and (5.200), 
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 (5.203) 

An analogous relationship applies for the isentropic compressibility and is-
entropic elastic compliance coefficients: 
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Relations (5.202)-(5.204) apply regardless of material symmetry.  For an 
isotropic materially linear thermoelastic solid, in the context of (5.127) and 
holding shear strains fixed, the isothermal bulk modulus satisfies 
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 (5.205) 

Thus, from (5.127) and (5.205), isothermal thermoelastic coupling coeffi-
cients are related in isotropic solids by the relationships 0 . .( ) ( )A A

T B T Bα α δ= ,  

0 3 /TA Kα β= = , and 0 01/K B χ= = .  Similar relationships hold for crys-
tals with cubic symmetry, but not for general anisotropic bodies. 
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Definitions of specific heats per unit reference volume at constant vol-
ume vC  and constant pressure pC , i.e., isochoric and isobaric specific 
heats, are, respectively, 
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At the reference state, since both pressure and stress vanish by (5.198), 
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Noting that 
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specific heats at constant pressure and constant volume are related at any 
equilibrium state by 
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From (5.165) and (5.210), 
 2( )ABCD

p v E T AB T CDC C C C JA BΣ θ α α− − + = − ^ . (5.211) 
At the reference state, from (5.208), this reduces to 

 2
0 0 0 0 0 0( )ABCD

E v T AB T CDC C A Bθ α α− = − ^ . (5.212) 
Thurston (1974) noted that the difference in (5.212) vanishes identically in 
isotropic materials and crystals of cubic symmetry, but that 0 0E vC C≠  in 
general for materials of greater anisotropy. 

As explained by Thurston (1974), thermostatic potentials can be rede-
fined at an alternative state of nonzero constant hydrostatic pressure, and 
relationships among their derivatives can be calculated at this alternative 
reference state.  Choice of zero pressure for the reference state is not nec-
essary, but is convenient if one assigns for the physical environment (e.g., 
laboratory) a datum of zero gauge pressure. 



232      5 Thermoelasticity 

The following relationships can be derived from the thermostatic poten-
tials: 

 
0 pp

J J A
N C

θ∂
=

∂
, 

0 vJ

p AB
N C

θ∂
=

∂
. (5.213) 

Noting that 0[ , ( , )]p p J J Nθ= ,  
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Dividing both sides of (5.214) by isothermal bulk modulus B and using 
(5.196), isentropic and isothermal bulk moduli are related by 
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Comparing (5.210) and (5.215),  
 / /p vB B C C= . (5.216) 
The Gruneisen parameter (scalar) is defined as 
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It follows from (5.216) and the thermostatic potentials that the Gruneisen 
“gamma” satisfies the following identities: 
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Furthermore from (5.189), (5.210), and (5.216), 
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From (5.168) and (5.217), three-dimensional Gruneisen numbers are re-
lated to scalar Gruneisen parameter by 
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Under a hydrostatic stress state, the following identity holds: 
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which, when substituted into (5.220), leads to the relationship 
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∂
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and at the stress-free undeformed reference state, from (5.199), 

 0 0
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0

SAB CDE
ABCD

v

B C G
C

Γ Γ= . (5.223) 

Recall from discussion following (5.212) that 0 0E vC C=  for isotropic sol-
ids and for crystals with cubic symmetry, in which case (5.223) yields 

0 0
AB ABGΓ Γ=  and 0 0.3 A

AΓ Γ= . 
A number of theoretical models for the Gruneisen parameter have been 

developed using macroscopic arguments or atomic treatments of lattice vi-
brations.  According to Einstein’s model (Einstein 1907; Born and Huang 
1954), when the internal energy of (5.77) is extended to include effects of 
volume change, 

  0 B( , ) ( ) ( , ) ( ) 3 k
2 1S V SE J U J U J U J n

eξ

ξ ξθ θ θ ⎛ ⎞= + = + +⎜ ⎟−⎝ ⎠
,  (5.224) 

where  
 E( , ) ( ) /J Jξ θ θ= Θ , E E Bh ( ) / kJνΘ = . (5.225) 

Einstein’s temperature EΘ  and characteristic frequency Eν  are not con-
stant as was the case in (5.78), but are instead here assumed to depend on 
volume via J, but not on absolute temperature θ.  Static internal energy per 
unit reference volume is written SU , and VU  is the vibrational energy.  
The free energy per unit reference volume corresponding to (5.224) is 

              ( )0 0 0 B( ) 3 k ln 1
2SE N U J n e ξξΨ θ θ −⎡ ⎤= − = + + −⎢ ⎥⎣ ⎦

. (5.226) 

Similarly, for Debye’s model (Debye 1912), the total internal energy can 
be expressed as (Born and Huang 1954) 
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θ θ

θθ ξ ξ
Θ

= +

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= + +⎜ ⎟ ⎜ ⎟Θ −⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
∫

  (5.227) 

with the corresponding definitions 
 D( , ) ( ) /J Jξ θ θ= Θ , D D B( ) h ( ) / kJ JνΘ = . (5.228) 

The free energy per unit reference volume in Debye’s theory is (Born and 
Huang 1954) 
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       ( )
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∫

 (5.229) 

Writing Θ  to describe either the Einstein temperature or the Debye tem-
perature, it can be shown (Born and Huang 1954) 

   ln
ln ln ln ln

v d dJ v
J v dv d vθ θ θ θ θ

ξ ξ ξ ξ ξΓ∂ ∂ Θ ∂ Θ ∂ ∂
= = = = −

∂ ∂ Θ ∂ Θ ∂ Θ ∂ Θ
, (5.230) 

so that for Einstein’s model, 
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d d d d dJ J v
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, (5.231) 

and for Debye’s model, 
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d v dJ d J dJ dv

ν νΓ
ν ν

Θ Θ Θ
= − = − = − = − = −

Θ
. (5.232) 

Using (5.224) or (5.227),  

 0 S
V

dUJ J U
J dJθ

Ψ
Γ

∂
− + =

∂
, (5.233) 

from which dividing by J and using (5.186) gives a functional form for the 
equation of state of Mie and Gruneisen (1926): 

 ( ) 1, S
V

dUp J J U
dJ

θ Γ −= − + . (5.234) 

Consider now the pressure derivative of the isothermal bulk modulus B 
at constant temperature: 
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 (5.235) 

One may also write 

 ln ln
ln ln

B J B B v B B
p B J J B v vθ θ θ θθ

∂ ∂ ∂ ∂ ∂
= − = − = − = −

∂ ∂ ∂ ∂ ∂
. (5.236) 

The relationship between Gruneisen’s coefficient and the isothermal pres-
sure derivatives in (5.235) and (5.236) is often expressed as 
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2 ( / ) 2 2
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where CΓ  is a constant.  Slater (1939) suggested C 2/ 3Γ =  following a 
Debye-type analysis in which Poisson’s ratio is assumed independent of 
volume.  Dugdale and MacDonald (1953) suggested C 1Γ =  for isothermal 
conditions based on analysis of plane wave velocities in a monatomic lat-
tice, leading to vanishing of Γ  when interatomic forces are harmonic.  
Value C 7 / 6Γ =  has also been widely suggested (Slater 1940; Eshelby 
1954).  Notice that the reference Gruneisen parameter 0Γ  can be deter-
mined from (5.237) when the pressure derivative of the isothermal bulk 
modulus is evaluated at the reference state. 

A number of other functional forms of Gruneisen’s parameter have been 
suggested.  Segletes and Walters (1998) developed a power-law model for 
Gruneisen’s parameter that encompasses several historical models (Slater 
1940; Dugdale and MacDonald 1953).  Murnaghan (1944) developed a 
simple model in which the bulk modulus varies linearly with pressure. 
Birch (1978) developed a popular nonlinear equation of state for crystal-
line solids undergoing potentially large volume changes.  Vinet et al. 
(1989) developed a universal form for equations of state of covalent and 
metallic solids.  Zhou (2005) postulated a free energy function similar to 
(5.229) by additively decomposing atomic velocities into high frequency 
terms associated with thermal oscillations and low frequency terms associ-
ated with bulk structural motion. 

5.3 Finite Elastic Volume Changes 

Consider applications wherein large elastic volume changes are of interest, 
but large elastic deviatoric deformations are not.  In many ductile crystal-
line solids such as engineering metals, large deviatoric deformations are 
sustained by dislocation glide which is assumed to be lattice-preserving 
(i.e., inelastic), as explained in Sections 3.2.2 and 3.2.5.  In more brittle 
solids such as many ceramic crystals at low to moderate temperatures, 
driving forces necessary for dislocation motion exceed those for fracture, 
and large deviatoric deformations are sustained by damage mechanisms 
(e.g., micro-cracking) when mechanical stresses exceed some threshold.  
Inelastic tensile volumetric deformations are accommodated by damage 
mechanisms such as voids in ductile materials and mode I cracks in brittle 
materials.  On the other hand, large compressive volumetric deformations 
are accommodated in fully dense (i.e., non-porous) crystalline solids by 
elastic contraction of the lattice.  Tensile damage mechanisms of void 
growth and mode I fracture are impeded by large compressive pressures.  
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Such confining pressures are attained in shock physics experiments, for 
example, under dynamic impact situations (Graham and Brooks 1971; 
Graham 1992; Vogler and Clayton 2008), as well as in more general sce-
narios of ballistic impact or high pressure/blast loading, or geological ac-
tivity involving significant confinement.   

The model framework that follows is appropriate for thermoelastic be-
havior of isotropic solids (e.g., polycrystals with random grain orienta-
tions) undergoing large volume changes but small shape changes.  The 
framework is a reduction of the more general one of Section 5.1.3, but is 
based on a series expansion of the internal energy rather than the free en-
ergy.  Specifically, internal energy per unit reference volume is written 

 ( ) ( ) ( )0 , , , ( ), ,S VE X E X E J Xθ ζ θ′= +E E , (5.238) 
where the deviatoric right Cauchy-Green strain and measure of volumetric 
deformation are, respectively, 

 .
1
3

C
AB AB C ABE E E G′ = − , 1

0

1 1Jρζ
ρ

−= − = − . (5.239) 

Kinematic variable ( , )X tζ  contains the same information as J so that vol-
ume changes are measured exactly to the extent permitted by the deforma-
tion gradient itself.  From the second of (5.239), 0ζ =  at the reference 
state with 1J = , 0ζ >  when the material is spherically compressed,  and 

0ζ <  when the material is spherically expanded.  The deviatoric energy is 
usually taken as a quadratic function of ′E , while the term VE  is generally 
a nonlinear function of ζ  and θ , accounting for the equation of state of 
the material, a generally nonlinear pressure-volume-temperature relation-
ship.  Using (5.238) in (5.42), the second Piola-Kirchhoff stress satisfies, 
from (2.160), 
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 (5.240) 

Cauchy stress and Cauchy pressure are computed, respectively, as 
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, (5.241) 
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J E J ζ
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. (5.242) 

For illustrative purposes, let the internal energy (5.238) be written at 
material point X as 
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The first term on the right of (5.243) accounts for the deviatoric response, 
with µ  a constant shear modulus.  Terms in parentheses account for the 
nonlinear pressure-volume response at constant temperature, with 0B  and 

1B  material constants.  The next term accounts for thermoelastic coupling, 
with 0A  a constant.  The final term accounts for the purely thermal energy, 
with C  a constant specific heat per unit reference volume and 

0θ θ θ∆ = − , with 0θ  a reference temperature at which this thermal energy 
vanishes.  Material constants satisfy 
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From (5.240)-(5.242), stress components and Cauchy pressure are 

      ( )1 2
0 1 0 0

12 ...AB AB ABE C B B A B
J
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Consider the volume derivative of the pressure at the reference state 
when the contribution from the first term on the right side of (5.248) van-
ishes (e.g., null shear stress): 
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. (5.249) 

Thus 0B  is equivalent to isothermal bulk modulus at the reference state in 
the context of hydrostatic stress conditions, as introduced in (5.203).  Now 
consider the relationship 
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implying that 0A  is equivalent to the spherical thermal expansion coeffi-
cient of (5.202) at the reference state for hydrostatic stress conditions: 
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For isotropic solids, the right side of (5.212) vanishes (Thurston 1974).  
Thus the specific heat at constant volume or constant strain at the reference 
state satisfies 0 0E vC C C= = , and the product 

 1 1
0 0 0A B J C J Uθ Γ θ Γ− −∆ = ∆ = , (5.252) 

where 1
0 0JA B CΓ −=  is Gruneisen’s parameter of (5.218), and 0U C θ= ∆  

is the thermal energy in (5.243).  For negligible shape changes, note that 
2 / 3

AB ABC J G≈  and the first term on the right of (5.248) vanishes, leaving 
the following equation of state for the hydrostatic pressure: 

 ( ) ( )2 1
0 1 02

1, ...p J B B J U
J

θ ζ ζ Γ −⎡ ⎤= + + +⎣ ⎦ , (5.253) 

which is similar in appearance to the Mie-Gruneisen form given in (5.234). 

5.4 Geometrically Linear Elasticity 

In geometrically linear elasticity theory, the distinction between reference 
and current configurations is not made explicit, and the displacement gra-
dient (i.e., distortion) of (3.76) is used as the fundamental kinematic de-
scriptor as opposed to the deformation gradient.  In the geometrically lin-
ear theory, the analog of (5.1) is 
 ;

L
a b abu β= ,  (5.254) 

with ( , )x tu  the displacement and ( , )x tLβ  the lattice distortion.  Strains 
and rotations are, respectively, the symmetric and skew parts of (5.254): 
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; ,
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L L
ab aba b ab
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ab ab abca b a b ab

u

u u w

ε β ε

β Ω Ω ε

= = =

= = = = = −
  (5.255) 

with ( , )x tw  the rotation vector of (2.166). 

5.4.1 Constitutive Assumptions 

Applying (5.254), and prior to consideration of objectivity requirements, 
appropriate versions of functional dependencies of dependent state vari-
ables (4.45)-(4.48) for a hyperelastic material of grade one are 

 ( ); ,, , , ,a b a au xψ ψ θ θ= g ,  (5.256) 
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 ( ); ,, , , ,a b a au xη η θ θ= g , (5.257) 

 ( ); ,, , , ,ab ab
a b a au xσ σ θ θ= g ,  (5.258) 

 ( ); ,, , , ,a a
a b a aq q u xθ θ= g . (5.259) 

Independent variables are displacement gradient, temperature, temperature 
gradient, position or choice of material particle at x, and basis vectors.  The 
dependence on displacement gradient replaces that of the deformation gra-
dient in Section 5.1.1.  Dependence of response functions other than heat 
flux q on temperature gradient is written out in (5.256)-(5.259) for com-
pleteness, but will be eliminated following thermodynamic considerations 
in Section 5.4.2.  Dependence of response functions on position x (analo-
gous to dependence on X in the nonlinear case) is included to permit de-
scription of a heterogeneous body.  Dependence on basis vectors ( )a xg  
enables description of solids exhibiting an anisotropic response, as ex-
plained in Section 5.4.5.    

Under superposed small rigid body motions, ˆ( )→ + +x 1 Ω x c , where 
ˆ ˆ( ) Tt = −Ω Ω  is a skew rotation matrix and ( )tc  is a spatially constant 

translation vector, to first order the displacement gradient and its skew and 
symmetric parts transform as  

    ; ;
ˆ

a b a b abu u Ω→ + , [ ] [ ], ,
ˆ

aba b a bu u Ω→ + , ( ) ( ); ;ab a b a bu uε = → . (5.260) 

Thus, the skew part of the displacement gradient (2.254) should not enter 
the list of independent variables since the response (e.g., thermodynamic 
potentials) should not be affected by rigid body motions of the frame of 
observation.  The temperature gradient transforms under small rigid body 
rotations as 

 , . . , , . , ,
ˆ ˆ( )b b b

a a a b a a b aθ δ Ω θ θ Ω θ θ→ + = + ≈ , (5.261) 
so that dependence of response functions on ,aθ  is not considered a viola-
tion of objectivity, in contrast to the nonlinear theory of Section 5.1.1.  
Similarly to (5.261), heat flux q and stress σ  remain approximately un-
changed when rigid rotations are small.  Thus, appropriate analogs of 
(5.15)-(5.18) in the geometrically linear regime are 

 ( ),, , , ,ab a axψ ψ ε θ θ= g ,  (5.262) 

 ( ),, , , ,ab a axη η ε θ θ= g , (5.263) 

 ( ),, , , ,ab ab
ab a axσ σ ε θ θ= g ,  (5.264) 

 ( ),, , , ,a a
ab a aq q xε θ θ= g . (5.265) 
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5.4.2 Thermodynamics 

Using kinematic assumption (5.254) and constitutive assumptions (5.262)-
(5.265), dissipation inequality (4.73) becomes 
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�� . (5.266) 

To ensure thermodynamic admissibility, coefficients of ε� , θ� , and γ  must 
vanish identically in (5.266).  This leads to the constitutive relationships 
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. (5.267) 

It follows that free energy, entropy, and stress do not depend explicitly on 
the spatial temperature gradient: 

   ( ), , , axψ ψ θ= ε g , ( ), , , axη η θ= ε g , ( ), , , axθ=σ σ ε g . (5.268) 
The entropy production inequality reduces to the conduction inequality in 
(4.60): 

 1
, 0a

C aqθΓ θΓ θ θ−= = − ≥ . (5.269) 
The rate of local entropy production vanishes: 

 ; 0a ab
L a abq rθΓ ρθη ρ σ ε ρψ ρθη= + − = − − =�� � � . (5.270) 

Treating the entropy as an independent variable and temperature as a 
dependent variable, with the internal energy e used as the primary thermo-
dynamic potential gives 

  ( ), , , ae e xη= ε g , ( ), , , axθ θ η= ε g , ( ), , , axη=σ σ ε g , (5.271) 
where the partial Legendre transform 

 ( ) ( ), , , , , ,a ae x xθ η η ψ θ= +ε g ε g . (5.272) 
From the second of (5.267) and the chain rule, 

 ab

ab ab ab ab ab

e ψ ψ θ θ ψρ ρ η ρ σ
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⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= + + = =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

. (5.273) 

When temperature and temperature gradients are held fixed or are omit-
ted from the description, the body is said to be elastic as opposed to ther-
moelastic.  In such a description, let constantθ =  such that 0θ =�  and 

, 0aθ = , and let heat flux q and heat sources r vanish.  The conduction ine-
quality (5.269) is identically zero, and the rate of entropy production be-
comes  

 0θΓ ρθη= =� . (5.274) 
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Since temperature and entropy are treated constants, there is no need to in-
clude them explicitly in the description.  Expressions (5.268) for free en-
ergy and stress become 

   ( ), , axψ ψ= ε g , ( ), , ax=σ σ ε g , (5.275) 
and the constitutive equations are given by (5.273).  Temperature-
independent thermodynamic potential ( , , )axψ ψ= ε g  is then referred to as 
the strain energy density.   

The specific heat capacity per unit mass at constant strain ε  is  
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. (5.276) 

Fourier’s Law of conduction, as introduced in (4.62), leads to non-negative 
dissipation: 

 ,
a ab

bq k θ= − , , , , 0a ab
a a bq kθ θ θ− = ≥ . (5.277) 

From (5.270) and (5.277), the local energy balance can be expressed as  
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. (5.278) 

Note that, by the chain rule, 
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where 2 /ab
abβ ρ ψ θ ε= − ∂ ∂ ∂  accounts for thermoelastic coupling.  Equat-

ing (5.278) and (5.279) results in 
                               , ;( )ab ab

b a abc k rρ θ θ θβ ε ρ= − +� � . (5.280) 
In the absence of heat sources, in a homogeneous isotropic rigid conductor 
with ab abk kg= , (5.280) becomes the transient heat equation 
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5.4.3 Materially Nonlinear Hyperelasticity 

Differentiation of (5.267) with respect to strain results in the following 
definition of second-order elastic stiffness coefficients: 
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From (2.162), finite Lagrangian strain E and linear strain ε  are related by 
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It follows that 
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Thus, tangent moduli in (5.54) and (5.282) are related, at the same tem-
perature and material point, by 
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where terms in square braces correspond to products of those of orders one 
and higher in displacement gradients in (5.284).  The following natural 
symmetries apply for the linear coefficients: 

 ( )( ) ( )( )ab cd cd ababcd = =^ ^ ^ , (5.286) 
meaning that the tangent elastic stiffness contains up to 21 independent en-
tries.  Third-order coefficients can be defined in a similar manner: 
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From (5.287), symmetry conditions limit the number of independent third-
order coefficients in abcdef^  to 56. 

Analogously to (5.62), expanding free energy of the first of (5.268) for a 
hyperelastic material with thermal effects in a Taylor series about a refer-
ence state wherein ; 0a b abu ε= =  and 0 0θ θ= >  produces the following re-
sult per unit reference volume, where temperature variation 0θ θ θ∆ = − : 
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 (5.288) 
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Quantities in (5.288) are defined as  
                    ( ) ( ) ( )0 0 0 0 00, , , , 0ax x Y xρ ψ θ Ψ θ= + =g , (5.289) 

 ( )
0

0
0

, 0ab
a

ab
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θ θ

ψρ
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=

∂
= =

∂ ε
g^ , (5.290) 
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ab cd
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θ θ
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θ θ
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θ ε =
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Thermal free energy 0 ( , )Y xθ  can be defined in the same way as 0 ( , )Y Xθ  
in Section 5.1.3, noting that x and X refer to the same material particle in 
the linear theory of the present Section.  Definitions (5.289) and (5.290) 
provide for zero free energy and stress at the reference state.  Isothermal 
elastic constants of orders two, three, and four are defined in (5.291)-
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(5.293).  Stress-temperature coefficients of various orders are listed in 
(5.294)-(5.299).  Stress-strain-temperature relations become, from (5.267), 
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 (5.300) 

In the geometrically linear theory, terms of orders two and higher in the 
strain ε are typically omitted from (5.300) since displacement gradients are 
assumed small.  Such an omission is consistent with the use of infinitesi-
mal strain measure ε as opposed to finite strain measure E as a state vari-
able, since ε differs from E by terms quadratic in displacement gradients in 
(2.162).  Furthermore, if the distinction between the Kirchhoff stress and 
Cauchy stress is omitted, then ab ab abJτ σ σ= ≈ , with abσ  thus used as the 
exclusive measure of stress in the linear theory, then (5.300) becomes 
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′′ ′− ∆ − − ∆

^
 (5.301) 

Notice also that at the reference state, from (5.65) and (5.285), second-
order elastic constants of nonlinear and linear theories are equal since 
terms of orders one and higher in displacement gradients vanish from 
(5.284) and (5.285) at the reference state:  
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 (5.302) 

Similarly, thermal stress coefficients in (5.68) and (5.294) are equal at the 
reference state: 
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5.4.4 Materially Linear Hyperelasticity 

Omitting terms of orders two and higher in strains and temperature varia-
tions, (5.288) becomes 

 0 0
0

1 ln
2

abcd ab
ab cd ab c θρ ψ ε ε β ε θ ρ θ

θ
= − ∆ −^ , (5.304) 

where elastic coefficients abcd^ , stress-temperature coefficients abβ , and 
specific heat c  are defined as second derivatives of the free energy at null 
strain and reference temperature: 

0
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ψρ
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=
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∂ ∂ ε
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c
θ θ
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= −⎜ ⎟∂⎝ ⎠ ε

.(5.305) 

At a particular material point x, parameters in (5.305) are all constants.  
The thermal energy comprising the rightmost term in (5.304) depends only 
on temperature.  This term is consistent with a thermal internal energy 0U  
measured per unit reference volume depending linearly on temperature: 

 0
0 0

0

1 UU c cρ θ
ρ θ

∂
= ⇔ =

∂
. (5.306) 

Stress and entropy are, from (5.304) and (5.267) 
 ab ab abcd ab

cdσ τ ε β θ≈ = − ∆^ , (5.307) 

 0 0
0

ln 1ab
ab c θρ η β ε ρ

θ
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

. (5.308) 

At a fixed reference temperature 0θ θ= , the requirement that the free 
energy be positive for all non-negligible strains 0abε ≠  implies that the 
fourth-order tensor abcd^  should be positive definite.  From (5.304), it fol-
lows that at 0θ θ= , 0ρ ψ  is a strictly convex function of ε.   

Stress equation (5.307) applies for any choice of coordinate system, in-
cluding Cartesian coordinates and general curvilinear coordinates.  In 
physical components of orthogonal curvilinear coordinates (Section 2.4), 
the stress-strain law exhibits the same form (Malvern 1969): 

 
3

, 1
ab abcd cd ab

c d
σ ε β θ

=

= − ∆∑ ^ , (5.309) 

where indices in angled brackets are referred to physical components of or-
thogonal curvilinear coordinates such as cylindrical coordinates of Section 
2.4.2 and Table 4.3 or spherical coordinates of Section 2.4.3 and Table 4.4.  
Transformation formulae relating quantities in (5.309) to their counterparts 
in Cartesian coordinates are listed by Malvern (1969).   
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5.4.5 Symmetry 

Analogously to (5.90), matrices of second-order elastic constants and ther-
mal stress constants exhibit the following symmetries: 

 abcd cdab bacd abdc= = =^ ^ ^ ^ , ab baβ β= , (5.310) 
meaning that abcd^  contains up to 21 independent entries and abβ  contains 
up to 6 independent entries.  Thus (5.307) is often written in reduced ma-
trix form as  
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β
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β
β
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⎢ ⎥⎥
⎢ ⎥⎥ ⎣ ⎦

, (5.311) 

where components of the symmetric 6×6 matrix of second-order elastic 
constants are identical to those in (5.92): 

  

11 1111

12 1122 22 2222

13 1133 23 2233 33 3333

14 1123 24 2223 34 3323 44 2323

15 1113 25 2213 35 3313 45 2313 55 1313

16 1112 26 2212 36 3312 46 2312 56 1312 66

= − − − − −
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= = = = − −
= = = = = −
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. (5.312) 

Voigt’s notation in (5.93)-(5.98) applies. Components of the stress and 
moduli are written in reduced form to take advantage of symmetries: 

 ( ) ~ab aσ σ , ( )( ) ~ab cd ab^ ^ , ~ab aβ β . (5.313) 
Barred indices span 1,2,…6 and correspond to unbarred pairs of indices as 
noted in (5.93).  Consistent with (5.311) and (5.313), strains in Voigt’s no-
tation satisfy  

 ( )2 (1 )ab aabε δ ε= + . (5.314) 

As a consequence of hyperelasticity, second-order elastic constants exhibit 
the remaining symmetries 

 ( )abab =^ ^ . (5.315) 
Free energy in the materially linear case, (5.304), is 

 0 0
0

1 ln
2

ab a
a ab c θρ ψ ε ε β ε θ ρ θ

θ
= − ∆ −^ , (5.316) 

and the stress of (5.307) is written compactly as 
 a ab a

bσ ε β θ= − ∆^ . (5.317) 
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Arguments pertaining to transformations of material coefficients under 
rotations of the coordinate system in (5.99)-(5.104) apply likewise in the 
geometrically linear theory.  Furthermore, since (5.302) and (5.303) indi-
cate that elastic constants and thermal stress coefficients measured at the 
reference state in linear and nonlinear theories are equal, these particular 
material coefficients share the same symmetries in linear and nonlinear 
theories.  Since in a rigid heat conductor, the reference and current con-
figurations coincide, it follows that conductivity coefficients in the linear 
theory, abk  of (5.277), are related to those of the nonlinear theory, ABK  in 
(5.48), at material point X in the undeformed reference state by 

 
0 0

0 0. .
ab a b AB

A Bk K
θ θ θ θ

δ δ= =
= =

=ε E . (5.318) 

Thus, thermal conductivities in linear and nonlinear descriptions should 
exhibit the same symmetries when evaluated at the same reference state. 

Now consider a geometrically linear and materially linear, isotropic hy-
perelastic solid.  Second-order elastic constants in (5.310) become 

 ( ) ,abcd ac bd ad cb ab cdg g g g g gµ λ= + +^  (5.319) 
with ( )xµ  the shear modulus and ( )xλ  Lamé’s constant.  Thus, the elas-
ticity tensor in 6×6 matrix form is identical to that of (5.122).  Thermal 
stress coefficients for an isotropic material are 

 ab abgβ β= . (5.320) 
Stress-strain-temperature relations then exhibit the form 

 .2 ( )ab ab c ab
c gσ µε λε β θ= + − ∆ . (5.321) 

Local balance of linear momentum (4.17), per unit spatial volume, is 
 ; ; . ;(2 ) ( )ab ab c ab a a

b b c b g u bσ µε λε β θ ρ= + − ∆ = −�� . (5.322) 
Under isothermal conditions ( 0θ∆ = ) and when elastic constants are in-
dependent of position (i.e., a homogeneous body), (5.322) reduces to 

 ; . ;2 ab c ab a a
b c b g u bµε λε ρ+ = −�� . (5.323) 

In rectangular Cartesian coordinates, the covariant derivatives become par-
tial derivatives.  In general curvilinear coordinates, (5.323) is cumbersome.  
Tables 5.1 and 5.2 list (5.323) in physical components of cylindrical coor-
dinates (see Section 2.4.2 and Table 4.3) and spherical coordinates (see 
Section 2.4.3 and Table 4.4), following Malvern (1969).  
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Table 5.1 Momentum balance of linear isotropic elasticity: cylindrical coordinates  

Quantity R-component θ−component Z-component 
Momentum 1

, ,
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(2 ) 2

2
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Z R R
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Table 5.2 Momentum balance of linear isotropic elasticity: spherical coordinates  

Quantity R-component θ−component ϕ-component 
Momentum 
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Rotation 1 1
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1
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, , ,sin [( sin ) ( sin ) ( ) ]R Re R R u Ru Ruθ θ ϕ ϕθ θ θ− −= + +  

5.5 Explicitly Resolved Thermal Deformation 

An alternative formulation of finite hyperelasticity with temperature 
changes addresses the kinematics of deformation in a more refined or ex-
plicit manner (Stojanovitch 1969; Lu and Pister 1975; Imam and Johnson 
1998; Clayton 2005a, b, 2006a) that proves useful in certain experimental 
and computational settings.  Extending (5.1), the total deformation gradi-
ent and lattice deformation gradient remain equivalent, but each is further 
decomposed into mechanically recoverable elastic and thermal parts, fol-
lowing (3.27): 

                                          = =L E θF F F F ,  (5.324) 
        . ., . . . . . . . . .

a a La E a B E a B E a
A A A B A B A AF x F g F F F g F F Fα θ θ α θ α

α α α= = = = = , (5.325) 
where EF  is associated with purely mechanical loads, and where θF  is the 
deformation attributed solely to temperature changes in the absence of me-
chanical forces.  The form after the final equality in (5.325) is introduced 
for convenience in keeping track of indices during manipulation of the 
thermodynamic relations later in Section 5.5.2, even though all indices of 

θF  are referred to reference coordinates, meaning . .A Agα αδ= .  Though alter-
native prescriptions are possible (see the footnote in Section 3.1.3), evolu-
tion of θF  is assumed to follow (3.28): 
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 1 θ− =θ θ
TF F α �� , 1

. . . . . .
A A B

A T T B AF F g gθ α θ α α
β β βα θ α θ− = =� �� , (5.326) 

where ( , , )AXθTα G  is a symmetric second-order tensor of thermal expan-
sion coefficients that, by definition, may depend on temperature θ , loca-
tion X of material particle (for a heterogeneous solid), and material sym-
metry via dependence on reference basis vectors ( )A XG .  Thermal 
expansion coefficients in (5.326) are assumed to possess material symme-
tries of generic symmetric rank two polar tensors listed in Table A.5.  The 
form of (5.325) applicable for cubic crystals, i.e., . .T T

α α
β βα α δ= , has been 

used for computational modeling of thermoelastic-plastic behavior of cu-
bic metals deformed at high strain rates (Lee et al. 1997; Clayton 2005a, b, 
2006a; Vogler and Clayton 2008). 

5.5.1 Constitutive Assumptions 

In the context of (5.324), constitutive assumptions (5.2)-(5.5) are replaced 
by the following, meaning that the state of the material at point X is deter-
mined by the elastic deformation, temperature, and temperature gradient: 

        , , , , AXψ ψ θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g
EF G , ( ). ,, , , ,Ea

a AF Xαψ ψ θ θ= G ;  (5.327) 

         , , , , AXη η θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g
EF G , ( ). ,, , , ,E a

a AF Xαη η θ θ= G ; (5.328) 

       , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g
Eσ σ F G , ( ). ,, , , ,ab ab E a

a AF Xασ σ θ θ= G ; (5.329) 

         , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g
Eq q F G , ( ). ,, , , ,a a E a

a Aq q F Xα θ θ= G . (5.330) 

Like (5.2)-(5.5), relations (5.327)-(5.330) are not always objective under a 
rigid body transformation of spatial coordinates.  Let such a transformation 
be described by ˆ→ +x Qx c , where ˆ ˆ T−=Q Q .  Then the elastic deforma-
tion is assumed to transform in the same manner as the total deformation 
gradient, i.e., ˆ→E EF QF .  The recoverable (symmetric) elastic deforma-
tion tensor EC  and strain tensor EE , defined in covariant form by 

 . .
E E a Eb

abC F g Fαβ α β= , 1 ( )
2

E EE C gαβ αβ αβ= − � , (5.331) 

thus remain invariant under such rigid body motions, following the same 
analysis procedure considered in (4.50).  Hence, a possible set of objective 
constitutive assumptions is 
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         , , , , AXψ ψ θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
EE G  , ( ),, , , ,E

A AE Xαβψ ψ θ θ= G ; (5.332) 

         , , , , AXη η θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
EE G , ( ),, , , ,E

A AE Xαβη η θ θ= G ; (5.333) 

      , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
EΣ Σ E G , ( ),, , , ,E

A AE Xαβ αβ
αβΣ Σ θ θ= G ; (5.334) 

       , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
EQ Q E G , ( ),, , , ,A A E

A AQ Q E Xαβ θ θ= G ; (5.335) 

immediately recognizable as (5.15)-(5.18) with the total strain E replaced 
by the elastic strain EE  and the second Piola-Kirchhoff stress replaced by  

 1 1
. .

E E ab E
a bJ F Fαβ α βΣ σ− −= , (5.336) 

where / detEJ g g= EF� .  The stress in (5.336), referred to as an elastic 
second Piola-Kirchhoff stress or simply an elastic stress, is symmetric and 
is invariant under rigid body motions of the spatial coordinate frame: 

1 1 1 1 1 1 1 1
. . . . . . . .

ˆ ˆ ˆ ˆE E a c ef d b E E E ef E
a c e f d b e fJ F Q Q Q Q F J F Fαβ α β α βΣ σ σ− − − − − − − −→ = . (5.337) 

As a result of different constitutive assumptions used in (5.332)-(5.335), 
thermodynamic and thermostatic relationships derived in Sections 5.1-5.4 
generally do not apply when thermal deformation is non-negligible. 

5.5.2 Thermodynamics 

From (5.324) and (5.326), spatial velocity gradient L of (2.176) is 
 1 1 1

. ; . . . . . . .
a a a A E a E E a E
b b A b b T bL v F F F F F Fα α β

α α βα θ− − −= = = + �� � . (5.338) 
The material time derivative of the elastic strain tensor is computed di-
rectly from (5.331), leading to a relationship similar to (3.64): 

 . . . . . .2 2E E a Eb E a Eb E a E Eb
ab ab abE F g F F g F F D Fαβ α β α β α β= + =� � � , (5.339) 

with the symmetric rate of elastic deformation referred to the spatial frame  
 ( )

1 1
. . . .2 2E Ec E Ec E E

ab ac b bc a abD g F F g F F Dα α
α α

− −= + =� � . (5.340) 

Stress power per unit reference volume entering (4.39) can then be written 
as follows, using symmetry of the Cauchy stress: 

   
1

. . .

1 1 1
. . . . .

( )

            ( ).
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σ α θ

−
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= = +

= +

��

��  (5.341) 

Using constitutive assumption (5.332) along with (5.339), the appropriate 
version of dissipation inequality (4.72) is 
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where the referential rate of temperature gradient 0 Aγ  is defined in (5.29). 
Appealing to arguments analogous to those immediately following (5.22) 
regarding thermodynamic admissibility, the following constitutive equa-
tions for the Cauchy stress tensor, the elastic stress measure (5.336), and 
the specific entropy emerge: 
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Scalar quantity ( , , )Xς θEE , with dimensions of entropy per unit mass, 
does not emerge in the classical theory of thermoelasticity of Section 5.1.  
For the case of isotropic thermal expansion . .T T

α α
β βα α δ= , this term reduces 

to 3 /T pς α ρ= − , where p is the Cauchy pressure (Clayton 2005a).  From 
(5.340)-(5.342), ,/ 0Aψ θ∂ ∂ = , and the response functions reduce to 

 ( ), , , AXψ ψ θ= EE G , ( ), , , AXη η θ= EE G , ( ), , , AXθ= EΣ Σ E G . (5.346) 

The conduction inequality remains identical to that of (5.32): 
 1

, 0A
AQθ θ−− ≥ , (5.347) 

and the local rate of entropy production vanishes as in (5.33). 
The specific heat capacity per unit mass at constant elastic strain is de-

fined similarly, but not identically, to that in (5.46): 
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, (5.348) 
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following the definition of the free energy eψ θη= −  in Table 4.2 which 
still applies in the present context.  Using Fourier’s law (5.48), energy bal-
ance (4.39) reduces to 

 0 , ; 0( )AB
B AK rρ θη θ ρ= +� . (5.349) 

By the chain rule, (5.332), and (5.348), 
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where symmetric contravariant tensor 2
0 / EEαβ

αββ ρ ψ θ= − ∂ ∂ ∂  accounts for 
thermoelastic coupling.  Equating (5.349) and (5.350) results in a rate 
equation for the temperature analogous to (5.51): 

 0 , ; 0
ˆ( )AB E

B Ac K E rαβ
αβρ θ θ θβ ρ= − +� � , (5.351) 

where the modified thermal stress coefficients4 are defined according to 
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5.5.3 Representative Free Energy 

An apparent advantage of the present formulation (Section 5.5) over clas-
sical nonlinear thermoelasticity (Section 5.1) is that in the former, defor-
mations and deformation rates attributed to temperature rise can easily be 
delineated from those due to mechanical stresses.  The free energy in the 
first of (5.346) is expanded in a Taylor series about a reference state char-
acterized by the conditions . .

E a aF gα α= , 0EEαβ = , 0 0θ θ= >  as follows: 

                                                      
4 In prior work (Clayton 2005a, b; Vogler and Clayton 2008) the distinction be-

tween thermal stress coefficients was omitted, i.e., it was assumed ˆαβ αββ β= . 
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The temperature change from the reference state is 0θ θ θ∆ = − .  Material 
properties in (5.353) are defined as follows: 

                   ( ) ( ) ( )0 0 0 0 00, , , , 0AX X Y XΨ θ Ψ θ= + =G , (5.354) 
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Definitions (5.354) and (5.355) result in null free energy and null stress at 
the reference state.  Isothermal elastic constants of orders two, three, and 
four are defined in (5.356)-(5.358).  Isothermal stress-temperature coeffi-
cients of various orders are listed in (5.359)-(5.364).  Since coefficients in 
(5.356)-(5.364) are all derivatives of thermodynamic potentials, these coef-
ficients exhibit the same material symmetries as polar tensors of the same 
orders in (5.65)-(5.73) and Section 5.1.5.  If the reference state is chosen as 
one in which . .A AF gθ α α=  (i.e., thermal deformation vanishes at 0θ θ= ), 
then reference states in (5.62) and (5.353) coincide. 

From (5.344) and (5.353), the elastic second Piola-Kirchhoff stress is 
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The Jacobian determinant of thermal deformation is / detJ g Gθ = θF� .  
Recall that stress-free thermal expansion to first order in strain is included 
in kinematic description (5.324)-(5.326), since ( , , )AXθ=T Tα α G .  Rank 
two stress-temperature coefficients αββ , αββ ′ , αββ ′′ , … will also induce 
thermal expansion of the same physical origin.  Thus, experimental de-
lineation of second-order stress-temperature coefficients in (5.365) from 
second-order temperature-dependent thermal expansion coefficients in 
(5.326) becomes problematic.  This ambiguity can be eliminated by as-
suming that αββ , αββ ′ , αββ ′′ , … vanish by definition: 
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Thermal stress coefficients of orders four and higher are retained since Tα  
is, by definition, independent of elastic strain.  The stress becomes 
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Thermal free energy 0 ( , )Y Xθ  in (5.353) can be defined in the same way as 
in Section 5.1.3. 

In the materially linear, but geometrically nonlinear, regime the appro-
priate reduction of (5.353), using (5.366), is 
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where a constant specific heat capacity is defined as in the last of (5.85): 
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The elastic second Piola-Kirchhoff stress and Cauchy stress then become, 
respectively, 

 1 EJ Eαβ θ αβχδ
χδΣ −= ^ , 1

. .
ab E a E EbJ F E Fαβχδ

α χδ βσ −= ^ . (5.372) 

5.6 Lagrangian Field Theory of Elasticity 

Hamilton’s principle applied to the appropriate action integral for hypere-
lastic bodies can be used to obtain a local form of the balance of linear 
momentum as well as constitutive equations relating stress, deformation 
gradient, and strain energy.  The treatment of Section 5.6 is restricted to 
the athermal case with no dissipation, meaning heat flux, heat sources, 
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temperature gradients, and temperature rates are not addressed.  Prior to 
presentation of Hamilton’s principle in the context of nonlinear elasticity 
of grade one, the variational derivative is introduced.   

5.6.1 The Variational Derivative 

A family of deformations is denoted by ( , )a a Ax x X Λ= , where Λ  is a 
scalar parameter.  At a reference state characterized by conditions 0Λ =  
and .

a a A
Ax g X= , field ( ,0)a a Ax x X=  is known.  The first variation of x is 

then defined by (Toupin 1956, 1962; Eringen 1962): 
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, (5.373) 

where reference coordinates AX  of material particle at X are held fixed 
during the variation.  For a scalar function ., :( , , ,...)a a a

A ABf f x x x=  depend-
ing on spatial position, deformation gradient, and higher-order total co-
variant derivatives of position (see e.g., (2.116)), the first variation of f is 

 
0

X

ff d
Λ

δ Λ
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=

∂
=

∂
. (5.374) 

Since reference coordinates are held fixed in the variation, partial differen-
tiation of a scalar with respect to reference coordinates commutes with the 
variational derivative: 

 , , ,( ) ( )A A Af f fδ δ δ= = . (5.375) 
The first variation does not commute with partial differentiation in the spa-
tial frame / a

a x∂ = ∂ ∂ .  Similarities between the variational derivative and 
the material time derivative of Section 2.6.1 are evident (Eringen 1962).  
In particular, axδ  is analogous to av dt , and fδ  is analogous to fdt� . 

The following formulae for variations of kinematic quantities are often 
useful (Toupin 1956; Eringen 1962): 
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 (5.376) 

 1 1 1 1
. ., . . ; . ;( ) ( ) ( )A A A B b A b
a a b a B b aF X F F x F xδ δ δ δ− − − −= = − = − , (5.377) 

 1
. . ;( ) ( )a A a
A a aJ J F F J xδ δ δ−= = . (5.378) 

Notice that (5.376) is analogous to (2.175), and (5.378) is analogous to 
(2.181).  It follows from (5.375), (5.377), and the chain rule that 
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5.6.2 Hamilton’s Principle in Nonlinear Elasticity 

A general version of Hamilton’s principle incorporating boundary condi-
tions and external forces can be written as (Toupin 1964) 
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where ˆ ( , )X tb  is a vector of generalized body forces per unit mass, ˆ( , )X tt  
is a generalized traction vector prescribed per unit reference area, P̂  is a 
vector of generalized momenta, and the action integral is 
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The Lagrangian functional L  is given by the volume integral 
 0

V

L dV= ∫L , (5.382) 

where 0L  is the Lagrangian energy density per unit reference volume of 
the following functional form for hyperelastic solids of grade one (Yavari 
et al. 2006): 
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Computation of the variation in (5.380) leads to 
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 (5.384) 

since 0L  does not depend explicitly on time and since, by the definition of 
the variational derivative used here, 
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 0AXδ = , ( ) 0A Xδ =G , ( ) 0V Xδ = , 0tδ = , (5.385) 
thereby enabling the variational operator to be brought inside the integra-
tion over time and reference volume.  Integrating the remaining terms by 
parts, noting that ( ) / ( / )a a ad x dt dx dt xδ δ δ= = � , and applying the diver-
gence theorem of (2.193) of Section 2.7.1 in material coordinates results in 
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appealing to symmetry properties of the spatial Christoffel symbols and 
their spatial derivatives from (2.60): 
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Collecting terms, the first variation of the action integral in (5.384) is 
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Substitution of (5.390) into (5.380), localizing the result, and requiring that 
Hamilton’s principle be satisfied for arbitrary variations axδ  gives the 
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field equations within reference domain V, also called Euler-Lagrange 
equations: 
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traction boundary conditions on reference surface S: 
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with N the outward unit normal to S, and endpoint conditions on linear 
momentum per unit reference volume: 
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For a hyperelastic solid of grade one, the following Lagrangian is as-
sumed to apply: 
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where kinetic energy K  and global internal energy E  are introduced in 
(4.28)-(4.30) and global potential energy Φ  is given by (4.41), with local 
potential energy per unit reference volume 0 0( ) ( ) ( )x X xΦ ρ Φ= .  Since in 
the present Section, entropy production and temperature rates are assumed 
to vanish, internal energy per unit reference volume 0E  and free energy 
per unit reference volume 0 0 0E NΨ θ= −  differ by an arbitrary additive 
constant.  Letting this constant vanish for convenience, and denoting the 
strain energy density by 0 0 0Eρ ψ Ψ= = , the Lagrangian density becomes 

 ( ) ( )0
0 0 . 0, ,

2
a a

a A AL x x F X xρ
Ψ Φ= − −G� � , (5.395) 

where the dependence on F temporarily replaces that on C in (5.44).  No-
tice that (5.395) is a particular form of (5.383).   

The partial covariant derivative in the first term on the left side of 
(5.391), using (5.395), becomes 

      

0 0 0 0
.

. . . .; ; : ;

..0 0
.

. .:

                 ,

c
Aa a a a

A A A AA A A c

g
b c

ca Aa b
A AA

L
F

F F F F

F
F F

Ψ Ψ Ψ

Ψ Ψ
Γ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− = = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (5.396) 
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where the total covariant derivative of two point tensor 0 ./ a
AFΨ∂ ∂  is de-

fined similarly to (2.116)-(2.118) and (4.20).  The third term on the left 
side of (5.391) becomes 

 0 0
0 , , 0a a a aa a

L J J b b
x x

Φ ρ Φ ρΦ ρ ρ∂ ∂
= − = − = − = =

∂ ∂
, (5.397) 

where the conservative body force per unit mass with covariant compo-
nents ab  is introduced in (4.41).  The first term on the right of (5.391) be-
comes (Yavari et al. 2006) 

   

( )0 0

0 0

0 0
. . ,

0
.

2

               ( )
2 2

               
2 2

               
2

b c
bca a

b c b c
bc bca a

b c c b b c
bc a a bc a

b
bc a

Ld d x g x
dt x dt x

d dg x x x x g
dt x dt x
dg x x x x g
dt

g A

ρ

ρ ρ

ρ ρ
δ δ

ρ
δ

∂ ∂⎛ ⎞ ⎡ ⎤=⎜ ⎟ ⎢ ⎥∂ ∂⎣ ⎦⎝ ⎠
∂ ∂⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤= + +⎣ ⎦

=

� �
� �

� � � �
� �

� � � �

( ) .. ..0
.

..
0

2

               ,

g g
c c b b c d d

a ac bd ab cd

g
b b c d

ab ab cd

A x x g g

g A x x g

ρ
δ Γ Γ

ρ Γ

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

⎛ ⎞= +⎜ ⎟
⎝ ⎠

� �

� �

 (5.398) 

with ( , )bA X t  contravariant components of the material acceleration of 
(2.174).  The rightmost term of (5.391) is 

 

.. ..0 0
0

..0
0

2 2 ( )

                             2 .

g g
d e f d

ab cd ef ab cd
cb cb cb

g
c b d

ab cd
cb

L
g x g x g

g g g

x x g
g

Ψ
Γ ρ Γ

Ψ
ρ Γ

⎡ ⎤∂ ∂ ∂⎛ ⎞− = −⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎣ ⎦
⎡ ⎤∂

= −⎢ ⎥∂⎣ ⎦

� �

� �
 (5.399) 

Substituting (5.396)-(5.399) into (5.391) and collecting terms results in the 
following reduced set of Euler-Lagrange equations: 

    ..0 0 0
0 0 .

. .:

ˆ( ) 2
g

b b d
a a ab cd A baa d

A cb AA

b b g A g F
F g F
Ψ Ψ Ψ

ρ ρ Γ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂

+ + − = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
. (5.400) 

The first Piola-Kirchhoff stress tensor and total body force per unit refer-
ence volume are defined respectively as 

 . 0

.

A
a a

A

P
F
Ψ∂

=
∂

, 0
ˆ( )a a aB b bρ= + . (5.401) 

Now following invariance arguments of (5.34)-(5.36), let the strain energy 
density depend on the deformation gradient F and spatial metric g only 
through the symmetric deformation tensor C: 
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 ( ) ( )0 . 0 ., , ( , ), ,a a
A A AB A ab AF X C F g XΨ Ψ=G G , (5.402) 

where . .
a b

AB A ab BC F g F= .  It follows that  

 0 0 0
. .
b cBC
B C

bc BC bc BC

C F F
g C g C
Ψ Ψ Ψ∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

, (5.403) 

 
( )

0 0 0
. . . . . .

. .

0 0
. . . . .

( )

        2 ,

b A c c A bBC
d B bc C d C bc Bd d

A BC A BC

A c A b a
B dc C C bd B ad B

BC AB

C
g F g F

F C F C

g F g F g F
C C

Ψ Ψ Ψ
δ δ δ δ

Ψ Ψ
δ δ

∂ ∂ ∂ ∂
= = +

∂ ∂ ∂ ∂
∂ ∂

= + =
∂ ∂

 (5.404) 

from which the right side of (5.400) vanishes: 

 

0 0
. .

10 0
. . . .

. .

2 2

                .

b c
cd B C cd

cb BC

b C ae c b
B a C cd Be d

B B

g F F g
g C

F F g F g F
F F

Ψ Ψ

Ψ Ψ−

∂ ∂
=

∂ ∂

⎛ ⎞∂ ∂
= =⎜ ⎟∂ ∂⎝ ⎠

 (5.405) 

Substituting from (5.401), the left side of (5.400) is identical to the mate-
rial balance of linear momentum of (4.21): 

 : 0
aA a a
AP B Aρ+ = . (5.406) 

Traction boundary conditions (5.392) are identical to those entering 
Cauchy’s theorem in (4.4): 

 .0 0
0

. .

ˆ A
a A A a A aa a

A A

Lt N N P N t
F F

Ψ∂ ∂
= − = = =

∂ ∂
, (5.407) 

where by definition 0â at t=  is the traction per unit reference area.  The 
conditions (5.393) on initial and final momentum density are 

 0 0
0

ˆ ( )
2

b c b
a bc aba a

L
P g x x g x

x x
ρ

ρ
∂ ∂⎡ ⎤= = =⎢ ⎥∂ ∂⎣ ⎦

� � �
� �

, (at 1 2,t t t= ). (5.408) 

Invariance of free energy density under rigid rotations of the spatial 
frame provides the local balance of angular momentum.  Consider a finite 
rotation . . .

ˆa a b
A b AF Q F→  as discussed in Section 4.2.1.  An infinitesimal rota-

tion can be expressed in the form . .
ˆ ˆa a ac

b b bcQ gδ Ω≈ + , where [ ]ˆ ˆ acacΩ Ω= .  
According to Toupin (1964), invariance of the free energy density under 
infinitesimal rotations is sufficient to ensure invariance under finite rota-
tions.  Let the differential change of free energy under such small rotations 
be (Eringen 1962) 



262      5 Thermoelasticity 

 
[ ] [ ]

0 . . 0
0 . . .

. . . . .

.0
.

.

ˆ( ) ˆ ˆ
ˆ ˆ ˆ( ) ( )

ˆ ˆ      .

a b
c b ab A
d A ba e c a e

e A d e A

ac acb A
A bc a cAa

A

Q Fd dQ F dQ
Q F Q Q F

F g d P F d
F

Ψ Ψ
Ψ

Ψ
Ω Ω

∂ ∂ ∂
= =

∂ ∂ ∂
∂

= =
∂

 (5.409) 

Requiring that (5.409) vanish under arbitrary rotations [ ]ˆ acdΩ  leads to a 
local balance of angular momentum identical to the first of (4.27): 

 [ ]
.

0 . .0 0A aA c a cA
A Aa c Ad P F P F F PΨ = ⇒ = ⇔ = . (5.410) 

Notice that no global balance of linear or angular momentum has been 
posited in Section 5.6.2, and that the derivations apply for any choice of 
generalized spatial or referential coordinates, including curvilinear coordi-
nates.  The procedure followed in (5.380)-(5.406) is somewhat analogous 
to that sketched in Section B.1.2 of Appendix B dealing with dynamic par-
ticle systems.   

5.7 Elasticity of Grade Two 

Recall from kinematic relations (2.114) and (2.115) that deformation gra-
dient F provides a first-order accurate approximation of the length and di-
rection of a differential line element mapped to the current configuration: 
d d=x F X .  This approximation can be interpreted as exact for the case of 
homogeneous deformations.  On the other hand, a second-order accurate 
approximation is obtained by retaining the second-order term in (2.114), 
leading to 

 . :
1( )
2

a a A a A B
A A BX X

dx X F dX F dX dX= + , (5.411) 

where the total covariant derivative of F with components : :
a a

A B ABF x=  satis-
fies, from (2.57), (2.59), and (2.116), 

                
, . , . :

.. ..
. , . . .

( )

              ( ) .

B a A B a A B
B A a B A B a

g G
a a c b C a A B
A B bc A B BA C a

F F

F F F FΓ Γ

⊗ = ⊗ ⊗ = ⊗ ⊗

= + − ⊗ ⊗

F G g G G g G G

g G G
 (5.412) 

It follows from local compatibility conditions (2.203) and symmetries of 
spatial and referential Christoffel symbols that : :

a a
A B B AF F= , meaning that 



5.7 Elasticity of Grade Two      263 

the total covariant derivative of F consists of at most 3 6 18× =  independ-
ent entries.  Eringen (1962) shows that5 

         
.. ..

: . , . . . , . . ; .

: ; . : ., ; .,

( ) ;

               ( ) ,

g g
a a a c b a a c b a b

A B A B bc A B A b bc A B A b B

a a b a a b
A B A b B AB A b B

F F F F F F F F F

F F F x x x

Γ Γ= + = + =

= ⇔ =
 (5.413) 

from which it follows that for the inverse of the deformation gradient, 
                1 1 1 1 1

. . ; . ; . . . :0 ( )a A B A B C a
A c b c b c a b A CF F F F F F F− − − − −= ⇒ = − . (5.414) 

The first variation of . :
a
A BF  is found using (5.376), (5.377), and (5.413) as 

   

. : . ; . . . ; . ; .

1
. ; . . ; ;

1 1
. . ; . . ; . . ; ;

1
. . ; .

( ) ( ) ( ) ( )

            ( ) ( )

            ( ) ( ) ( )

            ( )

a a b b a a b
A B A b B B A b A b B

b a C a b
B A C b A b B

b a C a C a b
B A C b A C b A b B

b a C
B A C b

F F F F F F F

F F F F x

F F F F F F x

F F F F

δ δ δ δ

δ δ

δ δ δ

δ

−

− −

−

= = +

⎡ ⎤= +⎣ ⎦
⎡ ⎤= + +⎣ ⎦

= − 1
; . ; . ; ;

. ;

( ) ( )

            ( ) .

a C c a c
A C c b A c B

a
A B

F x F x

F

δ δ

δ

−⎡ ⎤ +⎣ ⎦
=

 (5.415) 

In what follows in Section 5.7, concepts of surface gradient and normal 
derivative of a differentiable function at a surface are used.  For a differen-
tiable function ( , )f x t  defined on spatial surface s, the covariant deriva-
tive, normal derivative, and surface gradient are related by (Toupin 1962): 

  ; ( ) ( )a a af n D f D f= + , ;( ) a
aD f f n= , .

;( ) ( )b b
a a a bD f n n fδ= − , (5.416) 

where ( , )an x t  is the unit outward normal to s, the first term on the right 
accounts for the normal derivative ( , )Df x t , and the second accounts for 
the tangential derivative ( , )aD f x t .  The following integral identity applies 
for the tangential derivative of f over surface s bounded by closed curve c: 

           .( ) ( )c c d
a b c a b ab acd b

s s c

D f n ds n n fds f n n dxκ κ ε= − −∫ ∫ ∫ , (5.417) 

where boundary s is assumed sufficiently smooth (i.e., no sharp edges or 
corners) and ( , )f x t  is assumed to have continuous first partial derivatives 
with respect to ax .  The second fundamental form of a smooth surface is 
defined as (Toupin 1962) 

 ( )ab a b b a bax D n D nκ κ= − = − = . (5.418) 
Consider a hyperelastic material of grade two, in which stress and strain 

energy depend on the total covariant derivative of F in addition to the de-
formation gradient, reference position of a material particle (in the case of 
                                                      

5 It is assumed in (5.413) and in the remainder of Section 5.7 that a coordinate 

system is chosen such that referential Christoffel symbols vanish, i.e., .. 0
G

C
BAΓ = . 
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heterogeneity) and reference basis vectors (in the case of anisotropy).  The 
strain energy density is written in functional form as 

 ( )0 0 0 . . :, , ,a a
A A B AF F Xρ ψ Ψ Ψ= = G . (5.419) 

By assertion, the balance of mass in (4.10)-(4.12) still applies for materials 
of grade two: 0 Jρ ρ=  with / / detJ dv dV g G= = F  from (2.141)-
(2.142), despite (5.411).  On the other hand, stress and traction definitions 
in Section 4.1.1, linear and angular momentum balances in Section 4.1.3, 
and the treatment of thermodynamics in Sections 4.1.4 and 4.2 do not gen-
erally apply for the theory of elasticity of grade two presented in what fol-
lows in the present Section.   

As was assumed in Section 5.6, in the present Section entropy produc-
tion and temperature rates are assumed to vanish, and free energy and in-
ternal energy are equivalent to the strain energy.  Heat conduction, heat 
sources, and temperature gradients are not considered in the present Sec-
tion.  Furthermore, considered for simplicity in what follows is the quasi-
static case, in which velocities and accelerations are omitted.  Potential en-
ergies from conservative body forces are also omitted for simplicity of 
presentation, but these forces could be incorporated easily by subtracting 
the appropriate term from the Lagrangian.  Thus, the Lagrangian density 
function and the Lagrangian functional of (5.394) simply become, respec-
tively, 
   0 0L Ψ= − , 0 0 0

V V V v

L dV dV dV dvΨ ρ ψ ρψ= = − = − = − = −∫ ∫ ∫ ∫L E , (5.420) 

since kinetic energy 0=K  and global potential energy 0Φ =  by defini-
tion in the present simplified case.   

The appropriate generalization of Hamilton’s principle (5.380) for elas-
tic materials of grade two (Toupin 1962, 1964) with vanishing inertia is 
written as follows in the spatial configuration: 

             ( ) ( )
2 2

1 1

0
t t

t v t s

dv dt D ds dtδ δ δ δ
⎡ ⎤ ⎡ ⎤

+ + + =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ∫b x t x h xi i iA , (5.421) 

with ( , )x th  a generalized surface traction introduced as a work conjugate 
to the normal derivative of the variation of spatial motion at the surface, 

;
;( ) ( )a b a b
b a b aD x n x nδ δ δ= =x g g .  Body force per unit current volume is 

written as ( , )x tb , and ( , )x tt  is a surface traction, i.e., a force vector per 
unit spatial area.  Substituting from (5.420), 
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2 2

1 1

2 2

1 1

0

1
0 0    ( ) .

t t

t t V

t t

t V t v

dt L dV dt

dV dt J dv dt

δ δ δ

δΨ δΨ −

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫ ∫

A L

 (5.422) 

Thus the equality 
         1

0 ( ) 0a a a
a a a

v v s

J dv b x dv t x h D x dsδΨ δ δ δ− ⎡ ⎤− + + + =⎣ ⎦∫ ∫ ∫  (5.423) 

should hold at any time in (arbitrary) interval 1 2t t t≤ ≤ .  The first integral 
on the left side of (5.423) can be written using (5.419) as 

 1 1 0 0
0 . . :

. . :

( )a a
A A Ba a

A A Bv v

J dv J F F dv
F F
Ψ Ψ

δΨ δ δ− − ⎡ ⎤∂ ∂
− = − +⎢ ⎥∂ ∂⎣ ⎦
∫ ∫ , (5.424) 

where from (5.376), (5.415), and the product rule, 

       

1 10 0
. . :

. . :

1 1 10 0 0
. . . .

. . : . :; ;

1 10 0
. . ;

. . : ;

( )

( )

                      

a a
A A Ba a

A A B

b a b a
B A B Aa a a

A A B A Bb b

b c a
B A ca a

A A B b

J F J F
F F

J J F F J F F
F F F

J J F F x
F F

Ψ Ψ
δ δ

Ψ Ψ Ψ
δ δ

Ψ Ψ
δ

− −

− − −

− −

∂ ∂
+

∂ ∂

⎡ ⎤⎛ ⎞ ⎡ ⎤∂ ∂ ∂
= − +⎢ ⎥⎜ ⎟ ⎢ ⎥∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂
= −⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

1 0
. . ;

. : ;

                     ( ) ,b c a
B A ca

A B b

J F F x
F
Ψ

δ−⎡ ⎤∂
+ ⎢ ⎥∂⎣ ⎦

 (5.425) 

since by (5.413) and (5.415), 

  1 1 10 0 0
. . . . . :

. : . : . :; ;

( ).b a b a a
B A B A A Ba a a

A B A B A Bb b

J F F J F F J F
F F F
Ψ Ψ Ψ

δ δ δ− − −⎡ ⎤ ⎡ ⎤∂ ∂ ∂
= +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

 (5.426) 

Noting from (2.145) that 1
. ;( ) 0a
A aJ F− =  when .. 0

G
B

BAΓ = , the rank two stress 
tensor ( , )dc x tσ  and rank three hyperstress tensor ( , )bdcH x t  are defined, 
respectively, as 

 

. 1 10 0
. .

. . : ;

1 0 0
. .

. . : ;

     ,

dc da c da b c
a B Aa a

A A B b

da b c
B Aa a

A A B b

g g J J F F
F F

g J F F
F F

Ψ Ψ
σ σ

Ψ Ψ

− −

−

⎡ ⎤⎛ ⎞∂ ∂
= = −⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂
= −⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 (5.427) 
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  . 1 10 0
. . . .

. : . :

bdc da b c da b c da c b cdb
a B A B Aa a

A B B A

H g H J g F F J g F F H
F F
Ψ Ψ− −∂ ∂

= = = =
∂ ∂

. (5.428) 

In physical components, the stress in (5.427) exhibits dimensions of force 
per unit spatial area or energy per unit spatial volume, while the hyper-
stress in (5.428) exhibits dimensions of force per unit spatial length or en-
ergy per unit spatial area.  The hyperstress consists of up to 18, as opposed 
to 27, independent entries as a consequence of compatibility conditions 

[ ]. : 0a
A BF = .  The stress tensor of (5.427) consists of up to 9 independent en-

tries, and is generally not symmetric, in contrast to the Cauchy stress ten-
sor of classical continuum mechanics defined in Chapter 4.  Substituting 
these stress definitions into (5.425), 

 
1 . .

0 ; ; ;

. . .
; ; ; ;

( ) ( )

            ( ) ( ) ( ) .

c a b c a
a c a c b

c a c a b c a
a c a c a c b

J x H x

x x H x

δΨ σ δ δ

σ δ σ δ δ

− ⎡ ⎤= + ⎣ ⎦

⎡ ⎤= − + ⎣ ⎦
 (5.429) 

Applying the divergence theorem of (2.193) in spatial coordinates to 
(5.424) gives 

{ }1 . . .
0 ; ; ; ;

. . .
; ;

( ) ( )

                     ( ) .

c a c a b c a
a c a c a c b

v v

c a c a b c a
a c a a b c

v s

J dv x x H x dv

x dv x H x n ds

δΨ σ δ σ δ δ

σ δ σ δ δ

− ⎡ ⎤− = − − + ⎣ ⎦

⎡ ⎤= − +⎣ ⎦

∫ ∫

∫ ∫
 (5.430) 

Using (5.416)-(5.418), Stokes’s theorem (2.198), and integration by parts, 
the rightmost term in the surface integral in (5.430) can be expressed as 
follows (Teodosiu 1967a), appealing to the symmetry of . .b c c b

a aH H= : 

  

. .
;

. .
.

.

( ) [ ( ) ( )]

                     ( ) ( )

                                       

                     

b c a b c a a
a b c a b b c

s s

b c a b c d a
a b c a d b c bc

s s

b c d a e
a bde c

c

H x n ds H D x n D x n ds

H n n D x ds H n n x ds

H n n x dx

H

δ δ δ

δ κ κ δ

ε δ

= +

= + −

−

=

∫ ∫

∫ ∫

∫
. .

.

.
;

. .
.

( ) ( )

                                       ( )

                     ( ) ( )

                   

b c a b c d a
a b c a d b c bc

s s

b c d a efg
a bde c g f

s

b c a b c d a
a b c a d b c bc

s s

n n D x ds H n n x ds

H n n x n

H n n D x ds H n n x ds

δ κ κ δ

ε δ ε

δ κ κ δ

+ −

−

= − −

∫ ∫

∫

∫ ∫
.                    ( ) ,b c a

b a c
s

D H n x dsδ− ∫

 (5.431) 
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where . . . . . ;
.; .;( ) ( )b c b c b c b c b c d

b a a b a b a b a d bD H H D H n H H n n= − = −  is the surface gra-
dient of the hyperstress, with normal derivative . .

;( )b c b c d
a a dD H H n= .  Fi-

nally, substituting (5.430) and (5.431) into (5.423) and collecting terms, 

      

. .
;

. . .
.

( ) ( )

         ( ) ( ) .

c a b c a
a c a a b c a

v S

c b c d b c a
a c a d b c bc b a c a

s

b x dv H n n h D x ds

n H n n D H n t x ds

σ δ δ

σ κ κ δ

⎡ ⎤+ = −⎣ ⎦

⎡ ⎤+ − − − −⎣ ⎦

∫ ∫

∫
 (5.432) 

Presuming (5.432) must hold for arbitrary variations axδ  and normal sur-
face variations ( )aD xδ , the following equilibrium equations and boundary 
conditions are obtained:  

 .
; 0c

a c abσ + = , (5.433) 
 . . .

.( ) ( )c b c d b c
a a c a d b c bc b a ct n H n n D H nσ κ κ= − − − , (5.434) 

 .b c
a a b ch H n n= . (5.435) 

Relation (5.433) is the static balance of linear momentum.  Relation 
(5.434) is the boundary condition for the traction.  Relation (5.435) is the 
boundary condition for the hypertraction.  Spatial relations (5.433)-(5.435) 
were first derived by Toupin (1962) using the virtual work procedure out-
lined above, and were presented later in material coordinates by Toupin 
(1964).   

For the particular case when free energy (5.419) does not depend on 
second-order position gradient . :

a
A BF , i.e., when 0 0 .( , , )a

A AF XΨ Ψ= G , 
stress dcσ  becomes identical to the Cauchy stress of classical nonlinear 
elasticity (e.g., (5.24) and (5.427) become equivalent), and the hyperstress 

0bdcH =  in (5.428).  Thus, in that particular case, (5.433) becomes equiva-
lent to linear momentum balance (4.17) in the absence of spatial accelera-
tion, boundary condition (5.434) becomes equivalent to Cauchy’s relation 
(4.3), and the right side of (5.435) vanishes identically.  In the general the-
ory, however, i.e., when the free energy depends on . :

a
A BF , the stress in 

(5.427) depends, in part, on the derivative of the free energy with respect 
to . :

a
A BF .  Such dependence can be interpreted from (5.411) as resulting 

from second-order effects on stretch of interatomic bond vectors (e.g., pos-
sibly interpreted as anharmonic or nonlinear effects), thereby influencing 
interatomic forces and the resulting stress tensor of (5.427), and giving rise 
to the hyperstress tensor of (5.428). 

As was the case in Section 5.6, a local balance of angular momentum 
can be obtained by restricting the strain energy density to be invariant un-
der rigid body rotations of the spatial frame.  Consider a finite rotation 
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. . .
ˆa a b

A b AF Q F→  as discussed in Sections 4.2.1 and 5.6.2.  The total covariant 
derivative transforms in this situation as . : . . :

ˆa a b
A B b A BF Q F→ .  An infinitesimal 

rotation is then written in the form . .
ˆ ˆa a ac

b b bcQ gδ Ω= + , where the skew ma-
trix [ ]ˆ ˆ acacΩ Ω= .  According to Toupin (1964), invariance of the strain en-
ergy density under infinitesimal rotations is sufficient to ensure invariance 
under finite rotations.  Extending (5.409), the variational change of strain 
energy under such small rotations is 
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 (5.436) 

Requiring that (5.436) vanish under small but otherwise arbitrary rotations 
[ ]ˆ abdΩ  leads to the local balance of angular momentum for elastic materi-

als of grade two: 
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. (5.437) 

Components of the second-order stress tensor in (5.427) can be expressed 
as (Toupin 1964) 
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Substituting the antisymmetric part from (5.437) into (5.438), 

  [ ]

[

]

[

] [ ] [ ]1 0 0
. . : ...; ...; ...;

:

ab b b ba c ab c abc
A A B c c c

a A a A B

J F F H H M
F F
Ψ Ψ

σ −
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, (5.439) 
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where rank three tensor (i.e., third-order tensor) of couple stresses abcM  
and rank two couple stress tensor .c

dm  are constructed from the antisym-
metric part of the hyperstress6: 

 [ ].1
2

ab cabc abd c
dM m Hε= = , .c abc abc

d dab dabm M Hε ε= = . (5.440) 

Local angular momentum balance (5.439) becomes 

       [ ] [ ] . .
...; ; ;

1 0 0
2

ab ababc abd c ab d
c d c abc c dM m mσ σ ε ε σ− = − = ⇔ − = . (5.441) 

The symmetric part of the hyperstress ( )ab c abc abcH H M= − , while not af-
fecting the angular momentum balance (5.441), does not always vanish 
identically and has been interpreted as resulting from a distribution of self-
equilibrating forces (Toupin 1964). 

A frame indifferent version of strain energy function (5.419) is 
 ( )0 0 , , ,AB ABC AE B XΨ Ψ= G , (5.442) 

where the right Cauchy-Green strain . .2 a b
AB A ab B ABE F g F G= −  as in (2.156), 

and the covariant strain gradient referred to the reference configuration sat-
isfies 

 . : ; ; ;

; ; ;

1 ( )
2

        .

a
ABC aA B C AB C AC B CB A

AB C AC B CB A

B F F C C C

E E E

= = + −

= + −
 (5.443) 

Clearly, the strain gradient tensor ( )ABC A BCB B= , like  . : . :
b b
B C C BF F= , con-

tains 18 independent entries.  Contravariant hyperstress and stress tensors 
are then computed, respectively, from the chain rule as follows: 

      1 10 : 0
. . . . .

. :

( )e
bdc da b c b d ceC D E

B A B C Aa
CDE A B CAB

F FH J g F F J F F F
B F B
Ψ Ψ− −∂ ∂ ∂

= =
∂ ∂ ∂

, (5.444) 

                                                      
6 The second-order couple stress defined in (5.440) is consistent with the defini-

tion of Toupin (1964) but is the negative transpose of the couple stress defined by 
Malvern (1969). 
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 (5.445) 

Expanding strain energy density (5.442) in a Taylor expansion to second 
order in strains and strain gradients about a reference state at which 

. .
a a
A AF g=  and . : 0a

A BF =  gives 
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where 0 0 (0,0, , )AXΨ Ψ= G  is the strain energy density at the reference 
state, and where constant material coefficients at a material point X are de-
fined as follows: 
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As noted by Toupin (1964), a natural state in which both the stress and hy-
perstress vanish everywhere may not exist for a given material, and such a 
state may be an exceptional case rather than the norm.  None of the con-
stants in (5.447) and (5.448) need vanish in general for an arbitrary (i.e., 
fully anisotropic) material of grade two. 

Since choice (5.442) is invariant under spatial rotations, (5.437) and 
hence angular momentum balance (5.441), are satisfied identically.  Linear 
momentum balance (5.433) provides three equations in three unknowns 

( )ax X , ( 1,2,3)a = , subject to boundary conditions (5.434) and (5.435).   
The theory of hyperelastic materials of grade two presented heretofore 

in Section 5.7 is a particular kind of generalized continuum theory with 
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higher-order stresses (i.e., hyperstresses).  More general theories have been 
formulated accounting for dynamics and deformations of microstructures 
(i.e., director vectors), as summarized by Toupin (1964).  Elastic materials 
of grade two are a particular class of director theory in which a set of di-
rectors at X is constrained to deform in conjunction with material particles 
(i.e., first- and higher-order deformation gradients) at X.  More general 
theories of oriented (micropolar) or micromorphic elastic solids were de-
veloped by Cosserat and Cosserat (1909), Ericksen and Truesdell (1958), 
Toupin (1962, 1964), Mindlin (1964), Eringen and Suhubi (1964), and Er-
ingen (1968), among others.  Mindlin (1965) considered elastic bodies 
whose strain energy density depends on strain and first and second gradi-
ents of strain (corresponding to elasticity of grade three in the terminology 
used in this Chapter), while Green and Rivlin (1964b) considered bodies 
supporting higher-order stresses work conjugate to velocity gradients of 
first and arbitrarily higher order.  Cosserat and Cosserat (1909) developed 
a theory of elasticity for a continuum embedded with a triad of rigid direc-
tors that may rotate independently of the macroscopic displacement field 
of material particles, and angular momentum balance (5.441) is often cred-
ited to these authors.  Eringen (1968) provided some historical references 
and remarks on early generalized continuum theories.  Truesdell and Noll 
(1965) offered an in-depth analysis of director theories and second-grade 
elasticity.  Green and Naghdi (1995) developed a general procedure for ob-
taining balance laws for generalized continua using an energy balance, in-
variance arguments, and thermodynamic principles.  Yavari and Marsden 
(2009) obtained balance laws and constitutive relations for generalized 
continua (e.g., elastic materials with microstructure) using covariance 
principles. 

Recall that in the case of elasticity, (5.1) applies ( ( , ) ( , )X t X t= LF F ), 
implying that the (total) covariant derivative of F reflects material gradi-
ents of stretch and rotation of interatomic bond vectors among atoms in a 
crystal structure.  The hyperstress—or its antisymmetric part, the couple 
stress of (5.440)—reflects moments induced by distributions of interatomic 
forces and interatomic moments corresponding to these gradients of intera-
tomic bond vectors.  Physical origins of higher-order stresses in the con-
text of atomistic force or moment interactions were suggested by Kroner 
(1963b), Mindlin (1964, 1968a, 1972), Zhou and McDowell (2002), and 
Sunyk and Steinmann (2003).  Kroner (1963b) and Bammann (2001) gave 
arguments supporting the presence of couple stresses resulting from the 
stress fields of dislocations in crystals. 

If the viewpoint in (5.411) is adopted, elasticity of grade two can be in-
terpreted as providing additional accuracy over elasticity of grade one in 
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terms of description of the kinematics of deformation.  This does not imply 
that the total covariant derivative of F vanishes in elasticity of grade one; 
rather, this quantity simply does not explicitly enter the thermodynamic 
potentials in the classical theory.  It is noted, however, that series expan-
sion (5.411) is written only to provide physical interpretation of the total 
covariant derivative of the deformation gradient and does not explicitly en-
ter the subsequent constitutive theory in Section 5.7.   

Elasticity of grade two also provides a number of other possible advan-
tages over classical nonlinear elasticity.  Strain gradient theories enable 
numerical solution of certain kinds of boundary value problems without 
mesh sensitivity that may emerge in classical theories (Menzel and Stein-
mann 2000; Abu Al-Rub and Voyiadjis 2005).  Second- and higher-grade 
elasticity provides analytical solutions for stress and strain fields produced 
by dislocation or disclination lines without singularities in these fields near 
defect cores (Lazar and Maugin 2004, 2005; Deng et al. 2007).  Such sin-
gularities inevitably arise in solutions obtained from the classical theory of 
elasticity of grade one, as exemplified by linear elastic solutions for 
straight line defects listed in Section C.1 of Appendix C.  Drawbacks of 
second-grade elasticity, relative to classical elasticity of grade one, are 
complex hyperelastic constitutive relations (5.427)-(5.428) and traction 
boundary conditions (5.434), boundary conditions for the hyperstress 
(5.435) that may be difficult to interpret physically, and the large number 
of material constants arising even in the lowest order (quadratic) approxi-
mation of the strain energy in (5.446).  The latter point is in contrast to 
classical nonlinear elasticity of grade one, wherein for the lowest degree of 
symmetry (e.g., a triclinic crystal structure) only 21 distinct second-order 
elastic constants are required.  As a counter-example, Mindlin’s geometri-
cally linear theory of elastic materials of grade two with unconstrained mi-
cro-deformations (Mindlin 1964) requires 903 independent material coef-
ficients to describe a material of maximum anisotropy, following a Taylor 
series expansion of the strain energy of quadratic accuracy akin to (5.446).  



6 Elastoplasticity 

Plasticity attributed to dislocation motion in crystals is considered in detail 
in Chapter 6.  In many crystalline solids, large deformations are not sus-
tainable by thermomechanically recoverable deformation alone.  Devia-
toric elastic deformations generate shear stresses, which, when large 
enough, facilitate generation and motion of lattice defects.  More specifi-
cally, ductile crystals tend to exhibit plastic deformation arising from gen-
eration and glide of dislocations (e.g., dislocation lines and loops) when 
subjected to deviatoric stresses exceeding some mechanical threshold, 
elastic limit, or yield point.  Thermally activated dislocation motion (e.g., 
kink migration) is possible even when resistance in isolated locations (e.g., 
in the vicinity of obstacles such as heterogeneities) to glide exceeds the 
magnitude of average resolved stress acting on a glide plane in the slip di-
rection.  

Thermodynamics and kinetics of dislocation-based plasticity have been 
studied since the early twentieth century.  Fundamental restrictions on 
plastic work or plastic dissipation in the context of the entropy inequality 
were posited by Drucker (1951) and Ilyushin (1961).  These restrictions 
were generalized to the case of finite deformations, i.e., geometric nonlin-
earity, by Lee (1969) and Kratochvil (1971).  In the context of crystal plas-
ticity theory, Bishop and Hill (1951) suggested a maximum plastic work 
postulate for determining active slip systems in crystals subjected to small 
deformations, while Rice (1971), Hill and Rice (1972, 1973), and Havner 
(1986) studied aspects of the normality structure of finite deformation ine-
lasticity.  Kocks et al. (1975) developed a systematic framework for de-
scribing thermodynamics and kinetics of slip across a range of length 
scales spanning from behaviors of individual dislocation segments to large 
groups of dislocations represented in slip rate variables of continuum crys-
tal plasticity. 

Changes in microstructure of crystalline materials occur as lattice de-
fects are generated and propagated, manifesting in changes in the thermo-
dynamic state of the solid.  For example, stored energy associated with re-
sidual, self-equilibrated stress fields attributed to defects in crystals, often 
referred to as stored energy of cold working, has been investigated for 
some time (Farren and Taylor 1925; Taylor and Quinney 1934; Zener 
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1942; Toupin and Rivlin 1960; Wright 1982; Rosakis et al. 2000; Longere 
and Dragon 2008).  This energy is properly reflected in the thermodynamic 
potentials via prescription of dependence of such potentials on evolving in-
ternal state variables representing densities of defects in the solid. 

In geometrically nonlinear elastoplasticity, a naturally arising conjugate 
thermodynamic force to the plastic velocity gradient is a variant of the so-
called Eshelby stress tensor (Maugin 1994; Svendsen 2001; Clayton et al. 
2004b).  The divergence of the Eshelby stress is a material force, i.e., an 
energy gradient, associated with explicit changes in position of heteroge-
neities, as demonstrated in the context of linear elasticity (Eshelby 1951) 
and nonlinear elasticity (Eshelby 1975; Epstein and Maugin 1990; Maugin 
1994, 1995).  Tensors of similar nature but often not identical mathemati-
cal form, often referred to as energy-momentum tensors or chemical poten-
tial tensors depending on context, have been used to describe a number of 
phenomena in continuum physics (Bowen 1967; Grinfeld 1981, 1991; Hill 
1986; Maugin and Epstein 1991; Gurtin 1995; Maugin 1994, 1995; Cer-
melli and Fried 1997).   

Chapter 6 is organized as follows.  A general formulation of finite de-
formation elastoplasticity is presented in Section 6.1, following the formal-
ism of the internal state variable framework described in Section 4.2, and 
in the context of balance laws for classical continua given in Section 4.1.  
Most aspects of the kinematic and thermodynamic description are now 
standard in the finite deformation plasticity literature (Lee 1969; Bammann 
and Aifantis 1987; Lubliner 1990; Scheidler and Wright 2001), with the 
deformation gradient decomposed into lattice and plastic parts according to 
(3.31), = L PF F F , and the Helmholtz free energy density dependent upon 
the stretch associated with the lattice deformation LF , the temperature, and 
one or more internal state variables accounting for stored energy associ-
ated with lattice defects.  The formulation presented here differs from 
many others, however, via its consideration of thermodynamic potentials 
measured per unit volume in an unstressed intermediate configuration, as 
opposed to thermodynamic potentials measured per unit mass.  This differ-
ence turns out to be inconsequential, however, when inelastic deformation 
is isochoric, as is the case with pure slip as defined by (3.97)-(3.100) and 
demonstrated in (3.121) in the context of crystal plasticity.   

Specialization of the general formulation to discrete dislocation-based 
plasticity of Section 3.2.5 and crystal plasticity of Section 3.2.6 then fol-
low in Sections 6.2 and 6.3, respectively.  In the former, a vector measure 
of force per unit length analogous to the Peach-Koehler force (Peach and 
Koehler 1950) emerges as the conjugate force to the velocity of mobile 
line defects, i.e., glissile dislocation segments.  In the latter, the dissipative 
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part of the stress power can be decomposed into a sum of products of slip 
rates and conjugate shear stresses acting on each glide system.  Kinetic 
equations for inelastic deformation rates (i.e., dislocation velocities and 
slip rates), both thermodynamically admissible and physically motivated, 
are discussed, primarily following the scheme of Kocks et al. (1975).  A 
concise summary of general kinetic relations encountered in classical mac-
roscopic plasticity theory is then presented in Section 6.4, wherein the no-
tion of a dissipation potential first introduced in Section 4.3 proves useful.  
Reduction of the nonlinear theory of elastoplasticity to the geometrically 
linear case is given in Section 6.5.   

In the thermodynamic analysis of Section 6.1, a stress tensor similar in 
appearance to several proposed by Eshelby (Eshelby 1951, 1975) is found 
to act as a conjugate driving force to the time rate of plastic deformation.  
This stress quantity is considered in Section 6.6 from the perspective of 
material forces in continuum elasticity theory. 

Chapter 6 concludes, in Section 6.7, with an extension of elasticity of 
grade two of Section 5.7 to the context of multiplicative elastoplasticity.  
The presentation of Section 6.7 focuses on large elastic deformations from 
a stationary, but possibly anholonomic, intermediate configuration in the 
athermal case.  Dissipative processes associated with evolution of the in-
termediate configuration are not explicitly considered, nor are temperature 
effects.  Governing equations and boundary conditions are derived using a 
variational principle, following Teodosiu (1967a, b).   

The content of Chapter 6 by no means constitutes a complete treatment 
of the field of plasticity; entire texts have been devoted to sub-disciplines 
addressed in individual Sections of Chapter 6.  A few relevant general ref-
erences on plasticity theory include books of Hill (1950), Nadai (1950), 
Schmid and Boas (1950), Lubliner (1990), Khan and Huang (1995), and 
Nemat-Nasser (2004).  Texts including treatments of dislocation kinetics 
and single crystal slip include those of Friedel (1964), Nabarro (1967), 
Hirth and Lothe (1982), and Havner (1992), and the extensive article of 
Kocks, Argon, and Ashby (1975). 

6.1 Two-term Multiplicative Elastoplasticity 

Early investigations (Lee 1969; Teodosiu 1970; Kratochvil 1971) of ther-
momechanics of crystalline bodies in the context of the two-term multipli-
cative decomposition followed a scheme similar to that posited here, apart 
from the distinction that the present analysis is conducted with energetic 
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quantities measured on a per-unit-volume basis as opposed to a per-unit-
mass basis.  According to (3.31), let 

 = L PF F F , . . .
a La P
A AF F F α

α= , (6.1) 
whereby total deformation gradient F is decomposed multiplicatively into 
lattice deformation LF  and plastic deformation PF , neither of which nec-
essarily satisfies integrability conditions (3.42).  Recall from Fig. 3.4 that 
(6.1) implies the existence of a number of configurations for each material 
element: reference configuration 0B , intermediate configuration B� , and 
current or spatial configuration B.  The intermediate configuration is an-
holonomic unless conditions (3.42) are satisfied.  Terms entering decom-
position (6.1) act as mappings between tangent bundles on each configura-
tion, i.e., 0:TB TB→F , 0:TB TB→PF � , and :TB TB→LF � .  The lattice 
deformation LF  encompasses both mechanical elastic deformation and 
thermal deformation following the theory of traditional thermoelasticity 
outlined in Sections 5.1-5.4; mechanical and thermal origins of lattice de-
formation are not explicitly delineated in the kinematic description of 
Chapter 6, in contrast to the treatment of Section 5.5. 

As illustrated in Fig. 3.5 and discussed at length in Sections 3.2.2, 3.2.5, 
3.2.6, and 3.2.7, plastic deformation PF  is by definition lattice-preserving, 
meaning that PF  does not alter the arrangement of the lattice, such as dis-
tances between atoms and angles between atomic bonds; i.e., lattice pa-
rameters and bond vectors are not changed by plastic deformation.  For ex-
ample, when PF  is attributed to glide of full (as opposed to partial) 
dislocations and loops, relative tangential displacements of planes of atoms 
occur in discrete steps corresponding to scalar multiples of the Burgers 
vector.  After the crystal has been affected by PF  alone, its shape may 
have changed (e.g., steps may exist on the surface of a crystal with initially 
flat faces), but the structure of its interior is assumed to remain unchanged 
presuming no dislocations remain within its volume.  Of course, in real 
crystals, plastic deformation does not occur in isolation without some ac-
companying deformation of the lattice LF , so that consideration of PF  in 
isolation is a hypothetical exercise conducted only to lend physical inter-
pretation to (6.1).  Because of the lattice-preserving property of PF , the 
kinematic state (i.e., orientation and stretch) of the bulk lattice in interme-
diate configuration B�  appears identical to the kinematic state of the bulk 
lattice in reference configuration 0B .  Inverse lattice tangent map 

1 :TB TB− →LF �  returns the crystal from its possibly stretched and rotated 
condition to the unstressed intermediate configuration.  The thermal con-
stituent of 1−LF  corresponds to deformation of the crystal from its current 
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temperature to a reference temperature at which the contribution to stress 
from thermoelastic coupling (i.e., thermal expansion or contraction) van-
ishes.  Vice-versa, action of the lattice deformation LF  takes the crystal 
from its evolving unloaded state at a reference temperature to its current 
stressed and rotated state at the current temperature.  Thus, intermediate 
configuration B�  serves as an updated reference configuration for the in-
stantaneous thermoelastic response.  Hence, a thermodynamic analysis 
analogous to that performed for elastic bodies in Chapter 5 with reference 
configuration 0B  serving as the reference state for thermoelastic response 
is conducted in what follows in Chapter 6 for elastic-plastic bodies with 
evolving intermediate configuration B�  serving as the reference state for 
thermoelastic response.  Following the formulation of Section 5.1 of Chap-
ter 5, the elastic response addressed in Section 6.1 is treated as hyperelastic 
of grade one, with full account of geometric and material nonlinearities 
and material anisotropy appropriate to the particular crystal class under 
consideration.  Viscoelastic phenomena are not addressed.  

6.1.1 Constitutive Assumptions 

A number of variables defined with respect to intermediate configuration 
B�  are introduced: 

 1
0

P LJ Jρ ρ ρ−= =� , (6.2) 
 Ψ ρψ=� � , E eρ=� � , N ρη=� � ,       (6.3) 
 . .2 L L La Lb

abE C g F g F gαβ αβ αβ α β αβ= − = −�� � � , (6.4) 

 1 1 1
. . . .

P P AB P L L ab L
A B a bJ F F J F Fαβ α β α βΣ Σ σ− − −= =� , (6.5) 

 1
, , . , .

P A La
A aF Fα α α αθ θ θ θ−= = = ∇� , (6.6) 

 1 1
. .

P P A L L a
A aq J F Q J F qα α α− −= =� . (6.7) 

Mass density per unit intermediate volume ρ�  in (6.2) follows from (3.48), 
(3.49), and (4.10), noting that L PJ J J= .  While plastic deformation is 
usually assumed to be isochoric following arguments that dislocation glide 
is lattice-preserving and hence volume conservative (Sections 3.2.2 and 
3.2.5), for illustrative purposes the requirement 1PJ =  is not enforced in 
the present mathematical developments.  The Helmholtz free energy Ψ� , 
internal energy E� , and specific entropy N�  are defined on a per unit in-
termediate configuration volume basis in (6.3).  Definitions in (6.4) of 
symmetric covariant lattice deformation and symmetric lattice strain, both 
with indices referred to the span of cotangent spaces * *T B T B×� � , follow 
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from (3.52) and (3.65).  Relationships among contravariant lattice stress 
TB TB∈ ×Σ� � �  (symmetric automatically by (4.26), (4.27), and (6.5)), second 

Piola-Kirchhoff stress Σ  of (4.7), and Cauchy stress σ  of (4.3) and (4.6) 
are analogous to those between the latter two in Table 4.1, but with coor-
dinate transformations conducted here only with respect to either plastic or 
lattice parts of the total deformation gradient F.  The intermediate tempera-
ture gradient in (6.6) follows from the definition of the anholonomic par-
tial derivative given in (3.36).  The covariant derivative in intermediate 
coordinates in the last of (6.6) is valid only for a scalar function.  In con-
trast, the covariant derivative of a vector or tensor will depend on the par-
ticular definition used for the anholonomic covariant derivative (e.g., see 
later (6.38)) and may depend on the choice of coordinate basis αg�  and co-
efficients ..α

βχΓ�  introduced for configuration B� .  These coefficients could 
be defined as anholonomic transformations from reference or spatial 
Christoffel symbols, using (3.38) or (3.39), respectively.  However, in 
practice, following discussion in Section 3.2.3 and (3.51), an external Car-
tesian coordinate frame is usually assigned to B� , leading to gαβ αβδ=�  in 

(6.4) and .. 0α
βχΓ =� .  In the first of (6.7), the heat flux vector Q transforms 

from reference to intermediate configuration in a similar manner as in 
(4.36), and the second of (6.7) then follows automatically from the first of 
(6.7) and (6.1).   

Under rigid body motions of the spatial frame of the form ˆ→ +x Qx c , 
where ˆ ˆ T−=Q Q  is a rotation matrix and c is a translation vector independ-
ent of position, the following transformation laws are assumed to hold, 
with intermediate and reference configurations held fixed (Bammann and 
Johnson 1987): 

 ˆ→F QF , ˆ→L LF QF , →P PF F , (6.8) 
and since ˆdet 1=Q , it follows that scalars L LJ J→  and P PJ J→ .  Fol-
lowing from (6.8), variables defined with respect to the intermediate con-
figuration in (6.2)-(6.7) all remain invariant under such rigid rotation and 
translation.  Invariance of scalar quantities in (6.2) and (6.3) follows trivi-
ally from conservation of mass (i.e., invariance of the reference mass den-
sity 0ρ ) and invariance of PJ .  Invariance of LC�  and LE�  follows from di-
rect calculation using the second of (6.8).  Invariance of Σ� , θ∇� , and q�  
follow, respectively, from invariance of reference quantities Σ , , Aθ , and Q 
entering (6.5)-(6.7) (see (4.50)-(4.51)) and from invariance of PF  in the 
last of (6.8).  
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Objective forms of constitutive assumptions (4.45)-(4.49) are specified 
as follows for elastic-plastic solids: 

    ( ), , , , ,X αΨ Ψ α θ θ= ∇LE g� � � � � , ( ), , , , ,LE Xαβ α αΨ Ψ α θ θ= ∇ g� � � � � ; (6.9) 

    ( ), , , , ,N N X αα θ θ= ∇LE g� � � � � , ( ), , , , ,LN N E Xαβ α αα θ θ= ∇ g� � � � � ; (6.10) 

  ( ), , , , ,X αα θ θ= ∇LΣ Σ E g� � � � � , ( ), , , , ,LE Xαβ αβ
αβ α αΣ Σ α θ θ= ∇ g� �� � � ; (6.11) 

    ( ), , , , ,X αα θ θ= ∇Lq q E g� �� � � , ( ), , , , ,Lq q E Xα α
αβ α αα θ θ= ∇ g� � �� � ; (6.12) 

      ( ), , , , ,X αα α α θ θ= ∇LE g� �� � � , ( ), , , , ,LE Xαβ α αα α α θ θ= ∇ g� �� � � ; (6.13) 

where ( , )X tα  denotes a scalar internal state variable of the sort discussed 
in Section 4.2.1, accounting for changes in the thermodynamic potentials 
or response functions of the crystalline solid attributed to sources other 
than changes in the lattice strain, temperature, and temperature gradient.  
For simplicity of presentation, only a single scalar internal state variable is 
considered here, though multiple internal state variables, including scalars 
and/or vector- or tensor-valued internal variables of higher order, can be 
included without conceptual difficulty, as demonstrated by example later 
in Chapters 8 and 9.  Constitutive assumptions (6.9)-(6.12) are analogous 
to those of thermoelasticity theory in (5.15)-(5.18).  Dependence of re-
sponse functions on lattice strain accounts for changes in energy and stress 
associated with stretching of atomic bonds, for example.  The same argu-
ments given in Section 5.1.1 apply here (and in subsequent Chapters 8, 9, 
and 10) with regards to possible inner displacements that may implicitly 
affect strain energy in polyatomic crystals: such inner displacements are 
presumed obtainable (e.g., via energy minimization) when other state vari-
ables are prescribed, and hence are not independent state variables (though 
conceivably, inner displacements could be addressed via internal state 
variables (Garikipati 2003)).  Dependence of response functions on tem-
perature and temperature gradient follows the same arguments given in 
Section 5.1.1.  Dependence of response functions on reference position X 
of a material particle accounts for heterogeneity (e.g., variations in mate-
rial properties with position), while dependence on intermediate basis vec-
tors αg�  is written out explicitly to account for elastic anisotropy that exists 
in almost all single crystals, following the notational schemes of Chapter 5 
and Eringen (1962).   Though not explicitly listed in (6.9)-(6.13), an addi-
tional relationship is usually required to dictate evolution of plastic defor-
mation PF , e.g., a kinetic equation for dislocation velocity, slip system 
shearing, or deviatoric plastic flow, as discussed in more detail in Sections 
6.2, 6.3, and 6.4.  
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Notice that no dependence of free energy, entropy, stress, or other re-
sponse functions upon plastic deformation is prescribed explicitly, i.e., the 
mapping ( , )X tPF  is not included in the list of independent variables en-
tering (6.9)-(6.13).  Recall from Chapter 3 that plastic deformation PF  
represents the shape change of an element of the crystal that has undergone 
plastic slip.  Because PF  is lattice-preserving, energetic or stress changes 
directly associated with changes in atomic arrangement (e.g., bond stretch-
ing, bond angle changes, and lattice vibrations) by definition are not re-
flected by PF .  Defects such as pinned dislocations may naturally be asso-
ciated with residual strain energy of the solid and may accumulate with 
plastic deformation; in such cases, the corresponding change in the local 
thermodynamic state of the solid is reflected by a change in the local value 
of internal variable α .  For example, consider a ductile crystalline sample 
that is deformed plastically by PF , and then returned via 1−PF  to its origi-
nal shape.  After this cyclic deformation process, the material may have 
accumulated defects and stored energy (e.g., energy of cold working), but 
will exhibit null net plastic strain, i.e., =PF 1  at the conclusion of the ex-
periment.  In this case, the (null) change in plastic deformation is unable to 
indicate energetic changes in the crystal, and hence an internal state vari-
able is needed to reflect such changes associated with null net, but nonzero 
cumulative, plastic strain.  In ductile metallic crystals, a typical physically 
motivated choice of internal variable is the line length per unit volume of 
dislocations, either scalar or tensor in rank (Kroner 1963a; Teodosiu 
1970), though a complete set of internal state variables should logically 
also include other relevant anomalies in the crystal structure that affect the 
thermodynamic response functions (Kratochvil 1971, 1972), e.g., densities 
of point defects, grain and sub-grain boundaries, deformation twins, inclu-
sions, voids, micro-cracks, and so forth. 

6.1.2 Thermodynamics 

According to (4.71), the entropy production inequality can be written as 
 1

0 ,( ) 0AB A
AB AE QΣ ρ ψ ηθ θ θ−− + − ≥�� � . (6.14) 

The stress power per unit reference volume can be written  

 
. 1 . 1

. . . . . .

.
.

( )( )

             ,

AB b a P L L b La L e Ld
AB a b b a e d

P

E J L J J F F F L F

J M L

β α
α β

β α
α β

Σ σ σ− −= =

=

�

� �  (6.15) 
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where quantity M� , often called the Mandel stress (Mandel 1974), and the 
velocity gradient pulled back to intermediate configuration B�  are defined, 
respectively, by  

 . . 1
. .

L La b L L
a bM J F F Cβ β δβ

α α αδσ Σ−= = �� � , 1
. . . .

L a Lb
a bL F L Fα α

β β
−=� , (6.16) 

where (6.4) and (6.5) have been used.  Notice that LCαδ
�  acts as a natural in-

termediate metric (see Section 3.2.3) for lowering the index of the lattice 
stress δβΣ�  in the definition of the Mandel stress.  The quantity .M gβ αχ

χ
� �  is 

generally not symmetric in contravariant indices.  The total velocity gradi-
ent of (3.58) is  

 1 1 1 1− − − −= ∇ = = +
g

L L L P P LL v FF F F F F F F� � � , (6.17) 
leading to 

 1 1− −= +L L P PL F F F F� � � . (6.18) 
The material time derivative of the free energy per unit intermediate vol-
ume is, from (6.2) and (6.3), 

 
1 2

0 0

1
. . . .

( )

   ( ) ,

P P P

P P A P P
A

d J J J
dt

F F L Dα α α
α α α

Ψ ρψ ρψ ρψ ρ ψ ρ ψ

ρ ψ ψ ρψ Ψ ρψ Ψ

− −

−

= = + = −

= − = − = −

� �� �� � � � �

� � �� � � � � �
 (6.19) 

via a relation akin to (2.181)1.  Substituting (6.2), (6.3), (6.6), (6.7), (6.15), 
(6.18), and (6.19) into (6.14) and multiplying by 1PJ −  gives the local en-
tropy production inequality referred to intermediate configuration B� : 

 . 1
. . . , 0PM L L N qβ α α β α

α β β α αΨ δ Ψ θ θ θ−− − − − ≥� �� � � � � � , (6.20) 

where 1−=P P PL F F�  is the plastic velocity gradient introduced in (3.58).  
Using (6.16) and (6.18), 

    

. . 1 .
. . . .

1 1 . .
. . .

1 . .
. .

            ( )( )

            ,       

L La P
a

L a L L Lb P
a b
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M L M F F M L

F F M F F M L
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δ α β β α
α δ β α β

δα βχ β α βδ β α
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−

− −

−

= +

= +

= + = +
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� � �

� �� � � � � �� �

 (6.21) 

where ( ) / 0g d dtαβ α β= =g g� � �� i  has been assumed.  From (6.9) with 0α =g�� ,   

 
,

L
L E

E αβ α
ααβ

Ψ Ψ Ψ ΨΨ θ γ α
θ θ α

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂∂

� � � �� � �� � � �� , (6.22) 

where the intermediate rate of temperature gradient satisfies 

                                                      
1 From (2.225), 1

. . . . .
.

(ln ) 1P P P
P P A P P P
A AP P P

A

d J J J F F F L D
dt J J F

α α α α
α α αα

−∂
= = = = =

∂

� � � . 
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1

, , . 1
, , . . , , .

( )
.

P A
A P P A P

A

d d F
F F L

dt dt
α α β β

α α β α α β α

θ θ
γ θ θ θ θ

−
−= = = + = −� ���  (6.23) 

Using (6.21) and (6.22) in (6.20), the local dissipation inequality becomes 

         

( )
,

. 1
. . ,         + 0.

L
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E N
E

M L q
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αβ α

ααβ

β β α α
α α β α

Ψ Ψ ΨΣ θ γ
θ θ

ΨΨδ α θ θ
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⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂∂ ⎝ ⎠⎝ ⎠

∂
− − − ≥

∂

� � �� �� �� ��

�� � � �

 (6.24) 

Extending the logic of Section 5.1.2, coefficients of rates LE�� , θ� , and γ�  
should vanish identically to ensure thermodynamic admissibility, presum-
ing such rates can be prescribed independently of each other and their co-
efficients in a thermodynamic process.  Constitutive relations 

 TΨ∂
= =
∂ LΣ Σ
E

�� �
� , N Ψ

θ
∂

= −
∂

�� , 0
( )
Ψ
θ

∂
=

∂ ∇

�
�  (6.25) 

are then deduced immediately from (6.24).  Hence, it follows that free en-
ergy, entropy, and stress do not depend explicitly on temperature gradient: 

 
( ) ( )
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                       , , , , .

X N N X

X

α α

α

Ψ Ψ α θ α θ

α θ

= =

=

L L

L

E g E g

Σ Σ E g

� � � � � �� �

� � � �
 (6.26) 

Cauchy stress and specific entropy per unit mass are found, respectively, 
from (6.5) and (6.3): 

 1 1
. . . .

ab L La Lb L Lb La ba
L LJ F F J F F

E Eα β β α
αβ βα

Ψ Ψσ σ− −∂ ∂
= = =

∂ ∂

� �
� � , 1 Ψη

ρ θ
∂

= −
∂

�
�

. (6.27) 

Since L LE Eαβ βα=� �  identically by definition (6.4), αβ βαΣ Σ=� �  as in (6.25), 

and ab baσ σ=  as indicated in (6.27).  Thus the Cauchy stress is consis-
tently symmetric, and angular momentum balance (4.26) holds identically.  
Using the chain rule and the functional dependency .( , )L L La

abC C F gαβ αβ α=� � , 

 . .2 2
L

La Lb
LL

ab ab

C
F F

g g EC
αβ

α β
αβαβ

Ψ Ψ Ψ∂∂ ∂ ∂
= =

∂ ∂ ∂∂

�� � �
� � , (6.28) 

a relationship similar to Doyle-Ericksen formula (5.36) of nonlinear hy-
perelasticity emerges: 
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 (6.29) 

where (2.142)-(2.144), (3.48), (4.8), (4.9), and (6.3) have been used.  A 
particular version of (6.29) with det( ) constantabg g= =  was derived by 
Clayton et al. (2004b).   

A number of other relations for stresses can be derived using the chain 
rule in a similar manner2.  Table 4.1 provides some requisite identities.  

                                                      
2 Because 1−=L PF FF , 1

0( , , , , ) ( ( , , ), , , , )PX J Xα αΨ α θ Ψ α θ−=L L PE g F F F g g� � � � .  
Holding ( , , , , )abX g αα θ g�  fixed, first Piola-Kirchhoff and Mandel stresses satisfy  
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Dissipation associated with conduction can be made non-negative upon 
assuming a Fourier-type conduction law analogous to (5.48), but couched 
here in the intermediate configuration: 

 θ= − ∇q K� �� , , , . , .
Lb P B

b Bq K K F K Fα αβ αβ αβ
β β βθ θ θ= − = − = −� � �� , (6.30) 

with K�  a symmetric positive semi-definite matrix of thermal conductivity 
that, like K of (5.48), may generally depend on temperature and other state 
variables: 

 1 1, , 0θ θ θ θ θ− −− ∇ = ∇ ∇ ≥q K� � � �� . (6.31) 

The dissipation inequality consists of the remaining terms in (6.24): 

 1 , 0Ψ α θ θ θ
α

−∂
− + ∇ ∇ ≥
∂

PΠ : L K
�� � � �� , (6.32) 

where  
 Ψ= −Π M 1� � � , . . .Mβ β β

α α αΠ Ψδ= −� �� . (6.33) 
Stress measure Π� , as discussed in detail in Section 6.6, is closely re-

lated to a quantity introduced by Eshelby (1951, 1975) whose divergence 
represents a kind of force on arbitrary heterogeneities in elastic solids3.  
The quantity .

.
P PW Lβ α

α βΠ= =PΠ : L� � �  is often referred to as the plastic dis-
sipation or the rate of plastic work.  When the material is plastically in-
compressible—which is always true for lattice-preserving plastic deforma-
tion manifesting only from dislocation glide—conditions 1PJ =  and 
tr( ) 0=PL  hold and the plastic dissipation reduces to PW = PM : L� � .   Vari-
ants of stress Π�  have been used by a number of authors as a conjugate 
thermodynamic force to plastic velocity gradient PL  (Maugin 1994; Le 
and Stumpf 1996b, c; Clayton et al. 2004b, 2006; Clayton 2009a).  Use of 
Mandel stress M�  in a similar capacity is also widespread (Moran et al. 
1990; Maugin and Epstein 1998; Regueiro et al. 2002).  Since Σ�  is sym-
metric, from (6.16),  
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. .      ,
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Σ Σ Ψ −
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�� � � �� �
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 (6.34) 

where plastic spin [ ]
P PW Wαβ αβ=  and plastic deformation rate ( )

P PD Dαβ αβ=  re-

ferred to the intermediate configuration are introduced in (3.62) and (3.63).  
                                                      

3 Precisely, Π�  is a negative push-forward to configuration B�  of one of several 
so-called energy-momentum tensors introduced by Eshelby (1975).  The sign con-
vention used in (6.33) enables both the stress and plastic velocity gradient to share 
the same (positive) algebraic sign in (6.32) and follows the convention of Epstein 
and Maugin (1990) and Clayton et al. (2004b, 2006). 
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As is evident from (6.34), only the symmetric part of L PC L�  contributes to 
PW� , but both plastic deformation rate PD  and plastic spin PW  can con-

tribute to PW� .  In particular, L PC W�  is not generally anti-symmetric. 
Inequality (6.32) indicates that, in the absence of heat conduction, plas-

tic dissipation should exceed the rate of increase in free energy associated 
with time rate(s) of internal state variable(s).  In crystalline solids such as 
metals and ceramics, free energy changes attributed to internal state vari-
ables are often associated with changes in cumulative defect densities, e.g., 
energetic changes associated with local residual stresses in the vicinity of 
dislocation lines and internal boundaries such as grain, sub-grain, and twin 
boundaries (Kocks et al. 1975). 

The specific heat at constant elastic strain and constant internal variable 
α , measured as energy per degree per unit intermediate volume, is intro-
duced as 
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� � , (6.35) 

where (6.3) and (6.25) have been used.  Multiplying (4.39) by 1PJ − , the 
energy balance in configuration B�  is 
  1 1 . 1
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Substituting from the second of (6.25) leads to 

        
.

. .  ,L P
L

E N N

E N M L L E q r
E

β α α α
αβ α β α α

αβ

Ψ θ θ

Ψ Ψ α θ ρ
α

= + +

∂ ∂
= + + = − −∇ +

∂∂

� � ��� � � �
� � �� �� � � � � �� ���

 (6.37) 

where, for the heat conduction term, the anholonomic covariant derivative 
is defined by (Clayton 2009a) 

 1 1 1
: . . :( . ) ( . ) ( . )( )P A P P P A
A AF J J Fα α α

− − −∇ = +
�

, (6.38) 
such that 
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 (6.39) 

The term 1
. :( ) 0P P A

AJ F α
− =  by Piola’s identity akin to (2.146) in general 

only when the plastic deformation gradient satisfies compatibility condi-
tions [ ]. : 0P

A BF α = .  Rearranging (6.37) for the rate of entropy production 

and using (6.25), 
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 (6.40) 

Analogously to (5.50), 
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with stress-temperature coefficients referred to intermediate configuration  
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α

Ψ
θ
∂

= −
∂ ∂ Lβ

E

��
� . (6.42) 

Equating (6.40) and (6.41) and using (6.30), the temperature rate becomes 
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 (6.43) 

The first term on the right side of (6.43) represents the effect of the plastic 
velocity gradient on the rate of temperature increase.  It can be written 

        

.
. . . .

                                    .
ln

P L P P

P
P P P

P P

L C L L

JW J W
J J

β β α βδ α α
α α β αδ β α

Ψ ΨΠ δ θ Σ Ψ θ
θ θ

θ Ψ Ψ
θ θ

⎛ ⎞ ⎛ ⎞∂ ∂
+ = − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂
= + = +

∂ ∂

� �� �� �

� � �� � �
 (6.44) 

From the symmetry of Σ� , again only the symmetric part of the covariant 
product L PC L�  contributes to plastic dissipation PW�  and hence the tem-
perature change.  From (6.32)-(6.34) and (6.43), when plastic deformation 
is not isochoric, the absolute value of free energy Ψ�  enters the entropy 
inequality and energy balance.  Thus, the zero datum used to define free 
energy and other thermodynamic potentials is not inconsequential; e.g., the 
free energy in this case is not arbitrary to within an additive constant.  

Notice that when the plastic deformation is isochoric, 0PJ =�  and the 
temperature rate equation becomes 
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2

,( ) .P LC W E K rαβ αβ
αβ α β

Ψ Ψθ θ α θβ θ ρ
α θ α

⎛ ⎞∂ ∂
= − − − +∇ +⎜ ⎟∂ ∂ ∂⎝ ⎠

� � ��� � �� � �� �  (6.45) 

The first term on the right of (6.45), i.e., the rate of plastic work, accounts 
for dissipation from moving dislocations such as that resulting from lattice 
friction.  The second term on the right of (6.45) represents energetic 
changes attributed to the rate of change of the internal state variable, for 
example residual elastic energy accumulation with increases in defect den-
sity.  The third term represents effects of thermoelastic coupling.  The final 
two terms on the right of (6.45) account for heat conduction (i.e., tempera-
ture gradients) and non-mechanical heat sources such as a radiation field, 
respectively. 

Energy balance (6.45) is often written as follows for ductile crystalline 
metals: 

 ,( )P LC W E K rαβ αβ
αβ α βθ β θβ θ ρ′= − +∇ +

��� � �� � � � , (6.46) 
where  

 
2

P PW W Ψ Ψβ θ α
α θ α

⎛ ⎞∂ ∂′ = − −⎜ ⎟∂ ∂ ∂⎝ ⎠

� �� � � . (6.47) 

Scalar β ′  is often called the Taylor-Quinney parameter. The product 
(1 ) PWβ ′− �  measures the rate of energy accumulation in the solid associ-
ated with irreversible changes in its internal structure, for example stored 
energy of cold working.  Following measurements of β ′  on several engi-
neering metals subjected to large deformations (Farren and Taylor 1925; 
Taylor and Quinney 1934; Havner 1992), analysts often assume a constant 
value of β ′  in the range  0.8 1.0β ′≤ ≤  (Bammann et al. 1993; Zhou et al. 
1994), though more recent experiments (Rosakis et al. 2000) indicate that 
for some metallic materials β ′  may fall outside this range and may change 
significantly with history of plastic deformation.  When 2 /( ) 0Ψ θ α∂ ∂ ∂ =� , 
(6.32) requires 0β ′ ≥  in the absence of heat conduction, i.e., for an adia-
batic process.  However, if the energetic change associated with the rate of 
an internal state variable is dissipative, for example if condition 

/ 0Ψ α∂ ∂ <�  holds over some regime in which 0α >� , thermodynamic ad-
missibility does not preclude 1β ′ > . 
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6.1.3 Representative Free Energy 

A specific form of the Helmholtz free energy potential of (6.9) and (6.26) 
for finite elastoplasticity is now considered.  For describing crystalline ma-
terials in structural applications, the free energy density is often decom-
posed additively into a thermoelastic part EΨ�  associated with reversible 
deformations and temperature changes and a residual part RΨ�  associated 
with the internal state variable: 

    ( ) ( ), , , , , ,E RX Xα αΨ Ψ θ Ψ α θ= +LE g g� � � �� � . (6.48) 

The additive decoupling of reversible thermoelastic and residual free ener-
gies as depicted in (6.48) is common (Bammann 2001; Regueiro et al. 
2002; McDowell 2005), though may not always be a physically realistic 
assumption if free energies associated with the internal state variable (i.e., 
defect energies) are amplified by external stress fields (Gibeling and Nix 
1980; Clayton et al. 2004a; Chung and Clayton 2007), or if elastic moduli 
are strongly affected by the evolving defect density represented by the in-
ternal state variable (Smith 1953; Clayton and Chung 2006).  A more gen-
eral formulation for elastic-plastic crystals with residual elastic strains and 
residual stresses, posited in Section 9.4.6 of Chapter 9, addresses these is-
sues.  Furthermore, as demonstrated in Section 9.2 of Chapter 9, when de-
fects such as interstitials, vacancies, pores, voids, or micro-cracks affect 
the instantaneous thermoelestic response, internal variables associated with 
defects should reflect elastic stiffness variations, and hence cannot be de-
coupled from the lattice strain in the free energy (Mackenzie 1950; Dienes 
1952; Grinfeld and Wright 2004; Clayton 2008; Clayton et al. 2008a).   

The thermoelastic part of the free energy, EΨ� , is often defined in a 
similar manner to the corresponding potential 0Ψ  in classical thermoelas-
ticity of Sections 5.1.3 and 5.1.4, but with quantities defined in the inter-
mediate as opposed to the reference configuration, with total strain E re-
placed by lattice strain LE� , and with second Piola-Kirchhoff stress Σ  
replaced by symmetric lattice stress Σ� .  For example, consider a series ex-
pansion of the thermoelastic part free energy density of up to third order in 
lattice strains (Havner 1973) about a possibly evolving intermediate 
state—a state that serves as an updated reference configuration for the 
thermoelastic response—but otherwise analogous to materially linear 
thermoelasticity of (5.84):  
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The state about which (6.49) is expanded is characterized by conditions 

. .
La aF gα α= , LC gαβ αβ=� � , 0LEαβ =� , and 0 0θ θ= > .  Temperature change 

from this reference state 0θ θ θ∆ = −  can be positive, zero, or negative.  
Material constants referred to configuration B�  are defined at a material 
point X with stationary basis ( )Xαg�  by 

 

0

2 E

L LE E
αβχδ

αβ χδ
θ θ

Ψ

=
=

∂
=
∂ ∂ LE 0�

��̂
� � , 

0

3 E

L L LE E E
αβχδεφ

αβ χδ εφ
θ θ

Ψ

=
=

∂
=
∂ ∂ ∂ LE 0�

��̂
� � � ,     (6.50) 

 

0

2 E

LE
αβ

αβ
θ θ

Ψβ
θ =

=

∂
= −

∂ ∂ LE 0�

��
� , 

0

2

2
0

E

C
θ θ

Ψθ
θ =

=

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠ LE�

�� . (6.51) 

In (6.51), the thermal stress coefficients and specific heat are constant ver-
sions of quantities first introduced in (6.42) and (6.35), respectively.  Iso-
thermal second- and third-order elastic constants are introduced in (6.50), 
the latter important in structural or shock physics applications wherein 
confining pressures and elastic strains can be large, especially in certain 
kinds of crystals (e.g., those with covalent and ionic bonding such as ce-
ramics) wherein resistance to dislocation-mediated plastic slip can be high.   

Material coefficients in (6.50) and (6.51) are related to those of (5.66) 
and (5.85) at the same material point X as follows: 
 1

. . . .
P ABCD

A B C DJ g g g gαβχδ α β χ δ−=�̂ ^ , (6.52) 
 1

. . . . . .
P ABCDEF

A B C D E FJ g g g g g gαβχδεφ α β χ δ ε φ−=�̂ ^ , (6.53) 
 1

. .
P AB

A BJ g gαβ α ββ β−=� , (6.54) 

 1 1
0 0

P PC c J c J Cρ ρ− −= = =� � . (6.55) 
Since 0α =g��  and 0A =G�  (e.g., see discussion in Section 2.5.1), the shifter 

. ,A Agα α= g G�  at X does not depend on time.  When plastic deformation is 

isochoric ( 1PJ = ) and when coincident coordinate systems are used in 
reference and intermediate configurations so that . .A Agα αδ= , numerical val-
ues of material coefficients on left and right sides of each of (6.52)-(6.55) 
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are equal4.  Hence, all considerations regarding symmetry of reference ma-
terial coefficients discussed in Section 5.1.5 and Appendix A apply for in-
termediate elasticity tensors in (6.52) and (6.53) and thermal stress coeffi-
cients in (6.54).  To convert symmetry relations in Section 5.1.5 and 
Appendix A to the present context, reference indices in capital Roman font 
are merely replaced with intermediate indices in Greek font.  The thermo-
static formalism of Section 5.2 can be applied as well, wherein partial de-
rivatives are taken with respect to lattice strains as opposed to total strains.  
This enables definitions of isentropic material coefficients, Gruneisen pa-
rameters, and Maxwell relations among thermostatic variables.  Details of 
such an approach are given by Scheidler and Wright (2001) and Wright 
(2002).  Like the elastic constants, thermal stress coefficients and specific 
heat in (6.51) are assumed constant and not dependent upon internal vari-
ables representing defect densities, for example.  This assumption is stan-
dard in plasticity theories, but may not always be physically appropriate 
since dislocations can affect the specific heat capacity (Gottstein 1973).     

Stress-strain-temperature relations following from (6.25) and (6.49) ex-
hibit the form 

 1
2

L L LE E Eαβ αβχδ αβχδεφ αβ
χδ χδ εφΣ β θ= + − ∆� � �� � �� ^ ^ . (6.56) 

Consider a stress-free thermal strain of the form LEαβ αβα θ= ∆� � , where αβα�  
may generally depend on the thermodynamic state.  Setting the left side of 
(6.56) to zero gives, analogously to (5.161), 

 ( )
00

/ 2αβ αβχδ αβχδεφ αβχδ
χδ χδ εφ χδ θθ

β α α α θ α= + ∆ =� � � �� � � �^ ^ ^ , (6.57) 

with  αβα�  a symmetric rank two tensor of thermal expansion coefficients. 
For the case of thermoelastic isotropy, second-order thermoelastic con-

stants become 
        ( )g g g g g gαβχδ αχ βδ αδ χβ αβ χδµ λ= + +� � � � � � �^ , gαβ αββ β=� � � , (6.58) 

with µ  the shear modulus, λ  Lamé’s constant, and β�  a  thermal stress 
constant, identical to those entering (5.124) when 1PJ = .  Stress-strain-
temperature relations for thermoelastically isotropic solids are, when third-
order elastic constants are omitted, 
                                                      

4 When ( , ) 0PJ X t ≠� , then coefficients on both sides of (6.52)-(6.55) cannot all 
be constant.  If the left sides are taken as constant in time, then the elastic coeffi-
cients and specific heat per unit reference volume on the right sides increase with 
increases in plastic volume change.  This issue is taken up again in Chapter 8 
wherein residual volume changes are incorporated explicitly in the constitutive 
model framework.   
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 .2 ( )L LE E gαβ αβ χ αβ
χΣ µ λ β θ= + − ∆�� �� � . (6.59) 

The form of the residual free energy RΨ�  introduced in (6.48) depends 
upon the specific choice of internal state variable, and is thus material-
specific.  A quadratic function akin to the first term in the thermoelastic 
potential EΨ�  is simple and logical in many instances: 

 21
2

RΨ κα=� � , (6.60) 

where material coefficient κ�  may generally depend on temperature, refer-
ence position, and orientation of the material element: 
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∂
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�
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Relations (6.32) and (6.60) yield a thermodynamic force linear in the in-
ternal state variable conjugate to the time rate of the internal state variable, 
i.e., /Ψ α κα−∂ ∂ = −� � .  When 0κ >� , residual free energy (6.60) is a con-
vex function of internal state variable α .  However, for a material whose 
total free energy consists of contributions from multiple sources—e.g., lat-
tice strains, temperature, and one or more internal state variables represent-
ing irreversible lattice rearrangements—the global free energy may not be 
convex with regards to distributions of field variables (Carstensen et al. 
2002; Clayton et al. 2006).  In such cases, even when a crystal with uni-
form initial properties is subjected to affine far-field boundary conditions, 
heterogeneous distributions of field variables such as localized deforma-
tion gradients can emerge as the thermodynamic state of the deforming 
crystal evolves towards a condition of minimum global energy (Ball and 
James 1987; Bhattacharya 1991; Ortiz and Repetto 1999).  Formation of 
heterogeneous deformation patterns is expected in anisotropic crystals that 
favor single slip as a result of strong latent hardening (Conti and Ortiz 
2005), i.e., strong hardening on slip systems that are non-coplanar with an 
active system (see Section 6.3 and (6.110)). 

The theoretical description of material behavior is completed via pre-
scription of kinetic laws for evolution of inelastic deformation, i.e., PF� , 
and rate of internal state variable, i.e., α� .  Ideally, such kinetic relations 
should be formulated in such a way that (6.32) is satisfied unequivocally.  
Such kinetic equations, along with physically descriptive choices of inter-
nal state variables, are described in Sections 6.2, 6.3, and 6.4 in the context 
of discrete dislocation plasticity, crystal plasticity, and macroscopic plas-
ticity, respectively. 
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6.2 Dislocation Plasticity 

Consider a kinematic description further refined to account for motion of 
discrete dislocation lines as developed in Section 3.2.5.  Plastic velocity 
gradient PL  can in this case be expressed by combining (3.98) and the last 
of (3.99): 

 1
. . .
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L F F b vα α αχδ α χ δ
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Summation proceeds over 1,2,...i j=  populations of dislocations with the 
same tangent line, Burgers vector, and velocity for each value of i; nomen-
clature entering (6.62) is explained more thoroughly in Section 3.2.5.  The 
plastic dissipation per unit intermediate volume, PW = PΠ : L� �  of (6.34), is  
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 (6.63) 

where since the Burgers vector and normal to the glide plane are always 
orthogonal, 0i i ib vβ χ δ

βχδε ξ =� � � .  The thermodynamic force, with dimensions 
of force per unit length, acting on dislocation population i is 

    i i i= − ×f ξ Sb�� � ,       (6.64) 
where the two-point nominal lattice stress 1 .

. .
L L b

a b aS J Fβ βσ−=� .  Force if�  
conjugate to dislocation line velocity iv�  is similar in nature to the force 
acting on a single dislocation line by an external, as opposed to self-
induced, stress field in a linear elastic body: 

 i i i= − ×PKf ξ σb , (6.65) 
The vector i

PKf  is known as the Peach-Koehler force (Peach and Koehler 
1950; Mura 1968; Zorski 1981; Bammann and Aifantis 1982) acting on 
dislocation type i with unit tangent iξ  and Burgers vector ib .  The Peach-
Koehler force is the force conjugate entering the expression for the nega-
tive energy gradient /W s−∂ ∂  attributed to rigidly translating the disloca-
tion line along trajectory ds d=λ s  (Peach and Koehler 1950): 
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W b d b dL f dL
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σ ε λ ξ ε ξ σ λ λ∂
− = − = − =
∂ ∫ ∫ ∫ , (6.66) 

where d dL=ξ ξ  is a segment of the dislocation line.  In the limit of small 
elastic deformations, .

. .
b

a b aS gβ βσ≈� , .
i ia

agχ χξ ξ≈� , and .( ) ( )i a i
PK af g fα α≈� . 

In physical descriptions of dislocation kinetics, use of Orowan’s (1940) 
relation in (3.100) is often preferred over (6.62): 
  .

P i i i i i

i
L b v s mα α

β βρ=∑ �� � � � , (6.67) 

where for each slip system i, the magnitude of Burgers vector, direction of 
atomic motion, dislocation line velocity, and normal to the glide plane, are 
respectively 

 | |i ib = b� � , /i i ib=s b ��� , | |i iv = v� � , /i i i iv= ×m ξ v�� � � . (6.68) 
Using (6.67) in (6.34), the rate of plastic work per intermediate volume is 
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 (6.69) 

where the resolved shear stress (more precisely, a resolved lattice 
Kirchhoff stress) is 

 ( )
i L i ab i L i ba i L ab i i

a b a b a bJ s m J s m J s mτ σ σ σ= = =� , (6.70) 

the latter two relations following from the symmetry of the Cauchy stress. 
The kinetic relationship between the velocity of a dislocation iv�  and its 

driving stress iτ�  depends upon the thermodynamic state of the crystal, as 
represented here by lattice strain, temperature, and internal state variable 
α  reflecting contributions from internal structure such as defects or obsta-
cles to dislocation motion.  In the remainder of Section 6.2, index i is often 
dropped, with a focus on kinetic relations for the velocity magnitude v�  of 
a representative dislocation or set of dislocations on that system subjected 
to shear stress magnitude τ� .  Both v�  and τ�  are assumed to exhibit the 
same (positive) algebraic sign in this context.   

Though supersonic dislocation motion has been posited (Hirth and 
Lothe 1982) and may be sustainable if a dislocation is nucleated super-
sonically at a stress concentration in a crystal subjected to very high ap-
plied shear stress (Gumbsch and Gao 1999), conventionally the dislocation 
velocity is assumed to be bounded from above by the speed of transverse 
elastic waves in the crystal (Eshelby 1949a; Johnston and Gilman 1959).  
In anisotropic crystals, elastic plane waves can propagate in a given direc-
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tion in three distinct, mutually orthogonal modes when no degeneracy oc-
curs (Brugger 1965); these modes are in general neither longitudinal nor 
transverse.  Special directions exist in crystals allowing for propagation of 
one longitudinal and two transverse modes.  These directions, and speeds 
of propagation of plane waves, depend upon second-order elastic constants 
in initially unstressed crystals, as listed by Brugger (1965).  In the isotropic 
approximation, the elastic shear wave speed Sc  is 

 0/Sc µ ρ= , (6.71) 
with µ  the isentropic shear modulus and 0ρ  the reference mass density.  
The maximum sustainable shear stress is the theoretical strength Tτ  of the 
crystal of Section C.4.1 (Frenkel 1926); when subjected to stresses of this 
magnitude, all atomic bonds spanning two crystallographic planes under-
going relative shear are broken simultaneously.  In an isotropic linear elas-
tic body, the theoretical strength is approximated by (C.209) as /10Tτ µ≈ .  
Thus, upper bounds on dislocation velocity and resolved shear stress are 

 0/Sv c µ ρ≤ =� , /10Tτ τ µ≤ ≈� . (6.72) 
Denote the resistance to motion of dislocation population i by the shear 
stress  

 ( )ˆ ˆ , , , ,i i X ατ τ α θ= LE g� � , (6.73) 

with ˆ 0τ ≥  denoting a characteristic magnitude of dislocation line resis-
tance to motion, sometimes called a mechanical threshold stress.  

Steady state dislocation glide can be achieved when the resolved shear 
stress τ�  greatly exceeds threshold stress τ̂ , but when the dislocation ve-
locity remains appreciably lower than Sc .  In this case, the following ki-
netic relation applies (Kocks et al. 1975): 

 ˆ( )b vτ τ Β− =�� � , (6.74) 
where Β  is the drag coefficient that depends on lattice friction (e.g., the 
Peierls mechanism of Section C.4.3), phonon drag, and at very low tem-
peratures, electron drag (Kocks et al. 1975).  Kocks et al. (1975) define an 
atomic frequency 

 /A Sc bω = � , (6.75) 
and the drag coefficient as 

 0B B B

0 0 0

k k k

A S

b b
c

ρθ θ θΒ
ω µ

= = =
Ω Ω Ω

� �
, (6.76) 

where Bk  is Boltzmann’s constant and 0Ω  is the atomic volume intro-
duced in Section 3.1.1.  The drag coefficient increases with temperature 
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because phonon mechanisms become stronger as the temperature rises.  
The drag-controlled steady state velocity is then, from (6.74) and (6.76), 

 0

B

ˆˆ ( )( )
k S

bv cΩ τ ττ τ
Β θ

−−
= =

� ��� . (6.77) 

The rate of plastic work is always non-negative since 
 [ ]0 Bˆ( ) /(k ) 0Sv cτ Ω τ τ τ θ= − ≥� � � � . (6.78) 

Conditions for which (6.74) applies are 
 B 0ˆ k /τ τ θ Ω�� � . (6.79) 

When applied stresses vary rapidly, or when obstacles to glide are closely 
spaced, inertial effects can become important.  Such effects are omitted in 
(6.74), corresponding to a regime in which the dislocation motion is said to 
be overdamped.  As the dislocation velocity approaches the sound speed, 
say 0.7 Sv c>�

�
, drag forces increase with increasing velocity and (6.74) no 

longer applies.  Because additional dissipation occurs from dislocation-
phonon interactions and other radiative mechanisms, the stress-velocity re-
lationship becomes nonlinear in this so-called radiation-controlled regime 
(Kocks et al. 1975). 

When the resistance τ̂  exceeds the applied stress τ�  at some locations in 
the slip plane, thermal oscillations may supply enough energy to enable 
dislocations to move in a jerky fashion (Kocks et al. 1975).  Such jerky 
glide often involves kink migration between obstacles.  The dislocation ve-
locity in this regime can be written (Hull and Bacon 1984) 

 
B

exp
kG

Gv yω
θ

⎛ ⎞−∆
= ⎜ ⎟

⎝ ⎠
� , (6.80) 

where 0 G Aω ω≤ ≤  is the vibrational frequency of the dislocation, y is the 
distance the dislocation moves for each obstacle overcome, and G∆  is the 
activation energy that may generally depend on stress, temperature, and 
structure variable α .  A phenomenological relation for the activation en-
ergy, deemed most appropriate when τ̂  stems from short range obstacles, 
is (Kocks et al. 1975; Hull and Bacon 1984) 

 0 ˆ1 ( / )
qpG F τ τ⎡ ⎤∆ = −⎣ ⎦� , (6.81) 

where 0F  is the activation free energy and p and q are empirical constants 
limited to the range 0 1p< ≤  and 1 2q≤ ≤ , with 1/ 2p =  and 3/ 2q =  
typical.  Relations (6.80) and (6.81) are valid when 

 BkG θ∆ � , ˆ0 τ τ< <� . (6.82) 
When ˆτ τ≈� , superposition of effects of drag and thermal activation be-
comes necessary.  In the absence of drag, dislocation velocity would in-
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crease rapidly towards its limiting value (i.e., the shear wave speed) as ap-
plied shear stress τ�  approaches threshold stress τ̂ .  When 0τ =� , (6.80) 
does not apply since the net dislocation velocity in a particular direction 
should not be nonzero in an unstressed body.  Figure 6.1 summarizes re-
gimes of dislocation velocity versus applied stress, following Kocks et al. 
(1975).  The solid line corresponds to physically realistic behavior over the 
entire range of shear stress up to the theoretical strength.  Dashed and dot-
ted lines correspond to responses associated with individual mechanisms.  
In particular, drag control corresponds to (6.74), while thermal activation, 
or obstacle control, corresponds to (6.80).   

Plastic velocity gradient (6.63) or (6.67) depends on the mobile disloca-
tion density iρ� .  Since the mobile dislocation density decreases as a result 
of dislocations exiting the crystal at free surfaces, maintenance of a con-
stant mobile density, and hence a constant plastic velocity gradient under 
conditions of steady state dislocation velocities, requires generation and 
multiplication of dislocations to offset those that exit the crystal or that are 
pinned or annihilated via interactions with other defects.   
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Fig. 6.1 Dislocation velocity-shear stress diagram (Kocks et al. 1975) 

 
A number of functional relationships between dislocation velocities and 

conjugate driving stresses have been observed or posited (Johnston and 
Gilman 1959; Lardner 1969; Teodosiu 1970; Bammann and Aifantis 
1982), as have evolution equations for mobile and/or immobile dislocation 
line densities (Bammann and Aifantis 1982; Aifantis 1987; Zikry and Kao 
1996; Rezvanian et al. 2007).  Dislocation densities, both glissile and ses-
sile, can be viewed as internal state variables, with their evolution equa-
tions expressed in the general form of (6.13).  
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Partial dislocations can be addressed using the same formalism as out-
lined in (6.62)-(6.82) when the partials move collectively, with a total 
Burgers vector =∑ Pb b� � , with Pb�  the Burgers vector of an individual par-
tial.  In some cases, mobility of the leading partial may exceed that of the 
trailing partial, in which case only the Burgers vectors, line densities, and 
velocities of mobile partials contribute to the plastic velocity gradient.  
Separation of a full dislocation into partial dislocations in the absence of 
slip barriers is energetically favorable when the energy of the full disloca-
tion with total Burgers vector exceeds the sum of the energies of the partial 
dislocations, their interaction energy, and the stacking fault energy of the 
faulted region between the partials.  Dissociation at slip barriers can occur 
when (Kocks et al. 1975) 

 ˆ /SFW bτ > �� , (6.83) 
where SFW�  is the stacking fault energy per unit intermediate area.  The 
shear stress required to move only the leading partial of a dissociated dis-
location with partial Burgers vector of magnitude Pb�  is often estimated as 
ˆ /SF PW bτ = ��  (Maeda et al. 1988). 

6.3 Crystal Plasticity 

Consider the description of kinematics of slip on one or more distinct sys-
tems i afforded by crystal plasticity theory of Section 3.2.6.  The plastic 
velocity gradient is given by (3.120): 

 1 i i i

i

γ−= = ⊗∑P P PL F F s m� � � � , (6.84) 

and the plastic work rate per unit intermediate volume is, from (3.117), 
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 (6.85) 

where the resolved lattice Kirchhoff shear stress is 
 ( )

i L i ab i L i ba i L ab i i
a b a b a bJ s m J s m J s mτ σ σ σ= = =� . (6.86) 

Symmetrized dyad ( ) ( ) / 2i i i i i i
a b b aa bs m s m s m= +  is sometimes called a Schmid 

tensor.  As explained below, the resolved shear stress iτ�  plays a prominent 
role in kinetic relations for the slip rates, following Schmid’s law that 
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states that plastic flow initiates in a single crystal at a given temperature 
and orientation when the applied stress is such that iτ�  reaches a critical 
magnitude.  In uniaxial stress experiments, (6.86) reduces to Schmid’s re-
lation 1 cos( )cos( )i L i i iJτ τ σ λ φ−= =�  , where σ  is the applied true stress, 

iλ  is the angle between the loading axis and the slip direction, and iφ  is 
the angle between the loading axis and the normal to slip plane i.  The 
product cos( )cos( )i iλ φ  is known as the Schmid factor.   

Before addressing slip on multiple systems and their interactions, con-
sider kinetics of slip on a single system, extending the treatment of Section 
6.2.  In the drag-controlled regime of (6.79), (6.77) gives 
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i i i ii i i i
i i i i

S
bbb v cρ Ω τ τρ τ τγ ρ

Β θ
−−

= = =
�� �� ���� � � . (6.87) 

In the thermally activated regime of (6.82), (6.80) leads to 
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, (6.88) 

with 0 0i i i
Gb yγ ρ ω= ≥�� � .  Term / | |i iτ τ� �  ensures that the applied shear stress 

and dislocation velocity share the same algebraic sign when the convention 
of Section 3.2.6 adopted.  According to that convention, iγ�  may be posi-

tive, negative, or zero in algebraic sign.  Since i i i ib vγ ρ= �� � � , this implies 
dislocation velocities iv�  may likewise be positive, negative, or zero. 

A number of operational parameters are often introduced in the context 
of thermally activated slip (Kocks et al. 1975).  Considering single slip 
with iγ γ⇒� � , activation energy parameter Q is defined by 
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. (6.89) 

Rate sensitivity m is defined by 
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∂ ∂
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. (6.90) 

Since 

 ln ln ln ln0
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, (6.91) 

it follows from (6.89) and (6.90) that (Kocks et al. 1975) 
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An activation volume can be described by 

 * B B
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k kln lnk
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θ θγ γθ
τ τ τ τ

∂ ∂
= = =

∂ ∂
� �
� � � �

. (6.93) 

If 0
iγ�  and G∆  are treated as independent of temperature in (6.88), then 
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. (6.94) 

A simple and common prescription for activation energy in crystal plastic-
ity theory, used at applied stress levels τ�  both above and below the me-
chanical threshold τ̂ , is (6.81) with 1p q= = : 

 [ ]0 ˆ1 ( / )Q G F τ τ= ∆ = − � , (6.95) 
where 0F  and τ̂  are treated as parameters independent of stress and tem-
perature, but possibly dependent on internal state variable α .  It follows 
that 

 0
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where 
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. (6.97) 

Activation volume *V  of (6.93) then becomes 
 *

0 /V F τ= � . (6.98) 
The resistance to dislocation motion, τ̂ , consists of short-range barriers 

associated with lattice friction and long-range barriers associated with in-
teractions between mobile dislocations and other defects, for example 
(Hull and Bacon 1984; Beltz et al. 1996).  A simple way of superposing ef-
fects of these barriers at a particular location X in the crystal with particu-
lar orientation and elastic constants is the sum (Hull and Bacon 1984) 

 ˆ( , , ) ( , ) ( , , )P Dp p pτ α θ τ θ τ α θ= + , (6.99) 
where Pτ  accounts for short-range barriers such as the Peierls stress of 
(C.237), (C.246), or (C.248) of Section C.4.3, and Dτ  is the resisting stress 
from defects that depends on internal state variable α .  Short-range barri-
ers, by definition, manifest approximately at scales on the order of the lat-
tice spacing or smaller.  Long-range barriers account for sources of glide 
resistance separated by distances larger than the lattice spacing, for exam-
ple forest dislocations or point defects separated by tens of nanometers or 
more.  When other dislocations are the primary long-range obstacle, the 
following dimensionless internal state variable is often appropriate: 
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 Tbα ρ= � � , (6.100) 
where ( , )T X tρ�  is the total line density of dislocations, both immobile and 
mobile, per unit volume in the intermediate configuration, as defined in 
(3.240).  At room temperature in many engineering metals, D Pτ τ� , and 
the short-range barriers can be overcome by thermal activation (Hull and 
Bacon 1984), though exceptions exist.  At very low temperatures, or in 
stiff crystals with high concentrations of valence electrons such as ceram-
ics, Peierls stress Pτ  can comprise a significant part of the total slip resis-
tance (Friedel 1964; Clayton 2009a, 2010c, d).  The slip resistance arising 
from other dislocations is often expressible in a functional form called 
Taylor’s law (Taylor 1934; Beltz et al. 1996; Clayton 2005a): 

 
ˆˆ ˆD T
a ba a b

l
µτ µα µ ρ= = =
�� � � , ˆ0.05 1.0a< <

� �
, (6.101) 

with paramter â  depending on the type of material and 1/ 2
Tl ρ −=� �  a mean 

dislocation spacing.  Possible temperature- and pressure-dependencies of 
Dτ  arise only from temperature- and pressure-dependencies of effective 

(tangent) shear modulus ( , )pµ θ , and are often omitted.  In particular, de-
pendence of Pτ  and Dτ  on hydrostatic pressure p can result from depend-
ence of shear modulus on pressure, since both terms in (6.99) are propor-
tional to the shear modulus.  Such pressure effects can be important in 
shock physics applications (Steinberg et al. 1980; Becker 2004).  By defi-
nition, ˆ 0τ ≥ , 0Pτ ≥ , and 0Dτ ≥ .  When various dislocation types move 
simultaneously (e.g., screw, edge, and mixed dislocations and dislocation 
loops of various orientations), resistances of those types with the largest 
impedance to motion contribute most strongly to (6.99). 

Now consider activity of multiple slip systems in the context of crystal 
plasticity theory.  Phenomenological kinetic laws for slip fall into two 
categories: rate independent and rate dependent.  In the former class of 
models (Kocks 1970; Hill and Rice 1972; Peirce et al. 1982; Asaro 1983), 
rate independence occurs when m →∞  in (6.96), leading to the yield con-
ditions  
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 (6.102) 

In the context of rate independent plasticity, the total number of slip sys-
tems n is typically chosen such that slip rates and driving stresses are al-
ways non-negative (Peirce et al. 1982).  Such a prescription requires dis-
tinct assignment of positive and negative directions on a slip plane, as per 
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the special convention noted in the footnote of Section 3.2.6.  Plastic flow 
occurs on slip system i when the driving stress iτ�  attains a critical value 
ˆiτ .  Systems for which 0iγ >�  are called active slip systems.  Shear 

stresses obey the following hardening laws: 

 
1

ˆ
n

i ij j

j
hτ γ

=

=∑� � . (6.103) 

In (6.103), ( , , , )ijh p Xα θ  is an interaction matrix that accounts for harden-
ing (or softening) and possible interactions among slip systems.  Instanta-
neous values of entries of ijh  will generally depend upon defects (e.g., 
immobile dislocation networks and forest dislocations) that accumulate 
with inelastic straining, represented by internal state variable α  in the pre-
sent framework, as well as temperature θ .  Diagonal entries iih  account 
for self hardening, and off-diagonal entries ( )ijh i j≠  account for latent 
hardening.  In many metals, latent hardening coefficients exceed those for 
self hardening (Kocks 1970; Conti and Ortiz 2005) in part since disloca-
tions moving and accumulating on the same system do not provide as 
much obstruction as those on intersecting slip planes.  The latter (non-
coplanar) defects include forest dislocations, for example.  Explicit repre-
sentations of ijh  follow later in the context of rate dependent plasticity. 

For actively hardening slip systems, consistency conditions following 
from (6.102) are 
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hτ τ γ γ
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= = > ⇔ >∑�� � �� . (6.104) 

When the rate of resolved shear stress falls below the critical shear stress 
rate, a formerly active system becomes inactive: 

                                   
1

ˆ 0
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i i ij j i

j
hτ τ γ γ

=

< = ⇔ =∑�� � �� , (6.105) 

Clearly, dissipation of (6.85) is always non-negative in the context of rate 
independent crystal plasticity since slip rates are always non-negative in 
the present description and since 0iγ ≥�  only when ˆ 0i iτ τ= ≥� . 

Rate dependent, i.e., viscoplastic, kinetic relations for crystallographic 
slip are more general and perhaps more commonly encountered (Hutchin-
son 1976; Teodosiu and Sidoroff 1976; Asaro and Needleman 1985; 
Nemat-Nasser and Obata 1986; Schoenfeld et al. 1995; Schoenfeld 1998; 
Horstemeyer et al. 1999; Clayton 2005a, b).  The usual sign convention of 
Section 3.2.6 is prescribed, whereby slip may proceed in either direction 
on a given system, such that iγ�  may be positive or negative in algebraic 
sign.  A typical functional form for a viscoplastic flow rule is 
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where parameter 0γ�  does not depend on stress and exhibits the same value 
for all slip systems.  Typically 0γ�  is imposed as constant (Hutchinson 
1976) or a function of temperature alone (Balasubramanian and Anand 
2002) for a particular type of crystal.  As often prescribed for non-
proportional or cyclic loading scenarios, iχ̂  is an evolving backstress cap-
turing directional hardening effects (McDowell and Moosebrugger 1992; 
Horstemeyer and McDowell 1998; Horstemeyer et al. 1999; Xie et al. 
2004).  Backstress 0iχ̂ =  by definition in many traditional models (Asaro 
1983; Asaro and Needleman 1985).  By inverting and time differentiating 
(6.106), it is evident that as m →∞ , the limiting case of rate independent 
behavior is approached.  Notice that so long as i iˆτ χ≥� , (6.106) results in 
unconditionally non-negative dissipation PW�  in (6.85).  When 0iχ̂ = , 
(6.106) corresponds to a dissipation potential Ω  in the context of the sec-
ond of (4.75): 
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with 
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Hardening evolution laws typically exhibit the form 
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hτ γ
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=∑� � , (6.109) 

where matrix ijh  is defined in the same manner as in (6.103).  A standard 
assumption for many metallic solids is (Hutchinson 1976; Peirce et al. 
1982; Asaro 1983)  

 (1 )ij ijh qh q hδ= + −� � ,  1.0 1.4q< <�
� �

, (6.110) 
where q�  is the latent hardening ratio that is treated as a constant for a 
given material.  When 1q =� , all systems harden equally, an assumption 
used by and often credited to Taylor (1934).  Strong latent hardening with 

1.4q ≈�  of non-coplanar systems has been suggested as a typical rule for 
ductile metallic crystals (Asaro and Needleman 1985).  Parameter h in 
(6.110) is an internal variable that evolves with cumulative plastic shear γ  
and possibly temperature, e.g., 
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 ( ), ,h h pγ θ= , i

i
dtγ γ=∑∫ � . (6.111) 

Two different slip system hardening models suggested by Peirce et al. 
(1982) include 
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and 
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where 0h  is a hardening modulus with dimensions of stress, 0τ̂  is an initial 
value of τ̂ , ˆSτ  is a saturation value of τ̂ , and n̂  is a hardening exponent. 

An alternative hardening relation to (6.109) given by Horstemeyer et al. 
(1999) is 
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where 0h  is a hardening modulus and 0r  is a dimensionless parameter that 
accounts for dynamic recovery, leading to eventual saturation of slip resis-
tance ˆiτ .  Both 0h  and 0r  may depend on temperature; for example reflect-
ing increased dislocation mobility at observed at higher temperatures in the 
thermally activated regime of Fig. 6.1.  The backstress on a given slip sys-
tem in (6.106) typically evolves only as a result of slip on that system 
(Horstemeyer et al. 1999; Clayton and McDowell 2003a): 

 1 1ˆ ˆi i i ih rχ γ χ γ= −� � � , (6.115) 

where 1h  and 1r  may in general depend on temperature.  Regardless of par-
ticular formulation, when iτ̂  and iχ̂  evolve with changes in deformation 
and temperature, each can be interpreted as a kind of internal state vari-
able, though iτ̂  and iχ̂  do not explicitly enter the thermodynamic poten-
tials and response functions of (6.9)-(6.13).   

When dislocations are the primary source of stored energy in the lat-
tice—for example energy of cold working attributed to self-equilibrating 
stress fields supported by dislocations—the simplest natural choice for a 
scalar internal state variable is a dimensionless function of the total dislo-
cation density Tρ� , as in (6.100).  Scalar Tρ�  defined in (3.240), with 
physical dimensions of length of dislocation line per unit intermediate vol-
ume, is assumed to encompass energetic effects of both geometrically nec-
essary and statistically stored dislocations (Ashby 1970), or net disloca-
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tions and absolute dislocations (Werne and Kelly 1978), as described in 
Section 3.3.2.  More detailed, tensor-based internal variable descriptions 
delineating energies of geometrically necessary and statistically stored dis-
location densities are deferred until Chapters 8 and 9.  Using (6.100), re-
sidual free energy (6.60) becomes (Clayton 2005a, b; 2009a) 

 21
2

R
TbΨ κ ρ= �� � � . (6.116) 

The linear dependence of stored energy on dislocation density indicated by 
(6.117) has been used in thermodynamic components of a number of finite 
deformation plasticity models, particularly with regards to statistically 
stored dislocations (Bammann 2001; Regueiro et al. 2002; Svendsen 
2002).  Coefficient  κ�  can be assigned a more explicit definition when de-
tails regarding the dislocation distribution, such as dislocation orientations 
and median separation distances, are known.  In the simplest approxima-
tion, in which all dislocations are treated as non-interacting straight lines 
of the same type in an infinite elastic medium, the energy per unit length E 
of dislocation line is given by linear elastic solution (C.152): 
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where, as explained in Section C.1.6 of Appendix C, the energy factor K̂  
depends on the type (i.e., screw, edge, or mixed) and orientation of the dis-
location as well as the second-order elastic coefficients that may depend on 
temperature.  For a pure screw dislocation in the isotropic elastic approxi-
mation, energy factor K̂ µ= , the elastic shear modulus.  Combining 
(6.116) and (6.117), a typical approximation is (Kocks et al. 1975; Hull 
and Bacon 1984; Clayton 2009a, 2010c, d) 
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leading to 
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Using (6.85), (6.100), (6.116), and (6.118), Taylor-Quinney parameter of 
(6.47) becomes, in the context of crystal plasticity with the (square root of) 
total scalar dislocation density as an internal variable as in (6.100), 
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When the dependence of K̂  on temperature is negligible, as the rate of 
dislocation accumulation increases, residual energy storage increases, β ′  
decreases, and the fraction of plastic work converted to temperature rise 
via (6.46) decreases.  A typical, but not universal, trend is that the fraction 
of plastic work converted to heat energy can be significantly less than 
unity as a metallic crystal or polycrystal strain hardens, and then later in-
creases towards unity as the material ceases to harden and the strain energy 
contribution from defect densities saturates (Taylor and Quinney 1934; 
Foltz and Grace 1969; Lee 1969; Aravas et al. 1990; Wright 2002; Clayton 
2005a, 2009c).  The conjugate thermodynamic force associated with 
(6.60), (6.100), and (6.116)-(6.119) is ˆ/ 2R

TK bΨ α Λ α µ ρ−∂ ∂ = − ≈ − �� � , 
which is notably proportional to (the negative of) resistance Dτ  to disloca-
tion glide from dislocation interactions in Taylor’s hardening rule (6.101).   

An evolution equation for Tρ��  of the general form (6.13) is required to 
complete the thermodynamic description.  Such an equation should be 
formulated so that relationships between defect content and strain harden-
ing, e.g., (6.99)-(6.101) when applicable, as well as experimentally ob-
served trends for β ′  for the particular crystalline solid under considera-
tion, are all captured simultaneously (Clayton 2005a, b, 2009a). 

6.4 Macroscopic Plasticity 

Recall from Section 3.2.7 that macroscopic plasticity refers to a descrip-
tion in which each volume element of material to which kinematic and 
constitutive models are assigned contains a large number of grains in a 
polycrystal.  A convenient way of ensuring that the rate of working from 
plastic deformation is non-negative5 in the context of macroscopic plastic-
ity is specification of a plastic dissipation potential along the lines of that 
described in a general way in Section 4.3.  In the present context, from 
(6.32), the appropriate thermodynamic flux is the plastic velocity gradient 

PL , and the conjugate driving force is the Eshelby stress measure Π� .  Re-
call that both of these quantities are couched in intermediate configuration 
B� .  
                                                      

5 Restricting the rate of plastic working associated with dislocation glide to be 
dissipative is often a physically realistic assumption.  However, in arbitrary solids, 
the rate of inelastic working need not always dissipate energy if rates of internal 
variables and heat conduction provide enough dissipation so that the net entropy 
production (left side of (6.32)) always remains non-negative (Lubliner 1990). 
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Specifically as an illustrative example, let 

 P Ωλ ∂
=

′∂
PL

Π�
, (6.121) 

where the scalar plastic multiplier 0Pλ ≥  will be determined later, and the 
flow potential Ω  is constructed such that the generalized scalar product 

/ 0Ω ′∂ ∂ ≥Π : Π� � .  The deviatoric part of the intermediate Eshelby stress is 
equivalent to the deviatoric part of the Mandel stress: 

 

. . . . . .

. . . .

1 ( )
3

1       .
3

M M

M M M

β β β χ χ β
α α α χ χ α

β χ β β
α χ α α

Π Ψδ Ψδ δ

δ

′ = − − −

′= − =

� � � ��

� � �
 (6.122) 

A simple illustrative example of dissipation potential is 
               . 1/ 2 1/ 2

.( ) ( ) 0β α αβ
α β αβΩ Π Π Π Π′ ′ ′ ′= = ≥� � � � . (6.123) 

From (6.121) and (6.123), the plastic velocity gradient becomes 

 . .

P
PL α α
β β

λ Π
Ω

′= � , (6.124) 

and is clearly coaxial (i.e., of the same direction in *TB T B×� � ) as the driv-
ing stress ′Π� .  Squaring both sides of (6.124) leads to the consistent defi-
nition  

 1/ 2( )P P PL Lαβ
αβλ = . (6.125) 

The resulting plastic dissipation is always non-negative since  

   . .
.

.

0
P

P P PLβ α β αβ
α β α αββ

α

Ω λΠ λ Π Π Π λ Ω
Π Ω
∂ ′ ′= = = ≥
′∂

� � � �
� . (6.126) 

Relations (6.121)-(6.126) parallel (4.84)-(4.89), with PL  used here as the 
thermodynamic flux rather than PF�  used in Section 4.3.  Another subtle 
difference is that in (4.85) and (4.86) of Section 4.3, the plastic multiplier 
is absorbed into the dissipation potential, whereas Pλ  is written distinctly 
from the dissipation potential in (6.121).  Since . 0α

αΠ ′ =� , . 0P P PJ J L α
α= =�  

from (6.124), ensuring that macroscopic plastic deformation is isochoric.  
A constitutive relationship between Pλ  and the state variables (e.g., stress 
or strain, temperature, and internal state variable(s)) then dictates the mag-
nitude of plastic flow. 

Typically in engineering practice, as opposed to (6.121), a kinetic equa-
tion is specified for the plastic velocity gradient ˆPL  mapped to the current 
configuration B, i.e.,  

   1ˆ −=P L P LL F L F , ( )1ˆ
symm

−=P L P LD F L F , ( )1ˆ
skew

−=P L P LW F L F , (6.127) 
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where ˆ PD  is a symmetric plastic strain rate and ˆ PW  is a skew plastic spin.  
With these definitions, the spatial velocity gradient of (3.58) becomes  

          
1 1

. ; . . . . .

. . .

ˆ

ˆ ˆ    .

a a a A La L Pa
b b A b b b

La Pa Pa
b b b

L v F F F F L

L W D

α
α

− −= = = +

= + +

� �
 (6.128) 

Kinetic equations for the plastic strain rate and plastic spin of (6.127) are 
usually prescribed separately.  The latter is often omitted (i.e., .

ˆ 0Pa
bW =  by 

definition) for solids that remain isotropic throughout their deformation 
history, e.g., polycrystalline metals with randomly oriented grains that do 
not develop significant texture or anisotropic hardening during plastic 
flow.  In plastically anisotropic polycrystals, anisotropic hardening can be 
represented by a traceless, symmetric second-order tensor (i.e., a tensor in-
ternal state variable) α̂  often labeled a backstress.  In such anisotropic ma-
terials, the plastic spin can be assigned as (Aifantis 1987; Bammann and 
Aifantis 1989; Bammann et al. 1993; Regueiro et al. 2002) 

 ˆˆ ˆ ˆˆ ˆ( )Wλ= −P P PW αD D α , ˆ ˆ T=α α , ˆtr( ) 0=α , (6.129) 
with scalar ˆWλ  related to dislocation interactions (Bammann and Aifantis 
1989) or dominant slip system orientations (Regueiro et al. 2002). 

The plastic strain rate of the second of (6.127) can be assigned a kinetic 
law in a number of physically meaningful and mathematically convenient 
ways, and an immense literature exists on the subject (Hill 1950; Perzyna 
1963; Follansbee and Kocks 1988; Lubliner 1990; Bammann et al. 1993; 
Marin and McDowell 1996; Simo and Hughes 1998; Scheidler and Wright 
2001, 2003; Wright 2002; Nemat-Nasser 2004).  For example, for non-
porous viscoplastic solids, a direct flow rule applicable over a range of 
strain rates and temperatures can be prescribed as (Bammann et al. 1993) 

     
( ) ( )

( )
1/ 2

1/ 2

ˆ ˆ ˆ ˆ| |ˆ ˆ ˆ ˆ ˆ ˆsinh  for | | ( ) , ˆ ˆˆ | |
ˆ ˆ ˆ ˆ ˆ   0                                          for | | ( ) ,

k Y
f k Y

V

k Y

θ
θ

θ

⎧ ⎡ ⎤− −
⎪ = ≥ +⎢ ⎥⎪= ⎢ ⎥⎨ ⎣ ⎦
⎪

= < +⎪⎩

P

ξ ξ ξ ξ :ξ
D ξ

ξ ξ :ξ

 (6.130) 

where the stress difference 

 2ˆ ˆ
3

′= −ξ σ α ,  (6.131) 

and the deviatoric Cauchy stress is 

 .
1
3

ab ab c ab ab ab
c g pgσ σ σ σ′ = − = + , (6.132) 

with p the Cauchy pressure.  In (6.130), f̂ , Ŷ , and V̂  are scalar functions 
of temperature, k̂  reflects isotropic hardening (or softening) and may in-
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crease (or decrease) during the deformation history.  Similarly, backstress 
α̂  evolves with the deformation history.  Evolution equations for k̂  and α̂  
often follow a hardening-dynamic recovery format similar to (6.114) and 
(6.115) and are available in the literature (Bammann et al. 1993; McDow-
ell et al. 1993; Marin and McDowell 1996). 

Described in what follows in (6.133)-(6.143) is the standard engineering 
approach towards kinetics of macroscopic plasticity based on principles of 
normality, associativity, and a Von Mises–type yield function.  Often, for 
isotropic and plastically incompressible solids, the normality conditions 

 
ˆ ˆ ˆ( / ) for 0,ˆ

ˆ       0             for 0,  

P F

F

λ Ω⎧ ′∂ ∂ =⎪= ⎨
<⎪⎩

P σ
D  (6.133) 

are assigned, where values of ˆ constantΩ =  represent a set of flow iso-
surfaces in deviatoric stress space, ˆ 0Pλ ≥  is a plastic multiplier, and F̂  is 
the yield function .  Though many other possible flow functions exist, ac-
cording to the most prevalent assumption for ductile metals, Ω̂  is defined 
in terms of the second invariant of the deviatoric stress: 

 
1/ 2

2
1 3ˆ
2 23

ab
abJ σΩ σ σ τ⎛ ⎞′ ′= = = =⎜ ⎟

⎝ ⎠
,   (6.134) 

 2
1
2

ab
abJ σ σ′ ′= ,  (6.135) 

 
1/ 2

2
2 2
3 3

Jτ σ⎛ ⎞= =⎜ ⎟
⎝ ⎠

, (6.136) 
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1/ 2 1/ 2 1/ 2
. . 2

2 ( ) ( ) ( )

                                   6 ( ) ( ) ( )

   (3/ 2) (1/ 2) (3/ 2) 3 .ab a b ab
ab a b ab J

σ σ σ σ σ σ σ

σ σ σ

σ σ σ σ σ σ

−= − + − + −

⎡ ⎤+ + +⎣ ⎦

′ ′⎡ ⎤ ⎡ ⎤= − = =⎣ ⎦ ⎣ ⎦

 (6.137) 

Above, σ  is called the Von Mises stress (Von Mises 1913) or effective 
stress, and τ  is called the octahedral shear stress.  For a uniaxial normal 
stress state with nonzero Cauchy stress component 11σ , the following con-
ditions apply: 11σ σ= , 11 2

2 2( ) / 9J σ= , and 112 / 3τ σ= .  For a shear 
stress state with nonzero component 12 21σ σ= , the following conditions 
hold: 12 2

2 ( )J σ= , 123σ σ= , and 122 / 3τ σ= .  The spatial plastic de-
formation rate following from (6.133) and (6.134) is 
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2

ˆ ˆ ˆ3ˆ
ˆ 22 2

P P P

J
λ λ λ

σΩ
′ ′ ′= = =PD σ σ σ , (for ˆ 0F = ), (6.138) 

clearly traceless and symmetric.  From a rudimentary physical standpoint, 
(6.138) is realistic: the material deforms inelastically in the direction of the 
applied stress, in agreement with experimental observations.  Squaring 
both sides of (6.133) or (6.138), the plastic multiplier satisfies 

        
1/ 21/ 2 1/ 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( / ) ( / ) (2 )Pλ Ω Ω
−

⎡ ⎤′ ′= ∂ ∂ ∂ ∂ =⎣ ⎦
P P P PD : D σ : σ D : D . (6.139) 

Kinetic equations for plastic deformation are often labeled either as as-
sociative or non-associative.  In an associative flow rule, with a plastic po-
tential of the form (6.134), the yield function is 

 2
ˆ ˆˆ ˆF k J kΩ= − = − , (6.140) 

where scalar function ˆ({ }, )k Xς  demarcates elastic and plastic domains 
and { }ς  is a set of scalars that may include temperature, internal state 
variable α , and other field variables (e.g., pressure).  When the yield and 
flow functions do not depend upon the time rate of plastic deformation, 
plastic behavior is said to be rate independent, while in the converse situa-
tion, the plastic deformation is said to be rate dependent or viscoplastic. 

In many engineering applications, plastic deformation is idealized as 
rate independent.  In such cases, the magnitude of the plastic strain rate for 
a given thermodynamic state (e.g., state of stress, temperature, and internal 
variables) is prescribed as follows.  Kuhn-Tucker conditions are (Lubliner 
1990) 

 0  0  0P Pˆ ˆˆ ˆF , , Fλ λ= ≥ ≤ , (6.141) 
with the plastic multiplier 
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ab ab
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H F F H
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�
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Macaulay brackets in (6.142) satisfy 0 0A A= ∀ ≤  and 0A A A= ∀ >  
for scalar function A, and are not to be confused with the dual product op-
erator of (2.4) and (2.80)-(2.82) which acts only on vector and tensor ob-
jects of higher order.  Hardening modulus Ĥ  satisfies the consistency 
conditions 
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ab
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= = + =

∂

∂ ∂
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σ
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 (6.143) 
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where summation applies over all variables of the set { }ς .  During plastic 
deformation, the yield surface in stress space represented by ˆ 0F =  and the 
stress state coincide.  During elastic unloading, ˆ 0F < , and one says that 
the stress state is contained within the yield surface.  Typically (6.138) and 
(6.142) are combined with (3.58) and an objective rate form of (6.29) to 
provide a relationship between the time derivative of Cauchy stress and the 
total deformation rate ( )ab abD L= .  The constitutive description is complete 

upon prescription of evolution equation(s) for internal state variable(s) α  
and a functional relationship for k̂  in terms of { }ς  at each location X.  
When k̂  is a constant, ˆ 0H =  in (6.143), and the corresponding mechani-
cal behavior is labeled perfectly plastic.  When ˆ 0H = , ˆPλ  is indetermi-
nate in (6.142), but the plastic deformation rate is still dictated by ˆ 0F =  

and ˆ 0F =�  (Lubliner 1990).   
In the case of non-associative plasticity, the yield function and flow 

function need not be related, i.e., ˆˆ ˆF kΩ≠ − .  More generally, for the non-
associative case, the direction of plastic deformation and its magnitude can 
be prescribed independently of any dissipation potential, as in (6.130).  
Bammann et al. (1993) showed that nonzero function V̂  renders direct 
flow rule (6.130) rate dependent.    

The theoretical framework of (6.133)-(6.143) is used frequently in engi-
neering practice for isotropic ductile metals; when the material is plasti-
cally incompressible, this framework always provides for unconditionally 
non-negative dissipation from plastic working in (6.32).  From (6.16), 
(6.34), and (6.127), when 0PJ =�  the plastic work rate per unit intermedi-
ate volume is 

             . .
. .

ˆ ˆP P P L ab P L ab P
ab abW L M L J L J Dβ α β α

α β α βΠ σ σ= = = =� �� . (6.144) 
Substituting (6.138) then gives 

          2
ˆ ˆ ˆˆ ˆ 0ˆ2

ab
P L ab P L P L P L Pab

abW J D J J J Jσ σ
σ λ λ Ω λ

Ω
′ ′

= = = = ≥� . (6.145) 

Since the plastic spin referred to the current configuration, ˆ PW  of (6.127), 
is skew by definition, this quantity does no mechanical work in (6.144) 
and does not contribute to the energy balance or dissipation inequality.   

It is emphasized that (6.133)-(6.143) and (6.145) apply only for iso-
tropic (poly)crystalline solids.  When inelastic behavior is anisotropic, 
typically the notion of backstress is introduced to reflect differences in di-
rections of ˆ PD  and the deviatoric Cauchy stress ′σ  (Lubliner 1990; Bam-
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mann et al. 1993; Marin and McDowell 1996; Voyiadjis and Abu Al-Rub 
2003), as indicated for example in (6.130).  Furthermore, the lattice spin, 
and hence the total and plastic spins, require delineation in anisotropic sol-
ids, since the representation of the Cauchy stress in a hyperelastic solid de-
pends on the rotational part of the lattice deformation, 1−=L L LR V F , via 
the second of (6.5), even when lattice stretch LV  is small.  From (6.138) 
the spatial plastic velocity gradient 1ˆ −=P L P LL F L F  is always traceless, 
though the true plastic volume change . 0P P PJ J L α

α= ≠�  in general, mean-
ing that (6.144) is not ensured by (6.138).  However, in the limit of small 
lattice strains, (3.73) and (3.74) lead to 

 . . . . . . .
ˆ ˆ ˆ 0P LT Pa Lb Pa b Pa

a b b a aL R L R L Dα α
α α δ≈ = = = . (6.146) 

6.5 Geometrically Linear Elastoplasticity 

Linearization of finite deformation kinematics of two-term multiplicative 
elastoplasticity follows from (3.78)-(3.83).  Recall that displacement gra-
dient ∇u , strain ε , and rotation Ω  are each decomposed additively as 

 ;
L P

a b ab abu β β= + , (6.147) 

 ( ) ( ) ( );
L P L P

ab ab aba b ab abuε β β ε ε= = + = + , (6.148) 

 [ ] [ ] [ ],
L P L P

ab ab aba b ab abuΩ β β Ω Ω= = + = + , (6.149) 

where superscripts L and P denote lattice-changing and plastic (i.e., lattice-
preserving) parts, and the remaining notation is explained in Section 3.2.4.  
When plastic deformation is isochoric, the resulting kinematic implications 
are tr( ) 0=Pε  and tr( ) 0=Pε� , though throughout the forthcoming devel-
opments of Section 6.5, plastic deformation is not constrained to be vol-
ume-preserving unless noted otherwise. 

6.5.1 Constitutive Assumptions 

In the geometrically linear theory of elastic-plastic solids, (6.9)-(6.13) are 
replaced by the following constitutive assumptions: 

         ( ), , , , , axψ ψ α θ θ= ∇Lε g , ( ),, , , , ,L
ab a axψ ψ ε α θ θ= g ; (6.150) 

          ( ), , , , , axη η α θ θ= ∇Lε g , ( ),, , , , ,L
ab a axη η ε α θ θ= g ; (6.151) 

       ( ), , , , , aXα θ θ= ∇Lσ σ ε g , ( ),, , , , ,ab ab L
ab a axσ σ ε α θ θ= g ; (6.152) 
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         ( ), , , , , axα θ θ= ∇Lq q ε g , ( ),, , , , ,a a L
ab a aq q xε α θ θ= g ; (6.153) 

          ( ), , , , , axα α α θ θ= ∇Lε g� � , ( ),, , , , ,L
ab a axα α ε α θ θ= g� � ; (6.154) 

Because all volume changes are assumed small in the present linear analy-
sis, thermodynamic potentials are defined, for convenience, on a per unit 
mass basis as opposed to a per unit (intermediate configuration) volume 
basis as was considered in Section 6.1.  Analogously to those of the 
nonlinear theory, thermodynamic potentials and response functions in 
(6.150)-(6.154) do not depend explicitly upon the plastic distortion or plas-
tic strain.  Notice that objectivity with respect to small rigid body rotations 
precludes the use of the lattice rotation LΩ  of (6.149) as a dependent vari-
able entering (6.150)-(6.154), via the same arguments used in Section 5.4.1 
following (5.260).   

6.5.2 Thermodynamics 

Substituting (6.150) into linearized dissipation inequality (4.73) gives 

     1
,

,

ab L a
ab ab a aL

ab a

qψ ψ ψ ψσ ε ρ ε η θ γ α θ θ
ε θ θ α

−⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞− + + + + ≥⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
�� � � . (6.155) 

From the time derivative of (6.148), L P
ab ab abε ε ε= +� � � , so (6.155) becomes 
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 (6.156) 

Following arguments akin to those of Section 5.1.2, coefficients of L
abε� , θ� , 

and ,( ) /a ad dtγ θ=  should vanish identically, leading to the equalities 

 ψρ ∂
=

∂ Lσ
ε

, ψη
θ

∂
= −

∂
, 0ψ

θ
∂

=
∂∇

, (6.157) 

and the reduced constitutive forms 

 
( ) ( )

( )
, , , , ,  , , , , ,

                 , , , , .

a a

a

x x

x

ψ ψ α θ η η α θ

α θ

= =

=

L L

L

ε g ε g

σ σ ε g
 (6.158) 

Assuming Fourier conduction of the kind suggested in (4.62) and (5.277): 
 ,

a ab
bq k θ= − , (6.159) 
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where k is symmetric and positive semi-definite, local entropy production 
from heat conduction 2

,
a

aqθ θ−−  is always non-negative.  The entropy ine-
quality then consists of the remaining terms in (6.156): 

 1 , 0ψρ α θ θ
α θ
∂

− + ∇ ∇ ≥
∂

Pσ :ε k�� , (6.160) 

demonstrating that in the absence of temperature gradients, the rate of 
plastic work PW = Pσ :ε� �  must exceed the rate of free energy accumulation 
associated with the time derivative of internal state variable α .  When 
plastic deformation is isochoric, the plastic dissipation can be expressed as 

 ˆ( )PW ρψ= = − =P P Pσ :ε σ 1 : ε π :ε� � � � , (6.161) 
with ˆ Ψ= −π σ 1  a symmetric, small deformation analog of the Eshelby-
type stress Π�  of the nonlinear theory first defined in (6.33).  An equation 
for the temperature rise, analogous to (6.45), in terms of the plastic work 
rate, thermoelastic coupling, the rate of the internal variable, heat conduc-
tion, and heat sources can be derived immediately in the context of geo-
metric linearity.  Plastic rotation rate [ ]

P P
ab abΩ β= ��  does not contribute to 

(6.160) or PW� . 

6.5.3 Representative Free Energy 

A version of free energy function (6.48) describing a geometrically linear 
thermoelastic response additively decoupled from effects of internal vari-
ables, is 

 ( ) ( ), , , , , ,E R
a ax xψ ψ θ ψ α θ= +Lε g g . (6.162) 

The thermoelastic part of (6.162), assuming a linear response analogous to 
(5.304) about a reference state wherein 0=Lε  and 0 0θ θ θ∆ = − = , is 

 0 0
0

1 ln
2

abcd L L ab L
ab cd ab c θρ ψ ε ε β ε θ ρ θ

θ
= − ∆ −^ , (6.163) 

where the thermoelastic constants at a point x with basis ( )a xg  are 

 

0

2

0
0

E
abcd

L L
ab cd

θ θ

ψρ
ε ε =

=

∂
=

∂ ∂ Lε
^ ,

0

2

0
0

E
ab

L
ab

θ θ

ψβ ρ
θ ε =

=

∂
= −

∂ ∂ Lε
, (6.164) 
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0
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ψθ
θ =

=

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠ Lε

. (6.165) 
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Thermoelastic constants in (6.164) depend on the symmetry of the material 
(via ( )a xg ) and are identical to those of (5.305) so long as the former are 
measured in a loading regime for which the material undergoes only lattice 
(thermoelastic) and not plastic deformation.  Specific heat per unit mass in 
(6.165) likewise is identical to that of Section 5.1.4.  All considerations re-
garding symmetry of material coefficients discussed in Section 5.4.5 and 
Appendix A apply for the elasticity tensor and the thermal stress coeffi-
cients in (6.164).  Possible effects of evolving densities of defects (i.e., 
non-stationary internal variables) on material coefficients are omitted in 
(6.162)-(6.165).  From (6.148), (6.157), and (6.163), linearized stress-
strain-temperature relations are 

    
1

      ( ) .

ab ab ab abcd L ab
cd

abcd P ab
cd cd

Jσ τ τ ε β θ

ε ε β θ

−= ≈ = − ∆

= − − ∆

^
^

 (6.166) 

The residual part of the free energy, Rψ  in (6.162), can be constructed in a 
manner completely analogous to (6.60) if, for example, a simple quadratic 
form is used for the energetic contribution from internal state variable α . 

6.5.4 Linearized Dislocation Plasticity 

In the geometrically linear theory, the rate of plastic distortion can be ex-
pressed by linearizing (3.98) and the last of (3.99), leading to (Mura 1968) 

 .

1

j
P cd i i ic id
ab a cdb a bcd

i
b vβ ς ε ρ ξ ε

=

= =∑� . (6.167) 

Summation proceeds over 1,2,...i j=  populations of dislocations with the 
same tangent line, Burgers vector, and velocity for each value of i.  The 
spatial dislocation flux, a third-order tensor, is ( , )x tς .  The length per unit 
volume, Burgers vector, unit tangent line, and velocity of dislocation popu-
lation i are, respectively, iρ , ib , iξ , and iv .  Plastic dissipation per unit 
volume, PW = Pσ : ε� �  of (6.161), is then computed as follows, using the 
symmetry of the Cauchy stress: 

    1

1 1

( )

      ( ) ( ) ,

j
P ab P ab P i ic ab i id

ab ab cdb a
i

j j
i ic ba i id i i id

dcb a PK d
i i

W b v

b v f v

σ ε σ β ρ ε ξ σ

ρ ε ξ σ ρ

=

= =

= = =

= − =

∑

∑ ∑

�� �
 (6.168) 

where the Peach-Koehler force (Peach and Koehler 1950; Mura 1968; 
Bammann and Aifantis 1982) is 

 i i i= − ×PKf ξ σb . (6.169) 
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Use of Orowan’s (1940) relation instead of (6.167) gives 
  P i i i i i

ab a b
i

b v s mβ ρ=∑ , (6.170) 

where in the geometrically linear theory, for each slip system i, the magni-
tude of Burgers vector, slip direction, dislocation line velocity, and unit 
normal to the glide plane, are respectively 

 | |i ib = b , /i i ib=s b , | |i iv = v , /i i i iv= ×m ξ v . (6.171) 
Using (6.171) in (6.161), the rate of plastic work per unit spatial volume is 

        ( )P ab P ab P i i i i ab i i i i i
ab ab a b

i i

W b v s m b vσ ε σ β ρ σ ρ τ= = = =∑ ∑�� � , (6.172) 

where the resolved shear stress is 
 ( )

i i ab i i ab i
a b a bs m s mτ σ σ= = . (6.173) 

Kinetic relationships between dislocation velocity and resolved shear 
stress in the geometrically linear case are posited in the same manner as 
outlined in Section 6.2, simply by replacing iv�  of the nonlinear theory 
with iv  in the second of (6.171), and iτ�  of the nonlinear theory with iτ  of 
(6.173).   

6.5.5 Linearized Crystal Plasticity 

In the linearized description of kinematics of slip in crystal plasticity the-
ory of Section 3.2.6, the plastic rate of distortion is given by (3.125): 

 i i i

i
γ= ⊗∑Pβ s m� � , (6.174) 

and the plastic work rate per unit volume is, just as in (6.172), 
 ( )P ab P ab P i i ab i i i

ab ab a b
i i

W s mσ ε σ β γ σ γ τ= = = =∑ ∑�� � � � , (6.175) 

where the resolved shear stress iτ  is defined in (6.173).  Kinetic relation-
ships between slip rate iγ�  and resolved shear stress iτ  in the geometrically 
linear case are prescribed in the same way as demonstrated in Section 6.3 
for the nonlinear case, simply by replacing the resolved Kirchhoff stress 

iτ�  of the nonlinear theory with iτ  of (6.173).  The quadratic form used as 
an estimate of the residual free energy in (6.116) can be replaced by 

   2 21 1
2 2

R
Tbρψ κα κ ρ= = , Tbα ρ= , ˆ2 Kκ Λ= , 0.5 1.0Λ< <

� �
, (6.176) 

with Tρ  the total dislocation line length per unit spatial volume and K̂ , as 
defined in (C.152), the energy factor for a dislocation line in an anisotropic 
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elastic body.  For a pure screw dislocation in an isotropic solid, the energy 
factor is equivalent to the temperature-dependent shear modulus.    

6.5.6 Linearized Macroscopic Plasticity 

Macroscopic plasticity as outlined in the geometrically nonlinear context 
in Section 6.4 can be described analogously in the linear theory, replacing 
ˆPL  of (6.127) with plastic distortion rate Pβ� , ˆ PD  of (6.127) with plastic 

strain rate Pε� , and ˆ PW  of (6.127) with plastic rotation rate PΩ� .  For ex-
ample, relations (6.133)-(6.143) for a plastically incompressible and plasti-
cally isotropic material based on concepts of normality, associated flow, 
and a Von Mises-type (i.e., 2J ) yield and flow function are linearized as 
follows.  The flow rule, assuming normality, is 

 
ˆ ˆ ˆ( / ) for 0,

ˆ       0             for 0,  

P F

F

λ Ω⎧ ′∂ ∂ =⎪= ⎨
<⎪⎩

P σ
ε�  (6.177) 

with flow function 
 ( )1/ 2

2
ˆ / 2 / 3 3/ 2ab

abJΩ σ σ σ τ′ ′= = = = ,   (6.178) 

where the second invariant of the deviatoric stress, the octahedral shear 
stress, and the Von Mises effective stress are defined identically as in Sec-
tion 6.4: 

 2 / 2ab
abJ σ σ′ ′= ,  (6.179) 

 22 / 3 2 / 3Jτ σ= = , (6.180) 

     23Jσ = . (6.181) 
The plastic strain rate then follows as 

 
2

ˆ ˆ ˆ3
ˆ 22 2

P P P

J
λ λ λ

σΩ
′ ′ ′= = =Pε σ σ σ� , ( ˆ 0F = ), (6.182) 

and the plastic multiplier satisfies 

         
1/ 21/ 2 1/ 2ˆ ˆ ˆ( ) ( / ) ( / ) (2 )Pλ Ω Ω

−
⎡ ⎤′ ′= ∂ ∂ ∂ ∂ =⎣ ⎦

P P P Pε : ε σ : σ ε :ε� � � � . (6.183) 

The yield function is 
 2

ˆ ˆˆ ˆF k J kΩ= − = − , (6.184) 

with ˆ ˆ({ }, )k k Xς=  and the constraints 
 0  0, 0P Pˆ ˆˆ ˆF , Fλ λ= ≥ ≤ . (6.185) 

In rate independent plasticity, the plastic multiplier can be expressed as 
(Lubliner 1990) 
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1ˆ ˆ ˆ ˆ( / )  for 0 and 0,ˆ

ˆ    0                   for 0,       

ab ab
P

H F F H

F

σ σ
λ

−⎧ ∂ ∂ = ≠⎪= ⎨
⎪ <⎩

�
 (6.186) 

where hardening modulus Ĥ is obtained from the consistency condition 

    
ˆˆˆˆ ˆP F kF Hλ ς ς

ς ς
∂ ∂

= − = = −
∂ ∂∑ ∑

σ
σ σ

� � � , (for ˆ 0F = ). (6.187) 

When ˆ 0H = , as occurs in a perfectly plastic material, ˆPλ  is indeterminate 
(Lubliner 1990), but the magnitude of the plastic strain rate is still dictated 
by the constraint that the stress state remain on the yield surface during 
plastic loading.  The rate of plastic work and plastic volume change are re-
spectively 
      2

ˆ ˆ ˆˆ ˆ/(2 ) 0P ab P ab P P ab P P
ab ab abW Jσ β σ ε λ σ σ Ω λ Ω λ′ ′= = = = = ≥� � , (6.188) 

 . .
ˆ ˆ( / ) 0Pa P a

a aε λ σ ′= Ω =� . (6.189) 
From (6.188) and (6.189), respectively, it follows that plastic dissipation is 
always non-negative and the plastic strain rate is always isochoric. 

6.6 The Eshelby Stress 

The stress tensor Π� , work conjugate to the plastic velocity gradient in 
(6.32) in the setting of two-term multiplicative elastoplasticity, can be re-
lated to several quantities introduced by Eshelby (1951, 1975) in the con-
text of continuum elasticity theory.  This stress measure can be written, us-
ing (4.6), (4.7), or Table 4.1, along with (6.1)-(6.5), (6.16), and (6.33), as 
follows: 

 * 1 * 1  L PJ JΨ − − −= − = − = −L 1 L P PΠ M 1 F π F F Π F� � � , (6.190) 
where the superposed asterisk denotes the dual of a mixed variant tensor 
akin to (2.119).  Expressed in indicial notation, (6.190) is 

  . . . 1 . 1 . 1
. . . . L L b La P P B P A
b a B AM J F F J F Fβ β β β β

α α α α αΠ Ψδ π Π− − −= − = − = −� �� , (6.191) 
with 

    
. 1 . . 1

. .

. 1 . 1 . .
. .

( )

    ,

b L Lb L
a a

b L Lb L b b
a a a a

J F M F

J F M F

β β α
β α α

β α
β α

π Ψδ

Ψδ Ψδ σ

− −

− −

= − −

= − = −

� �

�  (6.192) 

and 

      
. 1 . .

. .

. . .
0 . 0

( )

      .

B B b b a
A b a a A

B a B B CB
A A a A AC

JF F

F P C

Π Ψδ σ

Ψ δ Ψ δ Σ

−= −

= − = −
 (6.193) 
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According to (6.161), quantity ˆ = −π π  serves as the conjugate stress to the 
plastic strain rate in geometrically linear elasto-plasticity, but only when 
the plastic strain rate is traceless.   

Tensors π , Π , or variations of them, exhibit interesting characteristics 
in the context of elastic bodies containing defects and are often referred to 
as elastic energy-momentum tensors (Eshelby 1951, 1975).  Following 
Maugin (1995), local stress measures *

x xT B T B∈ ×π  and *
0 0X XT B T B∈ ×Π  

in (6.192) and (6.193) are labeled spatial and referential Eshelby stresses, 
respectively.  It is noted as a point of clarification that a number of other 
tensors often differing in mathematical form and/or physical origin from 
those of Eshelby enter descriptions of thermodynamics of heterogeneous 
systems (Bowen 1967; Grinfeld 1991) and configurational (Gurtin 1995) 
or material forces (Maugin 1995).  For example, chemical potential tensors 
(Grinfeld 1981) can emerge in theories of phase transformations.   

Consider a nonlinear elastic body in the context of elastostatics (no iner-
tia) and in the absence of body forces and thermal effects.  Local balances 
of linear and angular momentum are, from (4.21) and (4.27), 

 : 0aA
AP = , . .

a bA aA b
A AF P P F= , (6.194) 

and the constitutive equations of elasticity theory are given by (5.44)-
(5.45), written here in terms of the deformation gradient ( , )X tF  as inde-
pendent state variable: 

 . 0

.

A
a a

A

P
F
Ψ∂

=
∂

, ( )0 0 , ( ),A X XΨ Ψ= F G . (6.195) 

Strain energy density per unit reference volume can be expressed as a se-
ries expansion along the lines of (5.62): 

 0
1 1 ...
2 6

ABCD ABCDEF
AB CD AB CD EFE E E E EΨ = + +^ ^ , (6.196) 

where elastic constants ABCD^  and ABCDEF^  are defined in (5.65) and 
(5.66) and may depend on orientation (via AG ) in anisotropic crystals as 
well as choice of material particle X in heterogeneous bodies.  Consider the 
material gradient of the strain energy density: 

 

0 0 0 0
0, . : ;

. exp

0 0
. :

. exp

       ,
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A B A B AA a A

B B

a
B Aa A

B

F
X F X

F
F X

Ψ Ψ Ψ Ψ
Ψ

Ψ Ψ

∂ ∂ ∂ ∂
= = + +
∂ ∂ ∂ ∂

∂ ∂
= +
∂ ∂

G
G

 (6.197) 

where the explicit material gradient is defined by (Eshelby 1975) 
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From (6.193)-(6.197), the divergence of the referential Eshelby stress is 
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 (6.199) 

with total covariant derivative of deformation gradient . : : . :
a a a
A B AB B AF x F= =  

defined in (2.116) and total covariant derivative of the first Piola-Kirchhoff 
stress . ( , )A

aP X t  given in (4.20).  The local material force per unit refer-
ence volume in a heterogeneous elastic body is then defined by 

 .0
;

exp

B
A A BAX

Ψ
Π

∂
= − = −

∂
f , (6.200) 

and clearly depends on variations in elastic constants with reference coor-
dinates, as indicated from the last of (6.199).  Such variations may arise in 
crystalline solids, for example, from variations in reference orientation of 
the crystal lattice (e.g., misoriented grains in a polycrystal or deformation 
twins), changes in material composition (e.g., inclusions or precipitates 
with different elastic constants than the surrounding medium), or defects 
(e.g., a dependence of elastic constants on spatially heterogeneous densi-
ties of voids, vacancies, or dislocations).  For a homogeneous body, 

0A =f .  The sign convention used for the material force is somewhat arbi-
trary; that of (6.200) parallels the sign convention typically used in particle 
mechanics (Appendix B), wherein a force is defined as a negative potential 
energy gradient with respect to position of a particle (see e.g., (B.2)). 

A total force acting on a volume V enclosed by surface S with unit nor-
mal N can be found by integrating (6.200) over the volume and application 
of the divergence theorem of Section 2.7.1 in reference coordinates: 

      . .0
;

exp

B B
A A A B A BA

V V V S

dV dV dV N dS
X
Ψ

Π Π
∂

= = − = − = −
∂∫ ∫ ∫ ∫F f , (6.201) 

where reference basis vectors ( )A XG  are presumed constant over the do-
main of integration of covector field ( , )A X tf .  When V contains a singular-
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ity—for example a discontinuity in elastic constants at the boundary sur-
face between an inclusion or crack and the surrounding medium—energy 
density 0Ψ  may not be differentiable or even continuous, Af  may not be 
bounded, and the divergence theorem cannot be applied as in (6.201).  In 
that case, a force acting on a singularity can be defined directly as the sur-
face integral 

 .B
A A B

S

N dSΠ= −∫F , (6.202) 

where S may fully or partially enclose the defect or source of singularity.  
Two different surfaces S enclosing or bordering the same defect or source 
of heterogeneity will produce the same force AF  because Af  vanishes in 
regions of V where elastic constants are uniform and where defects do not 
exist.  In this sense, surface integral (6.202) is said to be path independent. 

Extensions of the Eshelby stress of nonlinear elastostatics have ad-
dressed second grade elasticity (Eshelby 1975; Le and Stumpf 1996b, c), 
Cosserat media (Epstein and Elzanowski 2007), dynamics and inertia 
(Eshelby 1951; Maugin 1994; Cermelli and Fried 1997), nonlinear electro-
statics of dielectrics (Epstein and Maugin 1990), and ductile fracture 
(Maugin 1994).  In the context of a multiplicative decomposition of the de-
formation gradient, differential-geometric identities for the divergence of 
Π  in terms of connection coefficients formed from a lattice-preserving de-
formation map were derived by Epstein and Maugin (1990).  Entire texts 
have been devoted to the subject of material forces or mechanics in mate-
rial space (Maugin 1993; Kienzler and Herrmann 2000).  In such treat-
ments (see also Maugin 1995), governing equations of continuum mechan-
ics are written entirely referred to referential or material coordinates, with 
such equations often involving Eshelby-type stress measures.   

A quantity similar, but not identical, to π  of (6.192) was introduced by 
Eshelby (1951) to describe the force per unit volume acting on a singular-
ity in an otherwise linear elastic body.  In linear elasticity, (6.194)-(6.202) 
are replaced by their linearized spatial analogs as follows.  Quasi-static 
momentum balances, in the absence of body forces, are 

 ; 0ab
bσ = , ab baσ σ= , (6.203) 

constitutive equations (5.273) and (5.275) are 

 
( );

ab

ab a bu
Ψ Ψσ
ε
∂ ∂

= =
∂ ∂

, ( ), ( ),a x xΨ Ψ= ε g , (6.204) 

and strain energy density (5.304) in the absence of temperature effects is 

 ; ;
1 1
2 2

abcd abcd
ab cd a b c du uΨ ε ε= =^ ^ , (6.205) 
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where generally anisotropic, second-order elastic constants satisfy symme-
try conditions ( )( )( ( ), ) ab cdabcd

a x x =g^ ^ .  The spatial gradient of the strain 
energy density is 
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 (6.206) 

where the explicit gradient with respect to position of the particle in ques-
tion is defined by 
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From (6.203)-(6.207), and from the compatibility conditions [ ]; 0a bcu = ,  
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 (6.208) 

where the original Eshelby stress measure in linear elastostatics, π� , is de-
fined as (Eshelby 1951) 

 Ψ= − ∇π 1 σ u� , . .
;

b b bc
a a c auπ Ψδ σ= −� . (6.209) 

Notice that π  of (6.192) differs from π�  of (6.209) by the presence of the 
displacement gradient in the rightmost term of the latter.  The local mate-
rial force per unit volume in a heterogeneous elastic body is defined as 

 .
; ...., ; ;

exp

1
2

b bcde
a a b a b c d ea u u

x
Ψ π∂

= − = − = −
∂

� ^f , (6.210) 

and depends on variations in elastic constants with coordinates ax .   
A total force acting on volume v enclosed by surface s with unit normal 

n can be found by integrating (6.210) over that volume and application of 
the divergence theorem of Section 2.7.1 in spatial coordinates: 

              . .
;

exp

b b
a a a b a ba

v v v s

dv dv dv n ds
x
Ψ π π∂

= = − = − = −
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� �F f , (6.211) 

where basis vectors ( )a xg  are required to be constant over the domain of 
integration.  When volume v contains a singularity (e.g., a jump disconti-
nuity in the gradient of strain energy density across an internal boundary 
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within v), the divergence theorem cannot be applied as in (6.211).  In that 
case, the material force can be defined as the surface integral 

 .b
a a b

s

n dsπ= −∫
�F , (6.212) 

where s may fully or partially enclose the defect, heterogeneity, or source 
of singularity.  Because 0a =f  in parts of volume v where elastic constants 
are uniform and where defects do not exist, (6.212) is path independent. 

For situations in which a region of the body contains a singularity, strain 
energy density may not be differentiable or even continuous within the re-
gion.  For example, for a stressed region containing a void or crack, a jump 
in mass density and hence strain energy per unit volume may exist be-
tween the elastic medium ( 0 0ρ > ) and the empty region inside the void or 
open crack ( 0 0ρ = ).  In such cases, the gradient of the strain energy den-
sity is not bounded, and the divergence theorem cannot be applied as in 
(6.211).  Similarly, (6.207) and (6.211) would not apply for a region con-
taining a dislocation or disclination line or loop in the context of linear 
elasticity (Sections C.1 and C.2 of Appendix C).  For example, from 
(C.152) the energy gradient per unit length of dislocation line is singular as 

0R → : 

 
2 2 2

, 2

ˆ ˆˆln ln
4 4 4

a
aa

C C

xKb R b R KbK
x R R Rπ π π

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
= +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, (6.213) 

where the first term on the right of (6.213) is nonzero if elastic coefficient 
K̂  is permitted to vary with x, though the analytical derivation of (C.152) 
assumes constant elastic moduli.  While the total energy of the dislocation 
will not depend on its position in an infinite medium, this energy can de-
pend on position in a finite medium (Phillips 2001).  For the elastic sphere-
in-hole models of point defects of Section C.3 (Bitter 1931; Eshelby 1954, 
1956; Teodosiu 1982), the divergence theorem used in (6.211) would also 
not apply, since the strain energy density is not necessarily differentiable 
or even continuous across the interface between the sphere (defect) and the 
surrounding medium.  In all of these situations involving singularities, one 
can still define a global material force acting on the singularity via a sur-
face integral of the type (6.212), presuming that the integrand .b

a bnπ�  is well 
defined along the surface of integration.  Surface s may or may or may not 
completely enclose the defect, and the surface integral is path independent 
so long each path considered bounds the same defect(s).   

For a body containing a notch or crack, the projection in the direction of 
extension 1e  of surface integral .b

a bnπ�  along an open contour c (dotted line 
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in Fig. 6.2) enclosing the notch tip or crack tip can be associated with the 
J-integral of fracture mechanics (Rice 1968; Maugin 1993, 1994, 1995): 

 1 1 ,1( )a
a

c c

dc n t u dcΨ= = −∫ ∫e πn�iJ . (6.214) 

The quantity J  exhibits dimensions of energy per unit area and is often 
called an energy release rate.  This quantity can be compared to the energy 
required to generate free surface area, i.e., to extend a sharp crack, within 
an elastic solid (Griffith 1921): crack extension is predicted when J  at-
tains a threshold value for a particular material.  When contour c is col-
lapsed to the free surface of a smooth notch tip c′ ,  

 1 1lim
c c

c c

dc dcΨ
′→

′

⎡ ⎤
′= =⎢ ⎥

⎣ ⎦
∫ ∫e πn n e�i iJ , (6.215) 

since traction a ab
bt nσ=  vanishes along free surface c′ .  When c is taken 

as a closed contour about a region containing no defects or heterogeneities, 
J  vanishes identically for that region, implying path independence of the 
J-integral of (6.214) (Rice 1968).  Extensions of the J-integral to nonlinear 
and inelastic behavior are possible (Rice 1968; Maugin 1993, 1994, 1995). 
 

                                
Fig. 6.2 Contour used in evaluation of J-integral about a notch or crack tip 

6.7 Elastoplasticity of Grade Two 

The present Section generalizes second grade nonlinear elasticity of Sec-
tion 5.7 to crystals with defects.  Specifically, the present kinematic de-
scription follows from decomposition (6.1): ., . . .

a a La P
A A Ax F F F α

α= = .  A ver-
sion of Hamilton’s principle is employed in which the stress-free 
intermediate configuration B�  of Fig. 3.4, and hence components of plastic 
deformation .

P
AF α , remain stationary with respect to variational deriva-

tives.  This version of Hamilton’s principle furnishes equilibrium equa-
tions and traction boundary conditions for the instantaneous elastic re-
sponse from the intermediate configuration.  Kinetic equations for 
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evolution of the plastic deformation and relaxed intermediate configuration 
are not provided by this approach, which deals only with non-dissipative 
part of the response, in the absence of heat conduction, heat sources, and 
temperature gradients.  Much of what follows in Section 6.7 is based on 
the theory of Teodosiu (1967a, b, 1968).  Similar, but not identical, ap-
proaches generalizing Toupin’s second grade elasticity theory (Toupin 
1962, 1964; see also Section 5.7) to account for plastic slip and multiplica-
tive kinematics were forwarded by Le and Stumpf (1996b, c) and Gariki-
pati (2003).   

6.7.1 Covariant and Variational Derivatives 

Recall from (3.70) that the lattice deformation gradient ( , )X tLF  provides 
a first-order accurate approximation of the length and direction of a differ-
ential line element mapped from the intermediate configuration to the cur-
rent configuration: d d= Lx F x� .  A second-order accurate approximation is 
obtained by writing the inverse of (3.68) and retaining the second-order 
term in the Taylor series expansion, leading to 

 . :
1( )
2

a La La

X X
dx X F dx F dx dxα α β

α α β= +� � � , (6.216) 

where the base point of the differential line element is assigned to location 
X of the material particle.  The total covariant derivative of the lattice de-
formation is, from the inverted form of (3.69) and the definition in the last 
of (3.36) of partial differentiation with respect to anholonomic coordinates 
xα� , 
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. , . . . .
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χ χ
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Γ Γ

Γ Γ

Γ Γ

Γ Γ

−

−

= − +

= + −

= + −

= − −

�
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.

.. .. ..
. . .         ( ) ,

La

g
a a Lc Lb La

bc bc

F

F F F

χ
βα χ

χ
α β βα χΓ Γ Γ= − − �

 (6.217) 

where ..a
bcΓ  are components of the crystal connection of (3.190) and ..

g
a

bcΓ  
and ..χ

βαΓ�  are coefficients of connection coefficients used for coordinate 

systems on B and B� , respectively.  In general, . :
LaF α β  consists of 27 inde-
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pendent entries.  When the torsion of crystal connection vanishes corre-
sponding to a vanishing of the dislocation density tensor of (3.214), and 
when a symmetric connection is used for the intermediate configuration, 
then the following conditions hold: 
     [ ]

.. 0a
bcΓ = , [ ]

.. 0χ
βαΓ =� , [ ] [ ] [ ]. : . ; . , 0La La LaF F Fα β α β α β= = = , . .,

La aF xα α= , (6.218) 

in which case ( ). : . :
La LaF Fα β α β=  consists only of up to 18 independent en-

tries.  From the last of (6.218), when such conditions hold, the lattice de-
formation is integrable and the elastic response of grade two becomes 
identical to that addressed in Section 5.7 of Chapter 5, with reference co-
ordinates AX of Section 5.7 replaced with (now holonomic) intermediate 
coordinates xα� . However, for the general situation considered in what fol-
lows in Section 6.7, (6.218) does not apply, the crystal may contain defects 
such as dislocations, and the constitutive response may differ from that 
predicted in the context of holonomic elasticity of grade two discussed in 
Section 5.7.  Extending (5.413) and results of Eringen (1962), and specify-
ing intermediate external basis vectors with vanishing Christoffel symbols 
(i.e., .. 0χ

βαΓ =� ), the following identity applies:  

 ..
. : . , . . . ; .( )

g
La La a Lc Lb La Lb

b bc bF F F F F Fα β α α β α βΓ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

, (6.219) 

from which it follows that for the inverse of the lattice deformation, 
           1 1 1 1 1

. . ; . ; . . . . :0 ( )La L L L L L La
c b c b a b cF F F F F F Fα α α β χ

α χ β
− − − − −= ⇒ = − . (6.220) 

Recall from Section 5.6.1 the definition of the variational derivative.  
Let ( , )a a Ax x X Λ= , where Λ  is a scalar parameter.  In the present setting, 
the first variation of x is defined as follows, generalizing (5.373):  

 
,
0

a
a

X

xx d
Λ

δ Λ
Λ

=

∂
=
∂ PF

, (6.221) 

where by definition, reference coordinates AX  of material particle at X 
and values of plastic deformation gradient 1

. . .( )P L a
A a AF X F Fα α−=  are held 

fixed during the variation (Teodosiu 1967a).  For a scalar function 
. . :( , , ,...)a La Laf f x F Fα α β=  depending on spatial position, lattice deforma-

tion gradient, and total covariant derivatives of lattice deformation, the 
first variation is 

 
,
0

X

ff d
Λ

δ Λ
Λ

=

∂
=
∂ PF

. (6.222) 

Since reference coordinates are held fixed in the variational derivative,  
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 , , ,( ) ( )A A Af f fδ δ δ= = . (6.223) 
The first variation does not commute with partial differentiation in the spa-
tial frame / a

a x∂ = ∂ ∂ , as indicated in (5.379) which also applies here.  For 
anholonomic partial derivatives, 

      1 1 1
, , . . , . , ,( ) ( ) ( ) ( )P A P A P A

A A Af f F F f F f fα α α α αδ δ δ δ δ− − −= = = = , (6.224) 
since plastic deformation is stationary during the variation: 

 .( ) 0P
AF αδ = , 1

.( ) 0P AF αδ − = , 0PJδ = , 1 0PJδ − = . (6.225) 
The following formulae for variations of kinematic quantities are useful, 
following from (5.376)-(5.378), (6.1), and (6.225): 

   
1 1

. ., . . , . ;

1
. ; . ; .

( ) [( ) ]

         ( ) ( ) ,

La a P A P A a a b
A A A b

P A a b a Lb
b A b

F x F F x F x

F x F x F
α α α

α α

δ δ δ δ

δ δ

− −

−

= = +

= =
 (6.226) 
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. . ., . .,

1 1 1
. . . ; . ;

( ) ( )

           ( ) ( ) ,

L P A P A
a A a A a

P A B b L b
A b a B b a

F F X F X

F F F x F x

α α α

α α

δ δ δ

δ δ

−

− − −

= =

= − = −
 (6.227) 

         1 1 1 1
. . ;( ) ( ) ( )L P P P a A L a
A a aJ J J J J J J F F J xδ δ δ δ δ− − − −= = = = . (6.228) 

The first variation of total anholonomic covariant derivative of the lattice 
deformation, . :

LaF α β , is found using (5.376), (6.219), (6.224), (6.226), and 
(6.227), as given by Teodosiu (1967a): 
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χ χ
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δ

− −⎡ ⎤− +⎣ ⎦
= − +

=

 (6.229) 

6.7.2 Constitutive Assumptions and Governing Equations 

Consider an elastic-plastic material featuring an instantaneous response 
from the intermediate configuration, with this response characterized by 
hyperelasticity of grade two.  The strain energy of the solid depends on the 
total covariant derivative of the lattice deformation (6.217) in addition to 
the lattice deformation gradient, reference position of a material particle 
(in the case of heterogeneity) and intermediate basis vectors (in the case of 
anisotropy).  The strain energy density is written in functional form as 
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 ( ). . :, , ,La LaF F Xα α β αρψ Ψ Ψ= = g� �� � . (6.230) 

By assertion, the balance of mass in (4.10)-(4.12) applies, as do (3.48)-
(3.50) and (6.2):  

         0 / det L PJ g G J Jρ ρ ρ ρ= = =F , 1
0

L PJ Jρ ρ ρ −= =� . (6.231) 
Contrarily, stress and traction definitions in Section 4.1.1, linear and angu-
lar momentum balances in Section 4.1.3, and the treatment of thermody-
namics of crystalline solids in Sections 4.1.4 and 4.2 do not apply for the 
generalized continuum theory described in what follows in Section 6.7.   

In the present Section, entropy production and temperature rates are as-
sumed to vanish; hence free energy and internal energy are considered 
equivalent to strain energy.  Heat conduction, heat sources, and tempera-
ture gradients are not considered in the present Section.  Internal state vari-
ables are not considered explicitly, but it will be demonstrated later in Sec-
tion 6.7.3 that the skew part of the total covariant derivative of the lattice 
deformation is directly related to the dislocation density tensor for a crys-
talline solid and hence can be used to represent the strain energy contribu-
tion from dislocations.  Furthermore, considered for simplicity in what fol-
lows is the quasi-static case, in which velocities and accelerations are 
omitted.  Potential energies from conservative body forces are also omitted 
for simplicity of presentation, but these forces could be incorporated easily 
by subtracting the appropriate term from the Lagrangian.   

A Lagrangian density function L�  per unit intermediate volume V�  and 
Lagrangian functional L  of (5.394) become simply 
      L Ψ= −� � , 

vV V V

LdV dV dV dvΨ ρψ ρψ= = − = − = − = −∫ ∫ ∫ ∫
� � �

� � � � ��L E , (6.232) 

since kinetic energy 0=K  and global potential energy 0Φ =  by defini-
tion in the present simplified case.  The appropriate generalization of Ham-
ilton’s principle (5.380) is written as follows in the spatial configuration, in 
accordance with (5.421): 

         ( ) ( )
2 2

1 1

0
t t

t v t s

dv dt D ds dtδ δ δ δ
⎡ ⎤ ⎡ ⎤

+ + + =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∫ ∫ ∫ ∫b x t x h xi i iA , (6.233) 

with ( , )x th  a generalized surface traction (force per unit spatial length) 
work conjugate to the normal derivative of the variation of spatial motion 
at the surface, ;( ) b

a a bD x x nδ δ=  (Teodosiu 1967a).  Recall that the normal 
derivative D of an arbitrary function is introduced in (5.416), along with 
tangential derivative aD .  The body force vector per unit current volume is 

( , )x tb , and ( , )x tt  is a surface traction (force per unit spatial area).  Sub-
stituting from (6.232), 
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 (6.234) 

since ( ) 0P PV J V J Vδ δ δ= = =� .  Thus the equality 
         1 ( ) 0L a a a

a a a
v v s

J dv b x dv t x h D x dsδΨ δ δ δ− ⎡ ⎤− + + + =⎣ ⎦∫ ∫ ∫�  (6.235) 

must hold for each time in the (arbitrary) interval 1 2t t t≤ ≤ .  The first inte-
gral on the left side of (6.235) can be written using (6.230) as 
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. . :
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∫ ∫
� �� , (6.236) 

where the integrand on the right of (6.236) is expressed as follows: 
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which follows from the product rule, (6.219), (6.226), and (6.229), since 
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 (6.238) 

Second-order stress tensor ( , )dc x tσ  and third-order hyperstress tensor 
( , )bdcH x t  are defined, respectively, as follows: 
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    . 1 1
. .

. . : ;

dc da c da L L Lb Lc
a La La

b

g g J J F F
F F β α

α α β

Ψ Ψσ σ − −
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                  . 1
. .

. :

bdc da b c L da Lb Lc
a LaH g H J g F F

F β α
α β

Ψ− ∂
= =

∂

�
. (6.240) 

The stress in (6.239) exhibits, in physical components, dimensions of force 
per unit spatial area or energy per unit spatial volume, while the hyper-
stress in (6.240) exhibits dimensions of force per unit spatial length or en-
ergy per unit spatial area.  When (6.218) applies, 1

. ;( ) 0L La
aJ F α

− =  and 
bdc cdbH H= , but in general the hyperstress (6.240) consists of 27 inde-

pendent components, in contrast to that of the holonomic theory in (5.428) 
for which such symmetry conditions hold.  The rank two stress of (6.239) 
consists of up to 9 independent entries.  The first and last contravariant in-
dices of the hyperstress in (6.240) are transposed in the definition used by 
Teodosiu (1967a).  Substituting stress definitions (6.239) and (6.240) into 
(6.236), 
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Applying the divergence theorem (2.193) in spatial coordinates leads to 
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 (6.242) 

Using (5.416)-(5.418), Stokes’s theorem (2.198), and integration by parts, 
the rightmost term in the surface integral in (6.242) can be expressed as 
follows (Teodosiu 1967a), similarly to (5.431): 
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 (6.243) 

where . . .
.;( ) ( )c b c b c b

b a a b a bD H H D H n= −  is the surface gradient of the hyper-
stress and bc b cD nκ = −  is the symmetric second fundamental form of the 
oriented surface given in (5.418).  Contravariant indices on the hyperstress 
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in the final integrand of (6.243) are transposed with those of (5.431).  Sub-
stituting (6.242) and (6.243) into (6.235), 

      

. .
;

. . .
.

( ) ( )

         ( ) ( ) ,

c a b c a
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∫ ∫

∫
 (6.244) 

similarly to (5.432).  Requiring that (6.244) must hold for arbitrary varia-
tions axδ  and normal surface variations ( )aD xδ , the following equilib-
rium equations and boundary conditions emerge:  

 .
; 0c

a c abσ + = , (6.245) 
 . . .

.( ) ( )c b c d b c
a a c a d b c bc c a bt n H n n D H nσ κ κ= − − − , (6.246) 

 .b c
a a b ch H n n= . (6.247) 

Relation (6.245) is the static balance of linear momentum.  Relation 
(6.246) is the boundary condition for the traction.  Relation (6.247) is the 
boundary condition for the hypertraction.  When . .b c c b

a aH H= , (6.245)-
(6.247) are identical with (5.433)-(5.435) as originally derived by Toupin 
(1962) in the context of second grade nonlinear elasticity.  However, the 
stress and hyperstress of (6.239) and (6.240) entering these equilibrium 
equations and boundary conditions differ from those of Toupin (1962, 
1964) and Section 5.7 since those used here are defined as derivatives of 
strain energy with respect to the lattice deformation and its covariant de-
rivative as opposed to the total deformation and its covariant derivative.    

For the particular case when strain energy density does not depend on 
the total covariant derivative of the lattice deformation gradient, i.e., when 
(6.230) reduces to .( , , )LaF Xα αΨ Ψ= g� � � , the stress dcσ  becomes identical 
to the Cauchy stress of nonlinear elastoplasticity (i.e., (6.27) and (6.239) 
become equivalent when the strain energy does not depend on internal 
state variables or . :

LaF α β ), and the hyperstress 0bdcH =  in (6.240).  Thus, 
in that particular case, (6.245) reduces to linear momentum balance (4.17) 
in the absence of spatial acceleration, traction boundary condition (6.246) 
becomes Cauchy’s relation (4.3), and the right side of (6.247) vanishes 
identically. 

A local balance of angular momentum can be obtained by forcing the 
strain energy density to remain invariant under rigid body rotations of the 
spatial frame, following procedures outlined in Sections 5.6 and 5.7.  Con-
sider a finite rotation . . .

ˆa a b
A b AF Q F→  as discussed in Sections 4.2.1 and 5.6.2.  

From (6.8), the lattice deformation and its total covariant derivative trans-
form in this case as . . .

ˆLa a Lb
bF Q Fα α→  and . : . . :

ˆLa a Lb
bF Q Fα β α β→ .  An infini-
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tesimal rotation is . .
ˆ ˆa a ac

b b bcQ gδ Ω= + , where skew rotation [ ]ˆ ˆ acacΩ Ω= .  
According to Toupin (1964), invariance of the strain energy density under 
infinitesimal rotations is sufficient to ensure invariance under finite rota-
tions.  Extending (5.409), the differential change of strain energy density 
under small rotations is 
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 (6.248) 

Requiring that (6.248) must vanish under small but otherwise arbitrary ro-
tations [ ]ˆ abdΩ  leads to the local balance of angular momentum for elastic-
plastic materials of grade two: 

 [ ] [ ]
1 1

:
. . :

0 0L L L L
b ba aL L

J d J F F
F Fα α β

α α β

Ψ ΨΨ− −
⎡ ⎤∂ ∂

= ⇒ + =⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

� �� . (6.249) 

From the product rule, the rank two stress in (6.239) can be expressed as 
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Substituting the antisymmetric part from (6.249) into (6.250) gives 
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 (6.251) 

where the rank three couple stress abcM  and rank two couple stress .c
dm  

are constructed from certain antisymmetric parts of the hyperstress: 

  [ ].1
2

c baabc abd c
dM m Hε= = , [ ]. c bac abc cab

d dab dab dabm M H Hε ε ε= = = − . (6.252) 
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Local angular momentum balance (6.251) can thus be written as follows: 

       [ ] [ ] . .
...; ; ;

1 0 0
2

ab ababc abd c ab d
c d c abc c dM m mσ σ ε ε σ− = − = ⇔ − = . (6.253) 

The symmetric part of the hyperstress, ( )c ab cba abcH H M= − , while not af-
fecting the angular momentum balance, does not generally vanish and is 
considered to result from a distribution of self-equilibrating internal forces.  
Relations (6.252) and (6.253) differ from (5.440) and (5.441) due to differ-
ent ordering of indices on the definitions of hyperstress and couple stress.  
Only when . .b c c b

a aH H= , as would result from compatibility conditions 
(6.218) on the lattice deformation, do the two sets of relations coincide. 

A frame indifferent version of strain energy function (6.230) is (Teodo-
siu 1968) 

 ( ), , ,L LE B Xαβ αβχ αΨ Ψ= g� � � � � , (6.254) 

where the symmetric lattice strain . .2 L L La Lb
abE C g F g F gαβ αβ αβ α β αβ= − = −�� � �  as 

in (6.4), and the covariant second lattice gradient (i.e., a kind of strain and 
rotation gradient) referred to the intermediate configuration satisfies 
    . :

L L La
aB F Fαβχ α β χ=�  (6.255) 

Contravariant hyperstress and stress tensors are then computed, respec-
tively, from the chain rule as 
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As an illustrative simple example, strain energy density (6.254) is writ-
ten as a Taylor series expansion to second order in lattice strains and sec-
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ond-order lattice deformation gradients about a reference state at which 
. .

La aF gα α=  and . : 0LaF α β = : 

 
0

1D
2

1             D K ,
2

L L L L

L L L L

E B E E

B B E B
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αβχδεφ αβχδε
αβχ δεφ αβ χδε

Ψ Ψ= + + +

+ +

� � � � � �^ ^

� � � �
 (6.258) 

where 0 (0,0, , )X αΨ Ψ= g� � �  is the strain energy density per unit volume at 
the reference state and the constant material coefficients at a material point 
X are defined as  
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A natural state in which both the stress and hyperstress vanish everywhere 
may not exist for a given material, and such a state may be an exceptional 
case rather than the norm.  None of the constants in (6.259) and (6.260) 
need vanish entirely in general, though certain symmetry properties result 
automatically from ( )

L LE Eαβ αβ=� � .  Spatial invariance of (6.254) ensures that 

(6.249) and angular momentum balance (6.253) are satisfied identically.  

6.7.3 Relationship to Dislocation Theory 

Recall from Section 3.3.2 the definitions of the second-order geometrically 
necessary dislocation density tensor referred to B� , specifically (3.222) and 
(3.224) that combine to yield 
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where the torsion of the crystal connection is, from (3.190) and (3.191), 
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 (6.262) 
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From (6.217), the skew part of the total covariant derivative of the lattice 
deformation is 

 

[ ] [ ] [ ]
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since [ ]
.. 0

g
a
bcΓ =  by definition (2.58), and where [ ]

.. 0χ
βαΓ =� , i.e., an external  

intermediate coordinate system with symmetric connection has been as-
sumed.  Combining (6.261)-(6.263), the dislocation density tensor can be 
expressed as 

 [ ]
1 1 1 1
. . . .. :( )L abc L L Ld L L
d c b aJ F F F F Fαβ α χ δ β

χ δα ε − − − −=� . (6.264) 

Assume next for illustrative purposes that the strain energy density of 
(6.230) depends on the covariant derivative of the lattice deformation gra-
dient only through the dislocation density tensor: 

 ( ). . . :, ( , ), ,La La LaF F F Xαβ
α α α β αΨ Ψ α= g� � � � . (6.265) 

Stress (6.239) and hyperstress (6.240) then become, in this particular case, 
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since from (6.264), 
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From (6.267), the hyperstress consists of only 9 independent components 
when (6.265) is used in place of (6.230).  The hyperstress vanishes when 
dislocation density (6.261) vanishes, in which case / 0χδΨ α∂ ∂ =� � .  Rela-
tionships between hyperstress or couple stress and dislocation density were 
derived by Kroner (1963b).  Garikipati (2003) demonstrated relationships 
among slip gradients, three-body terms in interatomic potentials reflecting 
bond angle dependence of interatomic forces, and hyperstresses in the con-
text of Toupin’s nonlinear elastic theory of grade two (Toupin 1962).   

The approach outlined Section 6.7 accounts for the second grade hy-
perelastic response of the material from intermediate configuration B� , but 
does not account for evolution of this intermediate configuration, since ki-
netic relations for the time rate of plastic deformation, PF� , are not ad-
dressed.  Postulation of such relations in a thermodynamically admissible 
manner requires consideration of the dissipation equality and thermal ef-
fects, phenomena which are excluded by use of Hamilton’s principle for 
conservative systems (Eringen 1962).  More recent approaches considering 
dissipative thermodynamics of materials whose free energy may depend on 
higher-order gradients of lattice deformation include those of Le and 
Stumpf (1996b, c), Bammann (2001), Regueiro et al. (2002), and Clayton 
et al. (2004b, 2006).  In these approaches, generalized conservation laws 
for momentum and energy are often postulated directly rather than derived 
from the  first variation of an action integral.  Presumably, the kinetic law 
for the rate of plastic deformation should include a dependence on tensors 

. :
LaF α β  or αβα� , since geometrically necessary dislocations are thought to 

affect strain hardening (Ashby 1970; Fleck and Hutchinson 1993; Fleck et 
al. 1994; Steinmann 1996; Gao et al. 1999; Gurtin 2000, 2002; Acharya 
2001; Regueiro et al. 2002; Voyiadjis and Abu Al-Rub 2005; Abu Al-Rub 
and Voyiadjis 2006).  Zubelewicz (2008) developed a constitutive model, 
based on non-equilibrium thermodynamics and a measure of slip incom-
patibility, for describing heterogeneous dislocation microstructures and 
strong dynamic strain hardening that emerge in crystalline metals sub-
jected to shock loading.  A complete continuum theory incorporating de-
pendence of thermodynamic potentials and kinetic relations on the disloca-
tion density tensor, as well as the disclination density tensor (see Section 
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3.3.3), is presented later in Section 9.4 of Chapter 9, a Chapter dealing 
with inelasticity theories of a more general scope.  



7 Residual Deformation from Lattice Defects 

An element of crystalline material through which a net flux of dislocations 
has passed exhibits plastic shape change.  Dislocation lines within the ele-
ment, i.e., displacement discontinuities across the slip plane in the context 
of Volterra defects may also contribute to this plastic deformation.  How-
ever, plastic deformation, according to traditional definitions, does not ad-
dress additional changes in dimensions of the body resulting from residual 
elastic deformation associated with local stress fields induced by defects.  
Mura (1982) labels these local, self-equilibrated stresses (i.e., residual 
stresses) eigenstresses.   

Dislocation glide preserves the volume of the crystal, and purely tangen-
tial displacement discontinuities such as crystallographic slip do not alter 
the volume occupied by the material.  Yet ample evidence suggests that 
dislocation lines affect the total volume of crystals (Zener 1942; Schmid 
and Boas 1950; Holder and Granato 1969; Wright 1982).  Stored energies 
associated with elastic fields of defects are important because they affect 
recrystallization (Schmid and Boas 1950; Taheri et al. 2006) and the frac-
tion of stress power converted to temperature rise at high deformation rates 
(Rosakis et al. 2000) that can result in shear localization in metals during 
dynamic failure events.  Large numbers of dislocations, twins, and stack-
ing faults can be generated during shock or impact loading (Rohatgi and 
Vecchio 2002), and presumably the corresponding volume changes, shape 
changes, and stored energies associated with local stress fields of these de-
fects affect the observed material response under such conditions (Clayton 
2009a, c). 

Defects of interest in Sections 7.1-7.3 of Chapter 7 are those that can be 
described by displacement discontinuities tangential to an internal surface 
(i.e., crystallographic plane) in a volume element of the solid.  These in-
clude gliding straight or curved dislocations lines, dislocation loops, as 
well as partial dislocations.  Motion of dislocations through a region of the 
crystal results in plastic shape change as mentioned above, but preserves 
the lattice spacing (Bilby and Smith 1956; Bilby et al. 1957), as discussed 
in detail in Section 3.2 of Chapter 3; this requires cooperative motion of 
leading and trailing partials for the case of partial dislocations.  Residual 
elastic stress fields from disclination lines and loops are also considered in 
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Chapter 7, though their contribution to the plastic shape change (Li and 
Gilman 1970) is not addressed explicitly here.  Considered in Section 7.4 
are point defects (Eshelby 1954, 1956) that may have finite intrinsic vol-
umes (e.g., volume changes per defect on the order of the atomic volume).   

In Chapter 7, a three-term decomposition of the deformation gradient, 
= E I PF F F F , is assigned to describe the kinematics of a volume element of 

crystalline material containing lattice defects, following (3.137).  In order 
to delineate residual elastic deformation from recoverable elastic deforma-
tion and from plastic deformation, terms entering this decomposition are 
defined in a precise manner in Section 7.2.  Some repetition of definitions 
given in Chapter 3 is unavoidable.  For simplicity, isothermal conditions 
are assumed throughout Chapter 7, meaning thermal expansion is omitted.  
Elastic tangent map EF  accounts for deformation due to applied stresses as 
well as rigid body rotations of the lattice.  Plastic tangent map PF  results 
from the cumulative effects of fluxes of dislocations (Orowan 1940; Mura 
1968; Lardner 1969) and from slip discontinuities associated with defects 
within the element (Teodosiu 1970; Rice 1971).  Intermediate term IF  (or 
its stretch or rotational components) has been introduced in a number of 
works with various definitions (Kratochvil 1972; Bammann 2001; 
Regueiro et al. 2002; Clayton and McDowell 2003a; Hartley 2003; Clay-
ton et al. 2004b, 2005, 2006; Gerken and Dawson 2008).  In Section 3.2.9, 
a derivation of IF  was obtained in (3.148) by volume averaging local con-
tinuum fields over an element of a (poly)crystal featuring elastic-plastic re-
sponses of the form in (3.145) at a lower length scale.  In contrast, IF  as 
defined in Chapter 7 represents the average residual elastic deformation of 
the element of crystal induced by the local stress and strain fields of the 
defects contained within it.  Thus, in Chapter 7, it corresponds exactly to 
the volume average of the residual elastic deformation in the context of de-
fect field theories (Kroner and Seeger 1959; Willis 1967; Teodosiu 1982).   

In Section 7.2, the externally unloaded volume element of crystalline 
material is treated as a hyperelastic body of grade one with homogeneous 
elastic constants, in static equilibrium, and containing internal displace-
ment discontinuities across which traction is continuous.  The element is 
free of external traction but may support internal (i.e., residual) stresses.  
Self-equilibrium conditions result in an integral equation for IF .  For lin-
ear elastic constitutive behavior, IF  reduces to the unit tensor in rectangu-
lar Cartesian coordinates, but IF  does not so reduce for nonlinear constitu-
tive behavior.  Analytical elasticity solutions for defect energies (Appendix 
C) are considered along with experimental data (Clarebrough et al. 1957) 
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to confirm accuracy of the theory for predicting residual volume changes 
associated with line defects. 

In Section 7.3, the externally unloaded volume element is identified as a 
set of discrete atoms in static equilibrium and free of external forces.  The 
lattice statics description of Section B.2 in Appendix B applies.  According 
to this description, interatomic forces vanish in a perfect crystal free of de-
fects, but nonzero forces may exist among atoms when they are arranged 
in an imperfect way (i.e., when defects are present).  The self-equilibrium 
conditions are equivalent to vanishing of static components of the average 
virial stress for the set of atoms (Huang 1950; Zhou 2003).  When atomic 
interactions are harmonic, equilibrium demands that IF  as defined in Sec-
tion 7.3 should reduce to the unit tensor.  In the more general case of an-
harmonic interactions that may be physically significant in the vicinity of 
defect cores where large atomic displacements arise, the derivations in 
Section 7.3 suggest that IF  could be non-negligible. 

In Section 7.4, average deformations of an element of crystal containing 
a distribution of point defects are addressed.  Multiplicative decomposition 
(3.128) applies, =L E VF F F , with VF  accounting for volume changes 
from point defects and LF  the total lattice deformation.  The total volume 
change per point defect is derived by combining the volume change per 
defect predicted by the linear elastic sphere-in-hole model of Section C.3 
of Appendix C (Bitter 1931; Teodosiu 1982) with a correction for nonlin-
ear elasticity (Eshelby 1954; Holder and Granato 1969).  Analytical solu-
tions are considered with experimental data (Nilan and Granato 1965) to 
confirm accuracy of the theory for predicting residual volume changes as-
sociated with vacancies.      

7.1 Multiplicative Kinematics 

Consider a volume element of a crystal containing lattice defects.  This 
element is larger than the average atomic spacing, but may be of smaller 
dimensions than the entire crystal.  Static (i.e., null inertia) and isothermal 
conditions are assumed.  Deformation of the element is described by map-
pings between tangent spaces of configurations, as shown in Fig. 7.1.   

Reference configuration 0B  is treated as a perfect lattice.  The position 
vector jR  of atom j (e.g., the equilibrium position of its nucleus) relative 

to the origin of a Cartesian coordinate system in an infinite lattice in the 
reference configuration is given by periodicity relations (3.4) and (B.38): 
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    ( ) ( ) ( )
3

0

1
( )l i i

k k ij
i

l m l
=

= = + = +∑R R R R A , ( il ∈ , 0 1im≤ < ). (7.1) 

In (7.1), 0( )kR  is a basis vector for atom k of the basis at each Bravais lat-
tice point, ( )lR  is a Bravais lattice vector denoting the position of primi-
tive unit cell l, and iA  is a primitive Bravais lattice vector.  Recall that in a 
monatomic lattice with one atom per unit cell, basis vectors are redundant 
and 0( ) 0k =R , though the treatment of Chapter 7 is not restricted to mona-
tomic crystal structures. 
 

 
Fig. 7.1 Configurations, surface coordinates and tractions, and tangent maps 

7.1.1 Plastic Deformation 

Intermediate configuration B  in Fig. 7.1 differs from 0B  as a result of in-
fluences of cumulative motion of lattice defects and perturbations of 
atomic positions resulting from these defects.  Configuration B  is by defi-
nition free of external traction ( 0=t ) and free of internal stresses.  For a 
crystal containing a single dislocation, a singular plastic deformation map 
can be defined as in (3.85): 
 ,δ χ= + ⊗PF 1 b M X M , (7.2) 
where 1 is the unit tensor, b  is the Burgers vector, M is the normal to the 
slip surface in the reference configuration, (.)δ  is Dirac’s delta function, 
and χ  is the characteristic function that is unity at reference coordinates X 
on slipped surface Σ  and zero elsewhere.  The Cartesian coordinate sys-
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tem for X is chosen with its origin in the slip plane.  A singular dislocation 
density tensor corresponding to (7.2) and first listed in (3.86) is 
 ( )0 0 Lδ= ⊗α b ξ , (7.3) 
where 0ξ  is the unit tangent to dislocation line of length L in the reference 
configuration.  For a collection of j straight stationary dislocation line 
populations of density (length per unit reference volume) 0

iρ , Burgers vec-
tor ib , and unit tangent 0

iξ , dislocation density (7.3) can be extended to 

 1
0 0 0 0

1

j
i i i

iL

V dL ρ−

=

= ⊗ = ⊗∑∫α b ξ b ξ , (7.4) 

as indicated in (3.87).  The total volume occupied by the crystal element in 
the reference configuration is denoted by V.  The second of (7.4) pertains 
to a total of j dislocation populations with the same tangent line and local 
Burgers vector for each value of i.   

A more general definition, first listed in (3.97), of average plastic de-
formation accounts for the history of generation and motion of defects 
within a material element, in which case  
 =P P PF L F , 

0t=
=PF 1 . (7.5) 

The average plastic velocity gradient PL  is dictated by the flux ς  of mo-
bile dislocations as in (3.98)-(3.99), written in indicial notation as  

               .
PL α αχδ

β χδβς ε= , 1

1

j
i i i i i i i

iL

V b v dL b vαχδ α χ δ α χ δς ξ ρ ξ−

=

= = ∑∫ , (7.6) 

where iξ  and iv  are respectively the uniform tangent line and velocity of 
every dislocation in population i.  Since dislocation segments have perpen-
dicular velocities and tangent lines, the isochoric plastic deformation con-
ditions tr( ) 0P PJ J= =PL  and 1PJ =  follow automatically from (7.6).  In-
troducing two quantities— im ,  the unit normal to the slip plane and is , a 
unit vector in the direction of slip—(7.6) reduces to (3.100), as typically 
encountered in crystal plasticity theory of Sections 3.2.6 and 6.3: 
 i i i i i i i i

i i

b vρ γ= ⊗ = ⊗∑ ∑PL s m s m . (7.7) 

Since i i⊥s m , again 0PJ =  and 1PJ = .  In summary, according to de-
scriptions in terms of single dislocations (7.2), dislocation flux (7.6), or 
crystal plasticity (7.7), plastic deformation is always isochoric.  
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7.1.2 Lattice Deformation 

Let EF  denote the tangent map to externally stressed configuration B , as 
denoted generally by 0≠t  in Fig. 7.1, from self-equilibrated configuration 
B , with 0=t  in Fig. 7.1.  Let ia  denote a primitive Bravais lattice vector 
of (7.1) mapped to intermediate tangent bundle TB : 
 i i= Ia F A , . .

I A
i A ia F g Aα α β

β=  (7.8) 

with .Ag β  the shifter between coordinate frames in 0B  and B , omitted in 
the direct tensor notation in the first of (7.8).  When coincident coordinate 
systems are used in these two configurations, . .A Ag β βδ= .  Note that lattice 
vectors are not affected by PF , in accordance with (3.107).  Lattice vectors 
deform from TB  to TB  according to (3.109): 
 i i i= =E La F a F A , . . .

a E a L A
i i A ia F a F g Aα α β

α β= = . (7.9) 

where the total lattice deformation for the volume element is =L E IF F F .  
Under a homogeneous deformation, basis vectors 0( )kR  in (7.1) deform 
similarly to primitive Bravais lattice vectors iA  in (7.8) and (7.9), and the 
final position of atom j may also change by a translation that is uniform for 
each species in the basis but that may differ among species (Born and 
Huang 1954).  This translation may be due, for example, to polarization in 
an applied electric field or inner displacements among sub-lattices in a 
non-centrosymmetric polyatomic crystal (Cousins 1978).  Relations (7.8) 
and (7.9) generalize the Cauchy-Born hypothesis (Born and Huang 1954) 
of Section 3.1.2, distinguishing effects of recoverable ( EF ) and residual 
( IF ) deformations.  Rigid body rotations of the element are included in the 
rotational part of the polar decomposition of LF , denoted by LR .   

Reference Bravais lattice vectors iA  are uniform with respect to posi-
tion in a sample of a perfect single crystal.  However, when defects are 
contained within the volume, deformed primitive lattice vectors ia  and ia  
represent suitable averages of local lattice vectors i′a  and i′a  that may not 
be spatially constant, just as in (3.111): 
 1

i i
V

V dV− ′= ∫a a , 1
i i

V

V dV− ′= ∫a a . (7.10) 

By cutting the volume element out of the stressed body thereby reliev-
ing the external traction, relaxing any possible internal viscous and inertial 
forces, and then rotating this element by 1−ER , configuration B  can be ob-
tained from spatial configuration B.  If experiments could be performed in 
which the average lattice vectors were measured in each of configurations 
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0B , B , and B, then (7.8) and the first of (7.9) would each provide nine 
equations involving nine unknown components of IF  or EF .  However, 
configuration B  can only be realized for a solid with a heterogeneous in-
ternal stress field by removing all traction from the surface of each micro-
scopic, residually stressed sub-element within that solid, physically corre-
sponding to cutting or breaking it into small parts (Eckart 1948), in 
practice a prohibitively destructive laboratory experiment.  In Sections 7.2 
and 7.3, theoretical methods are offered for computing IF  that, in princi-
ple, would alleviate the need for such difficult experiments. 

7.1.3 Multiplicative Decomposition of Total Deformation 

The total deformation F is defined by the surface integral (Hill 1972, 1984; 
Clayton and McDowell 2004) 
 1

S

V dS−= ⊗∫F x N , (7.11) 

where x are spatial coordinates of the deformed image of reference surface 
S enclosing the volume element with unit outward reference normal N, as 
illustrated in Fig. 7.1.  The volume element may contain discontinuities in 
the internal displacement field and gradients of displacement; when such 
discontinuities are absent and after Gauss’s theorem (2.194) is applied, 
(7.11) reduces to 1

. .,
a a
A AF V x dV−= ∫ , where ( , )a a Ax x X t=  are now differ-

entiable functions of reference position X within volume element of refer-
ence volume V.  In contrast to notation used in Chapter 2, capital symbols 
are reserved in Chapter 7 for the total (average) deformation gradient F for 
a volume element and its constituents: EF , IF , LF , and PF .  In contrast, 
the local deformation gradient within the volume element is written in 
Chapter 7 as .,

a
Ax .  

Assume that the total deformation gradient F is imposed on a volume 
element of material via (7.11), and that the decomposition 
 = =E I P L PF F F F F F  (7.12) 
applies, as implied by Fig. 7.1.  Plastic deformation PF  is known from in-
tegration of (7.5) with (7.6) or (7.7), presuming kinetic laws are available 
for the mobile dislocation velocity, for example those described in Section 
6.2, or slip rates on each slip system, for example those described in Sec-
tion 6.3.  Under isothermal conditions, the crystal in a particular orienta-
tion responds to applied loading elastically such that  
 ( ) ( )= ⇔ =E E EΣ Σ U U U Σ , (7.13) 
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where stretch tensor 1 1/ 2( )T−= =E E E E EU R F F F  is an invertible function of 
conjugate stress measure Σ  that vanishes when the traction 0=t  along 
deformed surface s of the element in Fig. 7.1.  The particular form of 
(7.13) will depend upon the orientation of the lattice in B  (e.g., choice of 
coordinate system with respect to orientation of the sample) because of 
anisotropy.  For example, for a hyperelastic-plastic solid with non-
vanishing second- and third-order elastic constants, (7.13) can be inter-
preted as a version of (6.56) pushed forward to configuration B , in the ab-
sence of temperature changes.   

Henceforth in Chapter 7 it is assumed that 
 = =L E E I L E IF R U F R U U , =I IF U , (7.14) 
meaning that IF  is a stretch (e.g., a symmetric tensor with six independent 
entries in covariant Cartesian coordinates) and that all lattice rotation is 
embedded in ER .  The objective of Sections 7.2 and 7.3 is determination 
of analytical approaches to obtain IF .  If PF  is also known at a particular 
instant, 1 1− −=E P IF FF F  can then be found from (7.12) and the average ex-
ternal stress supported by the element can be updated according to elastic 
constitutive relation (7.13).   

7.2 Nonlinear Elastic Interpretation of Residual Elasticity 

The dimensional changes of a nonlinear elastic body in a state of self-
stress, i.e., a self-equilibrated body with internal residual stresses but no 
traction applied to its external boundaries, are derived in Sections 7.2.1-
7.2.3.  The body may contain one or more internal surfaces across which 
traction is continuous but tangential displacements are not.  The treatment 
is specialized in Section 7.2.4 to address volume changes in cubic crystals 
and isotropic materials.  Formulae for volume changes attributed to local 
elastic stress fields of line defects are derived in the isotropic approxima-
tion in Section 7.2.5.  Derivations and discussion in Sections 7.2.1-7.2.5 
consolidate and extend prior work of a number of authors (Zener 1942; 
Seeger and Haasen 1958; Toupin and Rivlin 1960; Holder and Granato 
1969; Teodosiu 1982; Clayton and Bammann 2009).  Additional analysis 
and examples follow in Sections 7.2.6 and 7.2.7.  Since the derivations 
frequently involve integration of vector and tensor fields over regions of 
space occupied by the body, coincident Cartesian coordinates are used 
throughout the remainder of Chapter 7 unless noted otherwise.  The proce-
dure of Toupin (1956) outlined in (3.95) and (3.96) could be used instead 
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if curvilinear coordinates are desired, but such steps are omitted in order to 
provide a more concise presentation. 

7.2.1 Self-equilibrium Conditions 

Local balance of linear momentum (4.21) is written in rectangular Carte-
sian coordinates as 
 .., 0

aA a a
AP B Aρ+ = , (7.15) 

with aB  the body force per unit reference volume, 0ρ  the reference mass 
density, and aA  the material acceleration.  In reference coordinates AX , 
application of the product rule then provides the local relation 
 , 0( ) ( )A aB aA a a A

BX P P A B Xρ= + − . (7.16) 
Consider a body of reference volume V with external surface S.  The body 
may contain internal surfaces across which the motion ( , )ax X t  from the 
reference state (e.g., a perfect lattice), deformation gradient ., ( , )a

Ax X t , and 
stress components are generally discontinuous, but traction per unit refer-
ence area 0

at  of (4.4) across internal surfaces is continuous: 

 0 0 0 ( ) 0a a a aA aA
At t t P P M+ − + −= − = − = , (on Σ ), (7.17) 

where + and – denote limiting values of a quantity near the surface as it is 
approached from either side, AM  is a unit normal covariant vector to an 
internal surface, and Σ  denotes the union of such internal surfaces.  The 
source of displacement discontinuities across Σ  is arbitrary in (7.17); for 
the particular case of dislocation(s) within V, jump(s) in displacement 
across slip planes comprising Σ  are attributed to Burgers vector(s) intro-
duced in (7.2).  Integrating (7.16) over V and applying the divergence theo-
rem, 

 
0

( )

                 ( ) ,

aA A aB A aB aB
B B

V S

A a a

V

P dV X P N dS X P P M d

X B A dVρ

+ −

Σ

= + − Σ

+ −

∫ ∫ ∫

∫
 (7.18) 

where BN  are components of the external normal to V along S as intro-
duced in (7.11).  Applying (4.4) and (7.17) and considering a body in static 
equilibrium, 
 0

aA A aB a A
B

V S S

P dV X P N dS t X dS= =∫ ∫ ∫ . (7.19) 

For a self-equilibrated body, 0 0at =  by definition, and (7.19) reduces to 
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 1 0aA

V

V P dV− =∫ , (7.20) 

meaning that the volume-averaged first Piola-Kirchhoff stress vanishes 
over the reference volume.   

Now consider the spatial balance of linear momentum  
 ..,

ab a a
b b aσ ρ+ = , (7.21) 

with ., .,det( )ab A aA b
a AX P xσ =  the symmetric local Cauchy stress tensor, ab  

the body force per current volume, 0 .,det( )A
aXρ ρ=  the current mass den-

sity, and aa  the spatial acceleration.  Spatial analogs of (7.16)-(7.18) are 
 ,( ) ( )b ac ab a a b

cx a b xσ σ ρ= + − , (7.22) 

 ( ) 0a a a ab ab
bt t t mσ σ+ − + −= − = − = , (on σ ), (7.23) 

   
σ

( ) σ ( )ab b ac b ac ac b a a
c c

v s v

dv x n ds x m d x b a dvσ σ σ σ ρ+ −= + − + −∫ ∫ ∫ ∫ , (7.24) 

with ( , )a ax x X t=  spatial coordinates, at  the traction per unit current area 
of (4.3), σ  the union of internal surfaces across which reference coordi-
nates ( , )AX x t  may be discontinuous functions of spatial position and in-
verse deformation gradient .,

A
aX  may be singular, am  the unit normal 

covector to such surfaces, an  the unit normal covector to external surface s 
(Fig. 7.1), and v the spatial volume of the body enclosed by s.  For a body 
in static equilibrium, (7.24) becomes 
 ab b ac a b

c
v s s

dv x n ds t x dsσ σ= =∫ ∫ ∫ , (7.25) 

and for a self-equilibrated body , by definition 0at =  along s, and hence 
the average Cauchy stress vanishes by (7.25): 
 1 0ab

v

v dvσ− =∫ . (7.26) 

Relation (7.26) was derived by Toupin and Rivlin (1960) and Hoger 
(1986) in the context of residually stressed bodies. 

7.2.2 Hyperelasticity 

In the present treatment, the local, mechanically reversible part of the con-
stitutive response of the material is assumed hyperelastic of grade one, 
with effects of temperature change neglected.  Let 0 0 ( )ABEΨ Ψ=  denote 
the strain energy per unit reference volume of the solid, with the symmet-
ric right Cauchy-Green strain of (2.156) in Cartesian coordinates 
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 ( )., ., . , .,,
1 1( )
2 2

a b a c
AB A ab B AB A c A Ba BE x x u u uδ δ δ= − = + , (7.27) 

where .
a a a A

Au x Xδ= −  is the local displacement of (2.137) when coinci-
dent coordinate systems are used in each configuration.  Let 

 0
1 1 ...
2 6

ABCD ABCDEF
AB CD AB CD EFE E E E EΨ = + + , (7.28) 

where second- and third-order elastic constants are evaluated from a series 
expansion of the energy density about the unstrained state as in (5.65) and 
(5.66).  The local first Piola-Kirchhoff stress, from (5.45) and (7.28), is 
computed as 

    

0 0 0
., .,

,

.,
1      ... .
2

aA a a
B B

a A BA AB

a ABCD ABCDEF
B CD CD EF

P x x
x E E

x E E E

Ψ Ψ Ψ∂ ∂ ∂
= = =

∂ ∂ ∂

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (7.29) 

Using symmetry properties in (5.57) and (5.58) and omitting terms of de-
gree higher than three in referential displacement gradient (i.e., distortion) 

, . ,
b

A B A b Bu uδ= , strain energy function (7.29) can be written (Toupin and 
Rivlin 1960) 

 0 , , , , ., , , ,
1 1 1
2 2 6

ABCD ABCD E ABCDEF
A B C D A B E C D A B C D E Fu u u u u u u uΨ = + + . (7.30) 

7.2.3 Average Residual Elastic Strain 

Consider the externally unloaded configuration of the volume element la-
beled B  in Fig. 7.1.  This configuration corresponds to the deformed but 
self-equilibrated body obeying (7.20) and (7.26).  The reference configura-
tion with internal displacement discontinuities described in (7.2)-(7.4) now 
corresponds to stress-free intermediate configuration B  of Fig. 7.1.  As 
discussed in detail in Section C.1 of Appendix C and noted by De Wit 
(1973), displacement discontinuities attributed to Volterra dislocations 
lead to discontinuities or singularities in local plastic strain and rotation 
fields across the slip planes or internal surfaces Σ  within the volume, 
which owing to the isochoric nature of slip, is preserved via PV J V V= = .  
Such effects are quantified according to (3.85)-(3.90) and (7.2)-(7.4), 
wherein discontinuities or singularities are introduced by plastic deforma-
tion PF  between configurations 0B  and B .  Residual deformations are in-
troduced within the element from the mapping between configurations B  
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and B .  Locally1, such deformations are treated as differentiable and elas-
tic between B  and B , with corresponding local displacement gradient and 
Lagrangian strain fields (i.e., eigenstrains) within the element denoted by 

,A Bu  and ABE , respectively.  
The corresponding definition for the average residual elastic deforma-

tion gradient entering (7.12) and (7.14) is, in Cartesian coordinates (Clay-
ton and Bammann 2009) 
 ( ) ( )

1 1
, ,

I
AB ABA B A B

V V

F V x dV V u dVδ− −= = +∫ ∫ . (7.31) 

Singular surfaces Σ  and singular lines (e.g., defect cores) are excluded 
from the domain of integration V in (7.31).  Contributions to F from singu-
lar surfaces (e.g., plastic slip) are incorporated via plastic deformation map 

PF , not IF .  Relation (7.31) is a key definition used often later.  In gener-
alized coordinates, 
           . .( )I A B I A B I

AB ABF F g g Fα β α β
α β β α= ⊗ = ⊗ = ⊗IF G G g g g g . (7.32) 

Mapping self-equilibrium conditions (7.26) to the reference configura-
tion and substituting from (7.29), 

        0
. . . . ., . .,

,

( ) 0A B ab A B b aC B B
a b a b C C C

A Cv V V

dv x P dV u dV
u
Ψ

δ δ σ δ δ δ
∂

= = + =
∂∫ ∫ ∫ . (7.33) 

The integral on the right side of (7.33) becomes, upon substitution of 
(7.30) and omission of terms higher than second order in displacement 
gradients in the expression for the stress, 

 

0
. ., ,

,

., ., ,

, ., , ,

0 ( )

                                 ( )

1 1                                 + .
2 2

B B ABCD
C C C D

A CV V

AECD B BECD A
E E C D

V

ABCD E ABCDEF
E C D C D E F

V V

u dV u dV
u

u u u dV

u u dV u u dV

Ψ
δ

∂
= + =

∂

+ +

+

∫ ∫

∫

∫ ∫

 (7.34) 

When products of order two in displacement gradients are omitted, as 
would be the case for a linear elastic body with spatially constant moduli, 
(7.34) reduces to 
 ( ), ,0 0ABCD I

C D CD CDC D
V V

u dV u dV F δ= ⇒ = ⇒ =∫ ∫  (7.35) 

                                                      
1 In configuration B , if defects are envisioned within the element, ( , )Au X t  is a 

discontinuous function of position X across singular surfaces, and hence ,A Bu  is 
singular along such surfaces (recall Fig. 3.11).  Thus Au  is globally discontinuous. 
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since ABCD  is assumed positive definite.  The linear elastic approximation 
(7.35) states that no average elastic shape or volume change occurs in a 
self-equilibrated body with homogeneous elastic properties.  The latter 
would be true even if the local elastic dilatation from defects does not van-
ish, as is exhibited in straight line edge dislocation and wedge and twist 
disclination solutions in (C.35), (C.107), and (C.140) for linear elastic iso-
tropic bodies.   

On the other hand, for a nonlinear elastic body with spatially constant 
moduli, components of the integrated symmetric displacement gradient are 
given by the six independent integral equations 

    
( ) ., , ., ,,

, ., , ,
1 1                            .
2 2

ABCD AECD B BECD A
E C D E C DC D

V V V

ABCD E ABCDEF
E C D C D E F

V V

u dV u u dV u u dV

u u dV u u dV

= − −

− −

∫ ∫ ∫

∫ ∫
 (7.36) 

Hence, from (7.31) and (7.36), components of IF  may be non-negligible: 

        

1
., , ., ,

, ., , ,

S

1 1                   .
2 2

I AECD B BECD A
MN MN MNAB E C D E C D

V V

ABCD E ABCDEF
E C D C D E F

V V

F V u u dV u u dV

u u dV u u dV

δ − ⎡
= − +⎢

⎣
⎤

+ + ⎥
⎦

∫ ∫

∫ ∫
 (7.37) 

The rank four compliance constants at the reference state, SMNAB  in (7.37), 
satisfy conditions listed in (5.149): 
 . . . .2 SCDAB C D D C

ABMN M N M Nδ δ δ δ= + . (7.38) 
By introducing the quantity 

  

ˆ

                
                ,

CDABEF AFCD BE BFCD AE EFAD BC

EFBD AC ABFD CE ABED CF

ABCD EF ABEF CD ABCD EF

δ δ δ

δ δ δ

δ δ

= + +

+ + +

− − +

 (7.39) 

integral equations (7.36) and (7.37) are written more compactly as (Toupin 
and Rivlin 1960) 

 
( ) , ., ., ,,

, ,

1
2

1 ˆ                            ,
2

ABCD ABCD E ABCD E
C E D E C DC D

V V V

CDABEF
C D E F

V

u dV u u dV u u dV

u u dV

= −

−

∫ ∫ ∫

∫
 (7.40) 
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1
, .,

., , , ,

1S
2

1 ˆ                    .
2

I ABCD E
MN MN MNAB C E D

V

ABCD E CDABEF
E C D C D E F

V V

F V u u dV

u u dV u u dV

δ − ⎡
= + ⎢

⎣
⎤

− − ⎥
⎦

∫

∫ ∫
 (7.41) 

Notice from (7.37) and (7.41) that both geometric nonlinearity (i.e., 
quadratic terms in displacement gradients) and material nonlinearity (i.e., 
third-order elastic constants) contribute to IF , and that IF  does not neces-
sarily reduce to the unit tensor when third-order elastic constants vanish.  
If the strain energy density in (7.30) is extended to incorporate products of 
displacement gradients of order higher than three, e.g., fourth-order elastic 
constants such as those in (5.67), then effects of these higher-order terms 
will likewise enter the right sides of (7.37) and (7.41).  When elastic 
moduli are not spatially constant, for example in a multi-phase composite 
or body with foreign inclusions, (7.37) and (7.41) do not strictly apply 
since in that case elastic coefficients cannot be brought outside the volume 
integrals.  If V is the initial volume of a polycrystal with randomly oriented 
grains, then uniform isotropic elastic properties (i.e., effective moduli) can 
be assigned to the volume element as an approximation.  According to 
(7.27)-(7.30), when the (residual) displacement gradient ,A Bu  vanishes at a 
material point, strain ABE  and (residual) stress vanish at that point.  In an 
isotropic homogeneous elastic body that is regular (i.e., no defects or dis-
continuities in displacements and displacement gradients), local residual 
stress must vanish everywhere (Hoger 1985), regardless of the particular 
form of the strain energy function.  

Because the average residual elastic deformation results from nonlinear 
elastic effects, i.e., products of displacement gradients of order two in 
(7.37) and (7.41), the contribution of the average residual elastic deforma-
tion IF  to the total deformation gradient F of (7.12) will generally be 
small in conventional engineering applications wherein defect densities are 
low to moderate.  For example, linear elasticity theory is generally deemed 
valid beyond some cut-off distance on the order of one to ten lattice pa-
rameters from the dislocation core (Teodosiu 1982; Hull and Bacon 1984), 
beyond which magnitudes of elastic displacement gradients are small, say 

, 0.1A Bu < , so that contributions from such linear-elastic regions to terms 
in braces in (7.41) will be small.  Contrarily, for materials with very large 
dislocation densities in which core regions comprise a substantial fraction 
of the volume element, nonlinear elastic contributions could be substantial, 
in which case the difference −IF 1  would be non-negligible.  The contri-
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bution of tensile volumetric and deviatoric parts of local elastic displace-
ment gradients to IF  would also be limited by the theoretical strength of 
the crystal, typically on the order of 10% of an elastic shear modulus (see 
(C.209) of Section C.4.1), since the material would tend to fracture at elas-
tic strains producing tensile or shear stresses in excess of the theoretical 
strength.  On the other hand, large elastic volumetric compressions are 
usually sustainable in crystals, as noted in Section 5.3.  The effect of resid-
ual elasticity would be greatest in materials whose third-order elastic con-
stants are substantially larger than second-order constants; in some crystal-
line solids, representative third-order constants can exceed second-order 
constants by an order of magnitude or more (Teodosiu 1982).   

7.2.4 Residual Elastic Volume Changes 

Now consider the average volume change of the body resulting from the 
field of local residual elastic distortion ,A Bu .  The preceding derivations 
(and those that follow in Section 7.2.4) apply regardless of whether or not 
the average shape change resulting from ,A Bu  vanishes.  However, for a 
crystal containing a large number of randomly oriented defects (e.g., dislo-
cation and disclination lines and loops), it may be reasonable to assume 
that the change in dimensions of the crystal imparted by local stress fields 
of defects exhibits no preferred directions, implying that the crystal under-
goes only a volume change and no shape change (Clayton 2009a, c).  The 
average residual elastic volume change is also of perhaps greater interest 
than the shape change because the former can be easily measured experi-
mentally for plastically deformed crystals, with results then available to 
validate the theory.  The residual elastic deviatoric shape change, on the 
other hand, cannot be obtained simply from the deformed shape of a sam-
ple of material since the residual elastic shape change cannot be easily de-
lineated from the shape change resulting from dislocation glide.   

The change in a differential volume of a body in coincident spatial and 
reference coordinate systems is given by (2.147): 

       

3
. ., ., ., ., ., ., ., .,

2
., ., ., .,

1/ det( ) ( ) 3 2
6

1 1            1 ( ) ,
2 2

A A A A B C B C A
B B A A C B C A B

A A A B
A A B A

dv dV u x x x x x x x

u u u u

δ ⎡ ⎤= + = − +⎣ ⎦

≈ + + −
 (7.42) 

where products of order three in referential displacement gradients are 
omitted in the final expression.  In the context of Fig. 7.1, dv  is the vol-
ume of a differential sub-element of the body in configuration B , and 
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dV is the volume of that sub-element in B .  Integrating (7.42), a second-
order accurate measure of the net volume change attributed to residual 
elastic deformation within the crystal is 

 2
., ., ., .,

1 ( )
2

A A A B
A A B A

V V

V v V u dV u u u dV∆ ⎡ ⎤= − = + −⎣ ⎦∫ ∫ . (7.43) 

Right sides of (7.37), (7.41), and (7.43) depend on the local residual 
elastic displacement gradient fields in the body.  For crystals of high sym-
metry, these relations can be further reduced by appealing to particular 
forms of the elastic coefficients.  Specifically, for cubic crystal systems of 
the highest symmetry (Laue group CI of Table A.1 in Appendix A), the 
second-order moduli consist of three independent coefficients and the 
third-order moduli of six independent coefficients, as is clear from Tables 
A.8 and A.9, respectively.  Consider a coordinate system with axes parallel 
to the cube axes of the crystal.  In Voigt’s notation (A.10), pairs of indices 
11 1→ , 22 2→ , 33 3→ , 23 4→ , 13 5→ , 12 6→ , 2 (1 )AB ABAE E δ→ + , 
barred indices span 1,2,...,6A = , and nonzero second-order elastic con-
stants of a cubic crystal are  

 

11 22 33

12 13 23

44 55 66

,  
,  
.

= =

= =

= =

 (7.44) 

Nonzero third-order constants of a cubic crystal of Laue group CI are  

         

111 222 333 144 255 366

112 113 122 223 133 233 123

155 166 244 266 344 355 456

, ,
, ,
, .

= = = =
= = = = =
= = = = =

 (7.45) 

The following notation is common, as indicated in (A.17) and (A.19) of 
Appendix A: 

          

11 12

11 12

44 11 12

3 +2 ,
2 ,

2 2 ( ),

K
µ

µ

=
= −

′ = − −
 (7.46) 

where K is the bulk modulus at the reference state and µ  and µ′  are shear 
moduli at the reference state.  In a cubic crystal, the first term on the right 
side of strain energy function (7.30) can be written by linearizing (A.17), 
i.e., replacing the right Cauchy-Green strain in (A.17) with the symmetric 
part of the displacement gradient (Toupin and Rivlin 1960): 
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., ., ., ., .,
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1 1 1   ( ) ( ) ( )
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1       ( ) ( ) ( ) ( )
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   ,
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A B C D

A A B A B A
A B A B A A

A B A B
B A B A

D S S

W u u

K u u u u u u

u u u u u u u

W W W

µ

µ

=

⎡ ⎤= + + −⎢ ⎥⎣ ⎦
⎡ ⎤′+ + − − −⎢ ⎥⎣ ⎦

′= + +

 (7.47) 

where DW  is the strain energy of dilatation and SW  and SW ′  result from 
elastic shape changes.  In an isotropic material such as a polycrystal with 
no preferred orientations, the number of constants in (7.44) is further re-
duced to two according to Table A.8 as 
 44 11 122 = − , (7.48) 
and in (7.45) reduced to three according to Table A.9 as 

  
144 112 123 155 111 112

456 111 112 123

2 ,  4 ,
         8 3 2 .

= − = −

= − +
 (7.49) 

Thus for isotropy, coefficients K and µ  of (7.46) and energy densities DW  
and SW  of (7.47) are identical, but 0µ′ =  in (7.46) and 0SW ′ =  in (7.47).  

Summation over the first two indices of (7.36) and using the first of 
(7.47) results in the integral equation 
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Appealing to (7.40), 

          
( )

. .
. . , ., , .,,

.
, ,

13 + ( )
2

1 ˆ                            .
2

A CD A CD E E
A A C E D C D EC D

V V V

A CDEF
A C D E F

V

u dV WdV u u u u dV

u u dV

= − −

−

∫ ∫ ∫

∫
 (7.51) 

For a cubic crystal satisfying (7.44)-(7.46), equality (7.51) reduces to 
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∫ ∫ ∫

∫
 (7.52) 

Then from (7.43), the net volume change for the element of reference vol-
ume V is 
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Letting .,det( )a
Aj x= , where 0j > , the rightmost term of (7.53) can be 

written for a cubic crystal that remains cubic during deformation as 
(Toupin and Rivlin 1960) 
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 (7.54) 

where K , µ , and µ′  are tangent elastic coefficients for a cubic crystal 
with respective constant values K , µ , and µ′  in the reference state.  Vol-
ume derivatives of elastic coefficients are evaluated at the reference state 
in the last of (7.54).  Following (5.188)-(5.193) and (5.205),  

 (.) (.) (.)p K
j j p j p

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
, (7.55) 

where . / 3a
ap σ= −  is the Cauchy pressure. Substituting (7.47) and (7.54)-

(7.55) into (7.53), the residual volume change is 
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µ
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∫
 (7.56) 

where derivatives with respect to pressure of K , µ , and µ′  are evaluated 
at a stress-free reference state.  In particular, recall that the pressure deriva-
tive of the bulk modulus can be estimated from the Gruneisen parameter 
using (5.237).  After defining average strain energies on a per unit refer-
ence volume basis as 
 1

D D
V

W V W dV−= ∫ , 1
S S

V

W V W dV−= ∫ , 1
S S

V

W V W dV−′ ′= ∫ , (7.57) 

and the quantity 

 1 V vJ
V V
∆

= + = , (7.58) 

the normalized volume change for a self-equilibrated, cubic nonlinear elas-
tic solid of grade one is  
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 (7.59) 

In (7.59) and henceforward, over-bars on tangent elastic coefficients are 
dropped, and it is understood that all elastic constants and their pressure 
derivatives are evaluated at the reference state.  If the cubic second-order 
elastic coefficients, their pressure derivatives, and each of the average 
strain energy densities of (7.57) are known, the volumetric deformation 
can be computed from (7.59).  So long as strain energy densities in (7.57) 
are always positive, if coefficients of the energy densities in (7.59) are all 
of the same algebraic sign, then the overall volume change will be of that 
sign.  If only the total strain energy density D S SW W W W ′= + +  is known, 
for example from experiments (Clarebrough et al. 1957; Wright 1982), 
then (7.47) and (7.59) can be combined to establish bounds on the normal-
ized volume change (Toupin and Rivlin 1960).  Bounds of this sort have 
been validated by experimental data for several polycrystalline cubic met-
als (Wright 1982), wherein the volume changes induced by defects such as 
dislocations and stacking faults were always found to be positive by theory 
and experiment.   

For an isotropic solid, (7.59) reduces to 
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D S

KJ W W
K p p K

K W W
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µ µ
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⎛ ⎞ ⎛ ⎞∂ ∂
= + − + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (7.60) 

In an isotropic body, pressure derivatives of tangent bulk and shear moduli 
K and µ  are related to third-order elastic constants in (A.26). 

Formula (7.59) for cubic crystals is attributed to Toupin and Rivlin 
(1960), while (7.60) was developed earlier by Zener (1942) using nonlin-
ear isotropic elasticity and thermodynamic arguments.  Isotropic formula 
(7.60) for the case when the dilatational energy vanishes agrees with that 
of Holder and Granato (1969) obtained from thermodynamic arguments: 
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where eG  is the Gibbs free energy change from defects, per unit reference 
volume that depends on pressure p and temperature θ , and eµ  is an effec-
tive elastic coefficient that depends upon the mathematical form of the 
strain energy of the particular defect.  In the final term of (7.61), E is the 
elastic strain energy per unit length of the defect and 0Tρ  is the total length 
per unit reference volume of the defect.  For a number of kinds of crystals, 
Holder and Granato (1969) found that delineation between dilatational and 
deviatoric energies and incorporation of effects of cubic anisotropy had lit-
tle influence on volume changes from straight dislocations predicted using 
(7.61).   

The source of the local displacement gradient and residual strain energy 
in the body to this point has been arbitrary, so long as (7.23), (7.26), and 
(7.30) apply, that is, traction is continuous across internal surfaces, the 
body is self-equilibrated, and the local constitutive response is described 
by hyperelasticity with terms of order higher than three in referential dis-
placement gradients omitted in the strain energy.  Defects induce such dis-
placement gradients and residual strain energies.  These may include, for 
example, dislocation and disclination lines and loops, stacking faults, grain 
boundaries, twin boundaries, and slip bands.  Volume changes attributed to 
point defects (e.g., substitutional atoms, interstitials, and vacancies), phase 
transformations, voids, and open cracks are not considered in the present 
treatment, since dimensional changes computed according to the present 
theory account only for volume and shape changes resulting from stress 
fields of defects and not volume and shape changes associated with defects 
themselves.  However, the additional volume change induced by a point 
defect—for example the volume change in addition to the misfit dilatation 
in a sphere-in-hole model—attributed to elastic nonlinearity can be esti-
mated from (7.61) for an isotropic elastic body (Eshelby 1954; Holder and 
Granato 1969), as illustrated later in Section 7.4.  Anisotropy cannot be di-
rectly addressed in (7.59) when tangent elastic moduli may change with 
position, for example grain boundaries and twin boundaries across which 
lattice orientations may differ.  However, isotropic approximation (7.60) 
could still be used as an estimate in these cases, as in previous applications 
towards polycrystals (Seeger and Haasen 1958) and single crystals of 
lower symmetry (Clayton 2009a).  The isotropic approach is further devel-
oped for line defects in Sections 7.2.5 and 7.2.7.   

Also neglected in the foregoing continuum elastic analysis are explicit 
effects of defect cores on the residual deformation of the body.  For exam-
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ple, elastic strain, stress, and strain energies imparted by Volterra line de-
fects diverge as the radial distance from the line shrinks to zero, as is clear 
from linear elastic solutions given in Sections C.1 and C.2, and even 
nonlinear elasticity is inadequate for describing non-convex energy distri-
butions imparted by highly distorted crystal structures within defect cores.  
In the present continuum treatment, one can imagine each defect line to be 
surrounded by a traction-free cylindrical boundary delineating the core re-
gion from the surrounding elastic continuum of reference volume V.  In 
linear elasticity, stresses and strains resulting from traction acting on the 
cylindrical boundary of the core decay as 3R− , where R is the distance 
from the defect line, and hence are usually neglected (Teodosiu 1982).  
The elastic continuum is thus self-equilibrated in this approximation, and 
(7.26) applies. 

7.2.5 Straight Edge and Screw Dislocations 

Consider volume changes imparted by dislocation lines in the isotropic ap-
proximation.  The energy per unit length (linear elastic energy plus core 
and interaction energies) of a straight dislocation embedded in an infinite 
isotropic medium, with elastic energies given in (C.48) and (C.69), is 
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, 
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= ⎨
⎩

 (7.62) 

where b is the magnitude of the Burgers vector that is treated as a constant, 
(3 2 ) /(6 2 )K Kν µ µ= − +  is Poisson’s ratio (see Table A.10), R is the ra-

dial distance from the dislocation core, CR  is the radius of the dislocation 
core, and Ê  is a correction to the linear elastic solutions that accounts for 
core energy, line curvature, interaction energies from other defects and 
boundaries, and stacking faults associated with partial dislocations.   

Denoted by ˆEE E E= −  is the elastic strain energy density per unit line 
length L of straight, non-interacting edge dislocations, separated into di-
latational and shear contributions as in (C.49) and (C.50): 
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, (7.63) 

where superscript E refers to an edge dislocation.  Relating energies per 
unit reference volume to energies per unit length using the equalities 
 E

D DW V E L= , E
S SW V E L= , (7.64) 

and multiplying (7.60) by /V L , the volume change per unit length of edge 
dislocation line is (Seeger and Haasen 1958; Teodosiu 1982) 
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 (7.65) 

where E E E
D SE E E= +  is the total elastic line energy of an edge dislocation.   

Analogously, denote by ˆSE E E= −  the strain energy per unit line 
length L of straight, non-interacting screw dislocations, partitioned as in 
(C.68) and (C.69): 

 0S
DE = , 

2
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b RE
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⎛ ⎞
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⎝ ⎠
, (7.66) 

Setting the deviatoric energy in the second of (7.57) equal to the product of 
the line length and energy per unit length (7.66) gives 
 S S

S SW V E L E L= = , (7.67) 
where SE  is the total elastic line energy of a screw dislocation.  Multiply-
ing (7.60) by /V L , the volume change per unit length of straight screw 
dislocation lines is (Seeger and Haasen 1958; Teodosiu 1982) 
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V E
L p K

∆ µ µ
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⎛ ⎞∂
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. (7.68) 

Now let the total dislocation line density per unit reference volume be 
given by the sum 
 0 0 0/T E SL Vρ ρ ρ= = + , (7.69) 
where now L is the total length of edge and screw dislocations in volume 
V, 0Eρ  is the density of edge dislocations, and 0Sρ  is the density of screw 
dislocations, both measured per unit reference volume.  Define from (7.62) 
an energy per unit length  
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, (7.70) 

and let 0 0/E Tχ ρ ρ=  be the fraction of pure edge dislocations in the total 
dislocation density.  Superposing volume changes from (7.65) and (7.68) 
and using (7.58), (7.60) becomes 
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 (7.71) 

Relation (7.71) yields the volume change associated with straight, non-
interacting pure screw and edge dislocation lines in an isotropic body with 
homogeneous elastic properties.  While terms in braces in (7.71) include 
nonlinear elastic effects (i.e., pressure derivatives of the elastic moduli or 
third-order elastic constants), dislocation line energy TE  does not account 
explicitly for nonlinearity or energy of dislocation cores.  Thus, (7.71) 
represents the product of third-order nonlinear elasticity (terms in braces) 
and linear elasticity (defect energy TE ).  Products of purely linear elastic 
origin would yield null volume change, as implied by (7.35), while higher-
order products of nonlinear origin (e.g., products of pressure derivatives of 
moduli with contributions of nonlinear elasticity to dislocation energies) 
are neglected.  Relation (7.71) can be used directly to estimate the volume 
change of a (poly)crystal if line densities of edge and screw dislocations, 
their energies per unit length, and the requisite elastic constants are known. 

The preceding analysis assumes that defect densities are negligible in 
the reference configuration.  When dislocation densities are substantial in 
the initial state, the predicted volume change between initial and final con-
figurations corresponds only to the change in defect density that occurs 
during deformation between initial and final states, rather than that associ-
ated with the absolute density of dislocations.  Viewed another way, if the 
absolute defect density is used in the calculation, then the computed vol-
ume change will be measured from a stress-free reference configuration 

0B  in which the dislocation line density and residual elastic energy vanish.  
Dislocation line densities in the preceding developments are defined per 

unit reference volume V V= , equivalent in configurations 0B  and B  of 
Fig. 7.1 because 1PJ = .  When the dislocation line density is measured in 
the externally unloaded but internally stressed configuration B  as Tρ , 
then 0T TJρ ρ=  in (7.71) such that  
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 (7.72) 

However, the distinction between configurations used to define the dislo-
cation line density will have a trivial effect on computed values of J  for 
small volume changes (1 / 1/(1 / )V V V V∆ ∆+ ≈ − ), and in these cases pref-
erential use of (7.72) over (7.71) is probably not justified considering un-
certainty in dislocation densities that can be measured experimentally.  The 
elastic dislocation line energy depends on the core radius CR  and the cut-
off radius R.  A standard approximation, also listed in (6.118), is (Kocks et 
al. 1975; Hull and Bacon 1984) 
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Introducing the dimensionless quantities 
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the volume change in (7.71) becomes 
 / 1 (1 )E SV V J A A∆ χ χ= − = + − . (7.76) 
Thus, /V V∆ for a mixture of straight, non-interacting edge and screw dis-
locations will fall between volume change EA  resulting from the same 
density of pure edge dislocations and volume change SA  resulting from 
the same density of pure screw dislocations. 

7.2.6 Approximate Volume Changes 

Returning to the overall dimensional changes of the body induced by aver-
aged local displacement gradients, consider (7.31).  Defining the quantities 
 1

.,
A
A

V

V u dVα −= ∫ , 2 2
., .,
A B
B A

V V

V u dV u dVβ −= ∫ ∫ , (7.77) 

and, to second-order accuracy in referential displacement gradients, the 
analog of (7.42) is  
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α α β= + + −IF . (7.78) 

Recall from (7.42) and (7.58) that the true volume change satisfies, to sec-
ond order in the local distortion, 
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Therefore quantities in (7.78) and (7.79) are related as follows: 
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At least to first-order accuracy in displacement gradients, det( )J = IF .  
Possible differences between J  and det( )IF  may arise because the deter-
minant operation and volume integration do not commute.  When products 
of distortions and their averages are small, tr( ) 3 det( ) 2α= + ≈ +I IF F  and 

det( )J ≈ IF .  Recall from (7.14) and (7.31) that ( )
I I

AB ABF F=  as defined 

in Chapter 7 is a stretch with no rotation.  Even though in some cases de-
fects impart no local dilatation in the linear elastic approximation (e.g., 
Volterra screw dislocations in isotropic solids as in (C.59)), a volume 
change can still result (e.g., (7.79) with 1J ≠ ) because of nonlinear elastic 
effects. 

7.2.7 Examples: Dislocations and Disclinations in Copper 

Table 7.1 lists strain energies per unit line length E of a number of defects 
whose elasticity solutions are described in detail in Appendix C: straight 
edge and screw dislocations discussed already in Section 7.2.5; circular 
screw and prismatic dislocation loops; and straight wedge disclinations and 
circular twist and wedge disclination loops of Frank vector ω .  In each 
case, the core radius, i.e., inner radial coordinate at which the elastic solu-
tion is truncated, is labeled CR .  For straight line defects, the radial dis-
tance from the core is labeled R; for defect loops, the radius of the circular 
loop is labeled A, as in Fig. C.3.  Energies all correspond to defects in infi-
nitely extended, isotropic linear elastic solids.  Analytical formulae for de-
fect line energies follow from references quoted in Table 7.1 and corre-
sponding equations of Appendix C, while normalized volume changes 

2
0/ aTV V ρ∆ ÷   computed for copper follow from (7.65) for edge disloca-

tions and from (7.61) for the other defects, using properties listed in Tables 
7.2 and 7.3. 
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Table 7.1 Line defect energies and residual volume changes in copper 

Line defect Equation in 
Appendix C

Energy/length
E [eV/Å] 

Volume change 
2

0/ aTV V ρ∆ ÷  
Edge dislocation(1)  
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(C.48) 3.30 0.89 

Screw dislocation(1)  
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(C.67) 2.12 0.51 

Screw dislocation loop(2)    
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(C.160) 2.00 0.49 

Prismatic dislocation loop(2)  
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(C.162) 3.32 0.81 

Wedge disclination(3) 
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(C.149) 2.65 0.64 

Twist disclination loop(3)  
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(C.167) 9.86 2.4 

Wedge disclination loop(4)  
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(C.170) 7.74 1.9 

Experiment(5) - - 0.8-1.1 
(1) Hirth and Lothe (1982)   

(2) Owen and Mura (1967)  
(3) Huang and Mura (1970) 
(4) Liu and Li (1971); Kuo and Mura (1972) 
(5) Clarebrough et al. (1957) 
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Table 7.2 Properties for line defects in copper 

a [Å](1) b [Å] ω* A [Å] RC [Å] R/RC, A/RC
** R/RC, A/RC

*** 
3.62 2.56 π /2 10.0 10.0 106 10 

(1)Rounded up from 3.61496 Å at a temperature of 291 K (Wyckoff 1963) 
*Full disclination in cubic crystal (Li 1972) 
**Dislocation lines and loops         
*** Disclination lines and loops 

 
Table 7.3 Elastic properties for polycrystalline copper (1)  

µ [GPa]  K [GPa]    ν ∂µ/∂p ∂K/∂p 
47 152 0.36 0.8 4.4 

(1) Seeger and Haasen (1958)  
 
For defects besides edge dislocations, the strain energy density is treated 

as deviatoric, leading to the linear relationship between volume change and 
defect density given in (7.61).  This is a rigorous assertion for screw dislo-
cation loops and twist disclination loops but not for prismatic loops or 
wedge disclinations, though it has been used elsewhere for these defects 
(Li and Gilman 1970; Liu and Li 1971) and should provide a reasonable 
approximation to volume change predictions for many metals (Holder and 
Granato 1969), including Cu.  Again, 0Tρ  is the line length per unit refer-
ence volume of the defect, and a is the lattice parameter of the conven-
tional FCC unit cell in a perfect crystal at room temperature, as defined 
generically in (3.2).  The magnitude of the Burgers vector, treated as a 
constant, is a 2 / 2b =  from Table 3.4.  Experimental results for polycrys-
talline Cu are provided for comparison (Clarebrough et al. 1957); the range 
of volume changes reported in Table 7.1 for the experiments corresponds 
to estimates of dislocation line length from energy measurements after 
plastic compressive strains ranging from 0.3 to 0.7.  The character of the 
defects (e.g., edge versus screw, straight lines versus loops) was not re-
ported in that experimental investigation.   

From Table 7.1, normalized volume changes predicted for various kinds 
of dislocations agree with the experimental findings within a factor of ~2 
and are very close for edge dislocations and prismatic loops.  Volume 
changes per unit defect length in Cu are positive (i.e., defects cause expan-
sion) and small.  For example, a 1% volume increase would require a very 
high density of edge dislocations on the order of 2 17 2

0 0.01a 10 mTρ − −≈ ≈ , 
corresponding to an average dislocation spacing on the order of 10a. For 
small volume changes ( / 0.01V V∆ < ), the value of det( )IF  is expected 
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provide an accurate approximation of J  according to (7.80).  Disclination 
energies and volume changes are comparable to those for dislocations for 
the small cut-off radii or small loops considered here (i.e., 10 CR R=  or 

10 CA R=  in Table 7.2) but would diverge quickly at large distances R 
from the core of straight disclinations or for larger disclination loops.  
Elastic anisotropy of grains within the polycrystal, defect core energies, 
and interaction energies among defects and between defects and the exter-
nal boundary of the body (e.g., image forces) are omitted in this applica-
tion of the model; such effects presumably contribute to discrepancies be-
tween theory and experiment.   

Results of Table 7.1, along with experimental data summarized by 
Wright (1982), suggest that volume changes resulting from residual elas-
ticity associated with dislocations should be relatively small in metallic 
crystals of cubic symmetry deformed in compression or shear to strains on 
the order of unity, under quasi-static conditions.  Experimental results in 
the final row of Table 7.1 (Clarebrough et al. 1957) correspond to disloca-
tion densities on the order of 15 2

0 10 mTρ −≈ , leading to volume changes on 
the order of 4/ 10V V −∆ ≈ .  Such small volume changes would seem in-
consequential in the context of measured yield properties of materials in 
unconfined loading, when specimens are free to expand or contract later-
ally.  However, under lateral confinement, for example uniaxial strain con-
ditions occurring in shock loading (Rohatgi and Vecchio 2002; Clayton 
2009a), small volume changes can noticeably affect the measured hydro-
static pressure.  Volume changes cannot be accommodated by dislocation 
glide as noted in Section 7.1.1; hence, any residual volume increase from 
defects must be compensated by an elastic volume decrease and corre-
sponding hydrostatic pressure.  Extremely high dislocation densities, 

16 2
0 10 mTρ −≈ , have been observed for metals such as Cu deformed in 

shock conditions (Rohatgi and Vecchio 2002).  A dislocation density of 
16 210 m−  would lead to an expansion on the order of 0.1%, which would in 

turn require an offsetting pressure on the order of 0.1% of the bulk 
modulus, around 150 MPa in Cu.  Such contributions of defects to pressure 
or volume change would manifest implicitly in the measured equation of 
state (i.e., pressure-volume-temperature relationship—see Section 5.3), 
bulk modulus, and pressure derivatives of the bulk modulus obtained from 
shock physics experiments.  Substantial effects of large dislocation densi-
ties on tangent elastic moduli of metallic single crystals deformed in uniax-
ial strain have also been predicted using atomistic methods (Clayton and 
Chung 2006).  Very large dislocation densities comprising dislocation 
walls in subdivided grains have been observed in metals subject to severe 
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plastic deformation (Hughes et al. 2003); presumably, residual elastic vol-
ume changes could be significant in highly defective regions of such mate-
rials. 

While closed-form analytical solutions are not available for the devia-
toric part of IF  in terms of stored energy and elastic constants, magnitudes 
of its deviatoric components are expected to be of the same order as its 
volumetric part, i.e., small except in cases where defect densities are ex-
tremely large.  Meant by small are conditions 0.001I

AB ABF δ− <  for de-
fect densities 15 2

0 10 mTρ −<  in cubic metals such as copper, though larger 
average residual elastic deformations would be conceivable in crystals that 
feature stronger pressure sensitivity of the elastic coefficients.  Because 
deviatoric deformation can be accommodated by plastic slip, there seems 
to be no capacity available to delineate contributions from residual elastic-
ity versus dislocation flux to the plastic properties of materials (e.g., yield 
and flow properties) measured in experiments on single- or poly-crystals.  
The effect of IF  is implicitly included in such experimental measure-
ments.  Notice that IF  and its spatial gradient implicitly affect defect den-
sity measures defined in Section 3.3 in terms of the lattice deformation 

LF , e.g., (3.214), since =L E IF F F  by (7.14).  

7.3 Atomistic Interpretation of Residual Elasticity 

The volume element of crystalline solid is treated in what follows in Sec-
tion 7.3 as an ensemble L of discrete atoms rather than a (nonlinear) elastic 
continuum.  Relevant background discussions pertinent to atomic-scale 
stress measures and atomic interactions are provided in Sections 7.3.1 and 
7.3.2, respectively, in the context of discrete lattice statics.  Additional, 
more extensive background treatment of lattice statics is contained in Sec-
tion B.2 of Appendix B.  Section 7.3.3 describes the self-equilibrated, re-
laxed intermediate configuration of an element of a crystal from an atom-
istic perspective and suggests a means to compute IF  entering (7.12) from 
atomic quantities.  The atomic-scale derivation of IF  that follows in Sec-
tion 7.3.3 may prove useful in the context of multiscale computations of 
nonlinear elastic and plastic properties of crystals (Horstemeyer and 
Baskes 1999; Clayton and Chung 2006) and offers a more accurate treat-
ment of defect cores than classical continuum elasticity used in Section 
7.2. 
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7.3.1 Atomic Stress Measures 

A number definitions of stress based on atomic level quantities have been 
suggested, as discussed in Section B.2.2.  In the context of lattice statics 
(i.e., null atomic velocities and accelerations), the average virial stress for 
a group of atoms is often considered equivalent to the average Cauchy 
stress, the former defined according to (B.35): 

 1
2 ij ij

i jΩ ≠

= ⊗∑σ r f , (7.81) 

where Ω  is the total volume occupied by the group L of atoms, i.e., the 
sum of all atomic volumes, in spatial configuration B.  The summation 
convention written in (7.81) is a compact notation that replaces the explicit 
double sum used in (B.35); that used here proceeds over all pairs of dis-
tinct ( )i j≠  atoms.  The factor of two arises in (7.81) because summation 
proceeds over all i j≠ , and because ij ji= −r r , and ij ji= −f f .  Spatial 

coordinates of atoms in a fixed, rectilinear coordinate frame are written as 
ir , and interatomic separations in the current configuration are defined as 

in (B.20): 
 ij j i= −r r r . (7.82) 

Interatomic forces arise from potential energy Φ  as in (B.21) and (B.22): 

 ij
ij

Φ∂
=

∂
f

r
, ( ) ,ij i j

i j
Φ Φ ∈

≠

= r L . (7.83) 

Now consider a homogeneous deformation F as in (B.37) and (B.43), ap-
plied to all atoms in L, leading to ij ij=r FR  (Huang 1950; Born and 

Huang 1954), with ij j i= −R R R  fixed separations between atoms of 

the reference lattice as in (B.41).  The discrete analog of continuum hy-
perelastic relation (7.29) is given by (B.54): 

 
0 0

1 1
2 2

b
ijaA ab A

ijb b
i j i jaAij ij

r
P R

r F r
Φ Φδ

Ω Ω≠ ≠

∂∂ ∂
= =

∂ ∂ ∂∑ ∑ , (7.84) 

with 0Ω  (italic font) the total volume of the atomic ensemble in 0B .  
Atomic volume 0Ω  (non-italic font) introduced in Section 3.1.1 is equal to 

0Ω  divided by the number of atoms in L.  When L is a primitive cell of a 
monatomic crystal, 0 0ΩΩ = , but in general 0 0ΩΩ .  Relation (7.84) is a 
consequence of affine deformation of all atoms resulting in 
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/b ab A
aAij ijr F Rδ∂ ∂ = .  The average atomic Cauchy stress or average static 

virial stress is 

           

1
. .

0
.

0

det( )

1 1      ,
2 2

ab A bA a
a A

bc A a a bc
Aij ijc c

i j i jij ij

F P F

R F r
r r

σ

Ω Φ Φδ δ
Ω Ω Ω

−

≠ ≠

=

⎛ ⎞∂ ∂⎜ ⎟= =
⎜ ⎟∂ ∂⎝ ⎠

∑ ∑
 (7.85) 

in agreement with (7.81).  The present analysis applies only to materials 
described by atomic force potentials of the general form (7.83) and for 
which stress definitions (7.81), (7.84), and (7.85) are appropriate.  For ex-
ample, metals that can be modeled by combinations of pair potentials and 
multi-body potentials such as the embedded atom method (Daw and 
Baskes 1983, 1984) are included.  Not admitted are piezoelectric crystals 
(e.g., non-centrosymmetric ionic solids), some of whose atoms (sub-
lattices) may display a relative shift when polarized, and for which hypere-
lastic relation (7.84) may not be sufficient.  In these cases, lattice vibra-
tions may provide insight into origins of stress and material coefficients 
(Huang 1950; Born and Huang 1954; Mindlin 1968, 1972).  Also excluded 
from the present treatment are non-centrosymmetric polyatomic lattices 
such as diamond and silicon that may incur inner displacements (Cousins 
1978; Tadmor et al. 1999).     

7.3.2 Harmonic and Anharmonic Interactions 

Expanding the potential energy of (7.83) in a series about the reference 
state,  
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 (7.86) 

where 0Φ  is a cohesive or total ground state energy (i.e., zero-point kinetic 
and potential energies of electrons and nuclei) of the reference lattice, con-
ventionally negative in sign and ij ij ij= −q r R  is the relative displace-

ment for an atomic pair.  Henceforward it is assumed that the second term 
vanishes, meaning that the reference configuration 0B  is explicitly chosen  
(or approximated) as free of external and internal forces: 



368      7 Residual Deformation from Lattice Defects 

 0a ab
ij b

ij

H
r
Φδ

=

∂
= =

∂
r R

, (7.87) 

though such a condition need not strictly apply in all cases2.  Following the 
scheme used in (7.81) and Section B.2.5, repeated use of the summation 
symbol is omitted in (7.86).  Hence, the summation in the second term on 
the right of (7.86) applies over two sets of repeated atomic labels, that in 
the third term over four sets, and that in the fourth term over six sets.  The 
energy per unit reference volume 0/Φ Ω  differs from the strain energy per 
reference volume 0Ψ  used in Section 7.2 by the additive constant 0 0/Φ Ω , 
since the continuum strain energy (7.28) vanishes in the undistorted refer-
ence state.  Introducing the matrix notation for atomic stiffness coefficients 

   
2

ab ac bd
ijkl c d

ij kl

H
r r

Φδ δ
=

∂
=

∂ ∂
r R

, 
3

abc ad be cf
ijklmn d e f

ij kl mn

H
r r r

Φδ δ δ
=

∂
=

∂ ∂ ∂
r R

, (7.88) 

and noting ./a b a
bkl klq r δ∂ ∂ = , the stress of (7.81) and (7.85) becomes 

   1 1 ....
2 4

ab a bc d a bce d f
cd cd efij ijkl kl ij ijklmn kl mn

i j i j
k l k l

m n

r H q r H q qσ δ δ δ
Ω Ω≠ ≠

≠ ≠
≠

= + +∑ ∑  (7.89) 

Under a homogeneous deformation ( )ij ij= −q F 1 R , the two-point stress 

tensor of (7.84) is 

0 0

1 1 ....
2 4

aA ab c A abc d e A
bc bd ceijkl kl ij ijklmn kl mn ij

i j i j
k l k l

m n

P H q R H q q Rδ δ δ
Ω Ω≠ ≠

≠ ≠
≠

= + +∑ ∑  (7.90) 

In the harmonic approximation (Maradudin et al. 1971), products of order 
higher than two in atomic displacements are dropped from the crystal’s po-
tential energy, leading to the linear force-displacement relationship 
 a ab c

bcij ijkl kl
k l

f H qδ
≠

= ∑ ,  (7.91) 

and to resulting stress measures 

          1
2

ab a bc d
cdij ijkl kl

i j
k l

r H qσ δ
Ω ≠

≠

= ∑ , 
0

1
2

aA ab c A
bcijkl kl ij

i j
k l

P H q Rδ
Ω ≠

≠

= ∑ . (7.92) 

Second- and third-order elastic constants derived from an atomic potential 
in Appendix B, (B.75) and (B.77), are repeated here as, respectively, 

                                                      
2 When (7.87) does not apply and 0a

ijH ≠ , this term’s contribution to forces, 
stresses, and energy can be incorporated in a straightforward manner. 
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 (7.94) 

Relation (7.94) indicates that third- (and higher-order) elastic constants 
depend in part on anharmonic terms in the potential, as noted by Thurston 
and Brugger (1964) and Maugin (1999).  Derivations (7.89), (7.90), (7.92), 
(7.93), and (7.94) rely on uniformity of the atomistic deformation (Huang 
1950; Born and Huang 1954) such that the relationship between current 
position vector r and reference position vector R is linear in the mapping 
F.  In this atomistic context, F is regarded as a linear transformation for the 
primitive Bravais lattice vectors similar to LF  in (7.9), and though it acts 
uniformly over atoms in an individual volume element, neither F nor LF  
need be the gradient of any macroscopic vector field spanning neighboring 
volume elements (Clayton and Chung 2006).   

Expansion (7.86), while generic in the sense that many types of interac-
tions (e.g., pair-wise and multi-body, central and non-central force) are 
admitted, may be cumbersome for computation of elastic constants for 
specific potentials that are not typically expressed explicitly in terms of in-
teratomic separation vectors.  For example, explicit expressions for sec-
ond- and third-order elastic constants are given in Section B.2.6 of Appen-
dix B for pair potentials and embedded atom potentials.  

7.3.3 Residual Deformation in a Self-equilibrated Lattice 

Now consider the self-equilibrated configuration B  of Fig. 7.1.  Slip may 
have occurred in achieving this configuration from the reference state, but 
the atoms occupy perfect lattice sites apart from the effects of any defects 
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remaining within the element that either (i) are also present in reference 
configuration 0B  or (ii) are generated during the course of plastic deforma-
tion.  Not considered in Section 7.3 is the (former) class of defects present 
initially in 0B .  Although positions of specific atoms may differ in con-
figurations 0B  and B  as a result of translations by Burgers vectors of dis-
locations that have passed through the volume element, coordinates iR  

can still be used to identify positions of atoms occupying perfect lattice 
sites in B , as discussed in Section 3.2.10.  The volume element may either 
be treated as an isolated ensemble of atoms with free boundaries or as part 
of an infinite medium with a periodic defect distribution.  The former case 
is more consistent with the fundamental definition of the isolated unloaded 
configuration given in Section 7.1 (Eckart 1948), although free surfaces 
can give rise to atomic or ionic displacements (and corresponding surface 
energy contributions), even for otherwise perfect and undeformed crystal 
structures.  Such free surface effects are usually considered negligible 
when the crystal volume element contains a sufficiently large number of 
atoms; correspondingly, such surface effects are not considered in the con-
text of usual continuum nonlinear elasticity of Section 7.2.  The latter 
case—which implicitly includes effects of image forces of defects in 
neighboring volume elements—may be more practical from the standpoint 
of lattice statics calculations with periodic boundary conditions (Chung 
and Clayton 2007).  Previous definitions for achieving the slipped configu-
ration B  discussed in Section 7.1.2 still apply here, but dislocation fluxes 
contributing to plastic deformation are interpreted in terms of velocities of 
atoms comprising each line defect rather than as continuum quantities.  
External forces vanish by definition in B , as do dynamics (i.e., atomic ve-
locities and accelerations), so lattice statics relations (B.16) and (7.81) ap-
ply for a self-equilibrated lattice.  However, because of the presence of de-
fects, the total energy of the ensemble L of atoms in B  is a local minimum 
(Gallego and Ortiz 1993; Chung and Clayton 2007) as opposed to the 
global minimum corresponding to the perfect reference lattice in 0B .  This 
implies that some atoms occupy metastable positions; some interatomic 
forces do not vanish within the element in B  as they do in 0B  via (7.87); 
and the potential energy of the ensemble of atoms in B  exceeds 0Φ .   

The position of atom i in configuration B  is denoted by ir .  Because  

B  is self-equilibrated, average static atomic stress measures vanish by 
definition: 



7.3 Atomistic Interpretation of Residual Elasticity      371 

         1 0
2

ab a bc
ij c

i j ij

r
r
Φσ δ

Ω ≠

∂
= =

∂∑ , 
0

1 0
2

aA ab A
ijb

i j ij

P R
r
Φδ

Ω ≠

∂
= =

∂∑ . (7.95) 

with 0JΩ Ω=  the system volume in B , Φ  the potential energy of (7.83), 
and ij j i= −r r r .  Because atomic coordinates are not mapped homoge-

neously from their positions in 0B  to their positions in B , the average first 
Piola-Kirchhoff stress measure in the second of (7.95) does not follow 
from a linear transformation such as used in the chain rule in (7.84); it is 
instead introduced in (7.95) as a fundamental definition.  Equation (7.95) 
contains discrete analogs of continuum self-equilibrium conditions (7.20) 
and (7.26).  As in (7.86), the potential energy is expanded in a series about 
a perfect reference configuration: 
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with ij ij ij= −q r R  the displacement difference between two atoms in 

the defective self-equilibrated lattice, and where (7.88) has been used to 
define atomic stiffness coefficients.  Substituting (7.96) into the first of 
(7.95) and multiplying through by J , the null average atomic stress rela-
tion becomes 
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 (7.97) 

As in (7.33)-(7.37), vanishing of the average symmetric stress measured 
in the reference configuration leads by definition to six equations for six 
unknown components of symmetric deformation map IF .  Identifying 
harmonic terms in the atomic definition of the average stress with linear 
terms in the continuum elastic definition of the average stress:  

 , . .
0

continuum elasticity
discrete lattice statics
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ABCD A B f ab c
C D f a bcij ijkl kl

i jV
k l

u dV r H q
V
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⇔ ∑∫ , (7.98) 

the following definition emerges (Clayton and Bammann 2009):  
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with the second equality in (7.99) following directly from (7.97).  Assum-
ing as usual that the reference stiffness of the perfect lattice ABCD  is posi-
tive definite, 
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where second-order elastic compliance SCDAB  satisfies (7.38) and can be 
found from inverting the second-order reference moduli (7.93).  The series 
in brackets on the right of (7.100) accounts for anharmonic interactions, 
and includes terms of orders two and higher in relative atomic displace-
ments a

ijq  in the locally deformed, yet self-equilibrated, defective lattice.  

For harmonic lattice statics, in which case 0abc
ijklmnH =  and/or quadratic 

and higher-order terms in a
ijq  are dropped from (7.100), the bracketed se-

ries degenerates to zero and I
CD CDF δ= , analogously to linear continuum 

description (7.35).  The definition for I
CDF  implied by the first of (7.99), 

while not unique, is motivated by its analogous continuum definition 

( ) ( )
1 1

, ,SI ABEF
CD CDABC D E FF V x dV V x dV− −= =∫ ∫  in (7.31).   

Following Section 7.2.6, the first-order accurate residual volume change 
is 0/ det( ) tr( ) 2J Ω Ω= ≈ ≈ −I IF F , where continuum and discrete meas-
ures of reference and intermediate volumes are related, respectively, by 

0 VΩ =  and V VΩ = + ∆ .  Calculation of this volume change does not re-
quire identification of a bounding surface delineating the volume occupied 
by the atoms in configuration B ; i.e., the atoms can occupy an arbitrary 
shape so long as their interaction forces self-equilibrate.  If such a surface 
can be identified in a lattice statics calculation, for example an ensemble of 
atoms in a defective state contained within a hexahedral bounding box, it 
should be possible to compute Ω  trivially (i.e., Ω  is then the volume of 
the box) and then compare results with predictions of (7.100), so long as 
the average static virial stress vanishes over the defective ensemble of at-
oms.  An apparent advantage of the atomistic approach of Section 7.3 over 
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the continuum approach of Section 7.2 is that effects of defect cores are 
accurately incorporated in the former, presuming that the atomic potential 
is sufficiently robust to model defect core structures.  An apparent disad-
vantage is that solutions to (7.100) must be computed numerically, while 
the continuum approach pioneered by Zener (1942), Seeger and Haasen 
(1958), Toupin and Rivlin (1960), and Holder and Granato (1969) pro-
vides convenient analytical formulae for volume changes such as (7.59)-
(7.61). 

7.4 Point Defects and Residual Elasticity 

In continuum and solid state physics, point defects are often idealized as 
spheres embedded in an elastic medium (Bitter 1931; Eshelby 1954, 1956; 
Holder and Granato 1969).  Since spheres have finite volume, formation of 
such defects necessarily involves a volume change, regardless of the rigid-
ity of the surrounding medium.  This situation is in contrast to idealized 
line defects of the sort addressed in Section 7.2, e.g., dislocation and dis-
clination lines, which have no intrinsic volume, though the surrounding 
elastic medium can still undergo dilatation as a result of the presence of 
such line defects.  In Section 7.4.1, a model for the deformation gradient 
contribution resulting from generation of a point defect and its elastic 
fields is suggested, combining results of Sections 3.2.8, 7.2, and C.4 of 
Appendix C.  In Section 7.4.2, the particular example of a monovacancy in 
copper is discussed and predictions are compared with experimental ob-
servations. 

7.4.1 Spherical Deformation from a Point Defect    

Recall from Section 3.2.8 that the total lattice deformation gradient for an 
elastic body with an isotropic distribution of spherical point defects can be 
written as 
 =L E VF F F , (7.101) 
where the residual volumetric deformation from defects is 
 1/ 3 1/ 3

. . .(1 )V VF Jα α α
β β βφ δ δ−= − = , det( )VJ = VF . (7.102) 

As shown in Fig. 3.10, :TB TB→VF , where externally unloaded configu-
ration B  is analogous to that in Fig. 7.1.  From (3.133)-(3.135), the vol-
ume fraction of point defects per unit volume in B  is 
 [ ]0 (1 ) vφ αξ ξ= = ±Ω + + Γ ∆ , (7.103) 
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where ξ  is the number of defects per unit volume in B  and α  is the net 
volume change per defect.  When = LF F , (7.103) can also be written as 
 [ ]0 0 0 0(1 ) vφ αξ ξ= = ±Ω + + Γ ∆ , (7.104) 
where 0

VJφ φ=  and 0
VJξ ξ=  are defined per unit reference volume.  Re-

call from Section 3.2.8 that 0 0±Ω → Ω  in (7.103)-(7.104) when a vacancy 
enters the volume element (e.g., via diffusion at a free surface) and free 
volume of the crystal increases by atomic volume 0Ω , while  0 0±Ω → −Ω  
in (7.103)-(7.104) when an atom moves from a lattice site to an interstitial 
position in the idealized situation when no vacancy is left behind.  For a 
substitutional atom, the 0±Ω  term is omitted, and (1 ) vα = + Γ ∆ .  The al-
gebraic sign of v∆  is positive for an interstitial or a substitutional atom of 
larger size than the atom it replaces.  The algebraic sign of v∆  is negative 
for a vacancy or a substitutional atom smaller than the atom it replaces.  In 
a polyatomic crystal, the magnitude and sign of v∆  will generally depend 
on the atomic species of the defect under consideration, as well as any pos-
sible electric charge associated with the defect (e.g., in an ionic crystal). 

The magnitude of relaxation volume v∆  depends on the interaction of 
the point defect with the surrounding crystalline medium.  In the linear 
elastic approximation, idealizing the surrounding crystalline material as 
isotropic and the point defect as a rigid sphere, analytical solutions are 
available, as presented in Sections C.3.1 and C.3.2, respectively, for an in-
finitely extended elastic medium and an elastic medium of finite dimen-
sions.  An analytical solution is also available for a deformable elastic 
sphere embedded in a finite medium (Section C.3.3 of Appendix C), but 
such a model is not invoked here in the context of point defects because 
assignment of continuum elastic constants to a sphere of dimensions of a 
single atom is deemed too severe an assumption.  

The simplest model, discussed in Section C.3.1, idealizes the defect as a 
rigid sphere and the surrounding medium as infinitely extended.  The re-
laxation volume is given by (C.188): 
 4v V Aδ π∆ = = , (7.105) 
where A is a misfit parameter that must be determined from experiments or 
atomic scale calculations.  The average strain energy density of the elastic 
medium surrounding a single defect is purely deviatoric, as listed in 
(C.187): 
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The radius of the spherical point defect is 0r , and the radius of a spherical 
region of the surrounding medium is 0R .  Successive approximations in 
(7.106) correspond to 3 3

0 0/ 1R r , i.e., a very small defect in a much larger 
sample of material.  For N dilute defects in the case where interactions 
among defects are reasonably omitted, (7.106) is extended to 

 2 2
03

0 0 0

2 2( ) ( )
3 (4 / 3) 3S

NW V V
R

µ µδ δ ξ
π

≈ =
Ω Ω

, (7.107) 

with 0 /N Vξ =  the number of defects per unit reference volume as in 
(7.104).  The relaxation volume can then be estimated by equating the 
product of (7.107) and the reference volume V with formation energy FE  
of a single ( 1N = ) point defect: 

             
1/ 2
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0

34 2 ( )
3 3 2

F
F S

EE R W V V vπ µ δ δ
µ

Ω⎛ ⎞
= = ⇒ = ± = ∆⎜ ⎟Ω ⎝ ⎠

. (7.108) 

The description of Section C.3.2 treats the defect as a rigid sphere em-
bedded in a finite volume of isotropic elastic material.  The volume 
change, from (C.195), is 

 4 3(1 )4 1 4
3 1

v A A
K
µ νπ π

ν
−⎡ ⎤ ⎡ ⎤∆ = + =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

, (7.109) 

where the misfit parameter 
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The radius of the spherical point defect is 0r , and the traction-free external 
surface of the surrounding crystal is located at radial coordinate 0R .  For 

3 3
0 0/ 1R r , 
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0

0

3(1 ) 4 3(1 )1
1 3 1

rv V V c V
K R

ν µ νδ δ δ
ν ν

−
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, (7.111) 

where the dimensionless elastic constant 3(1 ) /(1 )c ν ν= − + .  The strain 
energy density is not purely deviatoric, since local pressure and elastic 
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dilatation are nonzero in (C.194).  However, inserting (7.111) into (7.108) 
as an approximation, the relaxation volume is estimated as 

 
1/ 2 1/ 2

0 03 33(1 )
2 1 2

F FE Ev c V c νδ
µ ν µ

Ω Ω⎛ ⎞ ⎛ ⎞−⎡ ⎤∆ = = ± = ±⎜ ⎟ ⎜ ⎟⎢ ⎥+⎣ ⎦⎝ ⎠ ⎝ ⎠
. (7.112) 

The additional volume change resulting from nonlinear elastic effects is 
estimated using (7.60), assuming the strain energy density is deviatoric, 
following Eshelby (1954): 
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 (7.113) 

Thus, in (7.103) and (7.104), the additional volume change per defect re-
sulting from nonlinearity is estimated as 

                              
0

/ 1
F

V Vv E
p K
µ µ

ξ µ
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When point defects are embedded in an infinite medium, (7.108) gives 
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When point defects are embedded in a finite medium, (7.112) gives 
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. (7.116) 

Algebraic signs for the ±  symbols in (7.115) and (7.116) match those of 
corresponding relaxation volume v∆ .  Correction factor Γ  can be positive 
or negative in sign depending on algebraic signs of v∆  and the term 

/ /p Kµ µ∂ ∂ − . 

7.4.2 Example: Vacancies in Copper 

Representative results of the theory outlined in Section 7.4.1 are listed in 
Table 7.5 for copper, applied to single point vacancies (i.e., mono-
vacancies).  Properties used in the calculations correspond to those listed 
in Tables 7.3 and 7.4.  The atomic volume for a monatomic FCC crystal 
(four atoms per conventional unit cell) is 3 3

0 a / 4 / 2bΩ = = .  Poisson’s 
ratio ν  used to obtain elastic constant c is listed in Table 7.3.  The va-
cancy formation energy FE  and defect energy per atomic volume change 
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0 /FE αΩ  were obtained from independent experiments (Simmons and 
Balluffi 1963; Nilan and Granato 1965).  The experimental value of FE  
listed in Table 7.4 is used, however, in the model predictions of relaxation 
volume v∆ , nonlinear elastic corrector Γ , and total volume change α  
listed in columns 2-4 of Table 7.5.   
 
Table 7.4 Properties for copper 

Atomic volume 
0Ω  [Å3]  

3 3
1

c ν
ν

−
=

+
 

Vacancy formation energy
 EF (1) [eV/atom] 

11.81 1.41 1.17 
(1) Simmons and Balluffi (1963) 

 
Table 7.5 Volume changes from vacancies in copper 

Model or  
experiment 

Relaxation 
0/v∆ Ω  

Nonlinear  
correction Γ 

Total volume 
change 0/α Ω

0 /FE αΩ  
[eV/atom] 

Infinite medium  -0.71 -0.23 0.45 2.6 
Finite medium -1.01 -0.16 0.16 7.3 
Experiment(1) - - 0.32 3.7 

(1) Nilan and Granato (1965) 
 
Values in the first row of results in Table 7.5 correspond to the model of 

a point defect in an infinitely extended elastic body of the sort described in 
Section C.3.1, specifically relations (7.108) and (7.115).  Values in the 
second row of results in Table 7.5 correspond to the model of a point de-
fect in a finite elastic body with traction free outer surface as addressed in 
Section C.3.2, specifically (7.111) and (7.116).  Negative algebraic signs 
apply for v∆  and hence Γ , since the relaxation volume is negative for a 
vacancy (i.e., surrounding atoms are pulled towards the vacant lattice site) 
and since / / 0.49 0p Kµ µ∂ ∂ − = >  for copper.  The total normalized vol-
ume change from (7.103) or (7.104) applied to a vacancy is then com-
puted, per atomic volume, as 

 
0 0

1 (1 ) vα ∆
= + + Γ

Ω Ω
. (7.117) 

Experimental results listed in Table 7.5 are obtained from measurements of 
volume changes and energy released during annealing of deuteron-
irradiated, i.e., radiation-damaged, copper foils (Nilan and Granato 1965).  
The total volume changes predicted by the two continuum models bound 
the experimental results from above and below, and all predictions agree 
with model results within a factor of two.  Predicted relaxation volumes 
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are on the order of the atomic volume, and nonlinear elastic effects are 
non-negligible since | |Γ  is not small compared to unity.    

 



8 Mechanical Twinning in Crystal Plasticity 

Twinning in a general sense may encompass a variety of energy-invariant 
transformations of a crystal structure.  A twin in a crystalline solid is usu-
ally defined as two regions of a crystal separated by a coherent planar in-
terface called a twin boundary, though interpenetrating twins with irregular 
interfaces are also possible.  Limiting values of deformation gradients in 
each region, on either side of the interface, differ by a simple shear.  Twin-
ning can be induced by a variety of mechanical, thermal, electrical, or 
chemical stimuli.  Annealing twins or growth twins emerge during growth 
of a crystal.  Another notable example is a set of finely twinned layers or 
lamina associated with kinematically compatible, low energy configura-
tions emerging at or near the transformation temperature in the crystallo-
graphic theory of martensite (Ball and James 1987; Bhattacharya 1991), 
i.e., solid-solid polymorphic phase transformations.  The present Chapter 
does not address such phase transformations, annealing, or crystal growth.  
Rather, the focus of Chapter 8 is a particular kind of twinning labeled me-
chanical twinning, which by definition is induced by mechanical stresses 
(Kosevich and Boiko 1971; James 1981).  The part of the mechanical 
stress tensor responsible for twinning is most typically a resolved shear 
stress acting on the normal to the plane of the twin, in the direction of 
twinning shear or twin propagation.  The term deformation twinning 
(Christian and Mahajan 1995) is used interchangeably with mechanical 
twinning.  

When subjected to large deformations or large mechanical stresses, 
crystalline solids may deform via a number of mechanisms.  As discussed 
in Chapter 6, when dislocation mobility is sufficiently high in an adequate 
number of directions, dislocation glide is the predominant accommodation 
mode for deviatoric deformations in ductile crystals at stresses above the 
elastic limit.  On the other hand, depending on the particular kind of crystal 
and the loading conditions, inelastic deformation may be supported by 
other mechanisms such as deformation twinning. 

As reviewed by Christian and Mahajan (1995), a number of theories, 
some complementary and some competing, exist that describe twin nuclea-
tion and propagation.  Differences in twinning behaviors, or lack thereof, 
among crystals of various compositions and structures inhibit the formula-
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tion of a universal theory for kinetics of deformation twinning in crystals 
of arbitrary composition and structure.  In treatments of thermodynamics 
and kinetics that follow later in Chapter 8, deformation twinning is associ-
ated with thermodynamically irreversible shape deformation in correspon-
dence with collective motion of partial dislocations and formation of stack-
ing faults (Bilby and Crocker 1965; Christian and Mahajan 1995). 

Deformation twinning is thought to be preferred over slip in cases 
wherein resistances to dislocation glide are very large in certain directions 
(Hirth and Lothe 1982), such as often occurs in crystal systems of non-
cubic symmetry.  For example, in hexagonal crystals, twinning is often fa-
vored over slip in directions not contained within the basal plane.  In cer-
tain hexagonal or rhombohedral ceramics such as alumina (i.e., sapphire or 
corundum), slip-mediated shearing on basal and prismatic planes is often 
the preferred inelastic deformation mechanism, with slip resistances in di-
rections normal to the basal plane extremely high (Veit 1921; Kronberg 
1957; Bourne et al. 2007; Clayton 2009a).  This phenomena occurs simi-
larly in many hexagonal metals, including certain alloys of zirconium 
(Tome et al. 1991; Kalidindi 1998), titanium (Schoenfeld and Kad 2002), 
and magnesium (Staroselsky and Anand 2003), though secondary slip on 
pyramidal systems is sometimes possible.  In many cases, deformation 
twinning, as opposed to slip, may be the only viable mechanism for ac-
commodating deformation normal to the basal plane, in lieu of fracture.  
Twinning is often preferable to slip at lower temperatures in crystals with 
cubic symmetry, especially those with low stacking fault energy (Meyers 
et al. 2001; Bernstein and Tadmor 2004).  For example, it has been ob-
served that aluminum (stacking fault energy 2170 mJ/m� ) is less likely to 
twin than copper (stacking fault energy 260 mJ/m� ).   

The description set forth in Chapter 8 accounts for mechanisms of elas-
ticity, plastic slip, and deformation twinning in single crystals.  Each 
mechanism is addressed independently via an individual term within a 
three-term multiplicative decomposition of the deformation gradient.  Ac-
cording to this representation, plastic deformation is deemed lattice-
preserving (i.e., dislocation glide does not affect the Bravais lattice vectors 
or stored elastic energy of the crystal), following treatments of Chapter 3 
(Section 3.2) and Chapter 6.  In contrast, twinning is modeled here dis-
tinctly from dislocation plasticity via the use of an intermediate term in the 
deformation gradient decomposition.  Three-term decompositions were 
suggested by Kratochvil (1972) and Clayton et al. (2005), who introduced 
intermediate terms within three-term decompositions to account for irre-
versible deformations distinct from those arising from dislocation glide.  
Following the scheme of continuum crystal plasticity theory of Sections 
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3.2.6 and 6.3, plastic deformation takes place via slip on one or more dis-
crete systems.  Twinning takes place via shears of predefined magnitude, 
with the rate of shearing determined by the rate of increase in volume frac-
tion of the twin relative to the parent crystal (Chin et al. 1969; Van Houtte 
1978; Kalidindi 1998; Staroselsky and Anand 1998, 2003).  Microscopic 
strain fields associated with lattice defects may also contribute to irreversi-
ble deformation.  In particular, net volume changes associated with resid-
ual strain fields of defects, as derived in Section 7.2.4, are directly incorpo-
rated into the extended crystal plasticity theory of Chapter 8.  Finally, 
thermomechanically reversible deformation of the lattice is addressed via 
the elastic term in the decomposition, encompassing both the recoverable 
deformation associated with mechanical stresses and thermal expansion or 
contraction associated with temperature changes. 

A constitutive framework based on internal state variable theory pro-
vides thermodynamic relationships among independent and dependent 
state variables as well as appropriate driving forces for evolution of inter-
nal state variables and rates of inelastic deformations.  Here, internal state 
variables consist of dislocation and twin boundary densities, and inelastic 
deformation rates include rates of slip and of twinned volume fractions.  
Dislocation densities are partitioned into geometrically necessary disloca-
tions associated with slip gradients and statistically stored dislocations as-
sociated with homogeneous plastic flow and dislocation loops.  Recall that 
formal definitions of dislocation densities are given in Section 3.3.2.  Inter-
face partial dislocations at propagating twin boundaries (Scott and Orr 
1983) are demonstrated to contribute to the geometrically necessary dislo-
cation density tensor.  Thermodynamic restrictions on kinetic relations fol-
low naturally from energy conservation requirements and the entropy pro-
duction inequality.  Averaging concepts are invoked to describe effects of 
twinning on the thermoelastic response of an element of crystal containing 
one or more twins, leading to effective anisotropic moduli and dissipation 
rates that depend upon volume fractions of twins in the crystal.   

In Section 8.1, brief physical descriptions of elasticity, plasticity, and 
twinning in crystalline solids are provided, with a focus on twinning.  
These descriptions serve to clarify the distinctions among the three defor-
mation mechanisms and provide sufficient physical basis for the corre-
sponding model framework that follows in Section 8.2.  The framework of 
Section 8.2 may be applied to describe any crystalline solid that undergoes 
large deformations via elasticity, plasticity, and/or twinning, including 
many metallic and ceramic crystals and crystalline minerals.   
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8.1 Mechanisms: Elasticity, Slip, and Twinning 

Elasticity, slip, and twinning are described in Sections 8.1.1, 8.1.2, and 
8.1.3, respectively.  Regarding elasticity and slip, some redundancy with 
previous descriptions given in Sections 3.1 and 3.2 is unavoidable, but 
necessary, in order to enable a complete description of mechanical twin-
ning. 

8.1.1 Elasticity 

Elastic deformation is addressed in detail in Chapter 3 (Section 3.1) and 
Chapter 5.  A crystal is said to deform elastically in the absence of genera-
tion or motion of defects.  At the atomic scale, elastic deformation alters 
distances and/or orientations between neighboring atoms within each crys-
tallographic unit cell.  The resulting changes in inter-atomic forces produce 
mechanical stresses when the crystal is viewed as a continuous solid.  Re-
moval of mechanical stresses restores the original lattice without any dis-
sipation of energy; hence, according to the usual idealization, such elastic 
deformation is said to be thermodynamically reversible.  Elastic deforma-
tion as defined in Chapter 8 also includes changes in inter-atomic bond 
vectors induced by changes in temperature.  At the atomistic scale of reso-
lution, increases in local thermal vibration of atoms about their reference 
positions (i.e., phonons), result in expansion of the lattice in the absence of 
mechanical stresses.  Such thermal deformations are also idealized as re-
versible, since presumably, in the absence of other applied stimuli, atoms 
of the crystal will return to their reference mean or equilibrium arrange-
ment as the temperature is reduced to its original value.  

Let ( , )X tEF  denote the two-point tensor of large (i.e., geometrically 
nonlinear) thermoelastic deformation, simply referred to as the elastic de-
formation in Chapter 8.  When the crystal contains defects (e.g., disloca-
tions), the elastic deformation will generally not be associated with the true 
derivative of any displacement field, and correspondingly, the compatibil-
ity conditions [ ]

1
. , 0E

a bF α− =  are not satisfied in general, in contrast to 

(2.203) which apply for the total deformation gradient ( , )X tF .  Let iA  
( 1,2,3i = ) denote primitive Bravais lattice vectors of (3.1). Then accord-
ing to the Cauchy-Born hypothesis (Born and Huang 1954; Ericksen 1984) 
of Section 3.1.2 and (3.17), when the total deformation is elastic,  
 i i= Ea F A , ( 1,2,3i = ), (8.1) 
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with ia  the primitive Bravais lattice vectors in the deformed crystal.  Elas-
tic deformation of a primitive non-cubic lattice is illustrated in Fig. 8.1(a); 
note the deformation of a representative primitive Bravais lattice vector 

1 1= Ea F A .   
 

 
Fig. 8.1 Deformation mechanisms and lattice vectors: (a) elasticity, (b) plastic 

slip, (c) twinning 
 

Let ψ  denote the Helmholtz free energy per unit mass of the crystal, as 
first introduced in Table 4.2.  This energy is postulated, for illustrative pur-
poses in Section 8.1, to depend only on the elastic deformation at particu-
lar material location X and at a given time t.  Then the free energy satisfies 
the usual constraints imposed by invariance and material symmetry: 
 ( ) ( ) ( ) ( )ˆ ˆ, , , ,X X X Xψ ψ ψ ψ= ≥ =E EF QF H 1 QH

� �
. (8.2) 

In (8.2), 1 is the unit tensor, ˆ ˆ T−=Q Q  represents any rigid body rotation of 
the spatial coordinate frame with ˆdet 1= +Q , and ∈H H

�
 is any member 

of the group H  of affine transformations of the Bravais lattice that does 
not affect its free energy.  The point group _  of symmetry operations (i.e., 
rotations, reflections, and inversions) for the crystal class to which the ma-
terial belongs is a subset of this potentially larger group of energy invariant 
transformations, i.e., ∈ H_ .  The first of (8.2) corresponds to (A.1) of 
Appendix A when =EF F  and = ∈H Q

��
_ , where Q

�
 is a member of the 

point group as introduced in Section 5.1.5 in the context of elastic symme-
try.  Point groups and crystal classes are discussed in more detail in Sec-
tion A.1 of Appendix A.  Matrix H

�
 is not necessarily orthogonal and 

hence may fall outside the point group, as demonstrated explicitly later in 
Section 8.1.3 wherein H

�
 is associated with twinning shear.  Relation (8.2) 

implies that the state characterized by null elastic deformation, =EF 1 , 
correlates with a local minimum of the free energy density ψ  at point X. 
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8.1.2 Plastic Slip 

Plastic deformation is discussed at length in Section 3.2 of Chapter 3 from 
the perspective of kinematics and in Chapter 6 from the perspective of 
thermomechanics and kinetics.  Plastic deformation as addressed in this 
context occurs via glide of dislocations of edge, screw, and/or mixed char-
acter, including loops, and encompassing cross-slip but not dislocation 
climb.  As discussed in Section 3.2.2, as full dislocations travel through a 
region of the lattice, the shape of the material will change, but the inter-
atomic bond vectors remain the same (upon translation of planes by an in-
teger multiple of the Burgers vector), so long as no defects are left behind 
within the region.  In this sense, the plastic deformation is said to be lat-
tice-preserving.  Collective motion of leading and trailing partial disloca-
tions is also lattice-preserving, since trailing partial(s) erase the stacking 
faults left in the wake of leading partials and hence restore the lattice pe-
riodicity.  Mechanical stresses are conventionally required to enact glide of 
dislocations, apart from random thermal fluctuations such as occurring in 
kink migration.  For example, according to Schmid’s law, resolved shear 
stresses in (6.70) or (6.86) must exceed a threshold stress consisting of su-
perposition of the Peierls barrier (C.248) and influences from other defects 
as in (6.99).  Plastic deformation is thermomechanically irreversible, since 
the reference shape of the material is not recovered upon removal of me-
chanical stresses, and since heat is dissipated by moving dislocations as a 
result of lattice friction, phonon drag, and other mechanisms (Kocks et al. 
1975; Gilman 1979).  Plastic dissipation converted to temperature rise is 
evident from (6.43) and (6.45)-(6.47).  Because the crystal lattice remains 
unchanged apart from steps on its surface, plastic deformation itself does 
not affect the strain energy of the crystal.  However, defects generated dur-
ing the course of plastic deformation that remain within the material lead 
to energy storage as a result of the local stress fields supported by these de-
fects.  Such effects are captured in continuum theories by internal state 
variables, leading for example to a Taylor-Quinney parameter 1β ′ <  in 
(6.46) during some part of the deformation history.   

Let ( , )X tPF  denote the two-point tensor of potentially large plastic de-
formation.  The plastic deformation will generally not be the derivative 
(i.e., true material gradient) of a displacement function, and correspond-
ingly, compatibility conditions [ ]. , 0P

A BF α =  are not always satisfied, imply-

ing existence of geometrically necessary dislocations in the crystal, as is 
evident from kinematic relations (3.217)-(3.227) of Section 3.3.2.  Plastic 
deformation is illustrated conceptually for a non-cubic lattice in Fig. 
8.1(b).  On the right side of the figure, the slip plane is denoted by the 
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dashed line.  Note that the lattice vector 1A  is unchanged by the action of 
the plastic deformation, in agreement with (3.107).  As demonstrated in 
(3.116) the corresponding implication in crystal plasticity theory is that 
slip directions and slip plane normal vectors are unaffected by PF .  Since 
plastic deformation is lattice-preserving and consists of shearing in one or 
more directions, the volume of the material remains unaffected, and hence 

1PJ = , as emphasized in Section 7.1.1.  Furthermore, because the (contin-
uum) plastic deformation by definition consists only of relative shear dis-
placements of crystallographic planes in integer multiples of the Burgers 
vector, the free energy density of the crystal cannot depend explicitly on 

PF : 

 
, ,

0
θ α

ψ∂
=

∂ E
P

FF
, (8.3) 

where elastic deformation, temperature, and internal state variable(s) are 
held fixed in the partial derivative.  At the atomic scale, slip can be further 
understood by considering the generalized stacking fault energy (Vitek 
1966; Zimmerman et al. 2000; Ogata et al. 2005): 
         ( ) ( )GSF GSF iE E l∆ = ∆ +x x b , (0) ( ) 0GSF GSF iE E l= =b , ( il ∈] ). (8.4) 
The relative shear displacement between two neighboring crystallographic 
planes is denoted by ∆x , il  is any integer, and b is the Burgers vector of a 
full dislocation.  The energy in (8.4) is minimal at null relative displace-
ment, corresponding to a perfect reference lattice, and exhibits periodic to-
tal minima for rigid translations of planes by integer multiples of the Bur-
gers vector.  Local minima in generalized stacking fault energy surfaces, 
often called γ-surfaces, can be associated with metastable stacking faults, 
i.e., partial dislocations.  The total energy of the atomic ensemble also in-
cludes energies of defect cores and residual stress fields of defects; in 
complementary continuum treatments such energetic contributions are 
measured by internal state variables, as discussed in Section 4.2.1. 

8.1.3 Deformation Twinning 

Deformation twinning results in two connected regions in the lattice sepa-
rated by a twin boundary (i.e., the dotted line on the right side of Fig. 1 (c)) 
whose shape deformations differ by a simple shear.  The original region of 
the crystal is termed the parent, while the sheared region is termed the 
twin.  According to the classical definition of a deformation twin, atomic 
positions, and hence primitive Bravais lattice vectors and basis vectors, 
within each region differ by a proper or improper rotation, typically either 
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a reflection or 180° rotation (Christian and Mahajan 1995), though more 
general relationships are possible.  The stacking sequence of atomic planes 
in the twin is altered or reversed with respect to that in the parent, and 
hence crystals with low stacking fault energies are usually more prone to 
twin formation than those with high stacking fault energies.  Nucleation 
and propagation of deformation twins are though to take place by one or 
more mechanisms, often involving the formation and motion of partial dis-
locations (e.g., dissociation of full dislocations into partials) and possible 
atomic shuffles needed to maintain the orientation relationships between 
the twin and parent (Cottrell and Bilby 1951; Bilby and Crocker 1965; 
Hirth and Lothe 1982; Pirouz 1987; Zanzotto 1996; Lagerlof et al. 2002).  
Partial dislocations associated with twin growth are often labeled as twin-
ning dislocations, and these twinning dislocations often have Burgers vec-
tors whose magnitudes are very small fractions of full dislocations in the 
same crystal structure.  In some cases, e.g., the standard twinning modes 
for BCC and FCC crystals listed in Table 8.1, twins can be formed by sim-
ple shearing of the Bravais lattice vectors alone.  In other cases, atomic 
shuffles, i.e., additional displacements of only some of the atoms in the 
twin, are required in order to maintain the orientation relationship among 
all atoms in twin and parent.  Such shuffles or relative displacements are 
usually mandatory in polyatomic crystals, i.e., those with a basis of more 
than one atom per primitive unit cell.   

Twinning is not regarded as lattice-preserving in the sense of slip, since 
twinning involves rotation of the lattice, as evidenced by crystallographic 
texture measurements (Van Houtte 1978; Tome et al. 1991).  The in-
volvement of partial dislocations and atomic shuffles, for example, induces 
the rotational change of the twinned lattice relative to that of the parent.  
Such changes in the lattice orientation do not occur under plastic deforma-
tion arising from the slip of full dislocations, as shown in Fig. 8.1(b).  De-
formation twinning is also distinguished from plastic slip in that the former 
occurs by collective motion of defects, resulting in a quantized amount of 
shear, denoted by jγ  on twin system j, that preserves a particular orienta-
tion relationship between the twin and parent.  In contrast, plastic deforma-
tion may conceivably result in shearing of any maximum magnitude, with 
the lower limit of relative displacement between two lattice planes limited 
by the Burgers vector for slip.  The shear strain associated with deforma-
tion twinning is usually mechanically irreversible, since fully formed twins 
remain in single crystals after mechanical stresses are removed1.  Twins of-
                                                      

1 Elastic twinning is physically possible (Cooper 1962; Kosevich and Boiko 
1971).  Elastic twins partially or fully disappear upon load relaxation, though dis-
sipation associated with hysteresis can still be significant if the loading is cyclical.  
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ten seem to propagate very rapidly relative to slipped regions or slip bands 
(Christian and Mahajan 1995), even in low strain rate experiments as evi-
denced by load drops in the stress-strain response (Kronberg 1968; Scott 
and Orr 1983).  When driving stresses are sufficiently large, tapered twin 
lamellae can extend or grow at velocities exceeding the elastic shear wave 
speed of the crystal, though the velocity of the twin resolved in the direc-
tion normal to its boundary surface must remain subsonic (Rosakis and 
Tsai 1995).  Much slower twin growth kinetics has also been reported. 
Cooper (1962) measured velocities in transparent calcite that were only a 
small fraction of the elastic wave speed and were not strongly dependent 
on the applied shear stress.  Another difference between slip and twinning 
is that twinning is polarized while slip is not.  Geometry of the lattice tends 
to prevent twinning shears of equal magnitude and opposite directions on 
the same plane, while typically slip may initiate in opposite directions on 
the same plane.  In typical crystal plasticity models, the initial resistance to 
slip is assumed the same in forward and reverse directions, though this as-
sumption is not always warranted in BCC crystals (Vitek 1976; Lee et al. 
1999) or in nonmetals such as low-symmetry ceramics (Clayton 2009a, 
2010c).  Dislocation motion resulting in shear deformation in the opposite 
direction to the twinning direction on the same set of planes is known as 
anti-twinning, and is physically possible.  However, the mechanical resis-
tance, in terms of shear stress, to anti-twinning, can be several times 
greater than the resistance to twinning (Paxton et al. 1991). 

 

 
Fig. 8.2 Twin geometry and notation (Christian and Mahajan 1995) 

                                                                                                                          
Wedge-shaped elastic twins have been observed experimentally in semi-infinite 
crystals subjected to concentrated surface forces, for example knife-edge loading.  
If the region of the parent (matrix) is plastically deformed, then such an induced 
twin will not be elastic, but will instead remain present in the material upon 
unloading as a result of the constraint of the surrounding plastically deformed ma-
trix.  Thus, elastic twinning appears more common in certain nonmetals such as 
calcite wherein twinning is much easier than slip, and less common in metals that 
tend to undergo plastic slip and twinning simultaneously (Cooper 1962).   
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A geometric depiction of twinning is provided in Fig. 8.2, following the 
classical notational scheme of Bilby and Crocker (1965) and Christian and 
Mahajan (1995).  The geometry of the twin is characterized by the four 
twinning elements 1 2 1 2{ , , , }K K η η .  The surface of composition separating 
parent and twinned regions of crystal is often called the habit plane and is 
labeled 1K .  The direction of relative shear is 1η .  The plane S, called the 
plane of shear, contains both 1η  and the normal to 1K .  Plane 2K  is called 
the second undistorted plane, and contains those vectors that are only ro-
tated, but not stretched, by the simple shearing operation associated with 
twinning.  Vector 2η , referred to as the conjugate shear direction, is the in-
tersection of planes S and 2K .  A twinning mode can be defined by values 
of either the pair 1 2{ , }K η  or the pair 2 1{ , }K η , though it is customary to 
specify all four elements plus the magnitude of shear jγ .  When compo-
nents of 1 2{ , }K η  in Miller index notation—see Section 3.1.1—consist of 
rational numbers, the twin is said to be of type I, while when components 

2 1{ , }K η  are rational in Miller index notation, the twin is said to be of type 
II.  When components of all four elements 1 2 1 2{ , , , }K K η η  are rational, the 
twin is said to be compound.  Primitive Bravais lattice vectors in the twin 
and parent in a type I twin are related by either a reflection in 1K  (type Ia) 
or rotation of 180° about the direction normal to 1K  (type Ib).  For a type 
II twin, the lattice vectors are related by either a rotation of 180° about 1η  
(type IIa) or a reflection in the plane normal to 1η  (type IIb).  Mathemati-
cally, in Cartesian coordinates, the orthogonal transformations  

 

0 0

0 0

0 0

0 0

2 ,   (type Ia),
2 ,   (type Ib),
2 ,      (type IIa),

2 ,      (type IIb)

− ⊗⎧
⎪ ⊗ −⎪= ⎨ ⊗ −⎪
⎪ − ⊗⎩

1 m m
m m 1

Q
s s 1

1 s s

 (8.5) 

relate a primitive Bravais lattice vector in the parent, iA , to a vector in the 
twin ia , via i i=a QA , as shown in Fig. 8.1(c) for 1i = .  A unit vector 
normal to the habit plane 1K  is denoted by 0m .  A unit vector parallel to 
the shear direction 1η  is denoted by 0s .  Transformations for types Ib and 
IIa are rotations or proper orthogonal transformations, while transforma-
tions for types Ia and IIb are reflections or improper orthogonal transfor-
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mations2.  All transformation matrices listed in (8.5) will generally have 
different numerical components.  However, in centrosymmetric crystal 
structures, types Ia and Ib are crystallographically equivalent, and types IIa 
and IIb are crystallographically equivalent (Christian and Mahajan 1995), 
since the point group of a centrosymmetric crystal class includes the inver-
sion (see Table A.1 for specifics).  In more complex crystal structures 
without a center of symmetry, the reflection and rotation operations listed 
in (8.5) all result in different configurations of the atomic structure, and 
hence four distinct transformation matrices need be considered (i.e., two 
for each type of twin).  In a compound twin in a centrosymmetric crystal of 
the type shown in Fig. 8.1(c), all four definitions in (8.5) are crystal-
lographically equivalent.   

Alternative (i.e., non-classical) descriptions of twinning kinematics are 
also possible.  For example, Bevis and Crocker (1968) developed a gener-
alized mathematical treatment of twinned lattices that encompasses non-
conventional or degenerate twinning modes not addressed by (8.5). 

 
Table 8.1 Representative twin systems in crystals (Christian and Mahajan 1995) 

Crystal K1 K2 η1 η2 S Shear γ j Partial bP 
BCC { }112  { }112  1 11  111  { }110  1/ 2  1/ 6 111  

FCC { }111  { }111  112  112  { }1 10  1/ 2  1/ 6 112  

HCP { }1012

 
{ }1012  101 1

 

1011

 
{ }1210  2 2c /a 3

3 c/a
−  1011 *A

 

 2 2* [3 (c/a) ]/[3 (c/a) ]A = − +  
 
Table 8.1 lists common twin systems in metallic crystals with cubic and 

hexagonal structures.  The complete twinning elements 1 2 1 2{ , , , }K K η η , 
the plane of shear S, the magnitude of shear deformation jγ , and the par-
tial Burgers vector Pb  of dislocations whose collective motion is thought 
to account for the twinning shear are all listed in Table 8.1.  Shear 0jγ ≥  
is always non-negative by definition.  Hence, twinning does not occur on 
the same plane in opposite directions.  Care must be taken to ensure the 
correct directional sense of twinning is prescribed; Table 8.2 lists individ-
ual planes and directions for families of twin systems in Table 8.1. 

                                                      
2 An orthogonal transformation satisfies 1T −=Q Q , with det 1= +Q  for a 

proper transformation and det 1= −Q  for an improper transformation.  Since ma-
trices in (8.5) are symmetric and orthogonal, 1T T− −= = =Q Q Q Q . 
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All twinning elements are rational for the twin systems listed in Table 
8.1; hence all describe compound twins.   No atomic shuffles are required 
for monatomic BCC and FCC crystals undergoing those particular twin-
ning modes listed in Table 8.1.  The list of twin systems in Table 8.1 is far 
from comprehensive, as numerous other systems have been observed in 
various alloys, polyatomic lattices, and crystal structures of lower symme-
try (Schmid and Boas 1950; Christian and Mahajan 1995).  Table 8.1 can 
be compared with Table 3.4 that lists slip systems and full Burgers vectors 
for dislocation glide in cubic and hexagonal crystal structures.   

In hexagonal crystals (labeled HCP in Table 8.1, as in Table 3.4, though 
the c/a  ratio may deviate from the ideal value of 1.633), the direction of 
shear 1η  is reversed for ratios of lattice parameters 2 2c /a <3  and twinning 
does not occur for 1/2c/a 3 1.732≈ � , as has been observed experimentally 
(Christain and Mahajan 1995).  For 2 2c /a >3 , twinning occurs when a sin-
gle crystal is compressed parallel to the c-axis, while for 2 2c /a <3 , twin-
ning occurs when a crystal is stretched in tension parallel to the c-axis.   

 
Table 8.2 Twinning planes and directions 

BCC(1)  FCC(2) HCP(3) 

(112)[111]  (111)[112]  (1012)[101 1]  

(121)[111]  (111)[121]  (0112)[0111]  

(211)[111]  (111)[211]  (1102)[110 1]  

(211)[111]  (111)[211]  (1012)[101 1]  

(121)[111]  (111)[121]  (0112)[0111]  

(112)[111]  (111)[112]  (1102)[110 1]  

(21 1)[111]  (111)[211]   

(121)[111]  (111)[121]   

(112)[111]  (111)[112]   

(211)[111]  (111)[211]   

(121)[111]  (111)[121]   

(112)[111]  (111)[112]   
(1)Subhash et al. (1994) 
(2)Van Houtte (1978); Staroselsky and Anand (1998) 
(3)Wu et al. (2007) 
 

The partial dislocation for the (112)[1 11]  twinning mode in a BCC 
crystal can be formed from the dissociation (Hull and Bacon 1984) 
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 1 1 1 1[1 11] [1 11] [1 11] [1 11]
2 6 6 6

→ + + , (8.6) 

where only one of the three partials with identical Burgers vector moves at 
a time in the (112) plane to form the twin, the other two remaining tempo-
rarily sessile.  According to the pole mechanism theory of Cottrell and 
Bilby (1951), as an alternative to (8.6), the following reaction is proposed 
to take place in the context of twin nucleation and growth in BCC crystals: 

 1 1 1[1 1 1] [1 12] [111]
2 3 6

→ + . (8.7) 

The first dislocation on the right side of (8.7) is a sessile pole dislocation 
normal to the (112) habit plane, while the second is the glissile partial dis-
location lying in the (112) plane as listed in Table 8.1. 

The partial dislocation typically involved in twinning of FCC crystals is 
the Shockley partial, which can be produced from the dissociation reaction 

 1 1 1[10 1] [112] [2 1 1]
2 6 6

→ + . (8.8) 

Partial dislocations on the right side of (8.8) enter the double-cross-slip 
theory of twinning (Pirouz 1987; Lagerlof et al. 2002).  In this theory, the 
full dislocation on the left side of (8.8) is a screw dislocation, the first par-
tial dislocation on the right is a mobile twinning partial on a (111) plane as 
listed in Table 8.1, and the second dislocation on the right is sessile.    

Unstressed twinned regions of the crystal far from internal boundaries or 
defects possess the same strain energy density as the unstressed parent 
(James 1981; Zanzotto 1996); hence, twinning shears are said to be energy 
invariant.  However, the local strain energy density is increased relative to 
that of a perfect lattice in the vicinity of twin boundaries as a result of non-
zero stacking fault or twin boundary energies.  Mechanical work done dur-
ing deformation twinning is dissipative, resulting from defect motion asso-
ciated with shearing.  Possible energy storage is associated only with 
defects left behind in the crystal, for example those comprising the twin 
boundary.  From continuum thermomechanical considerations, the driving 
force for twin propagation is the resolved shear stress on the surface of 
composition (e.g., the habit plane) in the direction of twinning shear, as 
will be demonstrated explicitly in Section 8.2.3.  The resistance to defor-
mation twinning is typically modeled analogously to slip, that is, twinning 
proceeds when the resolved stress attains a critical value that may depend 
on temperature (Lagerlof et al. 1994; Kalidindi 1998; Staroselsky and An-
and 2003).  However, reservations regarding the validity of a Schmid-type 
law for twinning have been forwarded (Christian and Mahajan 1995).  
With accumulated slip and deformation twinning, strain hardening of the 
crystal may take place via interactions between different twins in the crys-
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tal, interactions among different slip systems, and interactions between 
mobile dislocations and twins.  For example, twin boundaries may serve as 
barriers to dislocation glide and hence twin propagation may block slip 
systems that are not coplanar with a given twin.  Twins may also nucleate 
cracks, and vice-versa (Christian and Mahajan 1995).  Vacancy or void 
formation is also common in some kinds of twinning (Seeger 2007).  Det-
winning, i.e., restoration of the twinned lattice to its original orientation, is 
possible, though is often more applicable to phase transformation phenom-
ena (Bhattacharya 1991) and less applicable to mechanical twinning 
deemed here as thermodynamically irreversible.  In some ionic crystals 
such as calcite (Kaga and Gilman 1969) and in some metals such as Mg 
(Proust et al. 2009), stress-induced detwinning has been observed to occur 
readily during strain path changes, without a phase transformation.   

The mechanics of twinning can be described, in part, in the context of 
geometrically nonlinear elasticity.  Let two regions of the crystal, denoted 
by subscripts 1 and 2 in what follows, be separated by a surface Σ across 
which displacements of the material are continuous but gradients of dis-
placement are not.  James (1981) calls this a surface of composition, which 
need not be planar, though it does correspond to the habit plane 1K  in the 
traditional description of mechanical twinning (Bilby and Crocker 1965).  
Let 1( ) /− = ∂ Σ ∂F x X  and 2 ( ) /+ = ∂ Σ ∂F x X  denote constant limiting val-
ues of deformation gradients in each region the vicinity of surface Σ, 
where 1( , )X tx  and 2 ( , )X tx  are continuously differentiable coordinates of 
the material in parent and twin respectively, and where X are reference co-
ordinates of the original, untwinned crystal.  Requiring that volumes and 
masses remain positive implies that det 0− >F  and det 0+ >F .  Let 0m  be 
a unit normal vector to Σ, pointing from the – side to the + side.  The com-
patibility requirement that the interface be coherent (i.e., continuous coor-
dinates 1 2( ) ( )Σ = Σx x  along the surface of composition) necessitates that 
Hadamard’s jump conditions apply (James 1981; Bhattacharya 1991): 
 a b 0

+ −= − = ⊗F F F a m , 0
jγ+ −= + ⊗F F s m , (8.9) 

where jγ  is a scalar magnitude of the twinning deformation, / jγ=s a  is 
a unit vector, and Q̂  in (8.9) is a proper orthogonal transformation differ-
ing from the unit tensor3 (i.e., ˆ ≠Q 1 ).  Treating −F  and +F  as elastic de-
                                                      

3 When ˆ =Q 1  then + −=F F M
�

 for some matrix ∈M H
�

.  In that case, the elas-
tic response (e.g., the stress state) of the twin is indistinguishable from that of the 
parent when each are subjected to the same further deformation, and the twin is 
said to be a false twin (James 1981).  True twins satisfy (8.9) and demonstrate dif-



8.1 Mechanisms: Elasticity, Slip, and Twinning      393 

formations in strain energy density function (8.2) for illustrative purposes4, 
consider the conditions ˆ( ) ( ) ( )ψ ψ ψ+ − −= =F QF H F

�
, meaning that strain 

energy densities in the twin and parent regions are presumed identical in 
this particular case.  Hence, in addition to (8.9), it follows that 

ˆ+ −=F QF H
�

, where ∈H H
�

 is an energy invariant transformation, not nec-
essarily an orthogonal tensor (James 1981).  Choosing a single global Car-
tesian coordinate system, and assuming that H

�
 does not induce volume 

changes (i.e., H
�

 is unimodular with det 1=H
�

, since the converse asser-
tion would permit the strain energy of a sample of fixed mass to remain 
constant as the volume of the sample is increased without bound), the fol-
lowing identities apply5: 

   0

1
0 0 0

ˆdet det( ) det det( )

          det det( ( ) ) det [1 , ].j jγ γ

+ − − −

− − − −

= = = + ⊗

= + ⊗ = +

F QF H F F a m

F 1 F s m F s m

�
 (8.10) 

Since det 0− >F  and 0j >γ , it follows from (8.10) that the pull back of s  
must be orthogonal to unit normal 0m  in the reference configuration: 
 1

0 0 0( ) , , 0− − = =F s m s m , 1
0 ( )− −=s F s . (8.11) 

When region 1 (parent) is taken as a perfect reference lattice with 
− =F 1 , then 0 =s s  and 0, 0=s m .  Since 0⊥s m , 0

jγ+ = + ⊗F 1 s m  is 

a simple shear.  In that case, ˆ+ =F QH
�

 is also a simple shear, possibly of 
large magnitude, that shifts the perfect crystal to another minimum energy 
configuration, with the strain energy density of this configuration equiva-
lent to that of the (original) parent.  The associated strain energy density 
function can be interpreted as a multi-well potential, with global minima 
corresponding to conditions ˆ( ) ( ) 0ψ ψ= =1 QH

�
.  The preceding treatment 

                                                                                                                          
ferent responses, for example anisotropic elastic constants defined with respect to 
a global coordinate system will differ on either side of the twin boundary. 

4 A twinned crystal remains elastic only when defect (i.e., dislocation) motion 
within the twin and surrounding material does not occur (Christian and Mahajan 
1995).  In many cases, elasticity theory may apply (Parry 1980; James 1981) to 
describe the reversible response of a crystal that has already twinned.  In other 
cases, dislocation plasticity may render application of elasticity alone inappropri-
ate.  In the theory developed in Section 8.2, twin propagation itself is not regarded 
as an elastic deformation mechanism, but rather a thermodynamically irreversible 
process dictated by collective motion of partial dislocations and atomic shuffles. 

5 Identities det det det( )=A B AB  and det( ) 1+ ⊗ = +1 a b a bi  for two matrices 
A and B and two vectors a and b are used.  Recall also that matrix A is said to be 
unimodular when det 1= ±A . 
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does not account for any (surface) energy associated with defects along the 
boundary of the twin, which can be reflected in continuum theories via 
augmentation of the free energy function with internal state variables.  Re-
call also that the preceding analysis restricts the boundary to be coherent, 
in contrast to more general treatments permitting discontinuous displace-
ments across interfaces that may occur in some kinds of phase transforma-
tions or in solids with other kinds of defects (Cermelli and Gurtin 1994).  

8.2 Crystal Plasticity with Twins and Inelastic Volume 
Changes 

A constitutive framework for crystals undergoing large thermoelastic, plas-
tic, and twinning deformations is developed in what follows.  The treat-
ment of Section 8.2 extends those of geometrically nonlinear crystal plas-
ticity of Sections 3.2.6 and 6.3 to incorporate kinematics, mechanics, 
thermodynamics, and kinetics of twinning.  Residual elastic volume 
changes discussed in Sections 7.2.4-7.2.7 are also incorporated in the 
model framework of Section 8.2, as are geometrically necessary disloca-
tions and statistically stored dislocations of Section 3.3.2.  Plastic deforma-
tion is limited to that resulting from dislocation glide, and twinning defor-
mation is limited to mechanical twinning. 

8.2.1 Kinematics 

Deformation gradient ( , )X tF  for an element of crystalline material, as de-
fined in (2.112), is decomposed multiplicatively into the following series 
of terms: 
 ˆ= = = =E I W P E L E W PF F F F F F F F F F F F , (8.12) 
with the notation  

 
1/ 3

1/ 3 1/ 3

ˆ   , ,   ,
,     .

J
J J

= = =
= =

L E W P W P

I W W

F F F F F F F F
F 1 F F

 (8.13) 

Elastic deformation EF  accounts for recoverable thermoelastic deforma-
tion, as discussed in Section 8.1.1, and also includes any rigid body rota-
tion of the element.  Spherical tensor IF  accounts for residual elastic vol-
ume changes associated with defects.  Specifically, such volume changes 
are addressed by the Jacobian determinant J , as discussed in Chapter 7.  
Plastic deformation PF  accounts for lattice-preserving slip resulting from 
dislocation glide, as discussed in Section 8.1.2.  Contributions to the de-
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formation gradient from twinning shears are addressed by the term WF .  
(The W superscript is chosen to denote contributions from twinning rather 
than the T superscript, to avoid confusion with the transpose (2.125)).  The 
total irreversible deformation is F .  The total elastic lattice deformation 
(recoverable and residual) is denoted by 1/ 3J= =L E I EF F F F , and the total 
deformation resulting from defect motion (i.e., both dislocation glide and 
twinning) is denoted by ˆ = W PF F F . 

Residual elastic deformation IF  arising from distributed defects such as 
dislocation lines follows from the assertion that in continuum nonlinear 
elasticity, the average strain of a body containing residual stress fields aris-
ing from internal displacement discontinuities need not vanish even if trac-
tion on its external surfaces vanishes (Toupin and Rivlin 1960).  Presently, 
only volume changes ( J ) are considered, e.g., corresponding to random 
defect distributions imparting no preferred directions in average residual 
elastic strains, though shape changes are not precluded in the general 
treatment of Section 7.2.3, specifically (7.31), (7.37), and (7.41).  The rela-
tionship between J  and defect densities is given later in Section 8.2.4, 
implementing earlier derivations of Section 7.2.4.  In the present context, 

PF  and WF  account for isochoric (shape) deformations resulting from re-
spective motions of slip dislocations and twinning partials, while J  ac-
counts for volume changes resulting from the residual stress fields of the 
defects themselves. 

In the model developed in the present Section, individual twins within 
the volume element of crystal are not modeled explicitly, nor are shapes 
and sizes of twinned regions.  Rather, WF  accounts for the sum of shears 
resulting from evolving volume fractions of the material occupying each 
twin system (Chin et al. 1969; Kalidindi 1998).  In this sense, WF  is a kind 
of average irreversible shape deformation acting over the volume element 
of crystal.  Geometries of individual twin boundaries are likewise not rep-
resented, but the total twin boundary area density per unit volume is repre-
sented with an internal state variable.  The resolution of twinning in Sec-
tion 8.2 is thus comparable to that of slip in crystal plasticity of Section 
6.3, wherein velocities of individual dislocations are not resolved explic-
itly, but the cumulative shearing on each slip system results in plastic de-
formation PF .  Line densities of dislocations per unit volume are also rep-
resented by internal state variables. 

Introduced next are sets of contravariant and covariant vectors denoting 
directions and planes, respectively, for slip and twinning.  When referred 
to the reference lattice prior to any reorientation by twinning, these are de-
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noted by 0 0{ , }i is m  for each slip system i, and 0 0{ , }j js m  for each twin sys-
tem j.  The total number of slip systems is denoted by n, and the total 
number of twin systems is denoted by w.  Recall that for metallic crystals 
of high symmetry, typical slip systems are listed in Table 3.4, and typical 
twin systems are listed in Table 8.1, all in Miller index notation.  Refer-
ence directions and plane normals are all of unit length, and each pair of 
contravariant shear direction and covariant plane normal is orthogonal: 

 
0 0 0 0

0 0 0 0

, 0,  =1, ( =1,... ); 

, 0,  =1, ( 1,... ).

i i i i

j j j j

i n

j w

= = ∀

= = ∀ =

s m s m

s m s m
 (8.14) 

During the course of twinning deformation, one or more parts (i.e., 
twins) of the volume element of crystal undergoes a rotation relative to the 
parent.  In a volume fraction of the crystal undergoing twinning via mode 
j, slip directions and slip plane normals transform in the reference configu-
ration according to the usual rules for contravariant and covariant vectors: 
 0 0 0 0,  , ( =1,... ;  =1,... ),i j i i i jT

j j i n j w= = ∀ ∀s Q s m m Q  (8.15) 

where jQ  is the reflection or rotation found from (8.5) corresponding to 
particular twin system j; e.g., if j is a type Ia twin, 0 02j j j= − ⊗Q 1 m m , or 
if j is a type IIa twin, 0 02j j j= ⊗ −Q s s 1 .  Notice from (8.15) that, within 
each twin volume, updated slip directions 0

i
js  and slip plane normals 0 i

jm  
remain orthogonal and of unit length for each i, since from (8.14), 
         1

0 0 0 0 . 0 0 . 0 0, , 0i i j i i jT j A i B i j C i A i
j j B C A AQ s m Q s m−= = = =s m Q s m Q . (8.16) 

For simplicity, successive twinning (including detwinning as a particular 
example) is not considered; the present theory can readily be extended to 
address such phenomena via addition of appropriate kinematics and kinet-
ics.  Hence, secondary twins that could form within already twinned re-
gions, leading to reorientation of sets 0 0{ , }j js m , are not represented here.  
Further reorientation of transformed directors in (8.15) is likewise prohib-
ited once a twin is fully formed.  Rotations (8.15) do not apply to the vol-
ume of crystal comprising the parent.  Elastic twinning phenomena are 
also not addressed in the present theory. 

Plastic deformation PF  and twinning deformation WF  do not directly 
alter directions associated with slip and twinning.  The former is lattice-
preserving, as discussed in Section 8.1.2, while the latter only affects lat-
tice orientation indirectly via (8.15) and evolution of the twin volume frac-
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tion for each system j to be discussed later.  However, thermoelastic de-
formation and residual elastic volume change do affect the directors6: 
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 (8.17) 

Figure 8.3 depicts the physics underlying (8.12)-(8.17) for an element of 
crystal with a single slip system and a single twin.  Multiplicative decom-
position (8.12) implies a series of configurations of the material element.  
The reference configuration is labeled 0B  with corresponding coordinates 
X, the spatial configuration is labeled B  with corresponding coordinates x, 
and the elastically unloaded intermediate configuration is labeled B , as in 
Fig. 7.1 of Chapter 7.  Since 1−EF  and F  are in general not integrable, 
continuous coordinates spanning anholonomic configuration B  do not ex-
ist, following arguments in Sections 2.8 and 3.2.2.  However, elastic and 
inelastic deformations act as tangent mappings between configurations via 

:TB TB→EF  and 0:TB TB→F .  In Fig. 8.3, mappings WF  and PF  con-
stituting F  cannot be separately resolved because of the implicit effect of 
twinning on the orientation of the reference lattice.  Another intermediate 
configuration, not shown in Fig. 8.3, is labeled B� , attained via the tangent 
mappings :TB TB→LF �  and 0

ˆ :TB TB→F � . 
 

                                                      
6 The effect of J  on the slip director vectors and slip plane normal covectors 

was omitted in earlier work (Clayton 2009a).   
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Fig. 8.3 Deformations and slip system geometry for crystal element deforming 

by elasticity, slip, and twinning 
 

The spatial velocity gradient of (2.176) is expanded via application of 
the product rule, (8.12), and (8.13) as 
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The inelastic velocity gradient referred to configuration B  is 

   
1 1 1 1 1
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(1/ 3)
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where 
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j
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results from twinning shears, and  

   1
0 0 0 0

1 1 1

slip in parent crystal slip in twinned crystal
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n w n

i i i j i i i
T j j j

i j i
f fγ γ−
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 (8.21) 

accounts for slip in the parent and in twinned regions.  The usual plastic 
velocity gradient is written 1−=P P PL F F� , as in (3.58).  In (8.20), 0jγ >  is 
the predefined shear deformation associated with twin system j, a positive 
scalar that is fixed for all twins belonging to a given family of twin sys-
tems.  Recall that magnitudes of jγ  are listed in Table 8.1 for BCC, FCC, 
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and hexagonal crystal structures.  In (8.21), iγ�  is the slip rate on system i 
in the parent, and i

jγ�  is the slip rate on system i within reoriented twin 
fraction j.  The volume fraction of crystal occupied by twin j, e.g., meas-
ured per unit volume in configuration B , is labeled by scalar 0jf ≥ , with 
time rate jf�  (Chin et al. 1969; Van Houtte 1978).  The total volume frac-

tion of twinned crystal is 
1

w
j

T j
f f

=
= Σ , subject to restriction 0 1Tf≤ ≤ .  

Since detwinning is not considered in the present theory, 0jf ≥� .  In the 
inner sum within the rightmost term of (8.21), slip directors and plane 
normals in twinned regions are obtained from (8.15), where the particular 
form of rotation or reflection jQ  corresponds to twin with associated vol-
ume fraction jf  in the outer sum.  Because twinning is isochoric (see 
(8.22)), jf  is also equivalent to the mass fraction of an element of mate-
rial occupied by twin system j.  

Since for each slip or twin system, shear directions and plane normals 
are orthogonal,  
 tr( ) 0 1W W WJ J J= = ⇒ =WL� , tr( ) 0 1P PJ J= ⇒ =PL , (8.22) 
upon assuming that at 0t = , =WF 1  and =PF 1 .  Thus, (8.20)-(8.22) 
properly reflect the isochoric nature of slip and twinning, and together with 
(8.12) and (8.13), require that all volume changes be accommodated ther-
moelastically via EJ  and/or by defect generation via J , such that  
  / det / det det E LJ g G g G J J J= = = =EF F F . (8.23) 

When 1J =  and 0jf =�  for all j, then =WF 1 , =E LF F , = PF F , and 
=P PL L  in (8.21) reduces to its usual definition from crystal plasticity the-

ory, (3.120).  In this situation, all inelastic deformation occurs via slip, F  
is lattice-preserving, and slip directors and slip plane normals remain un-
changed between configurations 0B  and B .  On the other hand, when 
twinning does takes place, WF  does not act as a true elastic lattice defor-
mation in the sense of (3.17), (8.1), and Born and Huang (1954).  Rather, 
only that part of the lattice within the twinned volume undergoes a trans-
formation, and this transformation occurs via improper rotation (8.15) and 
does not include any stretch of the lattice directors, even though shearing 
associated with WF  involves both stretch and rotation. 

Extending (3.217)-(3.222), defect content in the crystal is measured, in 
part, by the second-order, two-point geometrically necessary dislocation 
tensor 0 ( , )X tα  satisfying 
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      1
. . 0

ˆL a A A
a A A

c C A

B F dx F dX N dAα α α αα−= − = − =∫ ∫ ∫� ,  (8.24) 

where Bα�  are components of a total Burgers vector associated with circuit 
c in the spatial frame or circuit C in the reference frame, A is the area en-
closed by C with unit normal AN , ABCε  are components of permutation 
tensor (2.64), and 
 [ ] [ ] [ ]0 . , . , . ; . :

ˆ ˆ ˆ ˆA ABC ABC ABC ABC
B C B C B C B CF F F Fα α α α αα ε ε ε ε= = = = . (8.25) 

Stokes’s theorem of Section 2.7.2 is used to convert from the line integral 
to the area integral in the third equality of (8.24).  Then from (8.12), 
(8.13), and the product rule, 
 0 . , . . , . , .

slip gradients twin gradients

ˆA ABC ABC W P ABC W P
B C B C C BF F F F Fα α α β α β

β βα ε ε ε= = +���	��
 ���	��

. (8.26) 

Contributions of plastic slip gradients to the geometrically necessary dislo-
cation density tensor, corresponding to the first term following the second 
equality in (8.26), are well documented in the continuum theory of disloca-
tions (Ashby 1970; Teodosiu 1970; Fleck et al. 1994; Arsenlis and Parks 
1999; Voyiadjis and Abu Al-Rub 2005, 2007; Rezvanian et al. 2007), as 
discussed at length in Section 3.3.2.  The second term in the sum on the 
right in (8.26) arises from gradients of twinning deformation, for example 
gradients of twin volume fractions arising during propagation of tapered 
twins (Scott and Orr 1983; Christian and Mahajan 1995); the contribution 
to the dislocation density tensor in this context would be partial disloca-
tions at interfaces between the twin and parent or at interfaces between in-
tersecting twins (Kosevich and Boiko 1971).   

Applying Nanson’s formula (2.227) to (8.24): 
 1

0 0 .
ˆ ˆ ˆ( )A A

A A
A a a

B N dA J F n da n daα α α β αβ
β βα α α−= = =∫ ∫ ∫

� �

� � � � � , (8.27) 

a geometrically necessary dislocation tensor referred to intermediate con-
figuration B� , labeled α̂ , is found as 

 
[ ]

1 1
. 0 . . ,

1

ˆ ˆˆ

      ,

A L L abc L
A a b c

k k k

k

J F J F F

V b dL b

αβ β α β α

α β α β

α α ε

ξ ρ ξ

− −

−

= =

= = ∑∫ � �� �� �
 (8.28) 

where ˆ 1W PJ J J= =  by (8.22), and the second equality in (8.28) follows 
from (3.225).  The integral following the third equality in (8.28) is carried 
out over all dislocation lines of length L, local Burgers vector b� , and ori-
entation ξ�  in intermediate volume element V� .  Finally, the final sum on 
the right of (8.28) is the discrete form of this integral similar to (3.226), 
where kρ�  is the length per unit intermediate volume of dislocation seg-
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ments with unit tangent line vector kξ�  and Burgers vector kb� .  In (8.24)-
(8.28), sufficient smoothness (i.e., differentiability) of LF , WF , and PF  
has been assumed.  Discontinuities in the deformation gradient of the lat-
tice at the microscale, for example singularities across slipped regions as in 
(3.85) and jumps in microscopic deformation gradient across twin bounda-
ries as discussed in Section 8.1.3 are not resolved explicitly in the present 
continuum framework that addresses defects via continuous distributions. 

Two non-dimensional internal state variables are introduced to represent 
energetic changes associated with other kinds of defects in the crystal.  The 
first internal state variable is a measure of the density of statistically stored 
dislocations (see (3.238)-(3.240)) that accumulate with homogeneous slip,  
 Sbα ρ= , (8.29) 
where b is a scalar magnitude of the Burgers vector—or a constant on the 
order of a lattice parameter when the crystal exhibits slip on systems with 
different Burgers vectors—and ( , )S X tρ  is the length of such dislocations 
per unit volume in configuration B .  Statistically stored dislocations in-
clude closed loops and dipoles that do not contribute to the total Burgers 
vector Bα�  in (8.24).  The second internal state variable measures the total 
density of twin boundaries,  
 Wbβ η= , (8.30) 
with ( , )W X tη  the area of twin boundaries measured per unit volume in 
configuration B .   

8.2.2 Constitutive Assumptions 

Let ( , )x tρ  and 0 ( )Xρ  denote the mass density of the solid in current and 
reference configurations, respectively, related by 0 Jρ ρ=  as in (4.10), re-
calling from (8.23) that LJ J=  in the present context.  Let  
 1

0
EJ Jρ ρ ρ −= =  (8.31) 

denote the mass density in configuration B .  The forthcoming thermody-
namic analysis is conducted in B , the intermediate configuration that 
serves as an evolving reference configuration for the instantaneous ther-
moelastic response of the crystal, analogous to the role of configuration B�  
in the thermodynamic treatment of finite elastoplasticity in Section 6.1.  
Because 1/ 3J=L EF F , configurations B�  and B  differ by the residual elas-
tic volume change J .  When explicit delineation of residual elasticity is 
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omitted, then =L EF F  and configurations B�  of Chapter 6 and B  of Chap-
ter 8 coincide. 

The Helmholtz free energy per unit volume in configuration B  is 
written as  
 1

0
EJ JΨ ρψ Ψ Ψ−= = = , (8.32) 

where ψ  is the free energy per unit mass.  The free energy is assumed to 
exhibit the dependencies 
 ( )ˆ, , , , ,{ }, ,jf X αΨ Ψ θ α β= EE α g , (8.33) 

where ( , )X tθ  is the absolute temperature and ( )Xαg  are coordinate basis 
vectors on configuration B .  Variables α̂ , α , and β  are respectively re-
lated to densities of geometrically necessary dislocations, statistically 
stored dislocations, and twin boundaries, as discussed in Section 8.2.1.  
The set { }jf  includes each of the twin fractions 1,2,...j w= , and 

 . .
1 1( ) ( )
2 2

E E E a Eb
abE C g F g F gαβ αβ αβ α β αβ= − = −  (8.34) 

is a finite elastic strain tensor associated with the covariant elastic defor-
mation tensor EC .  Components of the metric tensor in anholonomic con-
figuration B  are denoted by gαβ α β= g gi , and are assumed stationary with 
respect to time.  In agreement with physical arguments of Sections 8.1.2 
and 8.1.3, the free energy does not depend explicitly on plastic deforma-
tion gradient PF  or the contribution from twinning shear WF .  Notice that 
each of the independent state variables entering the function (8.33) is in-
variant with respect to rigid body motions of the spatial coordinate frame.  
In particular, the scalars are always invariant and tensors EE  and α̂  have 
all indicial components referred to intermediate configurations B  and B� , 
respectively.   

Dependence of free energy on elastic strain EE  accounts for energy 
storage in stretched or misaligned atomic bonds, in association with me-
chanical stresses.  The free energy depends on temperature for the same 
reasons discussed in Chapters 5 and 6, e.g., to account for specific heat ca-
pacity and thermal expansion, among other phenomena.  A dependence on 
α̂ , α , and β  accounts for line, surface, and/or interaction energies of dis-
locations and twin boundaries.  The rationale for inclusion of { }jf  in the 
list of state variables will become clear in Section 8.2.4, wherein effective 
elastic coefficients of the volume element depend explicitly on volume 
fractions of twins, with each twin exhibiting its own local anisotropic elas-
tic coefficients.  Dependence on X accounts for possibly heterogeneous 
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material properties, while αg  are included to reflect anisotropy, e.g., elas-
tic constants of the parent dependent upon orientation of the sample of ma-
terial with respect to a global coordinate system.  Analogous functional 
forms to (8.33) can be written for entropy, stress, and time rates of internal 
state variables.  An expression for the heat flux can also be written, incor-
porating dependence of temperature gradient.  Dependence of the Helm-
holtz free energy on the temperature gradient has been omitted a priori in 
(8.33), but such dependence could be included and then eliminated by ex-
ercising thermodynamic arguments, as was done in Sections 5.1.2 and 
6.1.2.   

8.2.3 Thermodynamics 

Local forms of the balance of energy and dissipation inequality, each re-
ferred to the reference configuration, are given respectively by (4.39) and 
(4.71), repeated below: 

     0 0,e rρ ρ= − ∇ +
G

Σ : E Q�� , 0
1( ) , 0ρ ψ ηθ θ
θ

− + − ∇ ≥
G

Σ : E Q�� � . (8.35) 

Recall that e ψ θη= +  is the internal energy per unit mass, with η  the en-
tropy per unit mass.  The symmetric second Piola-Kirchhoff stress Σ  is re-
lated to the first Piola-Kirchhoff stress P and the symmetric Cauchy stress 
σ  by equalities listed in Table 4.1: 
 1 1 1

. . .
AB A aB A ab B

a a bF P JF FΣ σ− − −= = . (8.36) 
The symmetric tensor (1/ 2)( )T= −E F F G  is the right Cauchy-Green 
strain of (2.156), Q  is the heat flux vector referred to the reference con-
figuration 0B , and scalar r  denotes other heat sources of energy per unit 
mass.  The stress power per unit intermediate volume in configuration B  
can be written, similarly to (6.15), as 

 
1 1 . 1

. . . . .

.
.

( )( )

                  ,

AB E ab E E b E a E e E d
AB ab b a e dJ E J L J F F F L F

M L

β α
α β

β α
α β

Σ σ σ− − −= =

=

�
 (8.37) 

where a version of Mandel’s stress (Mandel 1974) and symmetric elastic 
second Piola-Kirchhoff stress are, respectively,  
 = EM C Σ , 1E TJ − −= E EΣ F σF ,  (8.38) 
or in indicial notation, 
         . . 1

. .
E E a b E E

a bM J F F Cβ β δβ
α α αδσ Σ−= = , 1 1

. .
E E ab E

a bJ F Fαβ α βΣ σ− −= . (8.39) 
The total velocity gradient of (8.18) pulled back to configuration B  is 
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 1 1 1
3

J
J

− −= = + + +E E E E W PL F LF F F L L 1�� . (8.40) 

The time rate of free energy change per unit intermediate configuration 
volume is, similarly to (6.19), 
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 (8.41) 

where (8.22), (8.31), and (8.32) have been used.  Following from (8.37), 
(8.40), and the symmetry of Σ  and EE� , 

 . . . .
. . .

1
3

E W PM L E M L M L JM
J

β α βδ β α β α α
α β δβ α β α β αΣ= + + + �� . (8.42) 

Expanding the rate of free energy Ψ  of (8.33) using the chain rule (Cole-
man and Noll 1963; Coleman and Gurtin 1967), 
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j f
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with summation implied over w twin fractions j, the entropy inequality in 
(8.35) can be written 
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 (8.44) 

As introduced in (8.44), N ρη=  is the entropy per unit intermediate vol-
ume, 1

, . , .
A E a

A aF Fα α αθ θ θ−∇ = =  is an anholonomic intermediate temperature 
gradient similar to (6.6), 1 1EJ J− −= = Eq FQ F q  is the intermediate heat 
flux similar to (6.7), and 
 Ψ= −Π M 1  (8.45) 
is a (negative) version of Eshelby’s elastic energy-momentum tensor (see 
Section 6.6) pushed forward to configuration B , similar to (6.33).  Fol-
lowing arguments akin to those used in Sections 5.1.2 and 6.1.2, admissi-
ble stress-elastic strain and entropy-temperature relations are deduced as 

 EE
αβ

αβ

ΨΣ ∂
=

∂
, N Ψ

θ
∂

= −
∂

, 1
. .

ab E E a Eb
EJ F F

Eα β
αβ

Ψσ − ∂
=

∂
, 1 Ψη

ρ θ
∂

= −
∂

. (8.46) 

Angular momentum balance (4.26) is satisfied consistently: ab baσ σ= . 
The final term on the left of (8.44) always contributes positively to dis-

sipation upon prescription of a conduction law similar to (6.30): 
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 θ= − ∇q K , , , 0θ θ θ− ∇ = ∇ ∇ ≥q K , (8.47) 

where ( , )X tK  is a symmetric and positive semi-definite matrix of thermal 
conductivity.  Applying (8.46) and (8.47), 
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� ���
 (8.48) 

is the reduced dissipation inequality.  In the absence of temperature gradi-
ents (e.g., an adiabatic process), (8.48) requires that the energy dissipated 
by twinning, slip, and residual volume changes must exceed the rate of en-
ergy storage associated with defects, specifically geometrically necessary 
and statistically stored dislocations, twin boundaries, and twin fractions.   

From (8.17)-(8.22) and (8.39), dissipated energies from slip and twin-
ning, respectively, can be written 
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where the driving forces are resolved stresses on each twin (habit) plane or 
slip plane, acting in the direction of shear: 
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 (8.50) 

since twinning and slip are isochoric.  Resolved shear stress iτ  is related 
to iτ�  of crystal plasticity theory introduced in (6.85)-(6.86) by i iJτ τ=� .   

The specific heat capacity at constant elastic strain and internal state 
variables, measured per unit volume in configuration B , is introduced as 
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2
ˆ, , , ,{ }

( , )
jf

EC X t
α β

Ψθ
θ θ

∂ ∂
= = −

∂ ∂EE α

. (8.51) 

where (8.46) has been used and E eρ=  is the internal energy per interme-
diate volume.  Multiplying the first of (8.35) by 1J − , and following a pro-
cedure analogous to that of (6.36)-(6.43), the energy balance can be writ-
ten in the relaxed intermediate configuration B  as7  

                                                      
7 The factor of 3 preceding the term ( / ) N∂ ∂ = −θ Ψ θ θ  in (8.52) was incor-

rectly omitted in (3.29) and (3.43) of a previous article (Clayton 2009a).  This 
misprint is corrected in (8.52) of the present text. 
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 (8.52) 

Stress-temperature coefficients in (8.52) are defined according to 

 
2

ˆ , , ,{ }j

E

f
E

αβ

αβ α β

Ψβ
θ
∂

= −
∂ ∂

α

 (8.53) 

and the anholonomic covariant derivative in (8.52) is performed similarly 
to that of (6.38) and (6.39):  

  
1 1

. .

1 1 1
: . . :

ˆ (. ) (. ) (. ) ( )

         (. ) (. )( ) .

A
A

A A
A A

J F JF

F J JF

β
α α β α

α α

− −

− − −

∇ = ∇ + ∇

= +
 (8.54) 

Notice that ˆ
α α∇ = ∇  when compatibility conditions [ ]. : 0A BFα =  apply, in 

which case Piola’s identity (2.146) gives 1
. : . :( ) ( / ) 0A

A A AJF J Fα
α
− = ∂ ∂ = . 

8.2.4 Representative Free Energy 

A particular form of (8.33) is now introduced for anisotropic single crys-
tals that may undergo large elastic deformations, temperature changes, 
twinning, and dislocation accumulation.  The free energy is decomposed 
additively as 
 ( ) ( )ˆ, ,{ }, , , , , , ,E j Rf X Xα αΨ Ψ θ Ψ α β θ= +EE g α g , (8.55) 

where, as in (6.48), EΨ  accounts for the thermoelastic response and RΨ  
accounts for residual free energy of lattice defects.  As in Section 6.1.3, ef-
fects of defect densities besides twin volume fractions on the thermoelastic 
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energy are neglected, implying that the thermoelastic coefficients do not 
depend explicitly on dislocation density or twin boundary area. 

The thermoelastic energy is expanded in a Taylor series about a refer-
ence state characterized by 0EEαβ =  and 0θ θ θ∆ = − , and here consists of 
four terms, similarly to (6.49): 

 

0

1 1
2 6

        ln .

E E E E E E

E

E E E E E

E C

αβχδ αβχδεφ
αβ χδ αβ χδ εφ

αβ
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Ψ

θβ θ θ
θ

= +

− ∆ −

^ ^
 (8.56) 

The first term on the right side of (8.56) accounts for materially linear, but 
geometrically nonlinear, mechanical effects.  The second accounts for ma-
terially nonlinear elastic effects important at high pressures, and the third 
accounts for thermoelastic coupling.  Constant 0θ  is a positive temperature 
at which the lattice parameters exhibit their reference values in a defect-
free crystal, and the remaining coefficients in (8.56) consist of partial de-
rivatives of the thermoelastic part of the free energy per unit intermediate 
volume at null elastic strain and at the reference temperature: 
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The usual symmetry relations ( )( )αβ χδαβχδ =^ ^ , ( )( )( )αβ χδ εφαβχδεφ =^ ^ , and 
( )αβαββ β=  follow automatically from (8.57) and (8.58).  Thermoelastic 

constants and specific heat constant in (8.58) are particular values of coef-
ficients introduced already in (8.53) and (8.51), respectively.  Similarly to 
(6.52)-(6.55), coefficients in (8.57) and (8.58) are related to those of 
nonlinear elasticity theory introduced in (5.66) and (5.85) at the same ma-
terial point X as  
 1

. . . .
ABCD

A B C DJ g g g gαβχδ α β χ δ−=^ ^ , (8.59) 
 1

. . . . . .
ABCDEF

A B C D E FJ g g g g g gαβχδεφ α β χ δ ε φ−=^ ^ , (8.60) 
 1

. .
AB

A BJ g gαβ α ββ β−= , (8.61) 
 1 1

0 0C c J c J Cρ ρ− −= = = . (8.62) 
Since 0α =g�  and 0A =G�  (e.g., see discussion in Section 2.5.1), the shifter 

. ,A Agα α= g G  at X does not depend on time.  When residual elastic vol-
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ume changes vanish ( 1J = ) and when coincident coordinate systems are 
used in reference and intermediate configurations so that . .A Agα αδ= , nu-
merical values of material coefficients on left and right sides of each of 
(8.59)-(8.62) are equal.  When ( , ) 0J X t ≠� , then coefficients on both sides 
of (8.59)-(8.62) cannot all be constant for all 0t > .  If the left sides are 
taken as constant in time, then the elastic coefficients and specific heat per 
unit reference volume on the right sides increase with increases in residual 
volume change.  In that case, if the elastic strain is held fixed, an increase 
in residual elastic volume would have no effect on the measured Cauchy 
stress ( , )x tσ  or on the intermediate symmetric stress Σ  as will be clear in 
(8.65) and (8.69), but would affect the stresses ( , )X tΣ  and ( , )X tP  re-
ferred to the reference configuration, the latter evident from (8.70).  Since 
J  resulting from dislocations is expected to be very close to unity for 
most situations, i.e., 31 10J −− <

�
 for dislocation densities 15 210 m−<

�
 as ex-

plained in Section 7.2.7, differences among definitions of material coeffi-
cients listed in (8.59)-(8.62) will be trivial in such cases, i.e., less than 
~0.1% error, and presumably will be much smaller than uncertainties in 
experimental measurements of such constants.   

Possible influences of the dislocation densities ˆ(  and )αα  and twin 
boundaries ( β ) on the effective elastic moduli that may emerge in crystals 
at large defect densities (Smith 1953; Clayton and Chung 2006; Chung and 
Clayton 2007) are precluded by (8.55) since couplings between elastic 
strain EE  and defects ˆ( , , )α βα  are not included.  Such effects could be in-
corporated by generalization of (8.55) if deemed relevant for applications 
of interest (Clayton et al. 2004a, b), as demonstrated in Section 9.4.6 of 
Chapter 9.  The present assumption that elastic strain and defect densities 
are decoupled in the free energy would become suspect at large defect 
densities wherein the residual volume change J  could have a noticeable 
effect on elastic and thermal coefficients measured per unit reference vol-
ume, i.e., the right sides of (8.59)-(8.62). 

In anisotropic solids, tensor-valued coefficients in (8.56) depend upon 
the orientation of the lattice in configuration B , via dependence of these 
coefficients on { }jf  and αg .  When twinning takes place, orientations of 
the original Bravais lattice (parent) and each twinned region differ.  A 
straightforward averaging method is used to define the effective material 
coefficients for a volume element consisting of the parent and one or more 
twins.  It is assumed that elastic deformation EF  and elastic strain EE  act 
uniformly over the parent and twins comprising this volume element.  The 



8.2 Crystal Plasticity with Twins and Inelastic Volume Changes      409 

thermoelastic free energy density of (8.55) is thus partitioned into contri-
butions from the parent and each twin: 
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 (8.63) 

where 0
αβχδ^ , 0

αβχδεφ^ , and 0
αββ  refer to material constants corresponding 

to the orientation of the parent lattice relative to the external coordinate 
system, and where for each twin j (Van Houtte 1978; Kalidindi 1998) the 
elastic coefficients are mapped from original to twinned orientation via 

 . . . . 0 . . 0

. . . . . . 0

,  ,

       . 

j j j j j j
j j

j j j j j j
j

Q Q Q Q Q Q
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=

^ ^

^ ^
 (8.64) 

Components of Q  in (8.64) are related to those used in (8.16) by the shift-
er: . . . .

j j A B
B AQ Q g gα α

β β= .  Since transformation matrix Q  always occurs in 
pairs in even rank coefficients of (8.64), the choice of reflection or rotation 
in (8.5) is irrelevant; i.e., Q  and −Q  will give the same updated coeffi-
cients in (8.64).  The coefficients will differ, however, when computed for 
a type I versus type II twin, unless of course the twin is compound.  The 
same considerations regarding symmetry of reference material coefficients 
discussed in Section 5.1.5 and Appendix A hold for referential thermoelas-
tic constants 0

αβχδ^ , 0
αβχδεφ^ , and 0

αββ .   To convert symmetry relations in 
Section 5.1.5 and Appendix A to the present context, reference indices in 
capital Roman font are replaced with intermediate indices in Greek font.  

Stress-strain-temperature relations following from (8.46), (8.55), (8.56), 
and (8.63) are 
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 (8.65) 

implying that the elastic stress Σ  for a heterogeneous (twinned) crystal is 
equivalent to the volume average of the local stresses supported by the 
parent and each twin.  Effective thermoelastic coefficients for the volume 
element entering (8.56), (8.63), and (8.65) are thus 
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Coefficients in (8.66) can be interpreted as Voigt averages (see generic 
definition (A.33) of Appendix A) and hence provide upper bounds on the 
elastic stiffness (Hill 1952; Mura 1982).  From (8.63), the necessity of in-
clusion of twin fractions { }jf  in free energy function (8.33) is evident, 
since the effective thermoelastic moduli (8.66) depend on evolving twin 
fractions.  In the absence of twinning, (8.66) reduces to the coefficients of 
the parent crystal.  The symmetry exhibited by coefficients on the left of 
(8.66) is minimally triclinic; the averaging process used to compute effec-
tive coefficients generally does not preserve the symmetry properties of 
the parent and each individual twin.  Anisotropic thermal conductivity of 
(8.47) for a twinned element of material can be defined in the same way as 
the thermal stress coefficients in the last of (8.66).  The associated time 
rate of thermoelastic free energy change from the rates of twin fractions is 
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j j
jj f A f

f
Ψ∂

=
∂

� � , (summed over 1,2,... )j w= , (8.67) 

where for each twin system, the quantity 
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From (8.65), the Cauchy stress and first Piola-Kirchhoff stress are, re-
spectively, 

       1
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  2 / 3 1 1
. . .

1
2

aA P A W E a E E EP J F F F E E Eγ αβχδ αβχδεφ αβ
γ β α χδ χδ εφ β θ− − ⎛ ⎞= + − ∆⎜ ⎟

⎝ ⎠
^ ^ . (8.70) 

As noted previously, if the residual volume change measured by J  is in-
creased (decreased) at fixed elastic strain and temperature, the Cauchy 
stress of (8.69) remains fixed but the first Piola-Kirchhoff stress of (8.70) 
will increase (decrease).  
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Consider a situation in which strains EEαβ αβα θ= ∆  arise from tempera-
ture change.  The following relationship emerges between thermal stress, 
thermal expansion ( αβα ), and elasticity coefficients: 

 ( )
00

/ 2αβ αβχδ αβχδεφ αβχδ
χδ χδ εφ χδ θθ

β α α α θ α= + ∆ =^ ^ ^ . (8.71) 

Relationship (8.71) is analogous to (5.161) of nonlinear thermoelasticity 
theory and (6.57) in the context of finite plasticity theory. 

The residual Helmholtz free energy per unit intermediate volume of 
(8.55) is specified as the following polynomial form: 
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 (8.72) 

Energy factor ˆ ( , , )K X αθ g  depends on anisotropic elastic constants, tem-
perature, and orientation of the crystal relative to orientations of defects 
contained within.  For straight dislocation lines whose energies are charac-
terized via anisotropic linear elasticity solutions, K̂  is defined in terms of 
second-order elastic constants in Appendix C, Section C.1.6.  In an iso-
tropic linear elastic body, ˆ ( , ) ( , )K X Xθ µ θ= , i.e., the elastic shear 
modulus that may depend on temperature.  Denoted by 1κ , 2κ , 3κ , 4κ , 

5κ , and 6κ  are dimensionless constants that scale energies in each internal 
variable and their pair-wise products.  Also, l is a non-negative scalar with 
dimensions of length, required from dimensional considerations in gradient 
theories (Fleck et al. 1994; Regueiro et al. 2002; Clayton et al. 2004a, b; 
Voyiadjis and Abu Al-Rub 2005), and N is a constant.  From (8.72), 

0RΨ =  when all defect densities vanish; this state of vanishing defects is 
always of minimum residual free energy when all coefficients 1κ , 2κ , 3κ , 

4κ , 5κ , and 6κ  are non-negative. 
Recalling from definition (8.29) that Sbα ρ= , the first term on the 

right of (8.72) provides for a linear dependence of residual energy on the 
line density of statistically stored dislocations, following Regueiro et al. 
(2002) and Clayton et al. (2004b, 2006) and references therein.  Assuming 
that energy per unit line length of statistically stored dislocations can be 
represented by linear elastic solutions (C.152) or (6.117), simple argu-
ments then show that, similarly to (6.118) and (6.119), 

        2 2 21 1
1

ˆ ˆ ˆ ,  0.5 1.0,  1.0 2.0
2 2 S SK Kb Kbκ κα ρ Λ ρ Λ κ= = < < < <

� � � �
, (8.73) 
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where self- and interaction energies, core energy, and stacking fault energy 
if the dislocations are partial are absorbed into the constant 1κ .  Recalling 

from (8.30) that Wbβ η= , the second term in (8.72) provides for a linear 
dependence of residual energy on the area per unit volume of twin bounda-
ries Wη .  Thus, letting WW  represent the twin boundary energy per unit 
area in configuration B , 

 22 2ˆ
2 2 2

SF
W W W W

WK b Wκ κβ µ η η η= = ≈ , 2
SFW
b

κ
µ

≈ . (8.74) 

where the approximation that holds for many crystals, 2 W SFW W≈ , has 
been used, with SFW  the intrinsic or extrinsic stacking fault energy (Hirth 
and Lothe 1982; Bernstein and Tadmor 2004).  Energy factor K̂  is set 
equal to the shear modulus in (8.74).  The third term in (8.72) accounts for 
the energy of geometrically necessary dislocations, for which a number of 
forms for l, N, and 3κ  have been suggested for different crystal structures 
and different applications (Fleck et al. 1994; Regueiro et al. 2002; Clayton 
et al. 2004a, b; Voyiadjis and Abu Al-Rub 2005; Chung and Clayton 
2007).  The fifth term in (8.72) reflects possible interactions between sta-
tistically stored and geometrically necessary dislocations.  The fourth and 
sixth terms in (8.72) reflect interaction energies between twin boundaries 
and dislocations, for example stress fields and strain energies of disloca-
tion lines may be amplified at the stress concentration caused by a disloca-
tion pile-up at a twin boundary (Christian and Mahajan 1995).   

Methods for determining the content of geometrically necessary versus 
statistically stored dislocations have been forwarded in recent years (Ar-
senlis and Parks 1999; El-Dasher et al. 2003; Hughes et al. 2003).  Such 
methods could facilitate unique selection of parameters in (8.72) if defect 
energies are known, for example, through measurements cold work 
(Clarebrough et al. 1957; Rosakis et al. 2000; Taheri et al. 2006) or atomic 
scale computer simulations of defect energy.  However, in many cases, 
only the total scalar line density Tρ  of all dislocations, both geometrically 
necessary and statistically stored, may be known from historical data.  In 
such cases, it becomes prudent to employ a simple form of (8.72) in terms 
of total line density per unit intermediate volume in configuration B , de-
noted by ( , )T X tρ : 

 2 2 2 2
1 2 4

1
2

RΨ µ κ α κ β κ α β⎡ ⎤= + +⎣ ⎦
� � , (8.75) 
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where ˆ ( , ) ( , )K X Xθ µ θ=  has been used as an approximation, and where 
the dimensionless internal state variable ( , )X tα�  measures the total scalar 
dislocation density: 
 Tbα ρ=� . (8.76) 
Internal state variable in (8.76) is analogous to that defined in (6.100).  
Comparison of (8.72) and (8.75) implies the following relationships: 
 2 2 2 2

1 1 1 3 ˆ ˆ( )N N
T Sb b lκ α κ ρ κ ρ κ= = + α :α� ; (8.77) 

 2 2 2 2 2 2 2
4 4 4 6 ˆ ˆ( )N N

T Sb b lκ α β κ ρ β κ ρ κ β⎡ ⎤= = +⎣ ⎦α :α� ; (8.78) 

 T S Gρ ρ ρ= + , 1 1/ 2ˆ ˆ( )G bρ −= α :α ; (8.79) 
  l b= , 1/ 2N = , 1 3κ κ= , 4 6κ κ= , 5 0κ = . (8.80) 
Relations (8.75)-(8.80) provide for an equal contribution, per unit line 
length, of geometrically necessary and statistically stored dislocations to 
the residual free energy of the crystal.  For uniform straight dislocation 
lines of density ˆ bαβ α βα ρ ξ= � ��  in configuration B� , (8.28) and the second of 
(8.79) consistently give  
 1 1/ 2 1/ 3( ) ( / )k k k k k

G b b b b b J− −= = = ≈� � �� �� � � � �α β
α βρ ρ ξ ρ ξ ρ ρ ρ . (8.81) 

Values of 1κ  and 2κ  in (8.75) can be approximated using (8.73) and 
(8.74), respectively. 

Since the total dislocation density depends on geometrically necessary 
and statistically stored dislocations, i.e., ˆ( , )α α α= α� �  from (8.76) and 
(8.79), terms entering (8.52) can be expressed as follows via the chain rule:  
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 (8.82) 

Using (8.67), (8.75), and (8.82), the rate of temperature increase in (8.52) 
can then be written in this case as 

 ˆ ,P JC W r
J

Ψθ β θ θ ρ
θ

⎛ ⎞∂′= + − + ∇ ∇ +⎜ ⎟⎜ ⎟∂⎝ ⎠

Eβ : E K
�

� � � , (8.83) 

where 
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is the Taylor-Quinney parameter similar to that in (6.47) and (6.120), such 
that 1 β ′−  is the ratio of inelastic stress power  PW�  converted to residual 
elastic energy.  The inelastic stress power, per unit volume in configuration 
B , is, from (8.49), 
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Definition (8.84) is expressed in terms of the total dislocation density.  A 
more specific form of (8.84) accounting for distinct contributions from 
geometrically necessary and statistically stored dislocations can be deter-
mined in a straightforward manner by substituting (8.72) into (8.52).   

Consider next the energy of twin boundaries.  Geometric arguments 
demonstrate that the area of twin boundaries per unit intermediate volume 
of lamellar twins can be approximated as  
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where jt  is the average thickness of a twin comprising fraction j with vol-
ume fraction jf .  From (8.84)-(8.86), β ′  depends on both the volume 
fraction and average thickness of each representative twin system. 

The residual volume change J  was introduced in Section 7.2.4 of 
Chapter 7, specifically following relations (7.43) and (7.58).  An estima-
tion of this quantity from nonlinear elasticity theory is given by (7.60): 

 1 11 1 1 D S
V KJ W W

V K p p K
∆ µ µ

µ
⎛ ⎞ ⎛ ⎞∂ ∂

= + = + − + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
, (8.87) 
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where µ  and K are isotropic shear and bulk moduli, tr( ) / 3p = − σ  is the 
Cauchy pressure, and DW  and SW  are the dilatational and deviatoric strain 
energy densities per unit reference volume, respectively, associated with 
lattice defects.  As an approximation, for anisotropic single crystals the 
bulk and shear elastic coefficients are defined as Voigt averages (A.36) 
and (A.38): 

 .
. .

1
9

K α β
α β= ^ , .

.. . .
1 (3 )

30
αβ α β

αβ α βµ = −^ ^ . (8.88) 

Shear and bulk moduli in (8.88) do not depend on temperature since the 
right sides of (8.88) are evaluated at the reference state, according to 
(8.57).  Pressure derivatives of bulk modulus and shear modulus in (8.87) 
are measured at the reference state and are treated as constants.  The vol-
ume change in (8.87) is measured between reference and intermediate con-
figurations: V V V∆ = −  with V  the volume in B .  Setting the residual 
free energy of (8.75), measured per unit volume in the reference configura-
tion, equal to the sum of defect energies (Kocks et al. 1975), 
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where in the final equality, the energy is approximated as purely devia-
toric.  From (8.87), 
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where small residual volume changes 1(1 / )J V V −≈ − ∆  are assumed in the 
last expression, following discussion after (7.72).  Dependence of residual 
volume change on twin boundary energy in (8.90) is similar to dependence 
of volume on generic grain boundaries derived by Holder and Granato 
(1969).  Dilatancy from stacking faults (Kenway 1993) and twin bounda-
ries (Yoo and Lee 1991) has been predicted by atomic simulations.  The 
material time derivative of (8.90) is  
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Expressions (8.86), (8.90) and (8.91) can be substituted into (8.85) and 
(8.84), which in turn enter the energy balance (8.83) and dissipation ine-
quality (8.48).  If the shear modulus used to scale the residual free energy 
in (8.75) is assumed independent of temperature following Voigt approxi-
mation (8.88), then / 0θ µ θ∂ ∂ =  in (8.84). 

8.2.5 Kinetics 

Rate dependent, i.e., viscoplastic, kinetic laws are often used to describe 
shearing associated with slip (Hutchinson 1976; Teodosiu and Sidoroff  
1976; Asaro 1983) and twinning (Tome et al. 1991; Kalidindi 1998; Wu et 
al. 2007).  Representative kinetic equations can be written as 
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Kinetic equation (8.92) is similar to flow rule (6.106) of crystal plasticity 
theory, with the resolved shear stress .i E i a b i

a bJ s mτ σ=  in the first of (8.50) 
the thermodynamic work conjugate to slip rate iγ�  in the dissipation ine-
quality (8.49) and in the rate of plastic working (8.85).  No backstress is 
included for slip or twin rate equations in (8.92)-(8.94), but a term such as 
ˆ iχ  of (6.106) and (6.115) could be incorporated as appropriate.  Relation 

(8.93) is a flow rule for n w×  slip rates i
jγ�  in reoriented regions of the 

twinned crystal.  Resolved shear stress .i E i a b i
j j a jbJ s mτ σ=  in the second of 

(8.50) is the thermodynamic work conjugate to slip rate i
jγ�  in the dissipa-

tion inequality (8.49) and in the plastic dissipation (8.85).  Symbol 0 0γ ≥�  
denotes a material parameter with dimensions of inverse time that could 
depend on temperature (but is often taken as constant), and m is the rate 
sensitivity given by (6.90) in the context of single slip.  Evolving resis-
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tances to slip on system i in the parent and on system i in twin fraction j 
are denoted, respectively, by ˆ ( , )i X tτ  in (8.92) and ˆ ( , )i

j X tτ in (8.93).   

In (8.94), the rate of twinning shear j jf γ�  is dictated by the resolved 
shear stress component .j E ja b j

a bJ s mτ σ=  defined in the last of (8.50).  
This shear stress is a thermodynamic work conjugate to shearing rate j jf γ�  
in the dissipation inequality (8.49) and in the inelastic power (8.85).  The 
stress in Macaulay brackets satisfies 2 0j j jτ τ τ= + ≥ .  Because 

0jf =�  for 0jτ ≤ , the unidirectional, i.e., polar, nature of twinning dis-
cussed in Section 8.1.3 is respected.  The rate sensitivity parameter for 
twinning is written as p, and the resisting stress to twinning is ˆ ( , )j X tτ .  
Conceivably, a different value of 0γ�  could be used in each of (8.92)-
(8.94); in the simple treatment suggested here, differences among kinetic 
behaviors are assumed to be addressed by different initial values of and 
evolution equations for the slip resistances.  In the limit m → ∞  or 
p → ∞ , rate independent behavior is attained for slip or twinning, respec-

tively.  Since detwinning and successive twinning are not considered here, 
the constraint 0jf =�  applies when the crystal is fully twinned and 1Tf = .  
Special or alternative forms of (8.94) may be required to address load 
drops and serrated stress-strain responses observed for some twinned sin-
gle crystals.  From (8.92)-(8.94), any nonzero contribution of slip and 
twinning to the rate of inelastic working (8.85) is always positive, since 
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Written generically, evolution equations for slip and twin resistances are 
expressed as 
 { }( )ˆˆ ˆ ˆ, , , , ,{ }, , ,i i jf X ατ τ θ α β τ= EE α g� � , (8.96) 

 { }( )ˆˆ ˆ ˆ, , , , ,{ }, , ,i i j
j j f X ατ τ θ α β τ= EE α g� � , (8.97) 

 { }( )ˆˆ ˆ ˆ, , , , ,{ }, , ,j j jf X ατ τ θ α β τ= EE α g� � . (8.98) 

Hardening rates depend not only on the set of state variables that explicitly 
enter the free energy function (8.33), but also the set of hidden variables 

ˆ ˆ ˆ ˆ{ } { , , }i i j
jτ τ τ τ=  with 1,...i n=  and 1,...j w= , consisting of all possible 



418      8 Mechanical Twinning in Crystal Plasticity 

slip and twinning resistances.  If the residual free energy depends only the 
total scalar dislocation density 2 2/T bρ α= �  as in (8.75), it may be possible 
to replace (8.96)-(8.98) with 
 { }( )ˆ ˆ ˆ, , , ,{ }, , ,i i jf X ατ τ θ α β τ= EE g�� � , (8.99) 

 { }( )ˆ ˆ ˆ, , , ,{ }, , ,i i j
j j f X ατ τ θ α β τ= EE g�� � , (8.100) 

 { }( )ˆ ˆ ˆ, , , ,{ }, , ,j j jf X ατ τ θ α β τ= EE g�� � . (8.101) 

Resistances to inelastic shearing modes can be described in terms of 
physical mechanisms by extending the treatments of dislocation kinetics in 
Sections 6.2 and 6.3 to include effects of twins.  Following (6.99), resis-
tance stresses ˆ{ }τ  entering (8.96)-(8.101) are decomposed into sums of 
contributions of various mechanisms (Kocks et al. 1975; Clayton 2005a, b, 
2009a): 
 ˆ ˆ ˆi i i

P Dτ τ τ= + , ˆ ˆ ˆ( ) ( )i i i
j P j D jτ τ τ= + , ˆ ˆ ˆj j j

W Dτ τ τ= + . (8.102) 

In the first of (8.102), ˆi
Pτ  reflects the initial yield stress in a defect-free 

crystal for slip on system i in the parent, and ˆi
Dτ  reflects long range barri-

ers associated with defects that accumulate during the deformation history.  
Analogous definitions apply for resistance to slip within the twins in the 
second of (8.102).  Resistance to twin propagation in the third of (8.102) is 
likewise decomposed into a term ˆ j

Wτ  accounting for the initial resistance to 
twin nucleation and stress ˆ j

Dτ  due to interactions of twins with other twins 
and dislocations.  Both terms in each sum in (8.102) depend on tempera-
ture.  The initial yield stress (e.g., ˆi

Pτ ) depends on short range barriers such 
as Peierls barriers (see Section C.4.3) that may be significant at low tem-
peratures or in crystals with low initial defect densities and non-metallic 
bonds (Friedel 1964; Farber et al. 1993), and at high dislocation velocities 
also accounts for viscous, phonon, and electron drag (Kocks et al. 1975; 
Gilman 1979).   

An approximation often used for the twin nucleation stress follows from 
the energy required to translate a partial Burgers vector associated with a 
given twin system (Hirth and Lothe 1982): 
 ˆ /j j j

W SF PW bτ ≈ , (8.103) 
where j

SFW  is the stacking fault energy associated with the movement of a 
twinning partial of Burgers magnitude j

Pb .  The twin nucleation stress, like 
the slip resistance, can also depend on hydrostatic pressure, as indicated in 
atomic simulations (Xu et al. 2004).  As noted in Section C.4.1, the theo-
retical strength (i.e., Frenkel’s model) has been suggested as a stress crite-



8.2 Crystal Plasticity with Twins and Inelastic Volume Changes      419 

rion for twin nucleation in metallic crystals (Bell and Cahn 1957; Paxton et 
al. 1991): ˆ /(2 )j j

Wτ µγ π≈ .   
A number of analytical treatments of thermodynamics of twin nuclea-

tion have been forwarded (Price 1961; Lee and Yoo 1990; Yoo and Lee 
1991; Lebensohn and Tome 1993; Meyers et al. 2001).  Such theories of-
ten seek the minimum stable size and shape of a twin nucleus via consid-
eration of stationary points in the total Gibbs free energy (including exter-
nal work, elastic strain energy, and surface energy of the twin boundary), 
and many of these theories incorporate aspects of Eshelby’s treatment of 
elastic inclusions and inhomogeneities (Eshelby 1961).  In particular, Price 
(1961) and Lebensohn and Tome (1993) suggested formulae in which the 
twin nucleation stress is directly proportional to the twin boundary energy.  

Conceivably, long range barriers in each of (8.102) could depend in a 
complex manner upon activity of the slip or twin system under considera-
tion (i.e., self-hardening) as well as the activity of all other slip systems 
(i.e., latent hardening) and twinning systems (Christian and Mahajan 1995; 
Wu et al. 2007).  Possible impedance or facilitation of slip or twinning via 
slip-slip interactions, slip-twin interactions, and twin-twin interactions de-
pends in a complex manner on a number of factors, including geometrical 
relationships among interacting systems, temperature, crystal structure, 
and defect content (Christian and Mahajan 1995; Kalidindi 1998; Castaing 
et al. 2002; Wu et al. 2007).  Experimental data enabling unique quantifi-
cation of these effects is often scarce, and mechanisms responsible for 
hardening are not fully understood in many materials (Lagerlof et al. 1994; 
Kalidindi 1998).  Because of the large number of parameters required for a 
complete description of the interactions among individual deformation 
mechanisms, many experiments may be required, with delineation of ef-
fects of a particular mechanism difficult.  Initial values of hardness in 
(8.102) may differ among different slip and twin families in a crystal, and 
account for periodic lattice resistance in an initially perfect lattice (Peierls  
1940; Nabarro 1947), friction stress (Beltz et al. 1996), and other initial 
barriers, for example those resulting from interstitials in crystals with im-
purities (Kocks et al. 1975).  Short range barriers to dislocation motion are 
often strongly temperature dependent (Kuhlmann-Wilsdorf 1960; Kocks et 
al. 1975), since increases in temperature correlate with increased probabil-
ity of dislocations overcoming such barriers via thermal activation, as dis-
cussed in Section 6.2.  Long range barriers typically arise from interactions 
of local stress fields among defects, and generally increase with defect 
densities that accumulate with strain until saturation.  Twinning resistance 
is often affected by temperature, but at low temperatures may increase less 
steeply than slip resistance as the temperature is decreased (Christian and 
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Mahajan 1995).  This phenomenon explains the tendency for many solids 
to favor twinning over slip at low temperatures.  The resistance to twinning 
may even decrease with decreasing temperature (Christian and Mahajan 
1995).  Twinning is observed frequently in shock-loaded metallic and ce-
ramic crystals (Rohatgi and Vecchio 2002; Bourne et al. 2007). 

Evolution equations for variables α  and β , respectively reflecting den-
sities of statistically stored dislocations and twin boundaries as indicated in 
(8.29) and (8.30), complete the model.  A separate evolution equation for 
the geometrically necessary dislocation density tensor is not needed since 
α̂  is obtained directly from kinematic relations (8.24)-(8.28), leading to 
the rate equation 
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Terms entering (8.104) are obtained from updated plastic and twinning de-
formations, their rates in (8.20) and (8.21), and their partial derivatives 
taken with respect to material coordinates AX .  Analogously to hardening 
evolution laws listed in (8.96)-(8.101), defect densities may depend upon 
the history of slip and twin activity, as well as crystal structure and mate-
rial composition.  Generic evolution equations are written for statistically 
stored dislocations and the twin boundary area density, respectively as 
     { }( )ˆ ˆ, , , , ,{ }, , ,j

S S f X αρ ρ θ α β τ= EE α g� � , (8.105) 

 { }( )ˆ ˆ, , , , ,{ }, , ,j
W W f X αη η θ α β τ= EE α g� � . (8.106) 

From (8.105) and (8.106), Helmholtz free energy (8.33) depends on the 
shear resistances (i.e., hidden variables) ˆ{ }τ  implicitly, via their influence 
on the evolution of the internal state variables.  Kinetic equation (8.106) 
becomes redundant if, instead, an equation for thickness of each twin jt  in 
(8.86) is prescribed.  If the residual free energy depends only the total sca-
lar dislocation density as in (8.75), (8.104) need not be exercised, and 
(8.105) and (8.106) can be replaced with 
 { }( )ˆ, , , ,{ }, , ,j

T T f X αρ ρ θ α β τ= EE g�� � , (8.107) 

 { }( )ˆ, , , ,{ }, , ,j
W W f X αη η θ α β τ= EE g�� � . (8.108) 

Since a consensus on appropriate functional forms of evolution laws for 
hardening, (8.96)-(8.101), and defect densities, (8.105)-(8.108), for generic 
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crystalline solids undergoing simultaneous slip and twinning does not 
seem to exist, more specific forms of these equations are not included in 
this text.  Examples of kinetic relations are available in the literature for 
certain metals (Van Houtte 1978; Tome et al. 1991; Kalidindi 1998; Sta-
roselsky and Anand 2003; Wu et al. 2007; Proust et al. 2009) and ceramics 
(Scott and Orr 1983; Lagerlof et al. 1994; Castaing et al. 2002; Clayton 
2009a, 2010c, d).  The kinetic relations offered in Section 8.2.5 make no 
attempt to model geometry of twins (apart from simple relation (8.86)), nor 
do they capture interface morphology.  A more refined treatment of ther-
modynamics and interface kinetics is required to address such aspects of 
microstructure evolution (Rosakis and Tsai 1995; Hou et al. 1999).  



 



9 Generalized Inelasticity 

The two-term multiplicative decomposition of the deformation gradient 
used in Chapter 6 does not explicitly account for residual deformation of 
the lattice, or in other words, does not account for irreversible deforma-
tions that are not lattice-preserving.  Recall from Section 3.2 that the lat-
tice-preserving part of the deformation gradient is attributed to plasticity 
from crystal dislocations, specifically dislocation glide and relative shear-
ing of crystallographic planes in increments of the Burgers vector for slip.  
Residual deformations that are not explicitly addressed in the definition of 
plastic deformation used in this text may emerge from the following physi-
cal mechanisms: residual elastic deformation and residual volume changes 
associated with self-equilibrated stress fields of defects (Section 3.2.9 and 
Chapter 7), lattice rotations and reflections associated with twinning 
(Chapter 8), volumetric deformation associated with voids and point de-
fects (Sections 3.2.8 and 7.4), and anisotropic damage mechanisms such as 
ductile or brittle fracture and material rupture.  When treated distinctly 
from mechanically reversible elastic deformation as in the non-standard 
model of thermoelasticity of Section 5.5, deformation associated with 
thermal strains can also be categorized as a residual deformation mode dis-
tinct from plastic deformation.   

Inelastic deformations accommodated by damage mechanisms are 
commonplace in brittle crystals, in which dislocations may be scarce, or in 
which barriers to dislocation motion and twinning may be very large.  
Large deformations of an element of a brittle solid may be sustained by 
generation of surfaces within the element and subsequent local motions of 
these surfaces.  The term damage is used in this text to denote generic 
mechanisms of generation, growth, and motion of such internal surfaces 
whose creation requires breaking of atomic bonds.  Often these surfaces 
support no mechanical forces, i.e., they are free of mechanical traction, and 
hence labeled free surfaces.  However, damage surfaces are not always re-
quired to be traction free; for example, frictional forces may be supported 
at crack faces in sliding contact.  Regardless of the ductility of the crystal, 
volumetric strains cannot be sustained by dislocation glide since such dis-
location motion is conservative, as discussed in Sections 3.2.2, 3.2.5, and 
7.1.1.  Nor can volumetric strains be accommodated by deformation twin-
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ning, which is also isochoric, as discussed in Sections 8.1.3 and 8.2.1.  
Hence, inelastic tensile volumetric deformations are accommodated, out of 
geometric necessity, through damage mechanisms or increases in free vol-
ume, even in ductile crystals1.  On the other hand, as discussed in Section 
5.3, large compressive volume changes are often accommodated elasti-
cally, commensurate with large compressive pressures that suppress dam-
age modes such as void growth or crack opening. 

Constitutive formulations described in Chapter 9 account explicitly for 
residual lattice deformations.  A generic three-term decomposition for the 
deformation gradient, written as = E R PF F F F , is used, as proposed by 
Kratochvil (1972) in a generalized, geometrically nonlinear kinematic and 
thermodynamic treatment of elastic-plastic crystalline solids.  The inter-
mediate or generic residual deformation (tangent map), denoted in Chapter 
9 as ( , )X tRF , accounts for all mechanically irreversible deformations that 
are not lattice-preserving, and may encompass thermal deformations as a 
particular case.  Accordingly, such thermal deformations are not deemed 
mechanically reversible, but may be reversed by restoration of a crystal to 
its reference temperature.  Intermediate term RF  is able to account for po-
rosity increase or reduction, deformation resulting from isotropic or anisot-
ropic damage mechanisms, and residual elastic lattice deformation associ-
ated with microscopic stress fields of individual lattice defects or their 
heterogeneous distributions within a volume element of material whose 
centroid is located at X.  Furthermore, RF  encompasses deformations as-
sociated with vacancies and twins, as addressed already in Chapters 7 and 
8, respectively.   

In what follows first in Chapter 9, a general thermodynamic analysis is 
conducted wherein RF  is defined in a generic, fully anisotropic sense.  
The Helmholtz free energy of a volume element of fixed mass of the solid 
is assumed to depend minimally upon strain associated with the recover-
able elastic deformation EF , temperature, position and orientation of the 
element (i.e., heterogeneity and anisotropy), and a generic internal state 
variable.  This internal state variable could reflect residual stress fields as-
sociated with defects or tangent elastic stiffness reduction associated with 
damage.  An explicit dependence of free energy density on RF  can be 
used (Clayton and McDowell 2003a; Clayton et al. 2004b), or temperature 
and internal state variables can be assumed to encompass free energy 
variations and constitutive dependencies implicitly associated with varia-
tions of RF .   
                                                      

1 Volume changes in crystals can also occur during phase transformations, but 
the topic of phase transitions falls outside the scope of this text. 
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Particular forms of RF  corresponding, respectively, to isotropic porosity 
in the context of the kinematic description of Section 3.2.8 and residual 
elastic lattice deformation in the context of the kinematic description of 
Section 3.2.9, are considered in turn in Sections 9.2 and 9.3.  Finally, a 
constitutive framework for thermomechanical behavior of elastoplastic 
crystals, explicitly incorporating residual elasticity and internal variables 
of the higher gradient type (Clayton et al. 2004b, 2006), is presented in 
Section 9.4.  Specifically, this framework accounts for continuous distribu-
tions of geometrically necessary and statistically stored dislocation and 
disclination lines, complementing the differential-geometric description of 
micropolar kinematics of defective crystals of Section 3.3.3.  

9.1 Three-term Elastoplasticity: General Principles 

The following topics are addressed in Section 9.1.  A kinematic description 
of solids involving a three-term multiplicative decomposition of the total 
deformation gradient for a volume element of material is given, with spe-
cial reference to specific mechanisms encompassed by each term.  Consti-
tutive assumptions and thermodynamic implications then follow, the latter 
implementing balance relations of traditional continua described in Chap-
ter 4. 

9.1.1 Kinematics and Summary of Physical Mechanisms 

Multiplicative elastoplasticity in the context of a three-term multiplicative 
decomposition (Kratochvil 1972; Clayton and McDowell 2003a), 

 = E R PF F F F , (9.1) 
is now considered.  The following notation is also used to denote pairs of 
mappings in (9.1): 

 =L E RF F F , = R PF F F . (9.2) 
Decomposition (9.1) implies the existence of two generally anholonomic 
intermediate configurations B�  and B , as shown in Fig. 9.1.  Tangent 
mappings entering (9.1) and (9.2) are then :TB TB→EF , :TB TB→RF � , 

0:TB TB→PF � , :TB TB→LF � , and 0:TB TB→F .  A time-independent 
metric tensor ( )Xg  with components g gαβ α β βα= =g gi  and determinant 

detg = g  is introduced on configuration B  and is assigned to every mate-
rial element whose reference position is X. 
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Fig. 9.1 Configurations and tangent maps 

 
Recall from Section 7.1.2 that ( , )X t = =E E E E EF V R R U  accounts for 

reversible elastic deformation attributed to mechanical loading, in particu-
lar left stretch EV  or right stretch EU , as well as rigid-body rotation of the 
solid, in particular proper orthogonal rotation ER .  Elastic deformation EF  
also includes thermal deformation when a standard treatment of thermoe-
lasticity is adopted, as in Section 5.1.  Plastic tangent map ( , )X tPF  retains 
definitions used previously in Chapters 3 and 6-8, and specifically (6.1) in 
the context of two-term elastoplasticity: the plastic deformation accounts 
for dissipative, mechanically irreversible, lattice-preserving mechanisms.  
As discussed in Sections 3.2.5 and 7.1.1, PF  is associated with glide of 
mobile dislocations in ductile crystals and in such cases is isochoric; how-
ever, the mathematical treatment that follows in Chapter 9 does not for-
mally impose plastic incompressibility constraint 1PJ =  unless noted oth-
erwise.  Term ( , )X tRF , with volume ratio det / /RJ g g dV dV= =RF �� , 
accounts for all other residual or mechanically irreversible deformation 
mechanisms that are not lattice-preserving.  The total residual deformation, 
including lattice-preserving and lattice-altering parts, is ( , )X t = R PF F F .  
Jacobian determinant det / /J g G dV dV= =F  provides a relationship 
between volume elements dV  in B  and dV in 0B .  The total lattice de-

formation  is ( , )X t =L E RF F F , with det / /L E RJ J J g g dv dV= = =LF �� .  
The total volume change then satisfies, from (9.1) and (9.2), 

 E R P E L PJ J J J J J J J= = = . (9.3) 
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Physical examples of deformation mechanisms encompassed by RF  are 
listed in Table 9.1.  In the analysis that follows in Sections 9.1.2 and 9.1.3, 
the generic case is considered, whereby RF  may be anisotropic (i.e., non-
spherical) and may induce any admissible volume change, 0 RJ< < ∞ .   
Subsequently in Chapter 9, some particular cases listed in rows of Table 
9.1—void nucleation and growth, pore compaction, and multiscale residual 
elasticity—are addressed via a reduction of the general theory to the more 
specific physics involved in each case. 

 
Table 9.1 Possible physics represented by residual deformation RF  

Behavior Equations in text  Deformation Volume change  
Residual elasticity 
from defects 

(7.31), (7.41), (7.100) =R IF F  0IJ >  

Residual elastic  
volume change 

(7.59)-(7.61), (8.87) 1/ 3J=RF 1  0J >  

Spherical point  
defects 

(3.129)-(3.136), (7.102)-
(7.104) 

υ= =R VF F 1  1(1 ) 0VJ φ −= − >  

Void nucleation  
and growth 

(3.129)-(3.133), (9.48)-
(9.53) 

υ= =R VF F 1  1(1 ) 1VJ φ −= − ≥  

Pore  
compaction 

(3.129), (9.94)-(9.97) 1/ 3CJ=RF 1  1(1 ) 1CJ ϑ −= + ≤  

Multiscale  
residual elasticity 

(3.137), (3.148), (9.107) =R IF F  0IJ >  

Mechanical  
twinning 

(8.12), (8.13), (8.20) =R WF F  1WJ =  

Disclination  
rotation 

(3.280)-(3.281)  =R IF F  1IJ ≈  

Explicit  
thermal strain 

(5.324)-(5.326) =R θF F  0J θ >  

9.1.2 Constitutive Assumptions 

Thermodynamic analysis of three-term multiplicative elastoplasticity pro-
ceeds in a manner similar to that of two-term elastoplasticity of Section 
6.1.  In the present context of (9.1)-(9.2) and Fig. 9.1, intermediate con-
figuration B  serves as an evolving reference configuration for mechanical 
loading by the elastic tangent map EF , and hence acts as a reference con-
figuration for the instantaneous elastic response.  The following variables 
referred to configuration B  are introduced: 

 1
0

EJ Jρ ρ ρ−= = , (9.4) 
 Ψ ρψ= , E eρ= , N ρη= ,       (9.5) 
 2 E EE C gαβ αβ αβ= − , . .

E E a Eb
abC F g Fαβ α β= , (9.6) 
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 1 1 1
. . . .

AB E E ab E
A B a bJ F F J F Fαβ α β α βΣ Σ σ− − −= = , (9.7) 

 1
, , . , .

A E a
A aF Fα α α αθ θ θ θ−= = = ∇ , (9.8) 

 1 1
. .

A E E a
A aq J F Q J F qα α α− −= = . (9.9) 

Mass density per unit intermediate volume in B  is written as ρ  in (9.4).  
Helmholtz free energy Ψ , internal energy E , and entropy N  are each de-
fined on a per unit intermediate configuration volume basis in (9.5).  Defi-
nitions used in (9.6) for the symmetric covariant elastic deformation EC  
and strain EE  referred to * *T B T B×  are identical to those of (5.331) and 
(8.34).  Relationships among the contravariant elastic stress TB TB∈ ×Σ  
(symmetric by (4.26) and (9.7)), the symmetric second Piola-Kirchhoff 
stress Σ , and the symmetric Cauchy stress σ  are analogous to those be-
tween the latter two in Table 4.1.  The temperature gradient θ∇  in (9.8) is 
consistent with the definition of the anholonomic partial derivative listed 
in (2.206).  In (9.9), the heat flux vector follows Piola transformations akin 
to those of (4.36), (6.7), and (8.44).   

Under rigid body motions of the spatial frame ˆ→ +x Qx c , where ˆ ( )tQ  
is a spatially constant rotation matrix and ( )tc  is a spatially constant trans-
lation vector, kinematic variables in decomposition (9.1) transform as  
 ˆ→F QF , ˆ→E EF QF , →R RF F , →P PF F , (9.10) 
and obviously, E EJ J→  and R RJ J→ , for example since ˆdet 1= +Q .  
Notice that (9.10) is consistent with (6.8).  From (9.10), variables defined 
with regards to the intermediate configuration B  in (9.4)-(9.9) all remain 
invariant under such motions.  Specifically, (trivial) invariance of scalar 
quantities in (9.4) and (9.5) can be confirmed by the conservation of mass, 
i.e., invariance of the scalar reference mass density, and invariance of the 
absolute scalar R PJ J J= .  Invariance of EC  and EE  follows from direct 
calculation using the second of (9.10) in a procedure similar to (4.50).  In-
variance of Σ , θ∇ , and q  follows, respectively, from invariance of ref-
erence quantities Σ , , Aθ , and Q entering (9.7)-(9.9) and from invariance 
of = R PF F F  implied by the last two parts of (9.10).  

From the above considerations, objective forms of general constitutive 
assumptions (4.45)-(4.49) are specified as follows for three-term multipli-
cative elastoplasticity: 
 ( )., , , , , ,E RE F X= ∇ gα

αβ β α αΨ Ψ α θ θ ; (9.11) 

 ( )., , , , , ,E RN N E F X= ∇ gα
αβ β α αα θ θ ; (9.12) 
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 ( )., , , , , ,E RE F X= ∇ gαβ αβ α
αβ β α αΣ Σ α θ θ ; (9.13) 

  ( )., , , , , ,E Rq q E F X= ∇ gα α α
αβ β α αα θ θ ; (9.14) 

 ( )., , , , , ,E RE F X= ∇ g� � α
αβ β α αα α α θ θ . (9.15) 

As in Chapters 4 and 6, ( , )X tα  denotes a scalar internal state variable, 
accounting here in Chapter 9 for changes in energy or response functions 
of the crystalline solid attributed to sources other than the elastic strain, re-
sidual deformation measure RF , temperature, and temperature gradient.  
For simplicity of presentation, a single scalar internal state variable is con-
sidered in Section 9.1, though (tensor-valued) internal state variables of 
higher rank can be included without conceptual difficulty, as can multiple 
internal state variables, as demonstrated by example in Section 9.4.  
Though not listed in (9.11)-(9.15), additional relationships are typically re-
quired to control evolution of plastic deformation ( , )X tPF  and residual 
deformation ( , )X tRF .  These often assume the form of kinetic equations 
similar in functional dependency to (9.15), though more general relation-
ships are not prohibited by the laws of thermodynamics.  As was the case 
in Chapters 5, 6, and 8, a dependence on material particle X accounts for 
heterogeneous properties, while a dependence on basis vectors (here 

( )Xαg ) is written to explicitly denote an anisotropic material, the norm 
for single crystals. 

No explicit dependence of the free energy, entropy, stress, or other re-
sponse functions upon plastic deformation is prescribed explicitly, in 
agreement with the philosophy of Chapter 6 (Section 6.1.1).  Deformation 
map PF  is excluded from the list of independent variables entering (9.11)-
(9.15) for exactly the same reasons as given in the discussion immediately 
following (6.9)-(6.13).  Defects such as dislocations may naturally be as-
sociated with residual strain energy of the lattice and may accumulate with 
plastic deformation; in such cases, the corresponding variation of thermo-
dynamic state of the solid is reflected by variations of the internal state 
variable α .  As discussed in more detail in Section 9.3, a measurable cor-
relation may exist between the residual lattice deformation RF  and the 
stored energy in the (poly)crystalline solid (Clayton and McDowell 2003a, 
2004b), in which case it may be logical to include RF  in the list of inde-
pendent variables in (9.11)-(9.15).  However, in other cases it may be pos-
sible to implicitly include effects of RF  on the response functions via the 
elastic strain, temperature, and judicious choices of internal state variables.  
In such cases, RF  need not be included in the list of independent variables 
entering the response functions (9.11)-(9.15), since its inclusion would be 
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redundant.  In the forthcoming thermodynamic analysis, RF  is maintained 
in the list of independent variables, following the treatment of Kratochvil 
(1972). 

9.1.3 Thermodynamics 

When referred to the reference configuration 0B , the entropy production 
inequality can be written according to (4.71) as 

 1
0 ,( ) 0AB A

AB AE QΣ ρ ψ ηθ θ θ−− + − ≥�� � . (9.16) 
Stress power per unit reference volume can be written, similarly to (6.15), 
as follows: 

 
. . 1 1

. . . . . .

.
.

( )( )

             .

AB b a E E a b E E e E d
AB a b a b e dE J L J J F F F L F

JM L

β α
α β

β α
α β

Σ σ σ − −= =

=

�
 (9.17) 

Quantity M  is a version of the Mandel stress (Mandel 1974), defined 
along with the velocity gradient pulled back to intermediate configuration 
B  by 

 . . 1
. .

E E a b E E
a bM J F F Cβ β δβ

α α αδσ Σ−= = , 1
. . . .

E a Eb
a bL F L Fα α

β β
−= , (9.18) 

where (9.6) and (9.7) have been consulted.  The stress tensor M  is gener-
ally not symmetric.  The total velocity gradient of (3.58) is  

 
1 1 1 1

1 1 1   ,

− − − −

− − −

= ∇ = = +

= +

g
L L L P P L

E E E E

L v FF F F F F F F

F F F FF F

� � �
��

 (9.19) 

leading to 

 
1 1 1 1 1 1

1 1 1  .

− − − − − −

− − −

= + = + +

= + + = + +

E E E E R R R P P R

E E R R P R E E R P

L F F FF F F F F F F F F
F F L F L F F F L L

�� � � �
� �

 (9.20) 

The notation for inelastic velocity gradient contributions 1−=R R RL F F� , 
1−=P P PL F F� , and 1−=P R P RL F L F  is used in (9.20) and henceforth in 

Chapter 9.  The material time derivative of the free energy per unit inter-
mediate volume in configuration B  is, from (9.3)-(9.5), 

 
1 2

0 0

1 1
. .

( )

   ( ) .A
A

d J JJ
dt

F F JJα
α

Ψ ρψ ρψ ρψ ρ ψ ρ ψ

ρ ψ ψ ρψ Ψ

− −

− −

= = + = −

= − = −

� ��� �

� �� �
 (9.21) 

Substituting (9.4), (9.5), (9.7), (9.8), (9.9), (9.17), (9.20), and (9.21) into 
(9.16) and multiplying the result by 1J −  yields a local entropy production 
inequality referred to intermediate configuration B : 
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 . 1 1
. . . . , 0A

AM L F F N qβ α α β α
α β β α αΨ δ Ψ θ θ θ− −− − − − ≥� � � . (9.22) 

Using (9.17)-(9.20), the stress power can be expressed as 

 

. . 1 . 1
. . . . .

1 1 . . 1
. . . .

1 . 1
. .

. .
. .

            ( )( )

            

            ,

E E a A
a A

E a E E Eb A
a b A

E E E A
A

E R P

M L M F F M F F

F F M F F M F F

C C E M F F

E M L M L

β α β α β α
α β α β α β

δ α β β α
α δ β α β

δα βχ β α
αχ δβ α β

βδ β α β α
δβ α β α β

Σ

Σ

− −

− − −

− −

= +

= +

= +

= + +

��

��

��

�

 (9.23) 

where ( ) / 0g d dtαβ α β= =g g� i  is assumed.  From (9.11) with 0α =g� ,   

 .
. ,

E R
E RE F

E F
α

αβ β αα
αβ β α

Ψ Ψ Ψ Ψ ΨΨ θ γ α
θ θ α

∂ ∂ ∂ ∂ ∂
= + + + +
∂ ∂ ∂ ∂ ∂

� �� � � , (9.24) 

where the intermediate rate of temperature gradient obeys the identities 

 
1

, , .

1 1
, , . . , , . .

( ) / ( ) /

    .

A
A

A A
A A

d dt d F dt

F F F F

α α α

β β
α β α α β α

γ θ θ

θ θ θ θ

−

− −

= =

= + = −� �� �
 (9.25) 

Inserting (9.23) and (9.24) into (9.22), the dissipation inequality becomes 

         ( )

( )

,

1 . 1
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. . ,
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δ
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θ θ

Ψ Ψδ

ΨΨδ α θ θ
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⎛ ⎞ ⎛ ⎞∂ ∂ ∂
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∂
− −
∂

∂
− − − ≥

∂

��

� �

�

 (9.26) 

It is assumed that coefficients of EE� , θ� , and γ  should vanish identi-
cally in (9.26) to ensure thermodynamic admissibility.  The following con-
stitutive relations are then deduced: 

 T
T

Ψ Ψ∂ ∂
= = =
∂ ∂E EΣ Σ
E E

, N Ψ
θ

∂
= −

∂
, 0

( )
Ψ
θ

∂
=

∂ ∇
, (9.27) 

and it follows that the free energy, entropy, and stress do not depend ex-
plicitly on the temperature gradient: 

 
( ) ( )

( )
, , , , , ,  , , , , , ,

                       , , , , , .

X N N X

X

α α

α

Ψ Ψ α θ α θ

α θ

= =

=

E R E R

E R

E F g E F g

Σ Σ E F g
 (9.28) 

The Cauchy stress tensor and specific entropy per unit mass are then ob-
tained, respectively, from (9.7) and (9.5): 
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 1
. .

ab E E a Eb
EJ F F

Eα β
αβ

Ψσ − ∂
=

∂
, 1 Ψη

ρ θ
∂

= −
∂

. (9.29) 

Using the chain rule and the functional dependency .( , )E E E a
abC C F gαβ αβ α= , 

 . .2 2
E

E a Eb
E E

ab ab

C
F F

g C g E
αβ

α β
αβ αβ

Ψ Ψ Ψ∂∂ ∂ ∂
= =

∂ ∂ ∂ ∂
. (9.30) 

Following a similar calculation as that listed in (6.29), a relation similar to 
Doyle-Ericksen formula (5.36) of nonlinear elasticity is obtained: 

 2 2ab ba

ab bag g
ψ ψσ ρ ρ σ∂ ∂

= = =
∂ ∂

. (9.31) 

Dissipation associated with heat conduction can be prescribed non-
negative by assuming a Fourier-type conduction law analogous to (5.48), 
(6.30), and (8.47): 

 θ= − ∇q K , , , . , .
Eb B

b Bq K K F K Fα αβ αβ αβ
β β βθ θ θ= − = − = − , (9.32) 

with ( , )X tK  a symmetric positive semi-definite matrix of thermal con-
ductivity that, like K of (5.48), may generally depend on temperature and 
other state variables: 

 1 1, , 0θ θ θ
θ θ

− ∇ = ∇ ∇ ≥q K . (9.33) 

Implementing (9.27), the dissipation inequality consists of the remain-
ing terms in (9.26): 

   . .
. . . , ,

.

1 0P R R
RL F L K

F
β α β β α αβ
α β α δ β α βα

δ

Ψ ΨΠ Π α θ θ
α θ

⎛ ⎞∂ ∂
+ − − + ≥⎜ ⎟∂ ∂⎝ ⎠

� , (9.34) 

where  
 Ψ= −Π M 1 , . . .M= −β β β

α α αΠ Ψδ . (9.35) 
Stress measure Π  is similar to Π�  of (6.33), and is related to a quantity in-
troduced by Eshelby (1975) whose divergence represents a kind of force 
on arbitrary heterogeneities in elastic solids, as discussed in Section 6.6.  
The scalar quantity  
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Π Π
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σ Ψδ
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 (9.36) 

is referred to in Chapter 9 as the plastic dissipation or the rate of plastic 
work, and is related to the plastic work rate per unit volume in configura-
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tion B� , first defined as PW�  in (6.34), as indicated in the final expression 
of (9.36).  Therefore, the first term on the left side of inequality (9.34) 
represents the effect of the plastic velocity gradient, i.e., plastic dissipation, 
on the rate of temperature increase.  The second term, in parentheses on 
the left of (9.34), accounts for possible dissipation and free energy storage 
associated with residual deformation contribution RF , and is thermody-
namically conjugate to the time rate of change of RF .  The third term on 
the left of (9.34) represents energetic changes attributed to the rate of the 
internal state variable α , for example residual elastic energy accumulation 
with increases in defect densities, or decreases in recoverable elastic en-
ergy commensurate with damage mechanisms, e.g., strain energy release 
rates during fracture.  The last term on the left of (9.34) accounts for heat 
conduction.   

A specific heat parameter at constant elastic strain, constant residual de-
formation, and constant internal variable α , measured as energy per de-
gree per unit intermediate volume, is introduced as 

 , ,

2 2

2 2  ,

E E NC
N

N
N

αθ θ

θ Ψ Ψ Ψθ θ
θ θ θ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂
= = ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
= + + − = −⎢ ⎥⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎣ ⎦

E RE F  (9.37) 

where (9.27) has been used.  Multiplying (4.39) by 1J − , the local balance 
of energy per unit volume in configuration B  is 
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Substituting from (9.24) and the second of (9.27), the rate of internal en-
ergy can be written as 
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 (9.39) 

The anholonomic covariant derivative of the heat flux is defined as in 
(8.54): 

 1 1 1
: . . :

ˆ ( . ) ( . ) ( . )( )A A
A AF J JFα α α

− − −∇ = + , (9.40) 
such that 
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− − − − − −= = + = ∇  (9.41) 
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From (2.226), the term 1
. :( ) 0A

AJF α
− =  when [ ]. : 0A BFα = .  Rearranging (9.39) 

for the rate of entropy production and using (9.27), 
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Entropy production can also be expressed analogously to (5.50) and (6.41): 
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where stress-temperature coefficients in the intermediate configuration are 

 
2

,
E

∂
= −

∂ ∂ RF

β
E α

Ψ
θ

. (9.44) 

Equating (9.42) and (9.43) and using (9.32), the temperature rate becomes 
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The first two terms on the right side of the final equality in (9.45) repre-
sent, respectively, plastic dissipation and entropy production associated 
with plastic volume change:   
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Notice that when the plastic deformation is isochoric, as required for lat-
tice-preserving slip in the present context, then . 0P P PJ J L α

α= =� .  The next 
term on the right of (9.45) represents energetic changes attributed to the 
rate of change of the internal state variable α , for example energy accu-
mulation or release with changes in defect density.  The subsequent two 
terms on the right of (9.45) account for heat conduction and non-
mechanical heat sources, respectively.  The next term represents contribu-
tions from thermoelastic coupling.  The final term, 
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 (9.47) 

accounts for energy storage and release associated with the time rate of 
change of residual deformation RF .  Notice that because the value of free 
energy Ψ  itself enters stress measure Π  in (9.34) and (9.45), this free en-
ergy per unit intermediate volume cannot always be prescribed arbitrarily 
to within an additive constant. 

In what follows in Sections 9.2-9.4, the framework of Section 9.1, i.e., 
(9.1)-(9.47), is specialized to describe different classes of behavior in de-
formable solids.  Specific forms of RF , e.g., those listed in Table 9.1, 
along with specific forms of  Ψ  of (9.28), enable descriptions of crystal-
line solids containing, in addition to dislocations, a number of other kinds 
of defects, including voids, point defects, mechanical twins, and disclina-
tions. 

9.2 Porous Elastoplasticity 

Constitutive frameworks for classes of solids exhibiting two different iso-
tropic residual deformation mechanisms are considered in Section 9.2: 
volumetric expansion attributed to void nucleation and growth, and volu-
metric contraction attributed to pore collapse.  The constitutive framework 
for the former case (i.e., expansion) described in Section 9.2.1 exhibits 
similarities to continuum damage mechanics theories (Lemaitre 1985; Kra-
jcinovic 1996).  These similarities are briefly discussed in Section 9.2.2, 
prior to presentation of the framework for pore collapse given in Section 
9.2.3.   
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9.2.1 Void Nucleation and Growth 

Consider first materials that undergo expansion as a result of void nuclea-
tion and growth, following the kinematic description given in Section 3.2.8 
and the fourth row of Table 9.1.  Many ductile metals demonstrate such 
phenomena when subjected to large tensile pressures; voids may also nu-
cleate during creep processes wherein dislocation climb and vacancy mi-
gration and coalescence are prevalent (McClintock 1968; Rice and Tracey 
1969; Gurson 1977; Bammann and Aifantis 1989).  Void nucleation and 
growth also are known to contribute to spall fracture in ductile metals, with 
such damage the result of high rate inertial loading and wave reverbera-
tions (Antoun et al. 2003; Wright and Ramesh 2008).  In Section 9.2, EF  
of (9.1) accounts for both mechanical elastic deformation and thermal de-
formation.  

Residual deformation attributed to an isotropic distribution of spherical 
defects is, from (3.129)-(3.131), 

  1/ 3

1
(1 )
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= = =
−

R VF F 1 1 , . . . .1/ 3
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(1 )

R VF Fα α α α
β β β βυδ δ
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−
, (9.48) 

where the Jacobian determinant is 3VJ υ= , and where the quantity 
 1( ) / 1 VdV dV dV Jφ −= − = −� , (9.49) 

is the volume fraction of voids or pores per unit volume in configuration 
B .  Let 0 ( , ) 0r X t ≥  be the typical radius of a void contained in a volume 
element of material at reference location X; this radius may evolve with 
time as voids shrink or expand.  Then 
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rφ π ξ= , 3
0 0 0

4
3

rφ π ξ= , 0
VJξ ξ= , 0

VJφ φ= ,  (9.50) 

where 0φ  is the fraction of voids per unit reference volume in 0B , ξ  is the 
number of voids per unit intermediate volume in B , and 0 ( , ) 0X tξ ≥  is 
the number of voids per unit reference volume.  In the present treatment, 
the material is assumed fully dense in the initial state, hence 0 ( ,0) 0r X =  
and 0 ( ,0) 0Xξ = .  Since void radii and number densities are always non-
negative, and since the total volume occupied by the material and voids 
remains bounded, 

 0 1φ≤ < , 1 VJ≤ < ∞ . (9.51) 
From (9.48), the deformation rate contribution attributed to defect-induced 
volumetric expansion is  
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where from (9.50), the porosity rate per unit intermediate volume is 

 2 0
0 04
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r rφ π ξ ξ⎛ ⎞= +⎜ ⎟
⎝ ⎠

� � � . (9.53) 

An illustrative form of free energy function (9.11) and (9.28) for the 
present class of defective solids is 

 ( ), , , , ,X αΨ Ψ φ α θ= EE g , (9.54) 

where ( , )X tα  accounts for effects of other internal variables distinct from 
the void concentration ( , )X tφ , e.g., dislocations or other defects.  Notice 
that RF  need not be included in the list of independent variables, since RF  
of (9.48) can be expressed directly in terms of φ .  Using (9.52) and (9.54), 
dissipation inequality (9.34) and energy balance (9.45) reduce to 
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Since RF  is spherical, 1−= =P P P PL L F F�  is the purely plastic velocity gra-
dient of (3.58). 

A more specific form of (9.54) is  
 ( ) ( ), , , , , , , ,E RX Xα αΨ Ψ φ θ Ψ φ α θ= +EE g g , (9.57) 

where EΨ  accounts for the thermoelastic response (with material coeffi-
cients affected by porosity) and RΨ  accounts for energy associated with 
defects.  Assuming a materially linear hyperelastic response along the lines 
of (5.84), the thermoelastic part of the free energy is expanded about a ref-
erence state in which 0 0θ θ θ∆ = − =  and 0EEαβ = : 
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where the effective thermoelastic coefficients depend on orientation, posi-
tion, and void volume fraction, and are not constants at a point X: 
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A number of specific forms for effective material coefficients, in particular 
effective moduli of (9.59), in terms of void volume fraction can be found 
in texts on micromechanics (Nemat-Nasser and Hori 1999).  Perhaps the 
simplest physically realistic assumption is that each term in the thermoe-
lastic energy (9.58) degrades linearly with increasing void volume frac-
tion: 

0

1 (1 ) (1 ) (1 ) ln
2

E E E EE E E Cαβχδ αβ
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where the thermoelastic constants for a fully dense (poly)crystalline ele-
ment of material are defined as 

    ( )0, ,Xαβχδ αβχδ
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�
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. (9.62) 

Effective elastic coefficients αβχδ�
^  are thus interpreted as Voigt averages 

(see (A.33) of Appendix A) over the volume element since the energy den-
sity vanishes inside the free space occupied by the voids.  Since voids are 
assumed to affect the material response in an isotropic manner, their pres-
ence does not alter the symmetry properties of the material.  Thus, the de-
graded coefficients exhibit the same material symmetries as the thermoe-
lastic coefficients of the fully dense material in (9.62), with symmetries of 
the latter discussed in Section 5.1.5 of Chapter 5 and in Appendix A for 
specific crystal classes. 

For an isotropic material, e.g., a polycrystal with randomly oriented 
grains, (9.58) reduces to 
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 (9.63) 

where the deviatoric part of the elastic strain is . / 3E E EE E E χ
αβ αβ χ′ ′= − , the ef-

fective thermal stress coefficient is β
�

, and the effective shear modulus, 
Lamé coefficient, and bulk modulus are µ� , λ

�
, and K

�
, respectively.  For 

linear degradation of coefficients with porosity as in (9.61), the effective 
elastic coefficients are 

 (1 )µ φ µ= −� , (1 )λ φ λ= −
�

, (1 )K Kφ= −
�

, (9.64) 
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with µ , λ , and K  elastic constants of the fully dense material.  Using 
Table A.10, an effective Young’s modulus and Poisson ratio are, respec-
tively 

 (2 3 ) (2 3 )(1 ) (1 )E Eµ µ λ µ µ λφ φ
µ λµ λ

+ +
= = − = −

++

�� ��
�� , (9.65) 

 
2( )2( )

λ λν ν
µ λµ λ

= = =
++

�
� �� . (9.66) 

Thus, Poisson’s ratio remains unaffected by porosity according to the sim-
ple model of (9.64).  Notice that for small volume fractions of defects, the 
following approximations can be substituted into (9.61) and (9.64)-(9.66): 
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. (9.67) 

An alternative set of expressions to (9.64), widely used, for effective iso-
tropic elastic constants of solids with voids was derived by Mackenzie 
(1950) using a self-consistent approach: 
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Now consider the contribution of lattice defects to the free energy 
(9.57).  For illustrative purposes, let α  represent a normalized total dislo-
cation density as in (6.100): 

 Tbα ρ= , (9.69) 
with b  a constant magnitude of Burgers vector and ( , )T X tρ  the line 
length of dislocations per unit volume in configuration B .  Furthermore 
let ( , )Xγ θ  denote a scalar energy per unit area associated with possible 
surface tension in each void (Huo et al. 1999).  The residual free energy 
for non-interacting defects can be approximated by 

 2 2 2 1
0 04 3R

Tr b rΨ Λµα πγ ξ Λµ ρ γ φ−= + = + ,  (9.70) 
where Λ  is a constant on the order of unity as introduced in (6.118) that 
scales the energy per unit length of dislocation lines and µ  is an elastic 
shear modulus of the crystalline matrix. 

A kinetic equation is required to specify the time rate of porosity, φ� , 
following the general form of (9.15), for example.  A number of kinetic 
laws for void nucleation, growth, and/or coalescence have been suggested 
from experimental evidence and results of numerical studies for plastically 
deforming metallic solids subjected to various loading conditions (Gurson 
1977; Cocks and Ashby 1980; Budianski et al. 1982; Becker and Needle-
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man 1986; Bammann and Aifantis 1989; Rajendran et al. 1989; McDowell 
et al. 1993; Marin and McDowell 1996; Horstemeyer et al. 2000).  A ki-
netic relation can be posited directly as an explicit evolution law (Cocks 
and Ashby 1980; Bammann et al. 1993) or implicitly as the volumetric part 
of the derivative of a dissipation potential with respect to some measure of 
stress (Gurson 1977; Tvergaard 1981; Becker 1987).  The former class of 
models often falls into the category of non-associative plasticity (see Sec-
tion 6.4) if the rate of porosity is labeled as a plastic volume change, while 
the latter class of models corresponds to associative plasticity.  From the 
perspective of dissipation inequality (9.55), it may be desirable to require 
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pα
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= − ≥

−
� � , 13 tr
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φ
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Π . (9.71) 

where p  is an effective pressure, the spherical part of the Eshelby-type 
stress in configuration B , negative in algebraic sign in tension.  Evolution 
laws requiring p  and φ�  to exhibit opposite algebraic signs (when both are 

nonzero) will automatically result in 0pφ− ≥� .  This is a physically realis-
tic requirement, since void growth is usually accelerated by tensile hydro-
static stress, and void collapse promoted by compressive hydrostatic stress.  
Under adiabatic loading conditions, energy dissipated in (9.71) would con-
tribute to a temperature change in (9.56), for example via heat generated 
from local plastic deformation in the vicinity of expanding voids.  

As discussed in Section 6.4 of Chapter 6, kinetic relations for macro-
scopic plasticity (i.e., a description wherein each material element consists 
of a large number of single crystals), are often expressed in the spatial con-
figuration B as opposed to an intermediate configuration.  In the context of 
a spatial description, the spatial velocity gradient (9.19) is used as the pri-
mary descriptor of kinematics: 
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where 
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Substituting from (9.48) and (9.52), the symmetric deformation rate D and 
skew spin W are  
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   ( ) ( )1 1 1 ˆ
skew skew skew
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A standard assumption used to denote plastic incompressibility of the fully 
dense material (i.e., the matrix) is that ˆ PD  is traceless: .

ˆ 0Pa
aD = .  Kinetic 

equations provide the plastic strain rate ˆ PD , plastic spin ˆ PW , and rate of 
porosity change φ� .   

Consider first a direct approach wherein kinetic equations are supplied 
explicitly rather than defined as derivatives of a dissipation potential.  One 
example of such a model is that of Bammann et al. (1993).  In this plastic-
ity model intended for metals, ˆ PW  is specified by (6.129), which remains 
unchanged in form when the material contains voids.  Viscoplastic flow 
rule (6.130) is modified, however, to account for porosity: 
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where terms in (9.76) are defined in Section 6.4, immediately following 
(6.130).  The presence of voids degrades the effective yield strength of the 
material by a factor of 1 φ− , increasing the rate of plastic deformation at a 
fixed level of applied stress, as explained by Bammann et al. (1993).  The 
porosity evolution equation used by Bammann et al. (1993), similar to a 
model by Cocks and Ashby (1980), is 
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with m a constant, p the usual Cauchy pressure (positive in compression), 
and σ  the Von Mises effective stress of (6.137).  The triaxiality ratio 

/p σ−  dictates the rate of porosity evolution; tensile pressure accelerates 
void growth for 1/ 2m > . 

Another typical approach specifies kinetics of plasticity and porosity 
evolution via the associated flow concept: 
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where the inelastic volume change arises only from the time rate of void 
fraction:  
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In (9.78), ˆ 0Pλ ≥  is a scalar plastic multiplier, and for a typical isotropic 
material, the flow potential is 

 ( )1 2
ˆ ˆ ˆ, , ,F F I J R φ= , 1 tr 3I p= = −σ , 2

1
2

J ′ ′= σ :σ , (9.80) 

with R̂  an evolving scalar function representing the yield strength of the 
matrix material.  Isosurfaces of F̂  demarcate elastic ( ˆ 0F < ) and inelastic 
( ˆ 0F = ) regimes; hence inelastic deformation is associative since yield and 
flow functions coincide.  A number of functional forms for F̂  have been 
posited, as summarized, for example, by Marin and McDowell (1996).  A 
popular function originated by Gurson (1977) and refined by Tvergaard 
(1981) and Tvergaard and Needleman (1984) is usually referred to as the 
Gurson potential: 
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where 1q , 2q , and 3q  are constants.  In particular, Gurson (1977) posited 
the constants 1 2 3 1q q q= = = , while Tvergaard (1981) suggested 1 1.5q = , 

2 1q = , and 2
3 1( )q q= .  When 1 3 0q q= = , the flow function reduces to that 

of standard 2J -plasticity of (6.140), with 2 2ˆˆ 3R k= .  When the matrix ma-
terial is viscoplastic, an effective scalar plastic strain rate can be intro-
duced as the function (Becker 1987) 

 ( )ˆ,P P Rε ε σ=� � . (9.82) 

Relating rates of plastic work in the voided material and matrix, 

 ˆ ˆ ˆ(1 )
3 3 1

Pp Rφ φ φ ε
φ φ

⎛ ⎞
+ = − = −⎜ ⎟⎜ ⎟− −⎝ ⎠

P Pσ : D 1 σ : D
� �

� , (9.83) 

the plastic multiplier in flow rule (9.78) becomes 
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The volumetric part of (9.78) can be obtained from differentiation of 
(9.81), leading to (Marin and McDowell 1996) 
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Finally consider dissipation in the context of the spatial description of 
(9.72)-(9.75).  From (9.18), (9.36), and (9.55),  



9.2 Porous Elastoplasticity      443 

 

. . .
.

1ˆ ( 3 )
3 3 3 3

1ˆ                            ( ) .
1

P E b Pa E a
a b a

E ab P E
ab

W J L J

J D J p

α
α

φ Π σ σ Ψ φ
φ φ

σ Ψ φ
φ

+ = + −
− −

= − +
−

� ��

�
 (9.86) 

The sum in (9.86) represents the combined rate of working from plastic de-
formation from dislocations and volumetric deformation from voids. 

A novel theory for elastic materials containing voids, differing entirely 
from the preceding treatment of Section 9.2.1, was developed by Nunziato 
and Cowin (Nunziato and Cowin 1979; Cowin and Nunziato 1983).  Ac-
cording to their generalized continuum theory, the energy balance is aug-
mented with additional terms not appearing in classical continuum me-
chanics (Chapter 4) or standard nonlinear elasticity (Chapter 5). Their 
internal energy density e is permitted to depend on the material gradient of 
the void volume fraction, e.g., , Aφ , in addition to the porosity itself and the 
usual independent variables of nonlinear elasticity of (5.39).  Furthermore, 
an additional force equilibrium equation incorporating the derivative of the 
strain energy density with respect to , Aφ  was suggested by these authors.  
Apparently, the theory of Nunziato and Cowin does not require specifica-
tion of kinetic equations for temporal evolution of voids or postulation of 
effective elastic coefficients.  Rather, solution of the set of equilibrium 
equations for a given history of boundary conditions provides the void 
fraction distribution over the body for that history.  However, additional 
boundary conditions must be supplied, in addition to the usual traction 
((4.3)-(4.4)) or displacement boundary conditions of traditional continuum 
mechanics, in that theory (Nunziato and Cowin 1979; Cowin and Nunziato 
1983).  

9.2.2 Continuum Damage Mechanics 

Relations (9.57)-(9.66) exhibit certain parallels to isotropic continuum 
damage mechanics (Lemaitre 1985; Krajcinovic 1996).  In isotropic dam-
age mechanics theories, a scalar internal state variable, denoted here by D: 

 ( , )D X tα = , 0 1D≤ ≤ , (9.87) 
is often introduced to depict degradation of material integrity commensu-
rate with micro-cracking or other damage mechanisms.  The dependence 
of effective elastic moduli on micro-cracks has been a focus of numerous 
experimental and theoretical studies (Bristow 1960; Budianski and 
O’Connell 1976; Margolin 1983, 1984; Kachanov 1992; Nemat-Nasser 
and Hori 1999). 
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Omitting thermal effects and other internal state variables besides dam-
age for illustrative purposes, the strain energy density is of the form 

 ( ) ( ), , , ,E RD X D XαΨ Ψ Ψ= +EE g . (9.88) 

A typical simple prescription for the recoverable strain energy density is, 
for a materially linear hyperelastic response in the absence of damage, 
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where second-order elastic constants of the undamaged material and effec-
tive elastic coefficients of the damaged material are, respectively, 
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For an isotropic response, 
 (1 ) ( )D g g g g g gαβχδ αχ βδ αδ χβ αβ χδµ λ⎡ ⎤= − + +⎣ ⎦

�
^ , (9.91) 

with µ  and λ  elastic constants of the undamaged solid.  Similarities with 
the treatment of porous solids in Section 9.2.1 are now apparent: D re-
places φ  in expressions for effective elastic coefficients.  Hence, from 
comparison with (9.64)-(9.66), the effective bulk modulus and Young’s 
modulus degrade linearly with damage, and Poisson’s ratio is unaffected 
by D.  It should be noted, however, that Mackenzie’s formulae (9.68) do 
not apply for cracked solids.  Furthermore, unlike the void volume frac-
tion, D does not explicitly enter the kinematic description, i.e., expressions 
for deformation gradient or velocity gradient do not contain D or its time 
rate of change.  Residual energy density ( , )R D XΨ , often omitted in con-
tinuum damage mechanics theories, can be used to reflect surface energy 
required to extend cracks or create new cracks (Grinfeld and Wright 2004), 
or residual elastic energy that is dissipated in conjunction with crack gen-
eration and growth (Clayton 2008).  It is noted that (9.89)-(9.91) may be 
inappropriate for solids with micro-cracks subjected to generic loading re-
gimes.  For example, the bulk modulus of a cracked solid might not be sig-
nificantly reduced relative to that of its undamaged counterpart during hy-
drostatic compression if the cracks are fully closed.  

A generic kinetic law for the damage rate in the athermal case is 
 ( ), , , 0D D D X α= ≥EE g� � . (9.92) 

The restriction that the time rate of damage be non-negative ensures that 
the material does not heal.  The dissipation associated with the damage rate 
following from (9.88) is 
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In the absence of other dissipative mechanisms, the term in parentheses in 
(9.93) should remain non-negative to ensure thermodynamic admissibility.  
Dissipation potentials (Lemaitre 1985) may be useful for construction of 
thermodynamically consistent rate equations, i.e., (9.92), describing the 
evolution of damage, following the general scheme of Section 4.3. 

Some general remarks regarding continuum damage theories are now in 
order.  Deterioration of material strength resulting from separation or rup-
ture of material—for example attributed to cracking, void coalescence, or 
spall fracture—has been the focus of numerous investigations within the 
context of continuum damage mechanics (Kachanov 1958; Murakami 
1983; Lemaitre 1985; Krajcinovic 1996).  As discussed in Section 9.2.1, 
scalar damage descriptions measuring porosity and reflecting inelastic vol-
ume changes have received a great deal of attention for modeling failure in 
ductile polycrystalline metals (Gurson 1977; Cocks and Ashby 1980, 
1982; Tvergaard 1981; Becker 1987; Bammann and Aifantis 1989; Bam-
mann et al. 1993; Needleman and Tvergaard 1991; Reusch et al. 2003).  
Representations based on effective configurations with reduced material 
strength have also demonstrated utility, including models featuring scalar 
damage variables (Kachanov 1958; Lemaitre 1985; Johnson and Cook 
1985) or vector- or higher-order tensor-based damage variables (Murakami 
1983; Steinmann and Carol 1998; Voyiadjis and Park 1999; Menzel and 
Steinmann 2003; Voyiadjis et al. 2004).  In brittle ceramic polycrystals, 
scalar damage variables are often implemented (Rajendran 1994; Rajen-
dran and Grove 1996; Johnson et al. 2003).  Methods have been forwarded 
to account for anisotropic strain rate accommodation due to distributed mi-
cro-cracking (Espinosa 1995; Espinosa et al. 1998).  Nonlocal or gradient-
based measures have also been proposed for damage evolution in ductile 
polycrystals (Hall and Hayhurst 1991; Tvergaard and Needleman 1997; 
Reusch et al. 2003; Voyiadjis et al. 2004; Abu Al-Rub and Kim 2009) and 
brittle solids (Pijaudiercabot and Bazant 1987; Bazant 1991; Lacy et al. 
1999).  Frameworks accounting for anisotropic strain accommodation due 
to shear localization in metals have been developed (Pecherski 1998; 
Longere et al. 2003).  Ahzi and Schoenfeld (1997) formulated a polycrys-
tal plasticity theory capturing evolution of crystallographic texture in con-
junction with a scalar porosity description.  Zubelewicz (1993) proposed a 
model accounting for anisotropic inelastic deformation resulting from 
grain boundary sliding and migration in creep processes.  Descriptions of 
anisotropic damage incorporating additive (Zhou and Zhai 2000; Clayton 
2006b, 2010a) or hybrid additive-multiplicative (Clayton and McDowell 
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2003b, 2004) decompositions of the total deformation gradient F of an 
element of material containing displacement discontinuities associated 
with pores and cracks have been forwarded. 

Even though micromechanics-based treatments characterizing anisot-
ropic damage have been postulated and implemented with some success 
(Espinosa 1995; Clayton 2006b, 2010a; Ghosh et al. 2007), these models 
still have yet to surpass, in practical or commercial applications, empirical 
scalar-based models that tend to feature fewer material parameters and 
typically require less effort to implement in a numerical setting.  However, 
detailed multiscale models of damage with explicit links between micro-
structural properties—for example grain size distributions, crystallographic 
texture, and grain boundary character—and macroscopic strength degrada-
tion are anticipated to become commonplace in future numerical simula-
tions of structures undergoing yielding and failure, enabling design of ma-
terials for enhanced performance during failure processes (Watanabe 1989; 
McDowell 2001).  Such processes quite often involve high rates of defor-
mation, and include energy absorption in vehicular impact (Bammann et 
al. 1993) or ballistic performance of armor (Schoenfeld and Kad 1998; 
Clayton 2009c) and projectiles (Clayton 2005a, b, 2006a, b; Vogler and 
Clayton 2008).  Considering improvements in computational methods that 
have become available during the past two decades for modeling defects in 
microstructures (Ortiz 1996; Needleman 2000; McDowell 2008), along 
with improvements in experimental capabilities for characterizing material 
behavior at increasingly fine length scales (Espinosa et al. 1998; Hum-
phreys 2001; McDowell 2001), multiscale micromechanics-based ap-
proaches towards modeling plasticity and damage appear increasingly 
promising.   

9.2.3 Volumetric Compaction and Pore Collapse 

Consider situations in which the material contains initial porosity in the 
reference state.  For example, materials of this sort, often of geological 
origin, include sandstone and granite (Sano et al. 1992; Rubin and Lomov 
2003) and urban structural materials such as cement, mortar, and concrete 
(Clayton 2008).  At a microscopic scale of observation, rocks are typically 
composed of a number of minerals of various chemical compositions and 
crystal structures (Goodman 1989).  Many industrial-grade polycrystalline 
ceramics also contain substantial porosity.  Under compressive loading, 
pores or voids within individual crystals or at grain or phase boundaries 
may be compacted, resulting in an increase in mass density of the material.  
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Pore collapse can be an important consideration in ductile metals subjected 
to shock compression (Herrmann 1969).   

Isotropic kinematics of pore compaction, i.e., reduction in size or num-
ber of voids, can be represented by the deformation gradient term 
 1/ 3 1/ 3(1 )CJ −= = +RF 1 1ϑ , 1(1 ) 0CJ ϑ −= + > . (9.94) 
following row five of Table 9.1.  Scalar field ( , )X tϑ  satisfies 

 1( ) / 1CdV dV dV J −= − = −�ϑ . (9.95) 
Thus ( , )X tϑ  represents the reduction in volume fraction of the material 
occupied by pores in configuration B .  Whereas φ  of (9.48) is a positive 
quantity associated with expansion of an element of material from voids, 
ϑ  of (9.94) is positive when changes in defect structure or concentration 
result in contraction of the volume element.  Restricting the present de-
scription to compaction only provides the inequalities  

 0 1CJ< ≤ , 0 ϑ≤ < ∞ . (9.96) 
From (9.94), the deformation rate contribution from pore collapse is  
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An illustrative form of free energy function (9.11) and (9.28) is 
 ( ), , , , ,X αΨ Ψ ϑ α θ= EE g , (9.98) 

where ( , )X tα  accounts for effects of other internal state variables apart 
from pore compaction ϑ , e.g., dislocations and twin boundaries.  Notice 
that RF  need not be included in the list of independent state variables in 
(9.98), since RF  of (9.94) can be written directly in terms of ϑ .  Substitut-
ing from (9.97) and (9.98), dissipation inequality (9.34) and energy bal-
ance (9.45) reduce, respectively, to the following: 
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Since RF  is spherical, 1−= =P P P PL L F F� , with plastic velocity gradient PL  
first introduced in (3.58). 

A more specific form of (9.98), analogous to (9.57), is  
 ( ) ( ), , , , , , , ,E RX Xα αΨ Ψ ϑ θ Ψ ϑ α θ= +EE g g , (9.101) 
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where EΨ  accounts for the thermoelastic response, incorporating coeffi-
cients affected by porosity, and RΨ  accounts for energy associated with 
defects.  In porous materials, the effective second-order elastic moduli  
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may depend on the magnitude of pore compaction.  For example, the ef-
fective bulk modulus is known to increase with increasing ϑ  above some 
threshold pressure in concrete (Clayton 2008), beyond which pores are ir-
reversibly crushed.  Elastic coefficients similarly increase as open cracks 
initially present in hard crystalline rocks such as granite (Brace et al. 1966; 
Goodman 1989) close reversibly as a result of applied compressive stress.  
The rate of energy dissipated from pore collapse can be written 

 .1
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ϑ
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� � , (9.103) 

where 1(3 3 ) trp ϑ −= − + Π  is an effective pressure, positive in compres-
sion.  A generic kinetic law for pore collapse is 

 ( ), , , , , 0X αϑ ϑ ϑ α θ= ≥EE g� � , (9.104) 

with the restriction of non-negativity applicable when pore crushing is ir-
reversible.  Kinetic equations requiring that ϑ�  and p  share the same alge-
braic sign (when both variables are nonzero) will automatically result in 

0pϑ ≥� , a physically realistic requirement since compressive stress is gen-
erally required to enact void closure or pore collapse.  Positive energy dis-
sipated in (9.103) would contribute, via (9.100), to temperature rise in an 
adiabatic event.  This temperature rise could result from local plastic dissi-
pation in the material in the vicinity of crushed pores as well as heat gen-
erated by compression of any fluid (e.g., air) contained within the pores.  
Such temperature increases can be significant in shock compression events 
(Herrmann 1969; Graham 1992).  Specific free energy functions and ki-
netic relations ensuring that the dissipation from pore collapse exceeds the 
rate of free energy increase associated with increasing bulk modulus are 
available for selected crushable solids (Clayton 2008).  Evolution equa-
tions for inelastic volume changes are widely available in the context of 
macroscopic plasticity with pressure-sensitive yield (Lubliner 1990).  Such 
relations are usually formulated in terms of spatial variables and Cauchy 
stress, similarly to (9.72)-(9.86).  Crystalline rocks may also undergo dila-
tancy, defined as volumetric expansion from opening of microcracks in-
duced by frictional sliding of microcrack faces with mismatched asperities 
(Brace et al. 1966).  When such materials also exhibit pore compaction 
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(Goodman 1989), superposition of approaches of Sections 9.2.1 and 9.2.3 
may be in order.  

9.3 Multiscale Description of Residual Elasticity 

Consider the case whereby =R IF F  accounts for residual elastic lattice de-
formation, as discussed in Section 3.2.9 and Chapter 7.  In general, such 
deformation may be attributed to microscopic heterogeneities such as dis-
location networks, sub-grain boundaries, disclinations, or deformation 
twins.  Recall that in contrast to PF , deformation IF  is not lattice-
preserving.  Tangent map IF  is generally anisotropic as opposed to spheri-
cal as was the case for voids or pores in Section 9.2.  As explained in Sec-
tions 7.2.4-7.2.7, the volumetric part ( IJ J≈ ) of the residual lattice de-
formation correlates with dislocations contained in metallic crystals and 
the stored energy of cold working (Toupin and Rivlin 1960; Wright 1982). 

Because ( , )X tIF  is of arbitrary anisotropy in the present context, and 
because the Helmholtz free energy density of the crystal could conceivably 
depend on IF , no immediate simplification of the thermodynamic treat-
ment of (9.1)-(9.47) of Section 9.1 is possible.  A possible free energy 
function satisfying (9.28) is 

 ( ) ( ), , , , , , ,E RX Xα αΨ Ψ θ Ψ α θ= +E IE g F g , (9.105) 

where thermoelastic part EΨ  can be formulated analogously to (6.49): 
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with usual definitions for second- and third-order elastic constants, thermal 
stress coefficients, and specific heat, all referred to configuration B .  Re-
sidual free energy RΨ  depends on temperature, residual lattice deforma-
tion, and internal state variable α .  This internal variable is needed to re-
flect defect-induced changes in the residual Helmholtz free energy not 
represented by IF .   

One interpretation of the deformation map IF  can be obtained follow-
ing multiscale averaging concepts according to (3.137)-(3.148) and row six 
of Table 9.1.  In this interpretation,  
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where V is the reference volume of an element of crystalline material un-
dergoing average macroscopic plastic deformation PF .  Recall that resid-
ual, microscopic elastic and plastic deformation fields within the volume 
element are denoted respectively by Ef  and Pf .  Mapping IF  in (9.107) 
thus represents a volume average of the microscopic residual elastic de-
formation Ef , respectively weighted and normalized by local and average 
measures of the plastic deformation Pf  and PF .  Finite element calcula-
tions, with crystal plasticity theory used to determine the evolution of local 
fields Ef  and Pf  within polycrystalline volumes subjected to macroscopic 
deformation F, have demonstrated a positive correlation between a scalar 
invariant of the stretch associated with IF  and RΨ  (Clayton and McDow-
ell 2003a, 2004; Clayton et al. 2004b).   

Although more general forms may be appropriate, for illustrative pur-
poses let the residual energy be further decomposed as  

 ( ) 2
1 ,R R I I

TJ bΨ Ψ ε Λµ ρ= + , (9.108) 

where the term 2 2
TbΛµα Λµ ρ=  accounts for the line energy of the scalar 

density of dislocations as in (6.118) or (9.70).  From (9.107), the Jacobian 
determinant representing residual elastic volume changes is 
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is a measure of the magnitude of macroscopic strain induced by IF  and re-
ferred to configuration B .  As shown in Figure 9.2, a linear dependence of 

1
RΨ  on the product 1I IJ ε−  has been observed in finite element simulations 

(Clayton and McDowell 2003a) of volume elements of polycrystalline 
copper, first deformed to large logarithmic total strains on the order of 
unity, and then externally relaxed to a macroscopically unloaded configu-
ration B .  In some simulations, initial grain orientations were assigned 
randomly, while in others, grain orientations were constrained such that 
initial misorientations remained less than 15°, the latter following the usual 
definition of a low-angle grain boundary (Brandon 1966).  Notice that Iε  
and 1

RΨ  both attain larger values in polycrystals with random as opposed 
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to low-angle grain boundaries.  This phenomenon occurs because larger 
misorientations correlate with larger residual stress and strain fields in the 
vicinity of grain boundaries and triple points in the randomly oriented 
polycrystals.  Notice also that 1

RΨ , in this context, only accounts for a 
fraction of the total energy associated with cold work.  The remaining 
stored energy is captured in (9.108) by the term 2

TbΛµ ρ  that is generally 
nonzero even when ( 0)t > ≈IF 1 .  The energy 1

RΨ , on the other hand, can 
be associated with residual stresses and heterogeneous elastic strain fields 
in the vicinity of grain and subgrain boundaries.  While more extensive 
studies are needed for various classes of materials and various loading re-
gimes, the results in Fig. 9.2 suggest 

 1
1
R I

I

A
J

Ψ ε≈ , (9.111) 

where 1A  is a constant with dimensions of energy per unit volume.   
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Fig. 9.2 Results from crystal plasticity simulations of uniaxial tensile and com-
pressive deformations of polycrystalline copper (Clayton and McDowell 2003a).  
A scalar measure of the magnitude of residual lattice strain is Iε , and stored en-
ergy per unit intermediate volume associated with residual lattice strain is 1

RΨ . 

9.4 Inelasticity with Dislocations and Disclinations 

A description of thermomechanics of crystalline solids containing disloca-
tion and disclination defects is presented in Section 9.4, refining and ex-
tending several previous frameworks of micropolar elastoplasticity of crys-
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tals (Clayton et al. 2004b, 2006, 2008a).  The model presented here, like 
grade two elasticity and elastoplasticity theories of Sections 5.7 and 6.7, is 
an example of a generalized continuum theory, though some notable dif-
ferences appear between the theory of Section 9.4 and those of Sections 
5.7 and 6.7.  Relevant background information is provided in Section 9.4.1 
to lend context to the theory developed subsequently in Sections 9.4.2-
9.4.7.  Section 9.4.8 describes reduction of the general theory to cases 
wherein disclinations and micropolar rotations vanish by definition, leav-
ing only dislocations as the defects of formal consideration in the theory.  

9.4.1 Background  

Theories describing behavior of what are referred to in this text as general-
ized continua differ from classical continua in one or more of the follow-
ing ways: generalized continua may contain additional degrees of freedom 
beyond the usual motion ( , )a ax x X t=  of (2.1); may support additional 
mechanical stresses beyond the usual symmetric Cauchy stress tensor abσ  
(or its counterparts in Table 4.1); may exhibit deviations from the usual 
balances of momentum and energy presented in Sections 4.1.3 and 4.1.4; 
and/or may contain dependencies of constitutive response functions (e.g., 
thermodynamic potentials) and/or kinetic relations upon higher-order de-
formation gradients or nonlocal measures of field variables.  In particular, 
in generalized continua the stress tensor may be non-symmetric, the mate-
rial may support higher-order stresses such as couple stresses (Cosserat 
and Cosserat 1909; Toupin 1962), and in such cases the usual balance laws 
of mechanics and thermodynamics, i.e., those of Chapter 4, may not apply 
in full.   

Perhaps the most well known, and one of the earliest, generalized con-
tinuum theories is the oriented director theory of the Cosserats (Cosserat 
and Cosserat 1909).  Generalized continuum theories witnessed a resur-
gence in popularity in the mid-20th century (Ericksen and Truesdell 1958; 
Gunther 1958; Kroner 1960, 1963b; Toupin 1962, 1964; Green and Rivlin 
1964b; Mindlin 1964; Truesdell and Noll 1965; Fox 1966, 1968; Teodosiu 
1967a, b; Eringen and Claus 1970; Eringen 1972) and again in the 1990s 
and early 2000s (Fleck and Hutchinson 1993; Naghdi and Srinivasa 1993; 
Fleck et al. 1994; Le and Stumpf 1996b, c, 1998; Steinmann 1996; Shi-
zawa and Zbib 1999; Gurtin 2000, 2002; Acharya 2001; Bammann 2001).  
Additional degrees of freedom associated with rotation and possibly 
stretch of a set of director vectors attached to each material point X are of-
ten introduced to describe effects of finer-scale microstructure on the ma-
terial’s response, for example effects of crystal structure and long-range 
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atomic interactions or effects of lattice curvature associated with disloca-
tions (Nye 1953; Ashby 1970).  Mindlin (1968a, 1972) discussed relation-
ships between discrete interatomic forces and hyperstresses in the context 
of lattice dynamics in the geometrically linear regime.  In many cases, a 
description of so-called length scale effects absent in classical continuum 
mechanics is afforded, for example effects of specimen size on the mate-
rial’s strength and ductility. 

In contrast to the governing equations of classical continua (i.e., tradi-
tional continuum mechanics) listed in Chapter 4 that are almost uniformly 
accepted in the mechanics community, no standardized framework for 
generalized continua exists.  Discrepancies emerge among various theories 
with regards to the presence of higher-order stresses, symmetry or lack 
thereof of the Cauchy stress tensor, and the role of higher-order stresses in 
the balance of energy and in the entropy inequality.  Some theories pro-
pose additional degrees of freedom that are work conjugate to higher-order 
stresses (Eringen and Claus 1970; Eringen 1972), while others do not and 
instead impose work conjugate higher-order deformation gradients to 
higher-order stresses (i.e., hyperstresses).  The latter case applies in sec-
ond-grade treatments of hyperelasticity (Toupin 1964; Teodosiu 1967a), as 
discussed in Sections 5.7 and 6.7 of the present text.  In some theories 
(Gurtin 2000, 2002), inelastic deformation rates are work conjugate to 
traction measures distinct from those associated with Cauchy’s theorem of 
(4.3).  Generalized theories can become quite complex for addressing 
geometrically nonlinear elastic and inelastic regimes, wherein balance 
equations and stress measures can be introduced in various configurations 
of the deforming body and/or at multiple length scales (Le and Stumpf 
1996b, c; Steinmann 1996; Bammann 2001; Regueiro et al. 2002; Clayton 
et al. 2006; Epstein and Elzanowski 2007; Regueiro 2009, 2010).  

A number of single and polycrystal plasticity models have been devel-
oped that incorporate higher than first-order deformation gradients—for 
example strain gradients, lattice curvature measures, and other gradient-
based dislocation density measures—in the material response functions.  
Early models of this sort were developed some 40 years ago (Fox 1966, 
1968; Berdichevski and Sedov 1967; Teodosiu 1967a, 1970; Lardner 
1969; Dillon and Kratochvil 1970, Dillon and Perzyna 1972).  The pres-
ence of higher-order gradients in the response functions renders these 
classes of models nonlocal, as discussed in Section 4.2.1 (see e.g., (4.52)-
(4.56)).   

Higher-order deformation gradients have been included in plasticity 
theories for a number of reasons.  Their inclusion permits resolution of 
numerical difficulties (e.g., mesh dependent solutions) associated with 
boundary value problems of strain softening materials in which strain lo-
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calization occurs (Zbib and Aifantis 1992; Menzel and Steinmann 2000; 
Voyiadjis et al. 2004).  Gradient-based approaches have been used to 
model dislocation dynamics and pattern formation (Holt 1970; Bammann 
and Aifantis 1982; Aifantis 1987) and to describe single and periodically 
distributed shear bands in single crystals (Gurtin 2000) and polycrystals 
(Aifantis 1987).  Other applications of nonlocal theories include charac-
terization of stress and strain fields, without singularities in field variables, 
at dislocation cores and crack tips (Eringen 1984; Aifantis 1999) and mod-
eling evolution of the plastic spin in finite deformation plasticity (Shizawa 
and Zbib 1999).  More recently, generalized crystal mechanics theories in-
corporating higher-order strain gradients and/or higher-order stresses have 
become popular for describing size effects on hardness in metals (Fleck 
and Hutchinson 1993; Fleck et al. 1994; Gao et al. 1999; Abu Al-Rub and 
Voyiadjis 2006).  Such theories have also been used to supplement de-
scriptions of physics of lattice defect populations, for example via internal 
force balances (Eringen and Claus 1970; Gurtin 2000; Bammann 2001). 

A fundamental physical motivation for use of gradient plasticity theories 
has been representation of the observed trend of increasing strength with 
decreasing size of considered volume or microstructural features.  Often 
quoted is the Hall-Petch relation, in which mechanical strength properties 
such as yield stress or cleavage strength increase with decreasing grain size 
in polycrystals, specifically an inverse square-root dependence (Hall 1951; 
Petch 1953), a phenomenon that classical local plasticity theory, being de-
void of a material length scale, is unable to capture.  Couple stress theories 
(Cosserat and Cosserat 1909) have been used to characterize Hall-Petch 
behavior in bicrystals (Shu and Fleck 1999) and in polycrystals (Forest et 
al. 2000).  Fleck et al. (1994) employed a couple stress model of strain 
gradient plasticity to describe an increase in flow stress with decreasing di-
ameter of twisted thin copper wires.  Shu and Fleck (1998) and Hwang et 
al. (2002) used variations of strain gradient-couple stress theory to capture 
an observed increase in hardness with decreasing indentor size in pure 
metals.  

Composite models wherein walled cellular dislocation structures, repre-
sented by hard and soft regions of relatively high and low defect densities, 
respectively, have been posited to explain effects of evolving populations 
of dislocation substructures on flow stress in ductile metallic crystals 
(Mughrabi 1983; Berveiller et al. 1993; Zaiser 1998).  Composite models 
featuring grain boundary layers of relatively high dislocation density have 
been used to explain grain size influences on yielding (Meyers and 
Ashworth 1982; Benson et al. 2001).  Models have been developed that 
embed grain subdivision and related dislocation substructure effects into 
the kinematics of crystal plasticity theory (Leffers 1994; Butler and 



9.4 Inelasticity with Dislocations and Disclinations      455 

McDowell 1998) and the hardening and intergranular interaction laws of 
polycrystal plasticity (Horstemeyer and McDowell 1998; Horstemeyer et 
al. 1999).  Composite models have also been applied to describe the break-
down of the Hall-Petch effect in nanocrystals (Capolungo et al. 2005).  
Zubelewicz et al. (2005) developed a nonlocal incompatibility-based the-
ory to address dislocation pattern formation in metals deformed at extreme 
loading rates that occur in shock physics experiments. 

In what follows in the remainder of Section 9.4, the disclination concept 
is used to describe rotational defects in crystals, as introduced already from 
a purely kinematic perspective in Section 3.3.3.  The theory described in 
Section 9.4 may naturally be used to describe ductile metallic crystals that 
exhibit heterogeneous dislocation accumulation and grain subdivision, for 
example when subjected to severe plastic deformation (Stout and Rollett 
1990; Butler and McDowell 1994; Pantleon 1996; Hughes et al. 1997, 
1998; Valiev et al. 2002; Clayton et al. 2006).  Other, perhaps more gen-
eral, applications in which residual lattice deformation mechanisms 
emerge at multiple length scales are also conceivable.  For example, as-
pects of the theory have been applied towards dielectric crystals containing 
dislocations, point defects, and micro-rotations associated with polarized 
subdomains (Clayton et al. 2008a). 

9.4.2 Kinematics 

The kinematic description follows from a combination of assumptions in-
troduced in Sections 3.2.9, 3.3.3, and 9.1.1.  The deformation gradient is 
decomposed multiplicatively into three terms according to (9.1): 

 = E I PF F F F , . . . .
a E a I P
A BF F F Fα β

α β= , (9.112) 

with =R IF F .  Consistent with (9.2), and Fig. 9.1, the following notation 
applies: 

 =L E IF F F , = I PF F F . (9.113) 
Decomposition (9.112) implies the existence of two generally an-
holonomic intermediate configurations, labeled B�  and B .  Deformation 
gradients act as global tangent mappings according to the following 
scheme: :TB TB→EF , :TB TB→IF � , 0:TB TB→PF � , :TB TB→LF � , 
and 0:TB TB→F .  Recall that =E E EF V R  accounts for reversible elastic 
strain ( EV ) resulting from mechanical loading of the lattice, as well as 
rigid body rotation ( ER ).  Plastic tangent map PF  accounts for irreversible 
but lattice-preserving inelastic deformation.  When the lattice-preserving 
deformation is associated with glide of mobile dislocations, it is considered 
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isochoric.  However, the mathematical treatment that follows does not im-
pose 1PJ =  until single crystal plasticity kinematics are formally adopted 
in Section 9.4.7.  The remaining term in (9.112), IF , accounts for residual 
or mechanically irreversible deformations that are not lattice-preserving.  
Here ( , )X tIF  manifests from defects such as dislocations and disclina-
tions embedded within the local volume element at X of a crystalline mate-
rial under consideration, as discussed in Section 3.2.9 and Chapter 7.  Spe-
cifically, IF  accounts for residual elastic volume and shape changes 
associated with residual strain energies of defects (Section 7.2) in addition 
to effects of defect cores.  When temperature changes result in lattice ex-
pansion or contraction, the thermoelastic part of the deformation gradient, 

EF , also accounts for these effects following traditional thermoelasticity of 
Sections 5.1-5.4; no additional term accounting for purely thermal defor-
mation is introduced into decomposition (9.112), in contrast to the theory 
of Section 5.5. 

Accompanying (9.112) and (9.113) is a microscopic description of spa-
tial gradients of a field of lattice director vectors, following relations 
(3.166)-(3.168) and (3.243)-(3.269).  Connection coefficients defining co-
variant derivatives of the lattice directors are 
                  .. 1 .. 1 1 ..

. . , . , . .
ˆ a La L a La L L a

cb b c cb c b cbF F Q F F F Qα β α
α α βΓ − − −= + = − + , (9.114) 

where .. ( , )a
cbQ x t  represents generalized degrees of freedom satisfying anti-

symmetry constraints (3.243): 
 [ ]

..d L
cba cb da cab c baQ Q C Q Q= = − = , (9.115) 

with 1 1L L L
da .d .aC F g Fα β

αβ
− −= � .  Thus, Q consists of nine independent compo-

nents.  Spatial defect density tensors constructed from connection coeffi-
cients (9.114) are, as in (3.253), 

 af fbc ..a
cbT̂α ε= , 4 gf gde fbc

cbdeR̂θ ε ε= , (9.116) 
where the rank three torsion tensor T̂  and rank four curvature tensor R̂  
are computed from the connection coefficients via (3.249) and (3.250), re-
spectively.  As discussed in Section 3.3.3, the quantity x xT B T B∈ ×α  
represents the geometrically necessary dislocation density of a material 
element with spatial position x, and the quantity x xT B T B∈ ×θ  represents 
the geometrically necessary disclination density of that material element at 
x.   

Paralleling the analysis of generic three-term multiplicative inelasticity 
in Section 9.1, the thermodynamic analysis that follows in Section 9.4 is 
conducted prominently in unloaded configuration B , which serves here as 
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the evolving reference state for the instantaneous thermoelastic response of 
the crystal.  Pre-multiplying (3.257) and (3.258) by 1IJ − IF  and post-
multiplying (3.257) and (3.258) by TIF  gives the defect density tensors of 
(9.116) mapped to configuration B : 

           1 1 1I I I E E ab E
. . .a .bα J F F J F Fαβ α χδ β α β
χ δα α− − −= =� ,     (9.117) 

 1 1 1I I I E E ab E
. . .a .bJ F F J F Fαβ α χδ β α β
χ δθ θ θ− − −= =� . (9.118) 

Notice that defect density tensors α  and θ  remain invariant under rigid 
body rotations of the form ˆ→E EF QF  considered in (9.10). 

9.4.3 Constitutive Assumptions 

Definitions and relationships introduced in (9.4)-(9.9) apply.  Objective 
forms of constitutive assumptions (9.11)-(9.15) are extended as follows: 

 ( ), , , , , , , , ,Xρ η αΨ Ψ θ θ ε ε= ∇E IE F α θ g , (9.119) 

 ( ), , , , , , , , ,N N Xρ η αθ θ ε ε= ∇E IE F α θ g , (9.120) 

 ( ), , , , , , , , ,Xρ η αθ θ ε ε= ∇E IΣ Σ E F α θ g , (9.121) 

 ( ), , , , , , , , ,Xρ η αθ θ ε ε= ∇E Iq q E F α θ g , (9.122) 

 ( ), , , , , , , , ,Xρ η αθ θ ε ε= ∇I I E IF F E F α θ g� � , (9.123) 

 ( ), , , , , , , , ,Xρ ρ ρ η αε ε θ θ ε ε= ∇E IE F α θ g� � , (9.124) 

 ( ), , , , , , , , ,Xη η ρ η αε ε θ θ ε ε= ∇E IE F α θ g� � . (9.125) 

Covariant elastic strain tensor EEαβ  of (9.6) is included in the list of inde-
pendent variables in (9.119)-(9.125) to account for changes of elastic strain 
energy density with changes in external loads as well as thermoelastic 
coupling.  Deformation measure I

.F α
β  is incorporated to reflect contribu-

tions to response functions from residual microelasticity within a volume 
element at centroidal position X as explained in Section 9.3 and demon-
strated in Fig. 9.2, and may be non-negligible when deformation within the 
volume element is heterogeneous (Clayton and McDowell 2003a).  Abso-
lute temperature θ  and anholonomic temperature gradient θ∇  are in-
cluded in the list of independent variables following arguments akin to 
those for (6.9)-(6.13).  An evolution equation for IF , whose rate may con-
tribute to both energy storage and to dissipation according to inequality 
(9.34), is explicitly listed in (9.123).  Not shown is the kinetic equation for 



458      9 Generalized Inelasticity 

the purely dissipative time rate of PF , a kinetic equation that is not for-
mally restricted to the functional dependencies of the other response func-
tions in (9.119)-(9.125). 

In lieu of the generic approach outlined in Section 9.1, internal state 
variables are defined explicitly in Section 9.4.  These internal state vari-
ables consist of the defect density tensors ( , )X tα  and ( , )X tθ  of (9.117) 
and (9.118) and scalar defect measures ( , )X tρε  and ( , )X tηε  that are de-
fined as 

 Sbρε ρ= , Srηε ω η= . (9.126) 
Subscripts on scalars in (9.126) do not denote covariant vector indices and 
hence are not subject to the summation convention.  A constant scalar 
magnitude of the typical Burgers vector is b , as in (9.70).  The statisti-
cally stored dislocation density, in terms of line length per unit volume in 
configuration B , is defined by 

 1I
S SJρ ρ−= � , (9.127) 

where Sρ�  is defined in (3.240).  Similarly to the treatment of Section 3.2.5 
and (3.104), r  denotes a typical (constant) disclination radius, and ω  de-
notes the constant magnitude of a typical Frank vector.  The statistically 
stored disclination density, measured in terms of line length per unit vol-
ume in configuration B , is defined by 

 1I
S SJη η−= � , (9.128) 

with Sη�  defined in (3.266). 
Residual elastic energies attributed to lattice curvatures in the volume 

element induced by geometrically necessary dislocations and disclinations 
are reflected, respectively, by inclusion of α  and θ  in the thermodynamic 
potentials.  As a point of clarification, recall that the total dislocation den-
sity tensor i

Tα� , whose glissile constituents contribute to the plastic velocity 
gradient, was introduced in (3.105).  The net or geometrically necessary 
dislocation density tensor α  (or its elastic pull-back α ) differs from the 
total dislocation density, and may include both glissile and sessile disloca-
tions, as noted in (3.235)-(3.237).  Notice that when 0=Q  (implying no 
associated Riemann-Christoffel curvature tensor according to (3.250) and 
hence no geometrically necessary disclinations) and when =IF 1 , identity 

1 1 1E abc E E P ABC P P
.b,c .a .B ,C .Aα J F F J F Fαβ α β α βε ε− − −= =  from (3.225) holds, mean-

ing that (9.119) is consistent with constitutive assumptions made in previ-
ous gradient-based dislocation theories from the plasticity literature (Teo-
dosiu 1970; Steinmann 1996; Regueiro et al. 2002).  From (9.116) and 
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supporting developments in Section 3.3.3, state variables α  and θ  are 
constructed, respectively and in part, from spatial gradients of the inverse 
of the lattice deformation LF  and spatial gradients of Q.  Hence, the geo-
metrically necessary defect density tensors can be regarded as internal 
variables of the higher-order gradient type or the nonlocal type, following 
philosophical arguments of (4.52)-(4.56) in Section 4.2.1. 

Since, as mentioned already in Sections 3.3.2 and 3.3.3, the second-
order tensors α  and θ  entering (9.119)-(9.125) do not include a measure 
of the total length of all dislocation and disclination lines within a given 
volume element—examples of such excluded defects include statistically 
stored defects consisting of closed loops and full dipoles—non-
dimensional scalars ρε  and ηε  are incorporated in the list of independent 
state variables.  These two internal state variables account, respectively, 
for contributions of elastic self-energy of the statistically stored disloca-
tions of line density Sρ  and statistically stored disclinations of line density 

Sη  to the Helmholtz free energy and other response functions.  One may 
regard ρε  and ηε  as microscopic residual lattice strain measures associ-
ated with these defects (Bammann 2001).   

Heterogeneity of lattice deformation, reflected in (9.119) by the ener-
getic dependence on IF , α , and θ , is not essential to engender substantial 
energy storage associated with defects, since ρε  and ηε  can account for a 
large fraction of the observed stored energy of cold working under condi-
tions of homogeneous plastic flow and the increase in its magnitude with 
the accumulation of plastic deformation pF .  Rather, these tensor state 
variables tend to reflect length scale effects, particularly the latter two (α  
and θ ).  Additionally, IF  in (9.119)-(9.125) may be used to account for 
higher-order moments of distributions of lattice defects within the volume 
element that lead to internal heterogeneity (Kroner 1963b, 1973).  Such 
higher-order moments may reflect dislocation pile-ups that are not ac-
counted for by geometrically necessary and statistically stored defect den-
sities that by definition are first-order averages of defect fields (i.e., 
weighted sums of outer products of tangent lines and Burgers or Frank 
vectors, normalized per unit volume) over the volume element, as indi-
cated in (3.255).  The presence of IF , α , and θ  in the free energy func-
tion allows for contribution of surface or interfacial energy of grain 
boundaries, for example, in manifesting certain length scale (surface area 
to bulk volume) effects on flow stress, provided the dislocation-
disclination content of such boundaries is described by these kinematics-
based state variables.  Such effects are thought important for describing 
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microstructures in nanocrystalline materials (Konstantinidis and Aifantis 
1998), for example those undergoing grain size refinement in conjunction 
with severe plastic deformation (Valiev et al. 2002). 

9.4.4 Thermodynamics 

Traditional conservation laws of mass, momentum, and energy of Chapter 
4 apply, to be augmented later in Section 9.4.5 with additional equilibrium 
equations for internal forces thermodynamically conjugate to defect den-
sity tensors.  The treatment of Section 9.1 applies, with the substitutions 

→R IF F  following from (9.112) and the set of internal state variables 
{ , , , }ρ ηα ε ε→ α θ  following from (9.119)-(9.125).  The key results of 

these substitutions are now listed. 
The following constitutive relations are deduced as in (9.27): 

 Ψ∂
=
∂ EΣ
E

, N Ψ
θ

∂
= −

∂
, 0

( )
Ψ
θ

∂
=

∂ ∇
, (9.129) 

and since the temperature gradient does not explicitly affect the free en-
ergy, 

 

( )
( )
( )

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , .

X

N N X

X

ρ η α

ρ η α

ρ η α

Ψ Ψ ε ε θ

ε ε θ

ε ε θ

=

=

=

E I

E I

E I

E F α θ g

E F α θ g

Σ Σ E F α θ g

 (9.130) 

Heat conduction is assumed to obey (9.32).  The local form of the dissipa-
tion inequality, (9.34), is 

. .
. . .

.

, ,
1 0,

P I I
IL F L

F

K

β α β β α
α β α δ βα

δ

αβ αβ αβ
ρ η α βαβ αβ

ρ η

ΨΠ Π

Ψ Ψ Ψ Ψα θ ε ε θ θ
α θ ε ε θ

⎛ ⎞∂
+ −⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂
− + + + + ≥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

�� � �
 (9.131) 

with 
 1

. . .
I I IL F Fα α δ
β δ β

−= � . (9.132) 
The local energy balance expressed as a temperature rate, (9.45), becomes 
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− +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.133) 

Contributions to the temperature rate from geometrically necessary and 
statistically stored defect densities are enclosed in square braces in (9.133).  
Terms within the final set of parentheses in (9.133) account for tempera-
ture changes associated with the contribution of residual elastic deforma-
tion .

IF α
β  to the deformation gradient and to the Helmholtz free energy 

density. 

9.4.5 Macroscopic and Microscopic Momentum Balances 

The general philosophy adopted in Section 9.4 is prescription of balance 
laws for the following thermodynamic forces: Σ , the macroscopic elastic 
stress supported by a volume element at X, conjugate to the macroscopic 
elastic strain; σ , a microscopic force conjugate to the density of geometri-
cally necessary dislocations within that volume element; and µ , a micro-
scopic force conjugate to the density of geometrically necessary disclina-
tions within that volume element: 

 1 1
. .

E E ab E
a bE J F F

E
αβ α β

αβ

ΨΣ σ− −∂
= =
∂

, αβ αβ

Ψσ
α
∂

=
∂

, αβ αβ

Ψµ
θ
∂

=
∂

. (9.134) 

Additional evolution equations, i.e., kinetic laws, are required to specify 
the time histories of dissipative kinematic variables IF  and PF  and scalar 
internal state variables ρε  and ηε , as described in Section 9.4.7. 

Cauchy stress ( , )x tσ  obeys standard linear and angular momentum bal-
ances and reflects average traction t carried by an oriented surface of a 
volume element in the current configuration by (4.3), (4.17), and (4.26).  
These laws can be expressed in terms of elastic second Piola-Kirchhoff 
stress ( , )X tΣ  as follows: 

 1
. . ;( )E E a Eb a a

bJ F F b aαβ
α βΣ ρ− + = , (9.135) 
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 1 1
. . . .

E E a Eb E Eb EaJ F F J F Fαβ αβ αβ βα
α β α βΣ Σ Σ Σ− −= ⇔ = , (9.136) 

 1
. .

a E E a Eb
bt J F F nαβ

α βΣ−= . (9.137) 

Recall from (4.17) that ab , ρ , and aa  are components of the vector body 
force density per unit spatial volume, the scalar current mass density, and 
components of the spatial acceleration vector, respectively. 

Microforces ( , )X tσ  and ( , )X tµ  reflect higher-order moments of the 
microscopic traction distribution supported by the volume element (Kroner 
1963b) and by definition do not explicitly enter macroscopic momentum 
balances (9.135) and (9.136).  Instead, contravariant mixed-configurational 
versions of these forces, 

           1 1 1 1
. . . .( )b E I Eb E I EbJ F g g F J F Fα α εχ δβ α εβ
ε χδ β ε βσ σ σ− − − −= =� , (9.138) 

           1 1 1 1
. . . .( )b E I Eb E I EbJ F g g F J F Fα α εχ δβ α εβ
ε χδ β ε βµ µ µ− − − −= =� , (9.139) 

satisfy coupled microscopic momentum balances independent from (4.17) 
and (4.26), as will be presented shortly in (9.142).  Indices of tensor ob-
jects defined in (9.138) and (9.139) are referred to the product of tangent 
bundles TB TB×� .  These microscopic balances are intended to apply over 
sub-volumes within the considered volume element of size pertinent to the 
macroscopic momentum balance relations in (9.135) and (9.136).  At these 
finer (sub-volume) scales, heterogeneous features such as grain bounda-
ries, domain walls, second phases, sub-grains, or dislocation substructures 
are expected to engender spatial gradients of average defect density meas-
ures α  and θ .  Higher-order stresses in (9.138) and (9.139) can be associ-
ated with residual elastic stress field distributions induced by their work 
conjugate defect density measures.  

The present theory falls into the category of generalized continua.  No-
tice that σ�  is a first-order moment stress (i.e., hyperstress or couple stress) 
with dimensions of force per length or energy per area in physical compo-
nents, since α  is of dimensions of inverse length.  Quantity µ�  is a second-
order moment stress with dimensions of force or energy per length, since 
θ  is of dimensions of inverse length squared.  Static equilibrium of the 
first-order moment stress implies the following global force conservation 
law and traction boundary conditions for σ� :  

 
0,

( , ) ,

b
b

s s
b

b

t ds n ds

t x t n

α α

α α

σ

σ

= =

=

∫ ∫� �

� �
 (9.140) 

where ( , )x tt�  is a first-order hypertraction vector acting on spatial surface 
s with outward unit normal n.  The first of (9.140) is analogous to (4.15) 
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when body forces and inertial forces vanish; the second is analogous to 
Cauchy’s theorem (4.4).  Prescribing a global angular momentum balance 
in the absence of microscopic body forces or microscopic inertial forces, 
similarly that of the couple stress theory outlined by Malvern (1969), 

                
.

.

( ) ( ) 0,

( , ) ,

b b
b b

s s

b
b

x t h ds x n n ds

h x t n

β χ β χ
αβχ α αβχ α

α α

ε ε σ µ

µ

+ = + =

=

∫ ∫��� � � �

� �
 (9.141) 

where ( , )x th�  is a second-order hypertraction vector acting on spatial sur-
face s, .b bg β

α αβµ µ= � � , and 1−= Lx F x�  are spatial coordinates pulled back to 

configuration B�  under the Cauchy-Born approximation of Section 3.1.2.  
Local forms of balance laws in (9.140) and (9.141) then follow directly 
from the divergence theorem:  

 : 0b
b
ασ =� , (9.142) 

 1 .
. : 0b L b
b bFχ β

αχβ αε σ µ− − =� � , (9.143) 

since by (9.142) and the definition 1
: .

L
a ax Fα α−=� , 

          1 1
: . : .( )b b L b b L
b b b bx F x Fβ χ χ β χ β χ β

αβχ αβχ αβχ αβχε σ ε σ ε σ ε σ− −= + =� � � � � � . (9.144) 
A subscripted colon denotes a total covariant derivative of a two-point ten-
sor, similar to (4.20) and (6.217): 

           .. .. 1
: .., .

g
b b b c b L

b b bc bFα α α α χ β
βχσ σ Γ σ Γ σ −= + + �� � � � , (9.145) 

 . . .. . .. . 1
: , .

g
b b b c b L

b b bc bFχ β
α α α βα χµ µ Γ µ Γ µ −= + − �� � � � , (9.146) 

where .. ..
,(ln )

g g
b b

bc cb bgΓ Γ= =  by an identity analogous to (2.73), and ..α
βχΓ�  

are Christoffel symbols of the extrinsic coordinate system in configuration 
B� , as discussed in Sections 3.2.2 and 3.2.3, typically assumed to vanish.  
Viewing (9.142) and (9.143) as spatial balances, only one partial (spatial) 
derivative is included in each total covariant derivative defined in (9.145) 
and (9.146), as in (2.116) and (4.20).  Notice that second-order hyperstress 

bαµ�  does not enter the first micro-force balance (9.142). 
The local forms of microscopic force balances in (9.142) and (9.143) are 

similar to equilibrium equations of second grade elasticity of Section 5.7 
and second grade elastoplasticity of Section 6.7.  When body forces ab  
vanish, microscopic momentum balance (9.142) is analogous to static lin-
ear momentum balance (5.433) in elasticity of grade two, and is also 
analogous to static linear momentum balance (6.245) of elastoplasticity of 
grade two.  Microscopic angular momentum balance (9.143) is similar to 
angular momentum balance (5.441) of grade two elasticity and to (6.253) 
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of grade two elastoplasticity.  Angular momentum balance (9.143) is also 
similar to that encountered in couple stress theories (Cosserat and Cosserat 
1909; Toupin 1962; Malvern 1969).  Relations (9.142)-(9.143) are analo-
gous to micropolar equilibrium equations suggested in disclination theories 
of Minagawa (1979, 1981) and Eringen and Claus (1970).  It is empha-
sized, however, that in the present theory, microscopic equilibrium equa-
tions coexist independently from macroscopic momentum balances (9.135) 
and (9.136), in contrast to grade two elasticity (Section 5.7 and Toupin 
(1964)), grade two elastoplasticity (Section 6.7 and Teodosiu (1967a)), and 
many kinds of couple stress theories (Cosserat and Cosserat 1909; Toupin 
1962; Malvern 1969), wherein the latter, a couple stress or hyperstress en-
ters the macroscopic angular momentum balance and the macroscopic 
Cauchy stress may be non-symmetric.  A set of decoupled macroscopic 
and microscopic balance equations was suggested by Bammann (2001), 
similar to that developed in the present Section.   

Boundary conditions on external surface s of the body are specified as 
follows.  Let the boundary surface be partitioned as 1 2s s s= ∪  and 

1 2s s∩ =∅ , where 1s  is that part of the boundary over which stresses are 
prescribed, and 2s  is that part of the boundary over which kinematic vari-
ables are prescribed: 
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Though more general boundary conditions are conceivable, particularly 
physically relevant sets of conditions correspond to null applied external 
forces, as would arise in a self-equilibrated body, and null applied defor-
mations, as would occur for a full clamped, i.e., rigid, boundary: 
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9.4.6 Representative Free Energy  

A more descriptive form of the free energy per unit intermediate volume in 
(9.119) and (9.130) is considered for illustrative purposes.  The following 
additive decomposition is suggested: 
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where EΨ  accounts for the thermoelastic response and RΨ  accounts for 
energy associated with defects in the absence of external mechanical load-
ing.  Because each term on the right of (9.149) depends on same list of ar-
guments, specific forms of EΨ  and RΨ  are required in order to provide an 
improved description over the first of (9.130), for example.  Such specific 
forms are developed below. 

Energy density EΨ  is expanded in a series about a reference state at 
which the following conditions hold: 0=EE , 0 0θ θ θ∆ = − = .  The ther-
moelastic part of the free energy is written similarly to (6.49): 

   

0

1 1
2 6

        ln .

E E E E E E

E

E E E E E

E C

αβχδ αβχδεφ
αβ χδ αβ χδ εφ

αβ
αβ

Ψ

θβ θ θ
θ

= +

− ∆ −

� �
^ ^

� �  (9.150) 

Second-order isothermal elastic coefficients, third-order isothermal elastic 
coefficients, thermal stress coefficients, and specific heat at constant elas-
tic strain, all referred to configuration B , are defined as follows: 
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Notice that material coefficients entering (9.150) are permitted to de-
pend on residual lattice deformation and defect densities, as well as on lo-
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cation X and orientation of the element of crystalline solid, via ( )Xαg .  
Dependence of material coefficients on defect densities was omitted in 
Chapters 6 and 8; the present description permits changes in elastic coeffi-
cients and specific heat that may appear in highly defective crystals with 
very large defect densities, wherein IF  could differ substantially from the 
unit tensor and whereby I PJ J J=  could differ substantially from unity.  
For example, changes in elastic modulus with dislocation line density have 
been observed for metallic crystals, both experimentally (Smith 1953; 
Simmons and Balluffi 1963; Lebedev 1996) and from atomistic models 
(Clayton and Chung 2006).  Bell (1968) describes experimental evidence 
of variations in elastic coefficients of metallic crystals subjected to finite 
inelastic deformation.  Dependence of elastic coefficients on residual stress 
is discussed by Johnson and Hoger (1993).  As noted by Kocks et al. 
(1975), dislocations can also affect the specific heat capacity (Gottstein 
1973). 

Material coefficients at null defect densities and null residual lattice de-
formation are related to those of (5.65), (5.66), (5.68), and (5.85) at the 
same material point X as follows: 
                 ( ) 1

. . . .,0,0,0,0, , ABCD
A B C DX J g g g gαβχδ α β χ δ

α
−=1 g

�
^ ^ , (9.155) 
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                   ( ) 1
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A BX J g gαβ α β
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, (9.157) 

                    ( ) 1 1
0 0,0,0,0,0,C X c J c J Cρ ρ− −= = =1

�
. (9.158) 

Since 0α =g�  and 0A =G� , the coordinate shifter . ,A Agα α= g G  at X does 

not depend on time.  When plastic deformation is isochoric ( 1PJ = ), and 
when coincident coordinate systems are used in reference and intermediate 
configurations so that . .A Agα αδ= , numerical values of material coefficients 
on left and right sides of each of (9.155)-(9.158) are the same.  Hence, 
considerations regarding symmetry of reference material coefficients dis-
cussed in Section 5.1.5 and Appendix A apply for the intermediate elastic-
ity tensors on the left of (9.155)-(9.158).  Contrarily, defects may affect the 
symmetry properties of the effective coefficients in (9.151)-(9.153); hence, 
these coefficients may not exhibit the same natural symmetries corre-
sponding to the crystal class of the non-defective crystal.  Stress-strain-
temperature relations following from (9.129), (9.149), and (9.150) become 
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� � �
^ ^ . (9.159) 
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A physically viable (but not the most general) form of residual energy 
RΨ  is now considered for illustrative purposes.  Omitting possible ener-

getic couplings among defect densities (e.g., as in (8.72)), let this energy 
be expressed as the sum   

        
2 2

1 1 2 3 4

5 6

1( )
2

         ,

R R
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αβ αβ
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Ψ Ψ κ ε κ ε κ α α κ θ θ

κ α α κ θ θ

⎡= + + + +⎣
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 (9.160) 

where the scalar material coefficients 
 ( )= , , 0i i X ακ κ θ ≥g , ( 1,2...6)i = , (9.161) 

generally can depend on temperature, position, and lattice orientation.  The 
first term on the right of (9.160), 1

RΨ , accounts for the explicit contribu-
tion of residual elastic lattice deformation, and can be assigned following 
the treatment of Section 9.3, for example, and results from computational 
crystal mechanics (Clayton and McDowell 2003a, 2004).  The second term 
accounts for the energy of statistically stored dislocations, approximated as 
in (8.73): 

 2 2 2 2
1 1

1 1 ˆ ( , , )
2 2 S S Sb K X b bρ ακ ε κ ρ Λ θ ρ µ ρ= = ≈g , (9.162) 

where K̂  is the energy factor of (C.152) and the last approximation corre-
sponds to screw dislocations embedded in a linear isotropic elastic medium 
with shear modulus2 µ .  The rightmost expression in (9.162) would apply 
for a dilute distribution of non-interacting straight screw dipoles, for ex-
ample.  Core energies and interaction energies among statistically disloca-
tions are absorbed into the constant 1κ .  All line defect loops considered in 
Section C.2 of Appendix C—screw loops, prismatic loops, and shear 
loops—are statistically stored dislocations because they produce no net 
contribution to the geometrically necessary dislocation density tensor.  
Hence, 1κ  could alternatively be prescribed from the appropriate combina-
tion of elastic constants and geometric parameters of pertinent dislocation 
loops in the material, following the elasticity solutions (C.160), (C.162), 
and (C.165). 

The third term on the right of (9.160) accounts for the energy of statisti-
cally stored disclinations.  Considering a dilute distribution of straight 
wedge disclinations, (C.149) gives 

                                                      
2 In an anisotropic single crystal, Voigt averages (A.36) and (A.38) can be used 

to provide estimates of isotropic second-order elastic constants. 
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π ν
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−
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where ν  is Poisson’s ratio and r  is treated as a constant radius of influ-
ence of the disclination in a given material.  Because the energy diverges 
as r →∞ , disclinations tend to arrange in configurations for which their 
long-range stress fields cancel, leading to a finite value of r .  Recall also 
from the discussion in Section C.1.4 that full disclinations tend to dissoci-
ate into partials with small Frank vectors ω  to minimize their total elastic 
energy; hence, 2κ  of (9.163) implicitly accounts for stacking fault or sur-
face energies associated with partial disclinations, in addition to core and 
interaction energies.  If statistically stored disclinations are arranged as 
wedge dipoles, then (9.163) is replaced with (Li 1972) 
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where ηγ  is the surface energy per unit area of formation of the partial dis-
clination (akin to a stacking fault energy) and 2R  is an equilibrium dipole 
separation distance as shown in Fig. 3.16.  This gives 
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When completely enclosed by the volume element centered at X, closed 
disclination loops of the kinds considered in Section C.2—twist and wedge 
loops—are also statistically stored.  Hence, solutions (C.167) and (C.170) 
can be used to provide alternative definitions of 2κ , with the particular 
choice depending on the particular kind of disclination line or loop most 
prevalent in the material. 

Geometrically necessary defects contribute to the total Burgers vector of 
(3.251) and (3.252).  From (3.235) and (3.261) respectively, geometrically 
necessary dislocations and disclinations consist of excess defects of a par-
ticular sign and direction in a volume element centered at X.  These may 
include straight lines, portions of loops not completely contained in the 
element, excess partial dislocations and excess partial disclinations, and 
single defect lines of a dipole (with the second defect of the dipole con-
tained outside the volume element).  Grain boundaries, domain walls, and 
subgrain boundaries may all be addressed in terms of geometrically neces-
sary dislocations and disclinations, as discussed in Section 3.3.3.  Depend-
ing on the spatial arrangement of partial disclination dipoles in the material 
relative to the choice of volume element, partial disclination dipoles can 
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also be treated as geometrically necessary, since they contribute to a rota-
tional closure failure (Clayton et al. 2006, 2008a).   

Energies of geometrically necessary dislocations and disclinations in 
(9.160) are expressed, respectively, as 

     2
3 5 5

1 1 1 ,
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E E E EE E l c E Eχδ αβ χδ αβ
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where µ  is an elastic shear modulus, 5 0c ≥  and 6 0c ≥  are dimensionless 
constants, and 0lρ ≥  and 0lη ≥  are material parameters with dimensions 
of length.  The proportionality relationship between defect energy and 
shear modulus is expected following the isotropic elastic solutions of dis-
location and disclination lines and loops listed in Sections C.1 and C.2 of 
Appendix C.  For greater accuracy, the isotropic shear modulus in relations 
(9.166) and (9.167) would need to be replaced by the appropriate combina-
tion of elastic coefficients to account for anisotropy, following (C.152) and 
the treatment of Section C.1.6 for dislocations, for example.   

The two parameters with dimensions of length are required on dimen-
sional grounds.  A large body of research has sought to determine physical 
justifications for selection of values of length scale parameters of this sort 
for ductile crystalline solids (Fleck et al. 1994; Stolken and Evans 1998; 
Voyiadjis and Abu Al-Rub 2005; Abu Al-Rub and Voyiadjis 2006; Chung 
and Clayton 2007).  Relations (9.166) and (9.167) suggest quadratic de-
pendencies of free energy upon geometrically necessary defect densities.   
Steinmann (1996), Bammann (2001), Gurtin (2002), and Regueiro et al. 
(2002) similarly postulated quadratic dependencies of free energy upon the 
geometrically necessary dislocation density tensor.  Previous investiga-
tions involving on physical experiments or computational models of lattice 
defects indicate that internal stress fields associated with defects may be 
amplified by external loads (Gibeling and Nix 1980; Argon and Takeuchi 
1981; Kassner et al. 2002; Chung and Clayton 2007).  Nonzero constants 

5c  and 6c  enable description of such effects, following Clayton et al. 
(2004a, b)3.  Berdichevski and Sedov (1967) also suggested an internal en-
ergy function for crystals incorporating a scalar product of elastic strain 
and dislocation density.  A linear dependence of residual energy RΨ  on 
                                                      

3 In previous work (Clayton 2004a), an expression involving the metric ECαβ  of 
(9.6) was suggested to account for the coupled defect-elastic energy analogous to 
the sum in (9.166).  The present treatment provides amplification of defect energy 
regardless of the algebraic sign of components of elastic strain.  
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elastic strain is prohibited by the assertion that the stress (9.159) should 
vanish when the elastic strain vanishes at the reference temperature.   

The contribution from defect density tensors to the second Piola-
Kirchhoff stress in the final term on the right of (9.159) becomes 

 2 4
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E l c l c E
E

χδ χδ αβ
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The contribution of these defects to the second-order tangent mechanical 
stiffness is, from (9.166)-(9.168), 
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Notice that the residual free energy in (9.160) features a quadratic de-
pendence in each of the defect density measures.  As demonstrated by sim-
ple example by Clayton et al. (2006), such dependencies do not always 
guarantee that RΨ  is a convex function of the total deformation gradient 
or the inelastic strain.  As a result, metastable, local minimum energy con-
figurations of the crystal may correspond to heterogeneous deformation 
patterns and heterogeneous defect distributions, even when the solid is 
subjected to affine boundary conditions.  Energy arguments have likewise 
been used elsewhere to account for the emergence of heterogeneous de-
formation patterns in the context of martensitic phase transformations (Ball 
and James 1987; Bhattacharya 1991), emergence of slip patterns and dislo-
cation substructures (Ortiz and Repetto 1999; Ortiz et al. 2000; Conti and 
Ortiz 2005), and geometrically nonlinear plasticity (Carstensen et al. 
2002). 

The microscopic first-order couple stress and second-order hyperstress 
are, from the second and third of (9.134), (9.150), (9.166), and (9.167), 
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It follows that microforce balances (9.142) and (9.143) respectively in-
clude terms representing spatial gradients of geometrically necessary dis-
locations pertaining to stress fields/concentrations at dislocation pile-ups, 
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and gradients of disclinations contributing to possible anti-symmetry of 
moment stress σ� .   

In the particular case when effects of geometrically necessary defects on 
elastic coefficients are omitted, (9.170) and (9.171) reduce to the linear re-
lationships 

    2lαβ ρ αβσ µ α= , 4lαβ η αβµ µ θ= . (9.172) 
Furthermore, when (9.172) applies, (9.138) and (9.139) produce 
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Assuming shear modulus µ  is spatially constant and also assuming that 
the second of (6.218) applies, the spatial divergence of the couple stress 
entering microscopic linear momentum balance (9.142) becomes 
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leading to the three kinematic equations 
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With these same assumptions, terms on the left side of microscopic mo-
mentum balance (9.143) become 
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and 
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where from the identity in (3.250), the rank four curvature tensor satisfies 
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Microscopic angular momentum balance (9.143) then becomes the kine-
matic equality 
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9.4.7 Kinetics and Evolution Equations 

The theory is complete upon prescription of evolution laws for the internal 
state variables, (9.124)-(9.125), and kinetic equations for the time rates of 
plastic flow and residual lattice deformation, the latter via (9.123).  Collec-
tively, these should be formulated so that the dissipation inequality (9.131) 
is satisfied at all times.  Consider first the plastic deformation, which to 
this point in Section 9.4 has been addressed generically, but is henceforth 
constrained to follow the kinematic relations of crystal plasticity theory of 
Section 3.2.6, i.e., 
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= = ⊗∑P P PL F F s m� � � �  (9.180) 

where i denotes a slip system with shearing rate iγ� , reference slip direc-
tion vector ( )i X TB∈s �� , and reference slip plane normal covariant vector 

*( )i X T B∈m �� .  The total number of slip systems is denoted by the scalar 
constant n.  Slip directions and slip plane normals are updated with the to-
tal lattice deformation of the first of (9.113), as in (3.118): 

    . . .
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Since from (9.180), tr( ) 0=PL ; hence volume changes are measured by 
 E E I LJ J J J J J= = = , IJ J= , 1PJ = . (9.182) 
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Plastic dissipation per unit volume in configuration B  resulting directly 
from the slip rates is, from (6.85), (9.36), and (9.180), 

 1 1P I . P I . P i i
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i
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χ χ δ χ δΨδ τ γ− −⎡ ⎤= − = =⎣ ⎦ ∑� � � � � , (9.183) 

where the resolved elastic Kirchhoff stress 
 1i i E ab i i

a bJ J s mτ τ σ−= =� . (9.184) 
Viscoplastic flow rules for slip are then posited to exhibit the general 

form 
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τγ τ ε ε θ
τ

= IF α θ� , (9.185) 

where the following constraints on the flow rate are prescribed: 
 0if ≥ , ( )0 0if , , , , , , ,Xρ ηε ε θ =IF α θ . (9.186) 

Scalar function if  imposes that the rate of working i i i ifτ γ τ=�  on each 

slip system always remains non-negative.  Specific guidelines describing 
how dislocation densities may participate in the flow rule (i.e., strain hard-
ening) can be found in a number of works (Bammann 2001; Regueiro et al. 
2002; Clayton et al. 2004b; Rezvanian et al. 2007).   

In the context of a viscoplastic flow rule such as (6.106), it has been 
widely suggested in the literature that statistically stored defect densities 
contribute to the shearing resistance on each system, while geometrically 
necessary defect densities contribute to a backstress on each system, 
though such a distinction may not always be immediately clear from ex-
perimental data.  In particular, from canonical decomposition (3.226) and 
(3.235), the magnitude of the projection of the dislocation density on each 
slip plane i, 
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β χ δ β χ δ βα α α ρ ξ− − −= = = ∑ � �� �� � � , (9.187) 

may provide a measure of dislocations threading that slip plane.  Index k 
runs over all populations of straight line segments with the same Burgers 
vector and tangent line.  So-called forest dislocations measured by (9.187) 
are thought to give rise to strain hardening in crystals (Kuhlmann-Wilsdorf 
1989; Acharya and Beaudoin 2000), particularly latent hardening as dis-
cussed in Section 6.3.  The scalar quantity  

 i i i k k k i

k

m m m b mαβ α β
α β α βα ρ ξ= ∑ � �� �� � � �  (9.188) 

provides a measure of the distortion of the slip plane (Cermelli and Gurtin 
2001; Gurtin 2002), and when the dislocations are pure screw with Burgers 
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magnitude b� , yields a measure of the density of geometrically necessary 
screw dislocations threading the slip plane: 

 2( )i i k i k k i k i k k

k k k
m m b m m b m bαβ α β α

α β α β αα ρ ξ ξ ρ ξ ρ= = =∑ ∑ ∑� � �� � �� �� � � � � . (9.189) 

Disclination densities may contribute to hardening and/or geometrical 
softening depending upon the particular material under consideration and 
its deformation history, as discussed by Pecherski (1983, 1985) and See-
feldt and co-workers (Seefeldt and Klimanek 1997, 1998; Seefeldt 2001).  
Two-point tensor IF  is included in (9.186) to account for contributions of 
heterogeneity of inelastic deformation within the local volume not engen-
dered by that volume’s (average) statistically stored and geometrically 
necessary defect densities, such as higher-order moments of dislocation 
densities (Kroner 1973, 1992; Hartley 1975) contained within the volume.  
For example, a backstress may arise in conjunction with piled-up geomet-
rically dislocations at a misoriented subgrain boundary or domain wall.  
The corresponding inhibiting effect on plastic flow would then manifest in 
(9.186) through the inclusion of θ  and IF , the former reflecting the 
misorientation boundary itself (see Fig. 3.18 and (3.282)-(3.285)) and the 
latter accounting for microscopic elastic stress fields associated with a spa-
tial gradient of dislocation density.  

Statistically stored defects accumulate in response to the motion of de-
fects and interactions with each other and other obstacles (Ashby 1970; 
Kocks et al. 1975).  Evolution equations for the statistically stored disloca-
tion rate ρε�  and statistically stored disclination rate ηε�  are assigned here 
the generic constitutive dependencies of (9.124) and (9.125), respectively.  
Kinetic relations such these are strongly material dependent.  More spe-
cific equations dealing with coupled evolution of dislocation and disclina-
tion densities—which may be considered as particular implementations of 
general relations (9.124) and (9.125)—are available in the literature (Pech-
erski 1983, 1985; Seefeldt and Klimanek 1997, 1998; Seefeldt 2001).  
Note that these evolution equations need not reflect positive dissipation as-
sociated with time rates of the defect densities; on the other hand, an in-
crease in free energy associated with these rates provides the stored energy 
of cold working under conditions wherein homogeneous plastic deforma-
tion occurs.  One example of an evolution equation for statistically stored 
dislocations given by Regueiro et al. (2002) is 

      ( )1 2 3 4
2 sinhP

S S S S S Sa a a a
b ρρ ε ρ ρ ρ ε ρ ρ⎡ ⎤= = − −⎣ ⎦

� � � , (9.190) 
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where 1a  is a scalar constant; scalar functions 2a , 3a , and 4a  depend on 
temperature; and the scalar effective plastic strain rate is 

 ( )
( )2 / 3P P PL Lαβ
αβε =� , (9.191) 

where, in the context of crystal plasticity kinematics (9.180), 
    1 1

. . .( )( )P I P I i I i i I i i i

i i
L F L F F s m F s mχ δ χ δ
αβ αχ δ β αχ δ β α βγ γ− −= = =∑ ∑� �� � . (9.192) 

Relation (9.190) combines thermally activated hardening and dynamic re-
covery mechanisms addressed by Kocks and Mecking (1979) via nonzero 

1a  and 2a , and static recovery from thermal diffusion mechanisms ad-
dressed by Nes (1995) via nonzero 3a  and 4a .  Evolution equations simi-
lar to (9.190) have also been extended to include influences of geometri-
cally necessary dislocations (Acharya and Beaudoin 2000; Bammann 
2001). 

A generic functional form is given for =I I IF L F�  in (9.123).  The net 
dissipation (i.e., rate of working less free energy storage) from the residual 
lattice deformation in the dissipation inequality (9.131) is of the form 

 . .
. . .

.

I I I
I F L Z L

F
β β α β α
α δ β α βα

δ

ΨΠ
⎛ ⎞∂

− =⎜ ⎟∂⎝ ⎠
, (9.193) 

with .Z β
α  the conjugate thermodynamic force to .

IL α
β .  While not neces-

sary, it may be advantageous to postulate evolution laws for the rate quan-
tity IL  that render the scalar product .

.
IZ Lβ α

α β  unconditionally non-
negative.  This can be accomplished in practicality by use of a dissipation 
potential, as outlined in a general way in Section 4.3.  As intended in 
(9.112), ( , )X tIF  accounts for heterogeneity of microscopic residual elas-
tic deformation within the crystalline volume element at X and also dic-
tates the change of orientation of slip planes and slip directions arising 
from lattice defects, the latter effects manifesting through the presence of 

IF  in (9.181).  As a result, such rotations of slip planes and directions can 
presumably account for the diffusion of crystallographic texture observed 
as subgrain cells emerge and then rotate relative to one another in severely 
deforming metallic crystals (Butler and McDowell 1998; Peeters et al. 
2001; Hughes et al. 2003).   

The specific form of the constitutive equation, e.g., a dissipation poten-
tial, for IF  for a given material and scale of resolution depends upon the 
particular arrangement of defects within the crystal and how their local lat-
tice strain fields interact and contribute to the motion of the crystal ele-
ment’s external boundary.  If the rotational part of IF , denoted by IR , is 
assumed to manifest solely as a result of geometrically necessary disclina-
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tions within the element, then (3.281) can be used to define IR .  Given an 
evolution equation for the (rate of) rotation IR , an evolution equation for 
the (rate of) stretch 1−=I I IU R F  is still needed.  If this stretch, i.e., the 
symmetric part of IF , is assumed to manifest from local residual elastic 
displacement gradient fields within the volume element, then this symmet-
ric tensor can be expressed via methods outlined in Chapter 7, e.g., integral 
equations (7.31), (7.37), and (7.41).  If a further simplification is made that 
deviatoric shape changes associated with IF  may be omitted, e.g., as 
might occur for an element of material containing many randomly oriented 
defects, then 

 1/ 3J≈I IF R ,  (9.194) 
with IR  defined as in (3.281) and the residual elastic volume change J  
derived via analytical methods in Section 7.2.4, e.g., (7.59) for a cubic 
crystal or (7.60) when the isotropic elastic approximation is used.  Treating 
all defect energy as deviatoric in (9.160), similarly to (8.89)-(8.90), the de-
fect energy per unit reference volume SW  and residual elastic volume 
change J  are estimated, respectively, as 
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 (9.196) 

where small residual elastic volume changes, 1(1 / )J V V −≈ − ∆  are as-
sumed in the last expression of (9.196), following discussion after (7.72).  
Bulk modulus K , like shear modulus µ , can be estimated from second-
order elastic constants of an anisotropic crystal via (8.88), for example.  
The pressure derivative of the shear modulus, / pµ∂ ∂ , is evaluated in a de-
fect-free crystal in the undistorted reference configuration, i.e., at null 
strain and at the reference temperature.  Since coefficients iκ  ( 1,2,...6)i =  
introduced to scale energies of defect densities in (9.162)-(9.167) are usu-
ally proportional the shear modulus, the shear modulus in the denominator 



9.4 Inelasticity with Dislocations and Disclinations      477 

of (9.196) will generally cancel with that entering each iκ .  With (9.194) 
and (9.196) prescribed, relations (3.281), (9.142), and (9.143) then provide 
nine coupled differential equations for the nine independent components of 
micropolar rotation [ ]a bcQ  of (9.115). 

9.4.8 Dislocation Theory 

When micropolar rotations associated with geometrically necessary discli-
nations are absent, the number of degrees of freedom of the general theory 
of Section 9.4 is reduced by nine, through imposition that the micro-
rotation variable 

 [ ] 0abc a bcQ Q= =  (9.197) 

in (9.114), leading to the following linear connection, i.e., the crystal con-
nection of Section 3.3.2: 

 .. 1 1 ..
. . , . , .

ˆ a La L La L a
cb b c c b cbF F F Fα α

α αΓ Γ− −= = − = . (9.198) 

From (9.116), spatial dislocation density tensor abα  is defined as follows, 
while the disclination density tensor vanishes identically: 

 .. 1
. . ,

af fbc a fbc La L
cb b cT F F α

αα ε ε −= = , 0gfθ = . (9.199) 
Kinematic relations (9.117) and (9.118) become, respectively, 

           1 1 1 1
. . . . , .

E E ab E E bcd I L E
a b c d bα J F F J F F Fαβ α β α χ β

χα ε− − − −= = ,     (9.200) 

 0αβθ = . (9.201) 
Omitting disclinations from the constitutive assumptions of Section 

9.4.3, assumptions (9.119)-(9.125) are replaced with 
 ( ), , , , , , ,Xρ αΨ Ψ θ θ ε= ∇E IE F α g , (9.202) 

 ( ), , , , , , ,N N Xρ αθ θ ε= ∇E IE F α g , (9.203) 

 ( ), , , , , , ,Xρ αθ θ ε= ∇E IΣ Σ E F α g , (9.204) 

 ( ), , , , , , ,Xρ αθ θ ε= ∇E Iq q E F α g , (9.205) 

 ( ), , , , , , ,Xρ αθ θ ε= ∇I I E IF F E F α g� � , (9.206) 

 ( ), , , , , , ,Xρ ρ ρ αε ε θ θ ε= ∇E IE F α g� � . (9.207) 

The constitutive relations presented already in (9.129) still hold: 

 Ψ∂
=
∂ EΣ
E

, N Ψ
θ

∂
= −

∂
, 0

( )
Ψ
θ

∂
=

∂ ∇
, (9.208) 

leading to 
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( ) ( )
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, , , , , , ,  , , , , , , ,
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ρ α
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= =
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E I
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Σ Σ E F α g
 (9.209) 

The reduced dissipation inequality (9.131) becomes, from (9.209), 
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Local energy balance in the form of temperature rate, (9.133), becomes 
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 (9.211) 

Macroscopic momentum balances and boundary conditions (9.135)-
(9.137) remain unchanged.  However, since in this restricted case corre-
sponding to (9.197), the body is not a micropolar medium, the microscopic 
momentum balances considered in (9.140)-(9.144), are, by assertion or 
postulate, not invoked.  In particular, (9.142) and (9.143) are redundant 
because their imposition, in general, over-constrains the model, providing 
more six more equations than unknowns.  Definitions (9.134) and (9.138) 
for microscopic moment stresses αβσ  and bασ�  are still relevant; second-
order hyperstresses thermodynamically conjugate to disclination densities, 

αβµ and bαµ� , vanish identically.  The higher-order boundary condition as-
sociated with the couple stress, b

bt nα ασ=� �  , is still admitted in the non-
polar situation, while 0b

bh nα αµ= =� �  identically.  Generic boundary condi-
tions of (9.147) become 
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Particular boundary conditions (9.148) in turn reduce to 
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 (9.213) 

A representative free energy function can be constructed just as in Sec-
tion 9.4.6, but because disclinations are absent here, all dependencies on θ  
and ηε  are omitted.  In cases wherein defects and elastic coefficients are 
decoupled in the free energy, (9.172) applies: 

 2 2 1 1
. ,

E I bcd L E
c d bl l J F F Fχ

αβ ρ αβ ρ αχ βσ µ α µ ε − −= = , (9.214) 
and further assuming that the second of (6.218) holds, microscopic mo-
mentum balance (9.174) is then satisfied identically (Clayton et al. 2006): 
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Kinetics can be addressed as in Section 9.4.7, but because disclinations 
are absent, all dependencies on θ  and ηε  are now omitted.  Kinetic equa-

tions are only required for .
IF α
β
�  (or .

IL α
β )  in (9.206), ρε�  in (9.207), and the 

slip rates iγ�  entering crystal plasticity kinematic relation (9.180), repeated 
here in indicial notation: 

 .
1

n
P i i i

i

L s mα α
β βγ

=

=∑ � � � . (9.216) 

Since (9.216) is traceless, (9.182) again applies.  No separate kinetic equa-
tion is required for the geometrically necessary dislocation tensor (nor 
were separate evolution equations required for dislocation or disclination 
density tensors in the dislocation-disclination theory of previous Sections 
9.4.1-9.4.7).  In particular, it follows from kinematic identity (3.225), 
(9.182), and (9.200) that the dislocation density tensor satisfies 
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Thus, noting from the chain rule that 
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the rate of the dislocation density tensor in (9.217) becomes, using (9.216), 
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From (9.219), the time rate of dislocation density αβα�  depends on material 
gradients of slip rates, ,

i
Cγ� , as well as current values of αβα�  and the slip 

rates.  The last of (9.219) applies only over regions of a homogeneous sin-
gle crystal wherein reference slip directions and slip plane normals are in-
dependent of position X.  The time rate of χδα  can be obtained by substi-
tuting (9.219) into the material time derivative of (9.200): 

           . . . . .
1 ( ) .I I I I Idα F F F F α L
J dt

αβ χδ α β χδ α β αβ χ
χ δ χ δ χα α⎡ ⎤= + −⎢ ⎥⎣ ⎦

�� � �  (9.220) 



10 Dielectrics and Piezoelectricity 

A dielectric material by definition is an insulator, i.e., a non-conductor of 
electricity associated with mobile free charges, which can exhibit polariza-
tion in the presence of an electric field.  Chapter 10 provides an introduc-
tion to dielectric material behavior in the context of geometrically nonlin-
ear continuum mechanics.  Electromechanical behaviors of general interest 
include piezoelectricity, pyroelectricity, and ferroelectricity.  Piezoelectric-
ity may refer to the coupling between electric field or polarization and 
stress or deformation.  Specifically, the direct piezoelectric effect refers to 
electric polarization induced by mechanical strain, while the inverse piezo-
electric effect refers to mechanical strain induced proportionately to an 
electric field (Maugin 1988).  In continuum theories, piezoelectricity of 
first order is attributed to the particular choice of thermodynamic potential 
(e.g., free energy or internal energy) for the body that may depend, for ex-
ample, on a scalar product of elastic strain and electric polarization or elec-
tric field.  Since the first-order piezoelectric effect can be associated with a 
rank three polar tensor of material coefficients, first-order piezoelectricity 
can only occur in crystal classes that lack a center of symmetry (Landau 
and Lifshitz 1960; Thurston 1974), as noted in Appendix A.  On the other 
hand, certain higher-order electromechanical effects, e.g., strains induced 
by products of electrical field variables, can arise in dielectrics or non-
conductors of all crystal classes as a result of quadratic influences of the 
electric field.  This phenomenon is called electrostriction (Devonshire 
1954; Maugin 1988; Damjanovic 1998).  Pyroelectric crystals exhibit sur-
face charges when uniformly heated or cooled; such crystals feature ener-
getic coupling between polarization and temperature.  The pyroelectric ef-
fect is revealed by heating a crystal to induce a change in its polarization.  
Because pyroelectricity is associated with a rank one set of material coeffi-
cients, it too is absent in centrosymmetric crystals.  Ferroelectric crystals 
comprise a subset of pyroelectric crystals, the former exhibiting spontane-
ous polarity that can be reversed by an applied electric field.  Ferroelectric 
crystals may exhibit a transition temperature, called the Curie point, above 
which they are not spontaneously polarized; the loss of polarity may often 
accompany a polymorphic phase transition from a non-centrosymmetric to 
a centrosymmetric structure, for example.   
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A number of theories of geometrically and materially nonlinear elec-
tromechanics of dielectric solids have appeared in historic and more recent 
literature, often with differences among representations of nonlinear ef-
fects.  Stratton (1941) and Landau and Lifshitz (1960) described electro-
statics and electrodynamics of deformable media, though without emphasis 
towards large deformations of the material.  Devonshire (1954) developed 
a continuum thermodynamic theory of ferroelectric crystals accounting for 
material nonlinearity, e.g., a higher than quadratic dependence of the free 
energy upon polarization, but not geometric nonlinearity.  Toupin (1956), 
Eringen (1962, 1963), and Tiersten (1971) formulated theories of elastic 
dielectric bodies subjected to arbitrarily large deformations.  Tiersten 
(1971) also considered thermal effects and material inertia.  Mindlin 
(1972) developed frameworks accounting for spatial gradients of both me-
chanical strain and electric polarization and demonstrated correlation be-
tween higher-order continuum theory and discrete lattice dynamics in the 
limit of long wavelength behavior.  Chowdhury et al. (1979) formulated a 
nonlinear theory for thermoelastic dielectrics with effects of polarization 
gradients.  Fully dynamical theories of insulators were postulated by 
Toupin (1963) and Tiersten and Tsai (1972), the latter also accounting for 
magnetization.  Geometrically nonlinear theories of electromechanics were 
also posited by Maugin (1978a, b, 1988), Ani and Maugin (1988), Had-
jigeorgiou et al. (1999), Dorfmann and Ogden (2005), McMeeking and 
Landis (2005), McMeeking et al. (2007), Vu and Steinmann (2007), and 
Bustamante et al. (2009).  Xiao and Bhattacharya (2008) formulated a 
nonlinear continuum theory of semiconducting ferroelectric crystals.   

In some dielectrics, large strains are feasible via domain switching 
(Bhattacharya and Ravichandran 2003; Zhang and Bhattacharya 2005), ne-
cessitating use of a geometrically nonlinear theory.  Large deformations 
are also attained when pressures are significant enough to suppress frac-
ture, for example in shock physics or impact applications (Allison 1965; 
Graham et al. 1965; Hauver 1965; Graham 1972; Chen et al. 1976; Ani 
and Maugin 1988; Maugin 1988; Clayton 2010b). 

Detailed descriptions of atomic origins of electromechanical phenomena 
such as piezoelectricity are beyond the scope of this text.  Representative 
treatments of molecular or electronic origins of continuum electrome-
chanical properties of condensed matter are provided by Huang (1950), 
Wooster (1953), Born and Huang (1954), Lax and Nelson (1971, 1976a), 
Maradudin et al. (1971), Tiersten (1971), Martin (1972), Tiersten and Tsai 
(1972), Maugin (1988), and Jackson (1999).     

Chapter 10 begins, in Section 10.1, with presentation of Maxwell’s 
equations of electromagnetism.  For completeness, the entire set of elec-
trodynamic equations is listed, including classical forms, definitions enter-



10.1 Maxwell’s Equations      483 

ing Lorentz invariant representations (Stratton 1941), and definitions accu-
rate to terms linear in the ratio of particle velocity to the speed of light.  
Reduction of Maxwell’s equations to quasi-electrostatics, often deemed 
applicable for studies of dielectrics in the absence of optical phenomena, is 
then presented in Section 10.2.  Governing relationships for geometrically 
nonlinear continuum electromechanics—momentum and energy balances 
and the dissipation inequality in the context of large deformations—are 
then described.   

Section 10.3 presents a geometrically nonlinear theory for crystalline 
thermoelastic dielectrics, i.e., dielectric crystals whose macroscopic de-
formations result only from mechanical elastic deformation of the crystal 
structure and thermal expansion or contraction.  Constitutive relations for 
elastic dielectric solids emerge, following consideration of local forms of 
the energy balance and dissipation inequality (Chowdhury et al. 1979; 
Hadjigeorgiou et al. 1999; McMeeking et al. 2007).  A detailed treatment 
of material coefficients—e.g., elastic, dielectric, pyroelectric, and piezo-
electric coefficients of various orders—is provided, along with transforma-
tion equations describing their relationships as derived from thermostatics.  
Phase transformations, e.g., those often associated with ferroelectric mate-
rials (Devonshire 1954), are not addressed.  Reduction of the nonlinear 
theory to the geometrically and materially linear regime is presented for 
completeness in Section 10.4, which also includes the standard constitutive 
equations of linear piezoelectricity (Bond et al. 1949; Haskins and Hick-
man 1950).  Deformations resulting from defect motion (e.g., dislocation 
plasticity, void growth, vacancy migration, or fracture) are not addressed, 
nor are explicit effects of defects on properties of dielectric solids.   

While the intent of Chapter 10 is to provide a rigorous treatment of elec-
tromechanics of dielectric solids, the content of Chapter 10 is not a com-
prehensive treatment of electromagnetism.  Relevant texts with supporting 
information include those of Stratton (1941), Landau and Lifshitz (1960), 
Eringen (1962), Thurston (1974), Maugin (1988), and Jackson (1999). 

10.1 Maxwell’s Equations 

Local forms of Maxwell’s equations of classical electromagnetism are 
given in Section 10.1.  Representations of field variables and Maxwell’s 
equations applicable at velocities substantial with respect to the speed of 
light are then discussed for completeness, though these representations are 
not used in treatments that follow in Sections 10.2-10.4 wherein material 
velocities are assumed small relative to light speed in vacuum.  Reduced 
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forms of Maxwell’s equations for the case of quasi-electrostatics, deemed 
adequate for particular (restricted) descriptions of deformable dielectric 
media in subsequent Sections 10.2-10.4, then follow.  Global forms of 
Maxwell’s equations and jump conditions at surfaces of discontinuity are 
also addressed for the quasi-electrostatic case. 

10.1.1 Classical Electrodynamics 

Local forms of Maxwell’s field equations of electromagnetics can be writ-
ten as (Stratton 1941; Thurston 1974; Maugin 1988)1 

 
ˆ

ˆ
t

∂
∇× = −

∂

g be , ;

ˆ
ˆ

a
abc

c b
be
t

ε ∂
= −

∂
; (10.1) 

 
ˆ ˆˆ
t

∂
∇× = +

∂

g dh j , ;

ˆˆ ˆ
a

abc a
c b

dh j
t

ε ∂
= +

∂
; (10.2) 

 ˆ, 0∇ =
g

b , ;̂ 0a
ab = ; (10.3) 

 ˆ ˆ, ρ∇ =
g

d , ;̂ ˆa
ad ρ= . (10.4) 

Field quantities in (10.1)-(10.4) are referred to current (spatial) configura-
tion B, from the perspective of a fixed observer, and are presumed at least 

1C -continuous.  Vector fields are labeled as follows: electric field ˆ( , )x te , 
magnetic flux density or magnetic induction ˆ ( , )x tb , magnetic intensity or 
magnetic field ˆ ( , )x th , electric displacement ˆ ( , )x td , and electric current 
density ˆ( , )x tj .  The scalar electric free charge density is ˆ ( , )x tρ .  Relation 
(10.1) is often called Faraday’s law, (10.2) is often called Ampere’s law, 
(10.3) reflects the solenoidal (i.e., divergence-free) character of the mag-
netic flux density, and (10.4) is often called Gauss’s law.  Supplementing 
(10.1)-(10.4) are the definitions 

 0
ˆˆ ˆε= −p d e , 0

ˆˆ ˆa a ap d eε= − ; (10.5) 

 
0

1 ˆ ˆˆ
µ

= −m b h , 
0

1 ˆ ˆˆ a a am b h
µ

= − . (10.6) 

                                                      
1 In Chapter 10, ( ) / ( ) /

x
t t∂ ⋅ ∂ = ∂ ⋅ ∂  denotes partial time differentiation with 

spatial position x fixed, while ( ) /d dt⋅  and superposed dots denote material time 
derivatives (i.e., material particle at X fixed).  See Section 2.6.1 for additional dis-
cussion of time differentiation in continuum mechanics.  
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Polarization density per unit spatial volume, also called the electric mo-
ment or simply the polarization, is the vector ˆ ( , )x tp  often associated with 
relative displacements of ions and centers of electron clouds comprising a 
dielectric, and may also result from a permanent molecular dipole moment 
(Pauling and Wilson 1935; Maugin 1988).  The magnetization or magnetic 
moment per unit spatial volume is written ˆ ( , )x tm .  Electric current, free 
charge density, polarization, and magnetization can exist only within cer-
tain kinds of matter but vanish in pure vacuum (i.e., space devoid of all 
mass and all charges).  The other fields in (10.1)-(10.6) may exist in vac-
uum as well as certain kinds of matter.  In particular, in vacuum the rela-
tions 0

ˆ ˆε=d e  and 0
ˆ ˆµ=b h  apply. 

The SI system of units (international standard) is used in (10.1)-(10.6), 
as described more fully Appendix E.  Other systems of units exist in which 
various scaling factors appear or disappear in Maxwell’s equations (Strat-
ton 1941; Maugin 1988; Jackson 1999).  In the SI system of units, the di-
mensional constants  

 
7

2 12
0 2

10 Fm/s 8.854 10 F/m
4 c

ε
π

−= ≈ × , (10.7) 

 7
0 2

0

1 4 10 H/m
c

µ π
ε

−= = × , (10.8) 

are respectively called the permittivity and permeability of vacuum (in 
classical electrodynamics), where 8c 3 10 m/s≈ ×  is the speed of light in 
vacuum.  From (10.8), dimensional constants of electromagnetism, in SI 
units, are related by 

 2

0 0

1 c
µ ε

= . (10.9) 

The free charge density per unit spatial volume can be defined as the 
following sum of contributions of charge populations:  

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ei i i i

i i
n q n zρ = =∑ ∑ , (10.10) 

with ( )ˆ in  the number of charge carriers per unit spatial volume of charge 
( ) ( )ei iq z= , where e  is the charge magnitude of an electron (1.602×10-19 C) 

and ( )iz  is the valence of each member of charge carrier population i.  For 
example, for excess electrons 1z = − , while for holes or missing electrons 

1z = + .  Excess or missing ions can also contribute to (10.10); the effec-
tive valence ( )iz  of such defects (e.g., interstitials, vacancies, or substitu-
tional ions) need not be of unit magnitude and need not be an integer.    
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In the context of two stationary point charges in vacuum, the spatial 
electric field ê  describes the static Lorentz force F̂  between the charges 
arising from Coulomb’s law:  

 
( ) ( )1 2

3
0

ˆ ˆ
4

q qq
rπε

= =
rF e , ( ) ( )1 2= −r x x , | |r = r , (10.11) 

where r is the distance between the two point charges with spatial coordi-
nates ( )1x  and ( )2x .  It follows from (10.11) that the electric field induced 
by a point charge of magnitude q is 

 3
0

ˆ
4

q
rπε

=
re . (10.12) 

Some classifications of different kinds of matter are in order.  A mate-
rial is said to be electrically polarized if ˆ 0≠p  at the instant of time t under 
consideration and at one or more locations x; otherwise it is said to be non-
polarized or non-polar.  A material is said to be magnetized if ˆ 0≠m ; oth-
erwise it is said to be non-magnetized.  A material is said to be an electri-
cal conductor if ˆ 0≠j ; otherwise, it is said to be an insulator.  A material is 
formally said to be a dielectric if it is an insulator (electric current ˆ 0=j ) 
with no free charges (charge density ˆ 0ρ = ) capable of exhibiting electric 
polarization (electric polarization ˆ 0≠p  for some electromechanical load-
ing condition) (Maugin 1988).  Sometimes this strict definition is relaxed, 
so that a dielectric may support (excess) free charge density at certain ma-
terial points (Eringen 1962, 1963; Chowdhury et al. 1979; Jackson 1999; 
McMeeking and Landis 2005; McMeeking et al. 2007; Clayton et al. 
2008a, b; Clayton 2010b).  A semiconductor may act either as an electrical 
conductor or as an insulator (e.g., a dielectric) depending on its environ-
ment; for example, the electrical resistivity of a semiconductor may de-
pend on temperature, applied electric field, and/or mechanical stress.  

As will be demonstrated later in Section 10.2.1, a dielectric can sustain 
an effective “displacement current” resulting from the time rate of change 
of electric displacement (Allison 1965; Graham et al. 1965; Hauver 1965; 
Graham 1972; Clayton 2010b).  Hence, ĵ  is sometimes labeled a free cur-
rent density—for example an electric current resulting from fluxes of free 
electrons or holes in a conductor, or from mobile ions or other charged de-
fects in an ionic crystal—to distinguish it from displacement current which 
can exist even if all charges are bound, as in an insulator, or even in vac-
uum.     

The preceding discussion and definitions have been framed in the con-
text of traditional forms of Maxwell’s equations.  Mathematically alterna-
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tive, yet physically equivalent, representations of Maxwell’s electrody-
namic equations are also possible2, but will not be used explicitly in Chap-
ter 10.   

10.1.2 Lorentz and Galilean Invariance 

Maxwell’s equations (10.1)-(10.4) apply for a fixed observer in the context 
of a stationary coordinate frame.  An invariant representation of the laws 
of electromagnetism should apply for any choice of inertial frame of refer-
ence.  Fields denoted in what follows by primes are those observed with 
respect to a coordinate system moving with constant velocity v and enter 
Lorentz invariant theories of electrodynamics in the context of special rela-
tivity (Stratton 1941; Thurston 1974), accounting for the absolute propaga-
tion velocity c of electromagnetic waves in vacuum in all inertial coordi-
nate frames: 

 ˆ ˆ′ =e e& & , ˆˆ ˆ( )⊥ ⊥′ = Ξ + ×e e v b , (10.13) 

 ˆ ˆ′ =d d& & , 
2ˆ ˆ ˆ( / c )⊥ ⊥′ = Ξ + ×d d v h , (10.14) 

 ˆ ˆ′ =b b& & , 
2ˆ ˆ ˆ( / c )⊥ ⊥′ = Ξ − ×b b v e , (10.15) 

 ˆ ˆ′ =h h& & , ˆ ˆ ˆ( )⊥ ⊥′ = Ξ − ×h h v d , (10.16) 
 ˆ ˆ′ =p p& & , 

2ˆ ˆ ˆ( / c )⊥ ⊥′ = Ξ − ×p p v m , (10.17) 
 ˆ ˆ′ =m m& & , ˆ ˆ ˆ( )⊥ ⊥′ = Ξ + ×m m v p , (10.18) 

 ˆ ˆ ˆ( )ρ′ = Ξ −j j v& & , ˆ ˆ
⊥ ⊥′ =j j , (10.19) 

 2ˆˆ ˆ( / c )ρ ρ′ = Ξ − v ji .  (10.20) 
The scalar factor accounting for special relativistic effects is 

 
1/ 2

2

1
1 ( ) / c
⎡ ⎤

Ξ = ⎢ ⎥−⎣ ⎦v vi
, (10.21) 

and subscripts &  and ⊥  denote respective components of a vector parallel 
and perpendicular to velocity vector v.  For example, 

                                                      
2 For example, so-called Maxwell-Lorentz forms of Ampere’s law (10.2) and 

Gauss’s law (10.4) can be written, respectively, as (Lax and Nelson 1971) 

 0
0

ˆ ˆ ˆˆ ˆ
t t

ε
µ

∂ ∂
∇× − = = + +∇×

∂ ∂

g gb e pj j m
�

, 0 ˆ ˆ ˆ, ,ε ρ ρ∇ = = − ∇
g g

e p� , 

where by definition, j
�

 and ρ�  are total (as opposed to free) current density and 
total charge density, respectively.  
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 ˆ ˆ( )=e e ξ ξ& i , ˆ ˆ( )⊥ = × ×e ξ e ξ , 1/ 2/( )=ξ v v vi . (10.22) 
For 2( ) / c 1v vi � , special relativistic effects are considered unimpor-

tant, 1Ξ ≈ , and the following definitions apply in lieu of (10.13)-(10.20): 
 ˆˆ ˆ′ = + ×e e v b , (10.23) 
 2ˆ ˆ ˆ / c′ = + ×d d v h , (10.24) 
 2ˆ ˆ ˆ / c′ = − ×b b v e , (10.25) 
 ˆ ˆ ˆ′ = − ×h h v d , (10.26) 
 2ˆ ˆ ˆ / c′ = − ×p p v m , (10.27) 
 ˆ ˆ ˆ′ = + ×m m v p , (10.28) 
 ˆ ˆ ρ̂′ = −j j v ,  (10.29) 
 2ˆˆ ˆ / cρ ρ′ = − v ji . (10.30) 

Using (10.23) and (10.26), Maxwell’s equations can be expressed in terms 
of electric and magnetic fields and current perceived at each material parti-
cle at x moving with velocity field ( , )x tv  of (2.168) as (Thurston 1974) 

         
*
ˆˆ′∇× = −

g

e b , ; ; ;

ˆ ˆ ˆˆ ( )
a

abc abc d e a b
c b cde b b

be b v v b
t

ε ε ε
⎡ ⎤∂′ = − + +⎢ ⎥
∂⎢ ⎥⎣ ⎦

; (10.31) 

    
*

ˆˆ ˆ′ ′∇× = +
g

h d j , ; ; ;

ˆˆ ˆ ˆ ˆ( )
a

abc abc d e a b a
c b cde b b

dh d v v d j
t

ε ε ε
⎡ ⎤∂′ ′= + + +⎢ ⎥
∂⎢ ⎥⎣ ⎦

; (10.32) 

 ˆ, 0∇ =
g

b , ;̂ 0a
ab = ; (10.33) 

 ˆ ˆ, ρ∇ =
g

d , ;̂ ˆa
ad ρ= . (10.34) 

Notice that (10.31) and (10.32) replace, respectively, (10.1) and (10.2), 
while (10.33) and (10.34) are identical to (10.3) and (10.4).  Differentia-
tion in (10.31)-(10.34) is expressed in the usual fixed space-time coordi-
nates.  As used in (10.31) and (10.32), the convected time derivative of a 
continuous vector field ( , )aA x t  is defined as follows (Toupin 1963; Lax 
and Nelson 1976b): 
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recalling the definition of the Lie derivative vL  in (2.178)-(2.181).  To the 
same order of approximation of (10.23)-(10.30), (10.5) and (10.6) become  

 2
0

ˆˆ ˆ ˆ / cε′ = − − ×p d e v m , 2
0

ˆˆ ˆ ˆ / ca a a abc
b cp d e v mε ε′ = − − ; (10.36) 

 0
ˆ ˆˆ ˆ/µ′ = − + ×m b h v p , 0

ˆ ˆˆ ˆ/a a a abc
b cm b h v pµ ε′ = − + . (10.37) 

In a plane electromagnetic wave in vacuum (Thurston 1974), the follow-
ing equalities and approximations apply, appealing to (10.9): 
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0

ˆ| |ˆ ˆ| |~ | | c
cµ
=

eh d , 0
ˆ| |ˆ ˆ| | | | ~
c

µ=
eb h , 

ˆ| |ˆ| |~
c
hd . (10.39) 

It follows that in situations involving electromagnetic wave propagation, 
differences between primed and unprimed values of electric field, electric 
displacement, magnetic induction, and magnetic field in (10.23)-(10.26) 
are all of order 1/ 2( ) / cv vi .  Following Tiersten (1971), Chowdhury et al. 
(1979), and McMeeking et al. (2007), such differences are overlooked in 
the treatment of deformable elastic dielectrics that follows in the remainder 
of Chapter 10.  For example, in an acoustic wave propagating through an 
elastic solid, typically 1/ 2 7( ) / c 10−<v vi

�
 (Thurston 1974).   

Lorentz invariance of Maxwell’s equations demands that (10.1)-(10.4) 
apply with primed quantities of (10.13)-(10.20) replacing unprimed ones 
and differentiation performed with respect to the moving space-time coor-
dinate system (Stratton 1941).  Maxwell’s equations (10.1)-(10.6) are Gali-
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lean invariant3, i.e., remain fundamentally unchanged in form under Gali-
lean transformations, only in the limit 2( ) / c 0→v vi  and 1/ 2 2( ) / c 0→v vi .  
In other words, Galilean invariance of Maxwell’s equations corresponds to 
a relativity principle applied in the limit of infinite propagation velocities 
of electromagnetic disturbances.  Approximations such as (10.23)-(10.30) 
are accurate to terms linear in the ratio of material velocity to speed of 
light, with inaccuracies relative to Lorentz invariant theory on the order of 

2( ) / cv vi  (Toupin 1963; Tiersten and Tsai 1972; Maugin 1988). 

10.2 Electrostatics of Dielectric Media 

Reduced representations of Maxwell’s field equations are applicable to-
wards dielectric solids when electromagnetic waves of high frequencies or 
short wavelengths (e.g., those associated with optical phenomena) are of 
no concern.  These equations are listed in global and local forms in both 
spatial (Section 10.2.1) and material (Section 10.2.2) configurations.  Gov-
erning relations of continuum mechanics for dielectric media are then pre-
sented: balances of linear and angular momentum, the balance of energy, 
and the dissipation inequality.  Only stationary coordinate systems are con-
sidered.  Differences arise among the governing equations listed in what 
follows in Section 10.2 for nonlinear electromechanics and those of Chap-
ter 4 wherein electromechanical phenomena were not addressed.   

10.2.1 Maxwell’s Equations of Electrostatics 

Treatments of dielectric elastic solids wherein electromagnetic wave 
propagation is not of interest often follow a quasi-electrostatic approxima-
tion4.  In one kind of quasi-electrostatic approximation (Tiersten 1971; Ani 

                                                      
3 Under a generic Galilean transformation (Truesdell and Toupin 1960; Maugin 

1988), .
ˆ Ca a b a a

bx Q x v t′ = − +  and Ct t′ = + , where Q̂  is a constant proper or-
thogonal matrix, v is the constant velocity of the origin of the primed coordinate 
system relative to that of the unprimed system, and Ca  and C are constants. 

4 Since material accelerations and mechanical wave propagation are admitted, 
the quasi-electrostatic approximation does enable accurate depiction of acoustic 
modes (i.e., stress waves with typical frequencies �1 GHz (Maugin 1988)).  Stud-
ies of optical modes (specifically, electromagnetic waves with wavelengths on the 
order of the specimen size or smaller), in contrast, require application of Max-
well’s fully electrodynamic equations.  In the quasi-electrostatic approximation, 
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and Maugin 1988; Maugin 1988), magnetic flux density at any spatial 
point x is treated as constant in time (i.e., ˆ / 0t∂ ∂ =b ), so that the first of 
Maxwell’s equations, (10.1), becomes 

 ˆ 0∇× =
g

e , ;ˆ 0abc
c beε = . (10.40) 

Relations (10.3) and (10.4) are unchanged in the quasi-electrostatic ap-
proximation; the latter (i.e., Gauss’s law) is of particular importance in the 
present context for applications in dielectric solids and is repeated here: 

 ˆ ˆ, ρ∇ =
g

d , ;̂ ˆa
ad ρ= . (10.41) 

Relations (10.40) and (10.41) are referred to as Maxwell’s equations of 
electrostatics.  In the remainder of Chapter 10, only permanently non-
magnetic materials are considered.  Recalling from Section 10.1.1 that in 
non-magnetized materials, ˆ 0=m  by definition, and taking the curl of spa-
tial equality (10.6), 

 
0 0

1 1ˆ ˆ ˆˆ
µ µ
⎡ ⎤

∇× = ∇× − = ∇×⎢ ⎥
⎣ ⎦

g g g

h b m b . (10.42) 

Recall also that in a dielectric material, electric current density ˆ 0=j  by 
definition, implying that free electrons, holes, and other charge carriers, if 
they exist at all, are treated as immobile.  Thus, the second of Maxwell’s 
classical equations, i.e., Ampere’s law (10.2), becomes the following ex-
pression for the displacement current density ˆ( , )x ti  in non-magnetic mate-
rials under a quasi-electrostatic approximation5:  

      
0

ˆ1ˆ ˆ ˆ
tµ

∂
= ∇× = ∇× =

∂

g g di h b , ; ;
0

ˆ1ˆ ˆˆ
a

a abc abc
c b c b

di h b
t

ε ε
µ

∂
= = =

∂
. (10.43) 

                                                                                                                          
the electric field, electric displacement, and polarization vector are permitted to 
vary (slowly) with time, e.g., within the acoustic range of frequencies (Maugin 
1988).  From the partial time derivative of (10.43) and (10.1), strict consistency of 

(10.40), (10.42), and (10.43) requires 2 2
0

ˆ ˆ ˆ/ / ( ) 0t tµ ∂ ∂ = ∇×∂ ∂ = −∇× ∇× =
g g g

d b e . 
5 In previous work (Clayton 2010b), the notation ˆaj  was used to represent the 

negative of the displacement current density.  An alternative quasi-electrostatic 
approximation obeying (10.40) is also possible, whereby ˆ 0≠j  but ˆ constant=b .  
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In this context of quasi-electrostatics, the rate of change of electric field 
energy contained within a spatial volume can then be represented using a 
simple form of Poynting’s theorem6 (Tiersten 1971; Maugin 1988). 

Substituting (10.4) into the divergence of (10.2) and using (2.169), the 
following charge conservation law emerges, applicable in any regime (i.e., 
not restricted to non-magnetic materials or quasi-electrostatics): 

       ; ; ; ,

;

ˆ ˆˆ ˆˆ ˆ ˆ( )
a

a abc a a
a c ba a a

a

dj h d v
t t t

ρε ρ ρ
⎛ ⎞∂ ∂ ∂

= − = − = − = − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
� . (10.44) 

For a non-conducting (e.g., dielectric) material, since free electric current 
density vanishes identically, (10.44) then reduces to  

      ; ,
ˆˆ ˆ ˆ0a a

a aj v
t
ρ ρ ρ∂

= − = ⇔ =
∂

� . (10.45) 

For a dielectric in the strict sense (Ani and Maugin 1988; Maugin 1988), 
free charge density also vanishes by definition, so that (10.45) reduces to 
ˆ 0ρ =�  identically, though more general relations (10.41) and (10.45) are 

used in Chapter 10 unless noted otherwise.   
Relation (10.5) also applies verbatim in electrostatics: 
 0

ˆ ˆ ˆε= +d e p , 0
ˆ ˆ ˆa a ad e pε= + . (10.46) 

Substitution of (10.46) into (10.43) leads to 0
ˆ ˆ ˆ/ /t tε= ∂ ∂ + ∂ ∂i e p , where the 

term 0 ˆ / tε ∂ ∂e  can exist in non-polar materials or even in vacuum, and 
where the polarization current ˆ / t∂ ∂p  exists only within the dielectric.  Re-
lation (10.6) is not needed or used explicitly in the remainder of Chapter 
10 since the treatment henceforth is restricted to non-magnetic materials.   

Maxwell’s equations of electrostatics can be expressed globally as the 
following integral relations in the spatial frame: 

 ˆ 0
c

d =∫e xi , ˆ ˆ,
s v

ds dvρ− =∫ ∫d n . (10.47) 

In (10.47) and henceforward in Chapter 10, superscripts + and – denote re-
spective limiting values of a quantity at locations outside and inside the 
body as s is approached from the corresponding side, and n is the unit 

                                                      
6 Specifically, using (10.40), (10.43), (10.49), and the divergence theorem, and 

letting ˆˆ ˆ= ×s e h  denote the Poynting vector, the flow rate of quasi-static electric 
field energy out of surface s enclosing volume v is (Tiersten 1971; Jackson 1999) 
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∫ ∫ ∫ ∫
 



10.2 Electrostatics of Dielectric Media      493 

normal to s directed from the – side to the + side (i.e., directed from the in-
side to the outside of the dielectric body).   

The first of Maxwell’s electrostatic equations in (10.47) states that the 
line integral of the electric field along an arbitrary closed curve c vanishes.  
From Stokes’s theorem (2.197), the first of Maxwell’s global equations of 
electrostatics in (10.47) can be written 

 ;ˆ ˆ 0a abc
a b a c

c s

e dx e n dsε= =∫ ∫ . (10.48) 

A vector field in a simply connected domain whose skew covariant deriva-
tive (i.e., curl) vanishes can be represented as the gradient of a scalar po-
tential.  In the context of electrostatics, scalar potential ˆ( , )x tφ  is called the 
electrostatic potential or electric potential and is continuous throughout 
space (Eringen 1963), except at point charges (e.g., (10.12)), line charges, 
or dipole layers (Jackson 1999).  The local form of (10.48) is  

            [ ] [ ]; , ,, ,
ˆ ˆˆ ˆ ˆ ˆ0 0abc abc

b a b a b bb a bae e e eε ε φ φ= = ⇔ = − = ⇔ = − . (10.49) 

Within the domain of (10.48), 1C -continuity of ˆ( , )x te  is assumed; finite 
(i.e., bounded) jumps in the normal component of ê  are admitted across 
surfaces of discontinuity, but tangential jumps vanish across such surfaces: 

 a bˆ 0× =e n , a b ,̂ˆ 0abc acb
b c b ce n nε ε φ= =c fd ge h , (10.50) 

an identity that follows from the first of (10.47) and application of Stokes’s 
theorem in (10.48) to regions on either side of the discontinuity and subse-
quent addition of the results (Eringen 1963).  The jump in a vector-valued 
quantity across a surface s is defined by 

 a b + −= −A A A , a a aA A A+ −= −c fd ge h . (10.51) 

The second of Maxwell’s static equations establishes a conservation law 
among surface and volumetric charges.  Applying the divergence theorem 
to the second of (10.47) and localizing the result, (10.41) is recovered: 

 ;
ˆ ˆa

ad ρ= . (10.52) 
In arriving at (10.52) from the second of (10.47), 1C -continuity of electric 
displacement d̂  is assumed within the domain of integration.  When d̂  is 
discontinuous across a surface, the normal component of a jump in d̂  
across that surface is given by the surface free charge density ˆ ( , )x tσ : 

 ˆ ˆ ˆˆ a a a
a a ad n d n d nσ + −= = −c fd ge h . (10.53) 

Definition (10.53) follows from the following charge conservation re-
quirement (Toupin 1956; Eringen 1962): 
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 ˆˆ ˆ ˆ a
a

v a s

Q dv da d n dsρ σ −= + =∫ ∫ ∫ , (10.54) 

where Q̂  is the total free charge contained in a volume v with internal sur-
face of discontinuity a and external boundary s.  Application of the diver-
gence theorem (2.193) to the rightmost term of (10.54) with consideration 
of the jump in electric displacement over internal surface a gives 

 ;
ˆ ˆ ˆa a a

a a a
s v a

d n ds d dv d n da− = +∫ ∫ ∫c fd ge h , (10.55) 

which, upon comparison with the first equality in (10.54), is consistent 
with (10.52) and (10.53). 

Multiplying (10.52) by φ̂ , integrating over volume v enclosed by sur-
face s, and applying the divergence theorem with (10.49) and (10.53) 
yields 

 ˆ ˆˆ ˆ ˆ ˆ
v v s

dv dv dsρφ ωφ= +∫ ∫ ∫d ei , ˆˆ a
ad nω −= − , (10.56) 

where ˆ ( , )x tω  measures the contribution from the inside of s to the free 
charge density in (10.53).  Now extend the domain of volume integration 
in (10.56) to an infinite region containing possible dielectric matter and 
vacuum, and let a denote the union of enclosed surfaces over which d̂  
(and hence ω̂ ) is discontinuous.  Integral expression (10.56) then becomes 
(Eringen 1962, 1963; Clayton et al. 2008a) 

 ˆ ˆˆ ˆ ˆ ˆ
v v a

dv dv daρφ σ φ= ±∫ ∫ ∫d ei , (10.57) 

where ˆ 0φ →  as | |→∞x  has been assumed, and where the algebraic sign 
on the rightmost term in (10.57) depends on the sense of normal n and des-
ignation of interior and exterior sides of surface a used to define σ̂ .  A de-
forming material element of a dielectric body with a number of corre-
sponding electromechanical quantities is illustrated in Fig. 10.1.   
 

 
Fig. 10.1 Deforming dielectric material element in an electric field 
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10.2.2 Material Forms of Maxwell’s Equations 

Spatial relations of Section 10.2.1 can be mapped to their counterparts in 
the reference configuration7 in various ways (Thurston 1974; Lax and Nel-
son 1976b; Ani and Maugin 1988; Dorfmann and Ogden 2005; Vu and 
Steinmann 2007).  In particular, from (2.115), the first of Maxwell’s global 
(i.e., integral) equations of electrostatics in (10.47) becomes 

 ˆˆ ˆ ˆ 0T

c C C C

d d d d= = = =∫ ∫ ∫ ∫e x e F X F e X E Xi i i i , (10.58) 

or in indicial notation, 
 . .

ˆˆ ˆ ˆ 0a a A T A a A
a a A a A A

c C C C

e dx e F dX F e dX E dX= = = =∫ ∫ ∫ ∫ , (10.59) 

where C is a closed reference curve and referential electric field ˆ ( , )X tE  is  
 ˆ ˆT=E F e , . .,

ˆ ˆ ˆa a
A A a A aE F e x e= = , (10.60) 

with covariant components listed in the second of (10.60).  Applying 
Stokes’s theorem to (10.59), relations analogous to (10.49) then emerge: 

    [ ] [ ]; , ,, ,
ˆ ˆ ˆ ˆˆ ˆ0 0ABC ABC

B A B A B BB A BAE E E Eε ε Φ Φ= = ⇔ = − = ⇔ = − , (10.61) 

where the referential electrostatic potential is ˆΦ̂ φ ϕ= D .  It follows that 

( )ˆˆ ( , ) ( , ),X t X t tΦ φ ϕ=  and , , .,
ˆˆ a

A a AxΦ φ= .  Sufficient differentiability of the 
referential electric field has been assumed in localizing (10.59) to arrive at 
(10.61); in the converse situation, a jump condition analogous to (10.50) 
applies in the reference configuration.   

The second of Maxwell’s electrostatic equations in (10.47) becomes 
                  1

.
ˆ ˆ ˆ( )a a A A

a a A A
s s S

d n ds d JF N dS D N dS− − − −= =∫ ∫ ∫  (10.62) 

upon application of Nanson’s formula (2.148).  Then from (2.141), 
 0ˆ ˆ ˆ( )

v V V

dv JdV dVρ ρ ρ= =∫ ∫ ∫ , (10.63) 

leading to the referential definitions of electric displacement 0
ˆ TB∈D : 

 1ˆ ˆJ −=D F d , 1
.

ˆˆ A A a
aD JF d−= , (10.64) 

and free charge density 0ˆ ( , )X tρ : 
 0ˆ ˆ Jρ ρ= . (10.65) 

Maxwell’s equation of charge conservation is then, in global form, 

                                                      
7 Definitions in this Section are unambiguous for material elements, but are not 

always so for regions of vacuum or aether wherein deformation gradients are not 
defined.  A natural assumption is to let .

a A
A ag= = ⊗F 1 g G  in vacuum. 
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 0
ˆ ˆA

A
S V

D N dS dVρ− =∫ ∫ , (10.66) 

with S the surface enclosing reference volume V.  The analog of (10.52) is 
then obtained directly from (10.65) and the divergence theorem: 

 ; 0
ˆ ˆA

AD ρ= . (10.67) 
Notice also from Piola’s identity (2.146) that (10.64) and (10.67) are con-
sistent: 1 1

; . ; . : ; 0
ˆ ˆ ˆˆ ˆ ˆ( )A A a A a a

A a A a A aD JF d JF d Jd Jρ ρ− −= = = = = .  Differentiability of 
the referential electric displacement field has been assumed in deriving 
(10.67); in the converse situation, a surface charge density similar to 
(10.53) can be introduced at reference surfaces over which ˆ ( , )X tD  exhib-
its jump discontinuities.  Multiplying both sides of (10.67) by potential Φ̂ , 
integrating over V , and using (10.61) gives the identity 

 0
ˆ ˆ ˆˆ ˆˆ ,

V V S

dV dV dSρ Φ Φ −= −∫ ∫ ∫D E D Ni . (10.68) 

No natural definition exists for the reference analog of spatial polariza-
tion ˆ ( , )x tp .  One obvious assumption is, analogous to (10.60),  

 ˆ ˆT=P F p , . .,
ˆ ˆ ˆa a
A A a A aP F p x p= = , (10.69) 

leaving the following referential version of (10.5) and (10.46): 
 1

0
ˆ ˆ ˆ( )J ε−= +D C E P , 1

0
ˆ ˆ ˆ( )A AB

B BD JC E Pε−= + . (10.70) 
Symmetric right Cauchy-Green deformation . , .,

a a
AB aA B a A BC F F x x= =  is de-

fined in (2.153), with inverse 1 1 1 ,
. .,

AB Aa B A a B
a aC F F X X− − −= = .  Other defini-

tions of the reference polarization (e.g., 1
. ˆA a
aJF p−  analogous to (10.64)) 

have been suggested by various authors (Toupin 1963; Lax and Nelson 
1976b; Ani and Maugin 1988). 

10.2.3 Momentum Conservation 

Electromechanical interactions induce modifications to balances of mo-
mentum of classical nonlinear continuum mechanics presented in Chapter 
4.  Such interactions can be addressed in the balance of linear momentum 
via an electromechanical body force.  In the context of continuum electro-
statics, i.e., for negligible electrodynamic contributions from ˆ ˆ×j b , this 
force, per unit spatial volume, is  

 ;
ˆ ˆˆ ˆ ˆa b a a

bf p e eρ= + , (10.71) 
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where the first term on the right is attributed to short range interaction of 
the polarization with the electric field8 (Toupin 1956; Tiersten 1971), and 
the second term arises from static Lorentz forces acting on non-vanishing 
free charges.  From (10.46), (10.49), and (10.52), and assuming sufficient 
differentiability of the spatial electric field and spatial polarization, body 
force ˆ( , )x tf  can be expressed as the divergence of a rank two contravari-
ant tensor known as the Maxwell stress ˆ ( , )x tτ : 

 1 10 0
0

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ( ) ( )
2 2
ε ε

ε− −= ⊗ − ⋅ = ⊗ + ⊗ − ⋅τ e d e e g e p e e e e g , (10.72) 

or in index notation, 

 0 0
0

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 2

ab a b c ab a b a b c ab
c ce d e e g e p e e e e gε ε

τ ε= − = + − , (10.73) 

with spatial divergence 

 
[ ]

0 0
; ; ; ;

;
; 0 ;

;
; 0 ; 0 ;

; ;
; 0

;
; 0

ˆˆ ˆ ˆ ˆ ˆ ˆ( )
2 2

ˆ ˆˆ ˆ ˆ ˆ     
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ     

ˆˆ ˆ ˆ ˆ ˆ ˆ     ( )
ˆ ˆˆ ˆ ˆ ˆ     

    

ab a b c ab c ab
b b b c c b

b a b a a b
b b b

b a b a b a a b
b b b b

b a a b b a a
b b

abb a a
b b

e d e e g e e g

d e e e e d

p e e e e e e d

p e e e e e

p e e e

ε ε
τ

ε

ε ε

ε ρ

ε φ ρ

= − −

= − +

= + − +

= + − +

= − +

; ˆˆ ˆ ˆ 
ˆ     .

b a a
b

a

p e e

f

ρ= +

=

 (10.74) 

With the inclusion of electrostatic body force f̂ , the global balance of lin-
ear momentum for dielectric solids, which replaces (4.15)-(4.16), is9 

                                                      
8 Physically, let the electric polarization vector be defined as ˆ a ap rρδ= � , where 

ρ�  is a bound, partial charge density (e.g., associated either with ions of the crystal 
lattice or with bound electrons) and arδ  a (microscopic) dipole separation vector 
(Tiersten 1971; Tiersten and Tsai 1972).  The force contribution from the first 
term on the right in (10.71) is then ; ;

ˆ ˆ ˆ ˆ ˆ ˆ ˆa a b a a b a
b bf e p e e r eρ ρ δ ρδ− = = =� � . 

9 Though curvilinear coordinates are used throughout Chapter 10 for generality, 
Cartesian indices are implied for integral equations involving vector and tensor 
fields.  Alternatively, following Toupin (1956) and the discussion in Section 3.2.5, 
all quantities entering a vector-valued integrand could be parallel transported to a 
single point using the shifter, and the resultant integral evaluated at that point. 
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;

ˆ( )

ˆ                 ( ) ,

a a a a

v s v

ab a a
b

v

d v dv t ds b f dv
dt

b f dv

ρ

σ

= + +

= + +

∫ ∫ ∫

∫
 (10.75) 

with a ab
bt nσ=  the mechanical traction vector and bn  covariant compo-

nents of the unit outward normal to surface s.  The Cauchy stress is de-
noted by ( , )x tσ , and ( , )x tb  is the mechanical body force per unit current 
volume as introduced in (4.15).  In application of the divergence theorem 
in the second equality of (10.75), the Cauchy stress is assumed to exhibit 

1C -continuity within v.  Noting from (10.74) and the distributive property 
of the covariant derivative that 

 ; ; ; ;

; ; ; ;

ˆ ˆˆ ˆ ˆ( )

ˆ ˆ              ( ) ,

ab a ab b a a
b b b b

ab ab ab ab ab
b b b b

f p e e

T

σ σ ρ

σ τ σ τ

+ = + +

= + = + =
 (10.76) 

and using Reynolds transport theorem (4.14), the local form of linear mo-
mentum balance (10.75) can be written as 

 ;
ab a a
bT b aρ+ = , (10.77) 

where ( , ) ( , )a aa x t v x t= �  is the spatial acceleration of (2.173) and ( , )abT x t  
are contravariant components of the total stress tensor: 

 ˆ= +T σ τ , ˆab ab abT σ τ= + , (10.78) 
i.e., the sum of the Cauchy and Maxwell stresses.  Because electric field 
and electric polarization vectors may exhibit jump discontinuities in direc-
tions normal to surface s, electromechanical traction boundary conditions 
are 

 

ˆ

ˆ ˆ    

    ,

a ab a ab
b b

ab ab ab
b b b

ab a
b

T T n t n

n n n

n t

τ

σ τ τ

σ

−

− − +

+ +

= = −

= + −

= =

c fd ge h
 (10.79) 

where ( , )aT x t  are components of the net applied traction (Toupin 1956), 
which can be assigned as a aT t+=  (Tiersten 1971) as indicated in the final 
equality.  From (10.79), the total traction continuity condition can also be 
expressed 

 
ˆ ˆ( )

ˆ             0.

ab ab ab ab ab
b b

a ab
b

T n n

t n

σ σ τ τ

τ

+ − + −= − + −

= + =

c fd ge h
c f c fd g d ge h e h

 (10.80) 

Traditional continuity of the mechanical traction vector t in the context of 
Cauchy’s theorem (4.3) is recovered when the Maxwell stress is continu-
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ous normal to s, i.e., ˆ 0ab
bnτ =c fd ge h  leads to 0at =c fd ge h .  As was the case in 

Chapter 4, shock waves associated with discontinuities in particle velocity 
have not been considered in (10.77) and (10.80). 

Electromechanical body force f̂ of (10.71) and (10.74) likewise enters 
the balance of moment of momentum, along with an additional moment 
contribution attributed to interaction between electric polarization and 
electric field10 (Toupin 1956; Tiersten 1971).  Traditional angular momen-
tum balance (4.23) is replaced with the following for dielectric solids:   

 
ˆ ˆ ˆ                              .

b c b c b c
abc abc abc

v v s

b c c b
abc abc

v v

d x v dv x b dv x t ds
dt

x f dv e p dv

ε ρ ε ε

ε ε

= +

+ +

∫ ∫ ∫

∫ ∫
 (10.81) 

Application of the divergence theorem and Reynolds transport theorem 
(4.14) along with (10.74) leads to  

        ; ˆ( ) ( )b c c cd cb c b cb
abc d abc

v v

x a b T dv v v dvε ρ ε σ ρ τ− − = + +∫ ∫ . (10.82) 

The left side of (10.82) vanishes by linear momentum balance (10.77), and 
the second term in the integrand on the right vanishes from the natural 
symmetry of the dyad ⊗v v .  The local balance of angular momentum is, 
from the remaining terms in (10.82), 

 
( )

[ ] [ ] [ ]

ˆ( ) 0 ,

ˆ ˆ ˆ ,

abcb cb cb ab ba
abc abc

ab ba b a

T T T T

e p

ε σ τ ε

σ τ

+ = = ⇔ = =

= =
 (10.83) 

meaning that total stress tensor T of (10.78) is symmetric, but the Cauchy 
stress tensor σ  entering (10.75) need not be, for example, when spatial 
electric field and electric polarization vectors are not parallel.  The final 
equality in (10.83) follows from the skew part of (10.73).  In non-polarized 
media, [ ]ˆ ˆ 0a be p = , implying that the classical balance of angular momen-
tum [ ] 0abσ =  of (4.26) applies in the non-polar case.  However, even if not 
polarized, if a material supports both an electric field and a non-vanishing 
free charge density, the balance of linear momentum (10.77) will be af-
fected by the contribution of the product of charge density and electric 
field in (10.74).  In vacuum, the Cauchy stress vanishes, and linear mo-
mentum balance (10.77) reduces to ;

ˆˆ 0ab a
b fτ = = , satisfied identically since 

polarization and free charge density vanish by definition in vacuum. 

                                                      
10 Physically, let ˆ a ap rρδ= �  again.  Then the moment contribution from the 

rightmost term in (10.81) is the vector cross product ˆ ˆ ˆδ ρ× = ×p e r e� . 
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10.2.4 Energy Conservation 

A number of methods, some similar and others very different11, have been 
set forth to account for energy conservation in dielectric solids (Devon-
shire 1954; Toupin 1956, 1963; Eringen 1962, 1963; Lax and Nelson 
1971; Tiersten 1971; Tiersten and Tsai 1972; Maugin 1978a, b, 1988; 
Chowdhury et al. 1979; McMeeking and Landis 2005; Vu and Steinmann 
2007; Clayton 2009b).  Variational principles akin to those of Section 5.6 
can provide insight into field equations and boundary conditions for static 
and non-dissipative processes (Toupin 1956; Eringen 1962, 1963), while 
rate forms of the energy balance are useful for situations involving me-
chanical inertia and dissipation (Tiersten 1971; McMeeking et al. 2007; 
Clayton 2010b).  Prescribed here is a global balance among time rates of 
internal energy, kinetic energy, external work, and heat input: 

 ( )d
dt

+ = +E K P Q , (10.84) 

with contributions from kinetic energy K  and extrinsic thermal (heat) en-
ergy rate Q  given by 

 
2v

dvρ
= ∫ v viK , (10.85) 

 ,
v s

rdv dsρ −= −∫ ∫ q nQ , (10.86) 

and where a dielectric body occupying spatial volume v with oriented sur-
face element nds is considered.  Field variables are assumed to exhibit 
continuous space-time derivatives of sufficiently high order within v to en-
able use of Maxwell’s equations (10.49) and (10.52), momentum balances 
(10.77) and (10.83), and the divergence theorem for conversion from sur-
face to volume integrals.  Electric field and electric polarization may ex-
hibit finite jumps normal to external surface s.  In the present thermody-
namic analysis, the dielectric body is treated as an open region, meaning 
that surface terms are evaluated as s is approached from the inside of the 
body.  In (10.86), scalar ( , )r x t  denotes sources of heat energy per unit 
mass as introduced in (4.32), and ( , )x tq  is the heat flux vector presumed 
continuous normal to interfaces, i.e., 0a

aq n =c fd ge h  and a a
a aq n q n+ −=  along 

s (Tiersten 1971).   

                                                      
11 Similarities and differences among the present theory and other geometrically 

nonlinear treatments of electromechanics of dielectric solids from the literature are 
discussed in Section 10.3.7. 
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Thermodynamic relations (10.84)-(10.86), to this point, are identical to 
(4.28), (4.30), and (4.32).  However, the total internal energy and rate of 
external working in a dielectric solid differ from those of classical contin-
uum mechanics given in (4.29) and (4.31), respectively.  For a dielectric 
solid, or more generally a body with nonzero electric field, the total inter-
nal energy is defined by 

 0 ˆ ˆ
2v v

edv dvερ= +∫ ∫e eiE . (10.87) 

The first term on the right accounts for the (stored) internal energy of the 
material body, denoted locally per unit mass by ( , )e x t .  The second term 
on the right side of (10.87) represents the potential energy of the electric 
field that permeates the body and underlying vacuum, often called the 
aether.  The combined electromechanical rate of working on the right side 
of (10.84) is defined as (Clayton 2009b) 

            ˆ ˆ ˆˆ ˆ( ) .
s v s v v

ds dv ds dv dvωφ ρφ Ω= + + + + +∫ ∫ ∫ ∫ ∫t v b f v � �i iP  (10.88) 

The first term on the right of (10.88) accounts for the mechanical traction, 
the second term accounts for body forces, the third term accounts for the 
work done by the surface charge density, and the fourth for the work of the 
bulk (volume) charge density.  The final term is prescribed in part such 
that throughout all space (i.e., within both moving dielectric and vacuum) 
the balance of energy is satisfied identically: 

 

,0
, , , ;

0
; ;

ˆ ˆˆ ˆ ˆ ˆ
2

ˆ ˆˆ ˆ ˆ ˆ ˆ   ( ) ,
2

a a a b
a a a b

a b a a b
a a b a a b

d d v

e d e e v d e e v

ε
Ω φ φ φ φ

ε

= − + +

= − + +

� �

� �
 (10.89) 

where application of the chain rule, (2.176), and (10.49) yields the identity  

 
1 1 1

, . , . , .

1 1
, , . . . , , ;

ˆ ˆ ˆˆ ( )

ˆ ˆ ˆ ˆ   .

A A A
a A a A a A a

A b B b
a A b B a a b a

de F F F
dt

F F F v

φ φ φ

φ φ φ φ

− − −

− −

= − = − −

= − + = − +

�� �

� ��
 (10.90) 

Substituting (10.85)-(10.89) into (10.84) and then converting all surface 
integrals to volume integrals using the second of (10.56) and the diver-
gence theorem, the global balance of energy becomes  



502      10 Dielectrics and Piezoelectricity 

         

0
;

; ; ;

,0
, ; ; ,

ˆˆ ˆ ˆ ˆ ˆ
2

ˆ( )  ( )

ˆ ˆˆ ˆ ˆˆ ˆ ˆ( ) .
2

a a a a b
a a a a b

v v v v v

b ab ab a a
b b a a b a

v v s v

a a b b a
a a b a b a a

v v v

edv v v dv e p dv e d dv e e v dv

rdv q dv v v dv b f v dv

e d dv v dv e e v d dv

ε
ρ ρ

ρ σ σ

ε
φ φ φ

⎡ ⎤
+ − + + =⎢ ⎥

⎣ ⎦
⎡ ⎤

− + + + +⎢ ⎥
⎣ ⎦

+ + + + +

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

��� �

� ��

 (10.91) 

The integrand of the last term on the right side of (10.91) vanishes identi-
cally from (10.90).  Terms in square braces vanish identically in vacuum, 
and the remaining terms not in square braces cancel.  Collecting the terms 
in braces, localizing the result, and applying (10.76) gives 

       ; ; ; ˆ ˆ( )ab a a ab a a
b a a b a ae T b v v v q r e pρ ρ σ ρ= + − + − + + �� � . (10.92) 

Then after using (2.176) and (10.77), the local balance of energy for di-
electric solids in the quasi-electrostatic approximation remains: 

 ˆ ˆ, , ,Te rρ ρ= − ∇ + +
g

σ L q e p�� , (10.93) 

or in index notation, 
 ; ˆ ˆab a a

ab a ae L q r e pρ σ ρ= − + + �� . (10.94) 
Notice that (10.93)-(10.94) differ from the traditional energy balance for 

non-polar continua, (4.34)-(4.35), in two ways.  Firstly, from (10.83), the 
Cauchy stress is not necessarily symmetric in (10.93)-(10.94), so that the 
spin (i.e., the skew part) of L can contribute to the local stress power 

;, T ab ab
ab a bL vσ σ= = =σ L σ : L .  Secondly, the final term on the right 

side of (10.94) is absent in non-polarized solids12.  Recall also that in the 
present Section, along the lines of previous theories for dielectric media in 
the quasi-electrostatic approximation (Tiersten 1971; Chowdhury et al. 
1979; McMeeking et al. 2007), purely mechanical dynamic effects are 
considered (i.e., finite spatial velocity of the material v), but electrodynam-
ics are not.  Explicit contributions to the balance of energy from fluxes of 
free electrons/holes that may result in Joule heating in conductors (those 

                                                      
12 Physically, let ˆ a ap rρδ= �  as in previous footnotes.  Then the rightmost con-

tribution to (10.94) is ˆˆ ˆ ˆa a
a ae p e rρ δ ρδφ= +� �� �� , where ˆ a

ae rρ δ� �  is the scalar product 

of Lorentz force density ˆaeρ�  and effective charge velocity arδ � , and ˆ ˆ a
ae rδφ δ=  

is an effective potential work conjugate to the rate of change of effective charge 
density ρ�  associated with polarization.  Such developments ultimately provide 
additional physical motivation for the definition of Ω  introduced in (10.89). 
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with non-negligible electrical resistance) or semiconductors, for example, 
are not included in the present version of the energy balance (10.94).  
However, the rightmost term of (10.94), when (10.43) applies, does pro-
vide a contribution from the electric displacement current ˆai : 

0 0 ; 0 ;

,

0 ; , , ; 0

ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )

ˆˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ       .

a a
a a a a a b

a a a b b

a a
a a b a a b

a a a b a a b

d ee p e d e e d e v
t t

ee i e e p v i p v
t t

ε ε ε

φε φ φ ε

⎡ ⎤∂ ∂⎡ ⎤= − = − + −⎢ ⎥⎢ ⎥⎣ ⎦ ∂ ∂⎢ ⎥⎣ ⎦
⎛ ⎞∂ ∂

= − + = − − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

�� �

 (10.95) 

Notice that the electric displacement current density is work conjugate to 
the spatial electric field in (10.95). 

10.2.5 Entropy Production 

The global form of the Clausius-Duhem inequality is written as in (4.57) of 
Chapter 4 (Tiersten 1971): 

 
,

v v s

d rdv dv ds
dt

ρρη
θ θ

−

≥ −∫ ∫ ∫
q n

, (10.96) 

where η  is the entropy per unit mass and 0θ >  is the absolute tempera-
ture.  Application of the divergence theorem and differentiation of the 
Helmholtz free energy per unit mass eψ θη= −  provides a local form of 
(10.96), identical to (4.63): 

 1
; ,( ) 0a a
a ae r q qρ ψ θη θ θ−− − − + − ≥��� . (10.97) 

The local entropy inequality following from insertion of (10.94) into 
(10.97) is 

 1ˆ ˆ, , ( ) , 0T ρ ψ θη θ
θ

+ − + − ∇ ≥
g

σ L e p q� �� , (10.98) 

or in index notation, using (10.83), 
 ( ) [ ] 1

,ˆ ˆ ˆ ˆ ( ) 0a bab a a
ab ab a aD e p W e p qσ ρ ψ θη θ θ−− + − + − ≥� �� . (10.99) 

The covariant velocity gradient L is decomposed in (10.99) into a symmet-
ric part D and skew part W, as formally defined in Section 2.6.3.  In the 
non-polar case, Maxwell’s stress is symmetric and [ ]ˆ 0baτ = , so that in non-
polarized media, the skew spin tensor [ ],ab a bW v=  does not contribute to the 

dissipation inequality (or, for that matter, the energy balance (10.94)).  
Moreover, for permanently non-polarized materials, the rate of electric po-
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larization ˆ 0ap =� , and (10.99) reduces to the familiar dissipation inequality 
(4.64) of Section 4.2.2. 

10.3 Elastic Dielectric Solids 

Recall that a dielectric material by definition is able to exhibit electric po-
larization when immersed in an electric field.  Conductors such as typical 
metals, on the other hand, are not dielectrics since they cannot exhibit elec-
tric polarization.  In contrast to a dielectric whose charges are primarily 
bound and hence may contribute to electric polarization, in a conductor the 
majority of charges are mobile and give rise to electric current when im-
mersed in an electric field.  Examples of dielectric crystalline solids (i.e., 
insulators) include the alkali halides, quartz, topaz, Rochelle salt, and 
many engineering ceramics, including those with a perovskite structure 
such as barium titanate and lead titanate.  Piezoelectrics, pyroelectrics, and 
ferroelectrics are classified as subsets of dielectric materials.  Semiconduc-
tors can be treated within the framework of Section 10.3 under conditions 
wherein electrodynamic effects (e.g., dissipative free electric current) are 
negligible.  Examples of semiconductors include gallium arsenide, germa-
nium, selenium, silicon, and silicon carbide.  In what follows in Section 
10.3, and as noted in Section 10.1.2, no attempt is made here towards con-
struction of a Galilean or Lorentz invariant constitutive theory.  

10.3.1 Constitutive Assumptions 

Elastic dielectrics considered in the present Section, by definition, exhibit 
negligible contributions to their deformation from defects.  Possible effects 
of defects on mechanical properties are also not addressed explicitly.  Such 
materials obey the Cauchy-Born hypothesis of Section 3.1.2 (Born and 
Huang 1954; Ericksen 1984): both the material and the primitive Bravais 
lattice vectors of the crystal structure deform via the deformation gradient 

( , )X tF  of (2.112).  Under a homogeneous deformation in the sense of 
Born and Huang (1954), a polarized dielectric may also exhibit a relative 
translation among different atomic species (e.g., positively and negatively 
charged ions) comprising the basis of the crystal structure.  As remarked in 
Section 3.1.2 and Section B.2.3 of Appendix B, in non-centrosymmetric 
crystals with a basis, additional inner displacements—not associated with 
electric polarization—among atoms are also possible under macroscopi-
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cally homogeneous deformation F.  As in classical nonlinear thermoelas-
ticity, the deformation gradient for elastic dielectric solids obeys (5.1): 

 = LF F , . ., . . .
a a La La
A A A AF x F g Fα

α= = = , (10.100) 
meaning that lattice deformation gradient LF  and total deformation gradi-
ent F coincide.  Mass conservation law (4.10) is then 

 0 / detLJ J g Gρ ρ ρ ρ= = = F , 0LJ J= > . (10.101) 
Henceforward in Section 10.3, the superscript L is omitted from the de-
formation gradient and its Jacobian determinant without consequence, par-
alleling the treatment of nonlinear thermoelasticity of Section 5.1. 

Constitutive response functions analogous to (4.45)-(4.49) are assumed 
to exhibit the following dependencies, prior to consideration of objectivity 
and material symmetry requirements: 

    ˆ, , , , , AXψ ψ θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g

F p G , ( ). ,ˆ, , , , ,a
A a a AF p Xψ ψ θ θ= G ; (10.102) 

      ˆ, , , , , AXη η θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g

F p G , ( ). ,ˆ, , , , ,a
A a a AF p Xη η θ θ= G ; (10.103) 

   ˆ, , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g

σ σ F p G , ( ). ,ˆ, , , , ,ab ab a
A a a AF p Xσ σ θ θ= G ; (10.104) 

    ˆ, , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g

q q F p G , ( ). ,ˆ, , , , ,a a a
A a a Aq q F p Xθ θ= G ; (10.105) 

      ˆ ˆ ˆ, , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

g

e e F p G , ( ). ,ˆ ˆ ˆ, , , , ,a a a
A a a Ae e F p Xθ θ= G . (10.106) 

Constitutive assumptions (10.102)-(10.106) differ from the constitutive as-
sumptions of nonlinear thermoelasticity in (5.2)-(5.5) via the addition of 
the spatial polarization (covariant) vector ˆ ( , )x tp  to the list of independent 
state quantities and the spatial electric field vector ˆ( , )x te  in the list of de-
pendent response functions. 

Use of a version of the polarization as an independent variable and a 
version of the electric field as a dependent variable follows general 
schemes of Devonshire (1954), Toupin (1956), Eringen (1962, 1963), 
Tiersten (1971), and Shu and Bhattacharya (2001). However, the alterna-
tive choice of electric field as independent variable and electric polariza-
tion as dependent variable is also possible (Maugin 1988; Dorfmann and 
Ogden 2005; Vu and Steinmann 2007).  Furthermore, via use of (10.46), 
electric displacement ˆ ( , )x td  could be used as a substitute for either of the 
electric field or polarization vectors in the thermodynamic potentials, as il-
lustrated by Thurston (1974).  Use of the polarization as an independent 
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state variable for a dielectric material seems most natural since electric po-
larization vanishes, by definition, outside matter, in contrast to the electric 
field or electric displacement, either of which can exist in vacuum.  How-
ever, in experiments, the electric field or electric displacement may be eas-
ier to control than the polarization, via application of short-circuit or open-
circuit boundary conditions, for example (Bond et al. 1949; Graham 1972).  
Thus, transformation formulae are required to relate coefficients measured 
experimentally at constant electric field or constant electric displacement 
to those defined at constant polarization, as discussed later in Section 
10.3.3.  Regardless of the choice of independent and dependent electrical 
field variables, frame indifferent theories quoted above and in what fol-
lows are necessarily formulated in terms of objective transformations of 
spatial electric polarization, electric field, and electric displacement.  

Consider rigid body motions of the form ˆ→ +x Qx c , where 
ˆ ˆ( ) ( )Tt t−=Q Q  is a spatially constant rotation tensor with ˆdet 1= +Q  and 
( )tc  is a spatially constant translation vector.  Under such motions, the fol-

lowing transformations listed in (5.6) apply: 
   . . .

ˆa a b
A b AF Q F→ , . .

ˆ ˆab a cd b
c dQ Qσ σ→ , .

ˆa a b
bq Q q→ , , ,

.
ˆa a b

bQθ θ→ , (10.107) 
along with the following vector transformations of spatial electric field and 
polarization that apply in the non-relativistic or quasi-electrostatic limit: 

 a a b
.b

ˆˆ ˆe Q e→ , a a b
.b

ˆˆ ˆp Q p→ . (10.108) 
On the other hand, the referential polarization and electric field vectors of 
(10.60) and (10.69) are invariant under such rigid body motions: 

 ˆ ˆˆ ˆˆ ˆT T T= → =E F e F Q Qe E , ˆ ˆˆ ˆˆ ˆT T T= → =P F p F Q Qp P , (10.109) 
and thus are valid candidates for use in frame-indifferent constitutive rela-
tions.  Analogously to (5.15)-(5.18), the following objective forms of 
(10.102)-(10.106) are suggested: 

  ˆ, , , , , AXψ ψ θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
E P G  , ( ),

ˆ, , , , ,AB A A AE P Xψ ψ θ θ= G ; (10.110) 

    ˆ, , , , , AXη η θ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
E P G , ( ),

ˆ, , , , ,AB A A AE P Xη η θ θ= G ; (10.111) 

ˆ, , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
Σ Σ E P G , ( ),

ˆ, , , , ,AB AB
AB A A AE P XΣ Σ θ θ= G ; (10.112) 

 ˆ, , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
Q Q E P G , ( ),

ˆ, , , , ,A A
AB A A AQ Q E P Xθ θ= G ; (10.113) 

  ˆ ˆ ˆ, , , , , AXθ θ⎛ ⎞= ∇⎜ ⎟
⎝ ⎠

G
E E E P G , ( ),

ˆ ˆ ˆ, , , , ,A A
AB A A AE E E P Xθ θ= G ; (10.114) 
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where the right Cauchy-Green strain tensor of (2.156) and second Piola-
Kirchhoff stress of (4.7) are, respectively, 

 1 ( )
2AB AB ABE C G= − , 1 1

. .
AB A ab B

a bJF FΣ σ− −= . (10.115) 

The referential heat flux vector of (4.36), and the referential temperature 
gradient of (4.51), are respectively, 

 1
.

A A a
aQ JF q−= , , , .

a
A a AFθ θ= . (10.116) 

As noted in Section 5.1, each of the quantities in (10.115) and (10.116) is 
referred to a reference coordinate system and is invariant under rigid body 
motions of the spatial frame (see e.g., (4.50)-(4.51) and (5.19)).  Notice 
that in contrast to the second of (4.27), the second Piola-Kirchhoff stress is 
not necessarily symmetric in polarized dielectric solids, since by (10.83),  

       
[ ] [ ] [ ]

[ ] [ ] [ ]

1 1 1 1
. . . .

1 1 1 1 1 1
. . . . . .ˆ ˆ ˆ ˆ ˆ        .

AB A B abab A B
a b a b

ba b a A BA B A B a b
a b a b a b

JF F JF F

JF F JF e p F JF p e F

Σ σ σ

τ

− − − −

− − − − − −

= =

= = =
 (10.117) 

The rationale for inclusion of particular independent state variables in 
(10.110)-(10.114) is now discussed.  Reasoning behind inclusion of all 
variables except polarization is given in Section 5.1.1, following (5.2)-
(5.5).  Succinctly, dependence on strain provides for the elastic strain en-
ergy of a crystal, e.g., internal energy and forces associated with changes 
in interatomic bond lengths and angles.  Temperature is incorporated to 
account for the specific heat capacity of the material as well as thermoelas-
tic effects such as thermal expansion.  Temperature gradients permit con-
duction laws such as Fourier-type relations (4.62) or (4.69); however, the 
thermodynamic analysis that follows in Section 10.3.2 will eliminate the 
dependence on temperature gradient from all response functions except the 
heat flux.  Material position X permits a dependence of properties on loca-
tion in a heterogeneous specimen, while reference basis vectors ( )A XG  
are included to denote a specific relationship between the reference coor-
dinate system and orientation of the Bravais lattice used to describe anisot-
ropic material properties (Eringen 1962, 1963).  Incorporation of the po-
larization and electric field as independent and dependent variables, 
respectively, enables description of the stored electrostatic field energy of 
a dielectric or electrical insulator (e.g., a capacitor).  Couplings among po-
larization and strain or temperature in the thermodynamic potentials enable 
description of other physical phenomena observed in dielectric crystals 
such as piezoelectricity, pyroelectricity, and electrostriction.  Following 
the same arguments given in Section 5.1.1, inner displacements (i.e., inter-
nal displacements) not associated with electric polarization are not viewed 
as independent state variables because inner displacements are assumed 
obtainable (e.g., via energy minimization of the crystal structure) when the 



508      10 Dielectrics and Piezoelectricity 

independent state variables are known; in polyatomic dielectric crystals, 
inner displacements and electric polarization may be strongly coupled 
since both can involve relative translations of atoms comprising sub-
lattices. 

10.3.2 Thermodynamics 

The governing equations presented in Section 10.2—Maxwell’s equations 
in the quasi-electrostatic approximation, balances of linear and angular 
momentum, the balance of energy, and the dissipation inequality—are 
deemed valid for elastic dielectric solids under conditions considered pres-
ently in Section 10.3.  The stress power entering (10.94) and (10.98) can 
be written  

 1 1 1 .
. . .( )ab A cb a A a

ab b ac A a AL J JF g F J P Fσ σ− − −= =� � , (10.118) 
where ( , )X tP  is the first Piola-Kirchhoff stress: 

 1
.

aA ab A
bP J Fσ −= . (10.119) 

Expanding the time derivative of the free energy using (10.110) gives 

 0AB A A
AB ,AA

ˆE PˆE P
ψ ψ ψ ψψ θ γ

θ θ
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂∂

� ��� , (10.120) 

where from (4.66) and (5.29), 

    0 . . , . , , ; , . , .( ) ( )a a a b a a
A A a A a A a b a a A a A

dF F F v F F
dt

γ γ θ θ θ θ θ= = = − = −� � � . (10.121) 

From the chain rule, (10.69), and (10.115), 

   a
AB .B aA

AB AB

E F F
E E
ψ ψ∂ ∂

=
∂ ∂

� � , a a
A aA .A a

A A A

ˆ ˆ ˆP p F F pˆ ˆ ˆP P P
ψ ψ ψ∂ ∂ ∂

= +
∂ ∂ ∂

� �� . (10.122) 

Substitution of (10.118)-(10.122) into dissipation inequality (10.98) then 
leads to 

1 1
. .

1 1
0 ,

,

ˆ ˆ ˆˆ ˆ

            0.

aA a Ba a a
B B aA A a

AB A A

A
A A

A

J P F P F F e F p
E P P

J Q

ψ ψ ψρ ρ ρ

ψ ψρ η θ ρ γ θ θ
θ θ

− −

− −

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂⎛ ⎞− + − − ≥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

��

�
 (10.123) 

Invoking arguments similar to those used in the Coleman-Noll procedure 
(Chowdhury et al. 1979; McMeeking et al. 2007; Clayton et al. 2008a; 
Clayton 2009b) and analogous to those following (5.22), thermodynamic 
admissibility is ensured if coefficients (in parentheses) of time rates of F , 
p̂ , and θ , and the coefficient of 0γ , all vanish identically in (10.123), 
leading to the following constitutive equations: 
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1
.

. . .

ˆˆ ( )ˆ ˆ ˆ ˆˆ ˆ ˆ

B
a a a ab b B

A A A
b b aA A A

p F Pe F F F
p p pP P P

ψ ψ ψ ψρ ρ ρ ρ
−∂ ∂∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂∂ ∂ ∂

, (10.124) 

         1
0 .

ˆ
ˆ

aA a Ba
B B

BA A

P F F P
E P
ψ ψρ −⎛ ⎞∂ ∂

= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
, ψη

θ
∂

= −
∂

, 
,

0
A

ψ
θ
∂

=
∂

. (10.125) 

It follows from the third of (10.125) that free energy, entropy, stress, and 
electric field do not depend explicitly on the temperature gradient: 

        ( )ˆ, , , ,AB A AE P Xψ ψ θ= G , ( )ˆ, , , ,AB A AE P Xη η θ= G , (10.126) 

( )ˆ, , , ,AB AB
AB A AE P XΣ Σ θ= G , ( )ˆ ˆ ˆ, , , ,A A

AB A AE E E P Xθ= G . (10.127) 

The electric field referred to the reference configuration is, from the first of 
(10.124) and definition (10.60), 

 .
ˆ ˆ ˆ ˆ

a a
A aA aA B AB

B B

E F e F F C
P P
ψ ψρ ρ∂ ∂

= = =
∂ ∂

. (10.128) 

Substituting (10.124) into the first of (10.125), the first Piola-Kirchhoff 
stress is computed as 

     1 1 1
0 . . 0 . .

ˆ ˆ ˆ ˆaA a Ba A b a a b A
B B b B b

BA BA

P F F P JF e F Jp e F
E E
ψ ψρ ρ− − −∂ ∂

= + = +
∂ ∂

. (10.129) 

From (10.115) and (10.119), second Piola-Kirchhoff and Cauchy stresses 
become, respectively, 

              

1 1 1 1
. 0 . .

1 1
0

ˆ ˆ

ˆ ˆ      ,

AB A aB A Ca B b
a a C b

AB

AC BD
C D

AB

F P JF F P F e
E

JC P C E
E

ψΣ ρ

ψρ

− − − −

− −

∂
= = +

∂
∂

= +
∂

 (10.130) 

   

1 1 1 1
. 0 . . . .

. .

ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ     2 2 .

ab aB b a b a c B b
B C B c B

CB

a b a b a b
C B

CB ab

J P F J F F J Jp e F F
E

F F p e p e
C g

ψσ ρ

ψ ψρ ρ

− − − −∂
= = +

∂
∂ ∂

= + = +
∂ ∂

 (10.131) 

The second terms on each of the right sides of (10.130) and (10.131) ac-
count for possibly non-symmetric parts of the second Piola-Kirchhoff and 
Cauchy stress tensors.  These terms arise from nonlinear electromechanical 
interactions.  Since the spatial metric tensor is symmetric by definition, 

[ ] 0abg = , and consistency of skew-symmetric parts of (10.131) and the 

Maxwell stress entering (10.83) is revealed by  

 [ ]

[ ]

[ ] [ ] [ ] [ ]2ab a b a b b a ba

ab

ˆ ˆ ˆ ˆ ˆ ˆ ˆp e p e e p
g
ψσ ρ τ∂

= + = = =
∂

. (10.132) 
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Combining (10.72) and (10.131), the symmetric total stress of (10.78) for 
an elastic dielectric solid becomes  

 10
0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ( )

2
εψρ ε −∂

= + ⊗ + ⊗ + ⊗ − ⋅
∂

T p e e p e e e e g
g

. (10.133) 

The first term on the right of (10.133) is recognizable as the Doyle-
Ericksen formula for hyperelastic solids (Doyle and Ericksen 1956; Mars-
den and Hughes 1983), as appearing in (5.36).  The final two terms on the 
right side of (10.133) can contribute to electrostriction, even in non-
polarized solids. 

From (10.124) and (10.125), the local entropy production rate of (4.61) 
vanishes identically in an elastic dielectric: 

 ; ; ( )

ˆ ˆ      0,

a a
L a a

ab a
ab a

q r e q r

L e p

θΓ ρθη ρ ρ ψ θη ρ

σ ρψ ρθη

= + − = − − + −

= + − − =

�� ��
� ��

 (10.134) 

leaving the conduction inequality 

 ,
1 0A

C AJ J QθΓ θΓ θ
θ

= = − ≥ . (10.135) 

When a referential version of Fourier’s Law applies such as in (5.48), then 
 ,

A AB
BQ K θ= − , , , , 0A AB

A A BQ Kθ θ θ− = ≥ , (10.136) 
where the thermal conductivity ( , )X tK  is presumed symmetric and posi-
tive semi-definite. 

The local energy balance is now revisited.  The specific heat capacity c 
at constant strain and polarization is introduced, from (10.125) satisfying 

   
( )

ˆ,

2

2
ˆ,

 .

e ec η
θ η θ

ψ ψψ θη θ
η θ θ θ

∂ ∂ ∂
= =
∂ ∂ ∂

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞= + − = −⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦⎣ ⎦

E P

E P

 (10.137) 

Multiplying (10.134) by J and using (4.37) and (10.136), 

 0 0 , ; 0( )AB
B A

d K r
dt

ψρ θη θ ρ θ ρ
θ

∂⎛ ⎞= − = +⎜ ⎟∂⎝ ⎠
� . (10.138) 

Carrying out the time derivative of the temperature derivative of the free 
energy using (10.120), and substituting with (10.137), results in  

       

2 2 2

0 0 2

0

ˆ
ˆ

ˆ                         ,

AB A
AB A

AB A
AB A

d E P
dt E P

c E P

ψ ψ ψ ψθ ρ ρ θ θ
θ θ θ θ

ρ θ θβ θχ

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− = − + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

= + +

�� �

�� �
 (10.139) 

where cross-derivatives account for thermoelastic and thermoelectric cou-
pling, respectively: 
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2

0
ˆ

ψρ
θ
∂

= −
∂ ∂ P

β
E

, 
2

0 ˆ
ψρ
θ
∂

= −
∂ ∂ E

χ
P

. (10.140) 

Coefficients ABβ  are often called thermal stress coefficients, while Aχ  are 
referred to as pyroelectric coefficients.  Equating (10.138) and (10.139), a 
rate equation for the temperature emerges: 

 0 , ; 0
ˆ( ) ( )AB AB A

B A AB Ac K E P rρ θ θ θ β χ ρ= − + +�� � , (10.141) 
with the first term on the right capturing heat conduction, the second and 
third terms capturing thermomechanical and thermoelectrical couplings, 
respectively, and the final term capturing non-mechanical sources of heat 
energy.  In the absence of pyroelectric effects, (10.141) is identical to 
(5.51) of traditional, non-polar thermoelastic solids. 

10.3.3 Material Coefficients 

Partial derivatives of thermodynamic or thermostatic potentials with re-
spect to field variables enable definitions of various material coefficients.  
Thermostatic relationships along the lines of those discussed in Section 5.2 
can be constructed, as discussed by Thurston (1974).  The number of pos-
sible material coefficients becomes immense, however, because any of 
electric field, electric displacement, or electric polarization can be held 
fixed during differentiation of a given energy potential, as can temperature 
or entropy and strain or stress.  A number of material coefficients encoun-
tered in practical applications are defined in what follows in Section 
10.3.3.  A complete list of interrelationships among all possible coeffi-
cients for thermoelastic dielectric solids is beyond the scope of the present 
Section; however, relationships among other material coefficients not 
listed here may be derived following procedures similar to those used in 
the forthcoming examples.  

Second- and third-order elastic coefficients at fixed electric polarization 
can be defined as partial derivatives of the Helmholtz free energy of 
(10.126) as, respectively, 
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Recall from definitions in (4.9) that the Helmholtz free energy per unit ref-
erence volume is 0 0( , )X tΨ ρ ψ= .  Coefficients in (10.142)-(10.143) are 
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called isothermal tangent moduli when evaluated at particular values of the 
state variables.  Owing to their definitions, these coefficients exhibit the 
same symmetries as those listed in (5.57) and (5.58): ABCD^  consists of up 
to 21 independent entries and ABCDEF^  consists of up to 56 independent 
entries. 

Second- and third-order derivatives of free energy density with respect 
to material polarization at fixed strain and temperature lead to the follow-
ing coefficients, labeled isothermal inverse dielectric susceptibilities: 
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The following symmetry relations emerge naturally: 
 AB BAΛ Λ= , ABC ACB BACΛ Λ Λ= = , (10.146) 

implying ABΛ  consists of at most 6 independent entries and ABCΛ  at most 
10 independent entries. 

The following mixed derivatives, at constant temperature, of free energy 
density with respect to strain and polarization give rise to electromechani-
cal coupling: 
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From (10.147), second-order piezoelectric coefficients consist of up to 18 
independent entries: 

 ABC ACB∆ ∆= . (10.150) 
Symmetry properties of mixed third-order coefficients can be deduced 
straightforwardly; ABCD∆  of (10.148) consists of up to 36 independent co-
efficients, while ABCDE∆  of (10.149) consists of up to 63.   

Other material coefficients include the second-order thermal stress and 
pyroelectric coefficients introduced in (10.140) and the specific heat at 
constant strain and polarization of (10.137), the latter denoted on a per unit 
reference volume basis as EC : 
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None of the coefficients in (10.142)-(10.151) are necessarily constants; in-
stead, these coefficients generally may depend on state variables, position, 
and orientation of the volume element of material under consideration. 

From (10.128), the material electric field satisfies 
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 (10.152) 

which, since (10.144) is symmetric and assumed non-singular (and more 
often in dielectrics presumed positive definite), can be inverted to give 
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. (10.153) 

Then from (10.70), the dielectric permittivity tensor ABε  is defined ac-
cording to 
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 (10.154) 

where Rε  is the symmetric, dimensionless relative permittivity tensor that 
depends on the state variables, position, and orientation of the crystal ele-
ment.  In vacuum, it follows that 1

. 0A
BΛ− =  in (10.154) because . .( )A A

R B Bε δ=  
in vacuum.  Notice that symmetry conditions 1 1AB BAΛ Λ− −=  and AB BAε ε=  
apply. 

Elastic and piezoelectric coefficients are often measured as derivatives 
with respect to electric displacement or electric field as opposed to electric 
polarization (Bond et al. 1949; Thurston 1974).  First consider the second-
order piezoelectric coefficients of (10.147).  At constant strain and at con-
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stant temperature, let ˆ ˆ ˆ( )A A AP P E=  or ˆ ˆ ˆ( )A A AP P D= .  Then two additional 
sets of piezoelectric coefficients can be defined using (10.153) as 

2 2
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since from (10.154), 
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At constant strain and constant temperature, piezoelectric coefficients of 
(10.156) and (10.157) are related by 
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Following a similar procedure, higher-order piezoelectric coefficients in 
(10.148) and (10.149) can be transformed to their counterparts differenti-
ated with respect to electric field or electric displacement as follows: 
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Consider now the second-order elastic coefficients.  Letting  ˆ
ABCD
E^  de-

note tangent isothermal elastic moduli measured at constant electric field,  
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since from (2.158), (2.160), (10.147), and (10.153), 

   

ˆ ˆ ˆ, , , ,

1 1 1 0

ˆ ˆ, ,

1 1 1 1 1

ˆ ,

ˆ ˆ ˆ ˆ
0 ˆ

ˆ
      ˆ

ˆ ˆ      (2 ) .

E E E F

CD CD CDF

FGE
GE FA

CD CD A

GCD CG DB CD GBE
GE B

CD

P P P E
E E EE

P JC J C
E E P

P J C C C C E
E

θ θ θ θ

θ θ

θ

Ψ
Λ

Λ ∆

− − −

− − − − −

∂ ∂ ∂ ∂
= = +

∂ ∂ ∂∂

⎛ ⎞∂∂ ∂
= + ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ⎡ ⎤= + + −⎣ ⎦∂

P E E P

E P

E

 (10.164) 

Second-order isothermal moduli measured at fixed electric displacement 
are related to those measured at fixed electric field by (Thurston 1974) 
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Next consider the pyroelectric coefficients, which can be introduced as 
follows as cross derivatives with respect to electric field ( Aς ) or electric 
displacement ( Aι ) when the strain E is held constant: 
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Similarly, thermal stress coefficients can be introduced at fixed electric 
field: 
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and at fixed electric displacement: 
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In deriving (10.168) and (10.169), use has been made of (10.158) and 
(10.164)-(10.167) as well as the usual entropy per unit reference volume 
relationship 
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that follows from the second of (10.125). 
Specific heats can be defined with electric field or electric displacement 

held fixed as opposed to electric polarization.  The specific heat at fixed 
strain and electric field is related to that of the last of (10.151) by 
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since from the second of (10.151) and (10.153), 
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Similarly, relating specific heats at fixed electric field and fixed electric 
displacement (Thurston 1974), 
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Formulae from Section 5.2 of Chapter 5 can be used to relate isentropic 
and isothermal material coefficients when the same electric variable 
( P̂ , Ê , or D̂ ) is held constant in definitions of all relevant quantities.  For 
example, relationships among thermal stress coefficients, elastic coeffi-
cients, and thermal expansion coefficients Tα  are, from (5.161), 
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Similarly, differences between specific heats at constant stress and con-
stant strain are, from (5.165), 
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From (5.166), isentropic second-order elastic moduli are related to their 
isothermal counterparts via 
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Isentropic piezoelectric coefficients can be introduced as follows:  
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Relationships between isothermal and isentropic dielectric permittivity 
tensors and their inverses can be derived in a similar manner.  Specifically, 
differences between isothermal and isentropic dielectric coefficients at 
constant strain or stress involve the dyadic product of pyroelectric coeffi-
cients.  

Finally consider the strain derivative of the second-order dielectric per-
mittivity of (10.154) at fixed temperature.  From (2.158) and (2.160),  
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 (10.180) 

which, from (10.148), is related to third-order piezoelectric coefficients: 
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In arriving at (10.181), the first two of the following three identities have 
been used, all three of which can be derived via the chain rule (Eringen 
1962; Chowdhury and Glockner 1976): 
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As noted in Section 2.5.2 of Chapter 2, the third identity of (10.182) fol-
lows from 1

. . . ., ., ., . .,( ) / ( ) / ( ) / 0a A c a A c a c
A b C A b C b CF F F x X x xδ−∂ ∂ = ∂ ∂ = ∂ ∂ = . 

10.3.4 Representative Free Energy 

Expanding the free energy function in the first of (10.126) of a hyperelastic 
dielectric material with thermal effects in a Taylor series about a reference 
state wherein . .

a a
A AF g= , AB ABC G= , 0ABE = , ˆ 0AP = , and 0 0θ θ= >  pro-

duces the following result per unit reference volume, where material coef-
ficients corresponding to derivatives of up to order three are retained: 
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Temperature change from the reference state 0θ θ θ∆ = −  can be positive, 
zero, or negative.  The remaining quantities or material coefficients intro-
duced in (10.183) are defined as follows: 

                 ( ) ( ) ( )0 0 0 0 00,0, , , , 0AX X Y XΨ θ Ψ θ= + =G , (10.184) 
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The total free energy at the reference state is chosen as zero in (10.184) 
for convenience (implying 0 0 0( )YΨ θ= −  at each material point X), since 
from the derivations in Section 10.3.2, the dependent variables stress, elec-
tric field, entropy, and heat flux only depend on derivatives of the free en-
ergy and not its absolute value.  First-order elastic constants AB^  and di-
electric constants AΛ  are zero by definition in (10.185) and (10.186), so 
that by (10.128)-(10.133), the total stress, Maxwell stress, and electric field 
all vanish in the reference state.  Coefficients in (10.187) and (10.188) are 
referred to, respectively, as isothermal second-order elastic constants and 
isothermal third-order elastic constants at constant polarization.  Coeffi-
cients in (10.189) and (10.190) are second- and third-order isothermal, in-
verse dielectric susceptibilities.  Coefficients in (10.190)-(10.192) are sec-
ond- and third-order isothermal piezoelectric coefficients.  Stress-
temperature coefficients at constant polarization of second and third orders 
are defined in (10.194)-(10.196).  Pyroelectric coefficients of second and 
third orders are defined in (10.197)-(10.199).  Strain dependence of py-
roelectric coefficients (i.e., temperature dependence of piezoelectric coef-
ficients) is omitted in (10.183), but could be included via addition of a 
term linear in each of polarization, strain, and temperature change.  While 
coefficients in (10.187)-(10.199) depend possibly on position X in a het-
erogeneous body and orientation via ( )A XG , they are usually referred to 
as material constants because they have fixed values at each material point 
or particle at X.  Coefficients in (10.187)-(10.199) can be related to others 
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measured at the reference state using the results of Section 10.3.3 by set-
ting AB ABC G= , 0ABE = , ˆ 0AP = , ˆ 0AE = , and 0θ θ= .  The thermal part 
of the free energy 0Y  can be defined as discussed in Section 5.1.3.  Ferro-
electric behavior, e.g., spontaneous polarization below a characteristic 
temperature according to the Curie-Weiss law (Maugin 1988), is not ad-
dressed by (10.183). 

The referential electric field becomes, from (10.128) and (10.183),  
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The second Piola-Kirchhoff stress tensor becomes, from (10.130) and 
(10.183),  
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where the contribution from 0
ˆ/ BPΨ∂ ∂  is given by the term in braces in 

(10.200).  Total stress tensor T of (10.133) can then be computed from 
(10.124)-(10.131), (10.200), and (10.201) in a straightforward manner, 
noting that the Maxwell stress of (10.73) satisfies 
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Finally, the entropy per unit reference volume becomes, using (10.170), 
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10.3.5 Materially Linear Electroelasticity 

Now consider free energy polynomial (10.183) of a hyperelastic dielectric 
material with thermal effects, truncated after derivatives of second order: 
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where all terms have the same meanings as those introduced in Section 
10.3.4, 
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and the thermal energy and specific heat constant at constant strain and po-
larization are defined, respectively, as 
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For illustrative purposes, coefficients in (10.205)-(10.207) are related to 
those defined with electric field as an independent variable as follows.  
First, from (10.154), the second-order dielectric constants at the reference 
state are 

 1 1 1
0 0 ( )AB AB

AB AB AB RG Gε ε Λ Λ ε ε− − −= + ⇔ = − . (10.208) 
Then, from (10.155), piezoelectric coefficients defined with respect to 
electric field are 

 1 1
0 . .( )ABC AE DBC A A DBC

ED R D De G Λ ∆ ε ε δ ∆− − ⎡ ⎤= − = − −⎣ ⎦ . (10.209) 

From (10.163) and (10.208), second-order elastic constants at fixed elec-
tric field are related to those of (10.205) by the equalities 
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From (10.166) pyroelectric constants defined with respect to electric field 
or polarization are related by  

 1
. 0 . .( )A A B A A B
B R B Bς Λ χ ε ε δ χ− ⎡ ⎤= = −⎣ ⎦ , (10.211) 
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while from (10.168), thermal stress constants measured at fixed electric 
field and fixed polarization are related by 

    1
ˆ 0 ( )AB AB C GAB AB C GAB

GC R CG CGE Gβ β χ Λ ∆ β ε χ ε ∆− ⎡ ⎤= − = − −⎣ ⎦ . (10.212) 

Finally, specific heat constants at fixed electric field and fixed polarization 
are related by (10.171), specifically in the reference state as 

 1
ˆ 0,

A B
E ABE EC C θ Λ χ χ−= + . (10.213) 

From (10.130) and the strain derivative of (10.204), the second Piola-
Kirchhoff stress becomes 
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The first three terms on the right side of the final equality of (10.214) are 
symmetric contributions to the second Piola-Kirchhoff stress.  The first 
term on the right side accounts for materially linear hyperelasticity, the 
second term accounts for the inverse piezoelectric effect, the third accounts 
for thermoelasticity, and the final term, not necessarily symmetric when 
electric field and electric polarization are not parallel, is a nonlinear elec-
tromechanical effect.   

From (10.128) and (10.204), the referential electric field is 
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The first term on the right side of (10.215) accounts for the dielectric per-
mittivity, the second accounts for the direct piezoelectric effect or the in-
duction of an electric field by the mechanical strain, and the third term ac-
counts for the pyroelectric effect resulting from the coupling of 
polarization and temperature in the free energy function.   

The electric displacement referred to the reference configuration, from 
(10.70), can then be written 
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Assuming that ABΛ  is non-singular and inverting (10.215), the polariza-
tion can be written in terms of the electric field as 
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where .
C
BΛ
�

 depends on strain and where .DE
Be  and Bς  are piezoelectric and 

pyroelectric constants defined as derivatives with respect to the electric 
field, as in (10.155) and (10.166) or (10.209) and (10.211).  Substitution of 
(10.217) into (10.216) provides the following relationship between mate-
rial electric displacement, material electric field, strain, and temperature 
change: 

 

1 . .
0

0 0

1 . . 1 .
0

2 1 1 1 1 1 .
0

1

ˆ ˆ

          
ˆ   ( ) ( )

ˆ   ( ) ( )
ˆ   

A AB AB C DE
B C B DE B

ADE A
DE

AB C AB C AB DE
B B C B DE B

AB CD AC AB DE
BD C B DE B

AC AB
C

D JC E e E

E

JC E JC e E

J C C JC E JC e E

E JC

ε Λ Λ ς θ

ε ∆ ε χ θ

Λ ε Λ Λ ς θ

Λ ε ς θ

ε

−

− −

− − − − −

−

⎡ ⎤⎡ ⎤= + + + ∆⎣ ⎦ ⎣ ⎦
+ − ∆

= + + + ∆

= + + + ∆

= +

�

� �

.( ).DE
B DE Be E ς θ+ ∆

 (10.218) 

The permittivity tensor ACε , defined more generally in (10.154), may de-
pend here on strain as indicated, but not on temperature or polarization.  
The first term on the right of (10.218) accounts for the purely dielectric ef-
fect, the second term accounts for piezoelectric coupling, and the third 
term accounts for pyroelectric coupling.  When higher-order terms in the 
polarization are retained in the free energy, e.g., (10.183) with nonzero co-
efficients (10.190), the effective permittivity will depend upon polarization 
or electric field (Johnson 1962), in which case (10.218) obtained from the 
second-order Taylor series expansion of (10.204) does not apply.   

10.3.6 Symmetry 

Two topics regarding material symmetry are discussed in what follows in 
Section 10.3.6.  The first is Voigt’s notation that follows from natural 
symmetries of material coefficients defined as derivatives of thermody-
namic potentials with respect to symmetric independent state variables or 
pairs of independent state variables, regardless of the symmetry of a given 
material (e.g., regardless of a crystal’s point group).  The second topic con-
cerns the reduction in number of constant material coefficients arising be-
cause of the particular symmetry or structure of a material in its undis-
torted reference state, i.e., specific symmetries of vectors and tensors of 
material coefficients emerging because of a crystal’s point group.   

Consider the materially linear theory of Section 10.3.5.  Following from 
(10.205) and (10.206), matrices of second-order elastic constants ABCD^ , 
dielectric constants ABΛ , piezoelectric constants ABC∆ , and thermal stress 
constants ABβ exhibit the following symmetries: 
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 ABCD BACD ABDC CDAB= = =^ ^ ^ ^ , (10.219) 
 AB BAΛ Λ= , ABC ACB∆ ∆= , AB BAβ β= . (10.220) 

meaning that ABCD^  contains up to 21 independent entries, ABC∆  contains 
up to 18 independent entries, and ABΛ  and ABβ  each contain up to 6 inde-
pendent entries. 

Voigt’s notation (Voigt 1928) is often used in mixed form to describe 
piezoelectric solids.  Nine components of symmetric pairs of indices re-
duce to six according to the usual correspondence of (5.93): 

 
11 ~ 1, 22 ~ 2, 33 ~ 3,

23 32 ~ 4, 31 13 ~ 5, 12 21 ~ 6.= = =
 (10.221) 

In the notation scheme of Brugger (1964), Thurston (1974), and Teodosiu 
(1982), components of the symmetric total stress and material coefficients 
are re-written to take advantage of these symmetries: 

 ( ) ~AB AΤ Τ , ( )( ) ~AB CD AB^ ^ , ~AB Aβ β , ~AB AΛ Λ . (10.222) 
Barred indices span 1,2,…6 and correspond to unbarred pairs of indices as 
indicated in (10.221).  Symmetric strain tensor E in Voigt’s notation be-
comes  

 ( )2 (1 )ABAB AE Eδ= + . (10.223) 

As a consequence of hyperelasticity, second-order elastic constants have 
the remaining symmetries of (5.96): 

 ( )ABAB =^ ^ . (10.224) 
The 18 independent piezoelectric constants can only be partially converted 
to Voigt’s notation, since symmetry conditions exist only over one pair of 
indices: 

 ( ) ~A BC AB∆ ∆ . (10.225) 
In matrix notation, the right side of (10.225) corresponds to a 3 6×  matrix: 

   
11 111 12 122 13 133 14 123 15 131 16 112

21 211 22 222 23 233 24 223 25 231 26 212

31 311 32 322 33 333 34 323 35 331 36 312

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

⎡ ⎤= = = = = =
⎢ ⎥= = = = = =⎢ ⎥
⎢ ⎥= = = = = =⎣ ⎦

. (10.226) 

Using (10.222)-(10.225), the Helmholtz free energy density in the materi-
ally linear case (10.204) is written compactly as 
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Voigt’s notation can be applied in a similar manner towards other material 
coefficients with natural symmetries introduced in Sections 10.3.4 and 
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10.3.5.  For example, the other piezoelectric coefficients introduced in 
(10.155), (10.156), and (10.209) can all be written in 3 6×  matrix forms 
akin to (10.225) and (10.226).  

When the reference coordinate system and the crystallographic axes 
used to define material coefficients do not coincide, a rotation operation is 
needed to transform dielectric, piezoelectric, and pyroelectric coefficients 
into their representations in the reference coordinate system, analogously 
to operations described for the elastic and thermal stress constants in 
(5.100) that still apply here.  Let AX ′  denote coordinates in the crystallo-
graphic frame, and let AX  denote coordinates in the reference configura-
tion.  The orthogonal transformation 

 .
A A B

BX Q X ′=
�

 (10.228) 
describes the relationship between crystallographic coordinates and the 
reference frame, with 1

. .
ˆ ˆTA A

B BQ Q−=  and .
ˆ| det | 1A

BQ = .  To apply this trans-
formation to dielectric and piezoelectric coefficients, the reduced Voigt 
notation is not applied; e.g., the piezoelectric moduli are written in rank 
three form.  Dielectric, piezoelectric, and pyroelectric coefficients trans-
form according to 

       . .
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, .
A A B

BQχ χ′=
�

, (10.229) 
where primed quantities are defined with respect to the crystallographic 
coordinates and unprimed quantities are referred to the reference coordi-
nate system. 

Arguments regarding material symmetry presented in Section 5.1.5 for 
hyperelastic materials in the absence of electromechanical effects also ap-
ply for hyperelastic dielectric materials.  One notable distinction arises: di-
electric materials contain a dependence of response functions on polariza-
tion ˆ

AP , a rank one tensor (i.e., a vector).  Under a change of reference 
coordinate system as shown in (10.228), the referential polarization and 
electric field transform as 
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A A BP Q P→
�

, .
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. (10.230) 
For all rotations and reflections ∈Q

�
_  (i.e., within symmetry group _ ) of 

the considered material, the following identities replace (5.110)-(5.113): 
 ( ) ( )ˆ ˆ, , , , , ,T TX Xψ θ ψ θ=C P Q CQ Q P
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, (10.231) 

 ( ) ( )ˆ ˆ, , , , , ,T TX Xη θ η θ=C P Q CQ Q P
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, (10.232) 

 ( ) ( )ˆ ˆ, , , , , ,T T TX Xθ θ=QΣ C P Q Σ Q CQ Q P
� � � � �

, (10.233) 
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 ˆ ˆ, , , , , , , ,T T TX Xθ θ θ θ⎛ ⎞ ⎛ ⎞∇ = ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G G
QQ C P Q Q CQ Q P Q
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, (10.234) 

 ( ) ( )ˆ ˆ ˆ ˆ, , , , , ,T T TX Xθ θ=Q E C P E Q CQ Q P
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. (10.235) 

Dependence of response functions on right Cauchy-Green deformation 
tensor C can readily be exchanged for a dependence on strain tensor E, 
which itself transforms the same way as C under a change of reference co-
ordinates. 

The particular crystal class of the crystal structure of a dielectric solid 
determines the symmetries of its material coefficients evaluated in an un-
distorted reference state.  Thirty-two crystal classes exist for natural crystal 
structures, each falling into one of eleven Laue groups.  While mechanical 
elastic properties such as second- and third-order elastic constants depend 
only on the Laue group of the crystal, other material coefficients such as 
vectors and tensors of odd rank, including various piezoelectric and py-
roelectric constants, may generally depend on the particular crystal class 
within a Laue group.  Symmetries of crystals in the context of material co-
efficients are discussed in Appendix A.  Tables A.3-A.7 list independent 
material coefficients for tensors of orders one, two, three, and four, while 
Tables A.8 and A.9 list second- and third-order elastic constants for all 
Laue groups. 

As remarked in Section A.2, material coefficients of odd rank vanish 
identically for crystals with a center of symmetry.  Coefficients of odd 
rank include the piezoelectric ( ABC∆ ) and pyroelectric ( Aχ ) constants of 
(10.205) and (10.206), respectively, as well as more general electrome-
chanical and electrothermal coefficients of ranks one, three, and five de-
fined in Sections 10.3.3 and 10.3.4.  Recall that centrosymmetric crystals 
have an inversion center, meaning that the material representation of the 
response is invariant under an inversion transformation of the form 

A AX X→− .  Consider the pyroelectric effect in a rigid body as an exam-
ple.  Since under an inversion of reference coordinates, A Aχ χ→  in a cen-
trosymmetric crystal, it follows from (10.215) that the electric field gener-
ated by a temperature change is  

 ˆ ˆ 0A A A A
A AE Eχ θ χ θ χ χ= − ∆ → − = − ∆ ⇔ = − = , (10.236) 

implying that since the pyroelectric constants are equal to their negatives, 
they must vanish identically when the crystal has a center of symmetry.  
Similar arguments can be used to show that the piezoelectric constants 

ABC∆  of (10.191) and (10.205) must vanish identically for centrosymmet-
ric crystals, noting that the right Cauchy-Green strain tensor AB ABE E→  
under such an inversion.  Higher-order piezoelectric constants of even rank 
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(e.g., electrostriction coefficients of rank four such as those in (10.192)) 
need not always vanish in centrosymmetric dielectric solids. 

The piezoelectric effect is present in 20 of the 21 non-centrosymmetric 
crystallographic point groups (Landau and Lifshitz 1960; Damjanovic 
1998).  Of these piezoelectric materials, 10 crystallographic point groups 
are generally pyroelectric.  Ferroelectric crystals are a subset of pyroelec-
tric materials whose direction of spontaneous polarization may be switched 
by the action of an external electric field.  It is noted that the framework of 
Section 10.3.5 is insufficient to fully address ferroelectric behavior, which 
requires a more detailed total energy function to accurately account for 
transition temperatures and higher-order influences of polarization on the 
thermodynamic response functions (Devonshire 1954). 

When the symmetry group _  of the material contains all orthogonal 
transformations, the response is independent of the choice of reference co-
ordinate basis vectors ( )A XG , and the material behavior is isotropic.  
While isotropy is extremely rare among single crystalline solids, the re-
sponse of polycrystals containing a large number of randomly oriented 
grains is often idealized as isotropic.  For example, polycrystalline dielec-
tric ceramics are often treated as perfectly isotropic in aggregate form, 
even though their constituent single crystals may be anisotropic.  Isotropy 
implies a center of symmetry.  Thus, isotropic dielectric materials cannot 
display piezoelectric or pyroelectric effects, leading automatically to van-
ishing of the corresponding piezoelectric coefficients, 0ABC∆ = , and py-
roelectric coefficients, 0Aχ = .  For an isotropic, materially linear dielec-
tric, free energy (10.204) reduces to 

 
0

.
0

1 ( )
2

1 ˆ ˆ         + ln ,
2

AC BD AD CB AB CD
AB CD

A A
A A E

G G G G G G E E

P P E C

Ψ µ λ

θΛ β θ θ
θ

⎡ ⎤= + +⎣ ⎦

− ∆ −
 (10.237) 

where µ  and λ  are elastic coefficients as in (5.121), and Λ  and β  are 
scalar dielectric and thermal stress constants, respectively. 

10.3.7 Comparison with Other Theories 

Differences exist among various nonlinear continuum theories of elastic 
dielectric solids.  A few of these differences are noted in Section 10.3.7, 
along with a brief justification for assumptions made in the present theory. 

Some authors partition the electric field vector or scalar electrostatic po-
tential into additive contributions from various internal and external 
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sources (Toupin 1956; Eringen 1962, 1963; Bustamante et al. 2009).  In 
the notational scheme of the present work, a single electric field and elec-
trostatic potential are used in the governing equations (when mapped to a 
particular spatial or material configuration), following Tiersten (1971), 
Thurston (1974), and McMeeking and Landis (2005).  However, a more 
detailed decomposition, while not necessary, is physically and mathemati-
cally admissible.  The electric field used here can be thought of as the 
quasi-static (total) Maxwell-Faraday electric field ˆMe , equal in magnitude 
and opposite in sign (i.e., direction) to an effective local electric field ˆLe  
associated with interactions between electrons and ions, for example (Tier-
sten 1971).  The electric field used throughout Sections 10.2 and 10.3 thus 

satisfies 0
ˆˆ ˆ ˆ ˆ ˆ φ= = + = − = −∇

g

M MS Le e e e e , where ˆMSe  is the Maxwell self 
electric field and 0ê  is the extrinsic or external electric field (Toupin 1956; 
Eringen 1962).  In the present theory, the electric field and electrostatic po-
tential also have naturally different representations in the spatial configura-
tion (e.g., as in (10.49)) and reference configuration (e.g., as in (10.61)). 

Various definitions have been postulated for mechanical stress and 
Maxwell stress tensors, as discussed by Eringen (1962, 1963) and Busta-
mante et al. (2009).  The definition used in the present work for the 
Cauchy stress tensor, i.e., abσ  entering (10.75), corresponds to the local 
stress of Toupin (1956) and is the transpose of the mechanical stress of 
Tiersten (1971).  The definition used in the present work for the Maxwell 
stress tensor, i.e., ˆabτ  of (10.72), is consistent with the sum of contribu-
tions of the Maxwell self electric field and the external electric field of 
Toupin (1956) entering his static balances of linear and angular momen-
tum in the absence of free charge density (i.e., a strict dielectric).  The pre-
sent definition of Maxwell’s stress is equal to the transpose of the Maxwell 
stress of Tiersten (1971) in the absence of free charge density.  Notice that 
in Chapter 10, the index of the traction vector corresponds to the first in-
dex of the corresponding stress tensor ( a ab

bt nσ= ), following the notation 
scheme of previous Chapters in this book and Toupin (1956), but opposite 
to notations of Eringen (1963), Tiersten (1971), and McMeeking et al. 
(2007), wherein the traction is defined via contraction of the first index of 
the mechanical stress with the unit normal.  Because in physical experi-
ments one cannot easily distinguish between contributions of Maxwell 
stress and Cauchy stress to the symmetric total stress (e.g., abT  of 
(10.78)), different theories can provide identical equations for the total 
stress while partitioning it into Maxwell and Cauchy stresses in various 
ways (Eringen 1962; Nelson and Lax 1976; McMeeking et al. 2007).  Ad-
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ditional considerations regarding momentum conservation and symmetry 
properties, or lack thereof, of the stress tensor were offered by Nelson and 
Lax (1976). 

Various forms of the balance of energy have been suggested for dielec-
tric solids (Eringen 1962, 1963; Toupin 1963; Tiersten 1971; Maugin 
1988; Clayton 2009b).  Regarding (10.88)-(10.89), some authors subtract 
part or all of the contribution of the volumetric electromechanical work 
rate term Ω  from the rate of total internal energy rather than incorporate it 
in the external power.  Identical quantities can be represented in a vast 
number of ways via manipulation of Maxwell’s equations and use of vec-
tor identities and theorems of Gauss and Stokes, so complications arise in 
discerning among forms of the energy balance used in different theories.  
The local balance of energy in (10.94) matches that of Tiersten (1971), ex-
cept for Tiersten’s use of polarization per unit mass ˆ ˆ /a apπ ρ=  rather than 

polarization per unit volume ˆ ap .  In Tiersten’s theory, ˆ ˆ a
ae p�  of (10.94) is 

replaced with ;ˆ ˆ ˆ ˆ ˆ( )a a a b
a a be e p p vρπ = +� � .  The difference ;ˆ ˆ a b

a be p v  vanishes if 
the material is incompressible.  In the theory of Toupin (1963), the con-
vected time derivative of spatial polarization per unit volume does work 
against a particular form of the electric field.  Polarization gradients may 
be important for describing some phenomena (Mindlin 1968b, 1972; 
Chowdhury and Glockner 1976; Chowdhury et al. 1979; Maugin 1988); in 
such cases, augmentation of the energy balance and thermodynamic poten-
tials to account for effects of polarization gradients may be prudent. 

The energy balance and dissipation inequality have been used in combi-
nation in Section 10.3.2 of this text to obtain constitutive equations for 
elastic dielectrics.  Other valid methods used to obtain constitutive equa-
tions include variational principles for static and non-dissipative systems 
(Toupin 1956; Eringen 1962, 1963; Mindlin 1968b, 1972), as well as con-
sideration of pair-wise terms in the energy balance for conditions wherein 
the local entropy production rate of (4.61) vanishes (Tiersten and Tsai 
1972; Thurston 1974).  Alternatively, constitutive equations such as those 
of (10.124)-(10.131) can simply be assumed to hold from the outset as fun-
damental definitions.  As remarked in the introduction of Chapter 10, at-
omistic or molecular arguments can also be used to provide insight into 
physical origins of various constitutive relationships and material coeffi-
cients, as well as terms entering the balance of energy (Born and Huang 
1954; Lax and Nelson 1971; Martin 1972; Mindlin 1972; Tiersten and Tsai 
1972; Maugin 1988).  One benefit of the extended Coleman-Noll kind of 
procedure used in Section 10.3.2 is that such a procedure can readily be 
extended to address dielectric crystals with mobile defects or other sources 
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of dissipation distinct from heat conduction, e.g., viscosity or internal state 
variables (Tiersten 1971; McMeeking et al. 2007; Clayton et al. 2008a, b; 
Xiao and Bhattacharya 2008; Clayton 2009b, 2010b).  

The present theory reduces to the expected equations in the absence of 
matter, i.e., when the domain simply consists of vacuum.  In that case, all 
material coefficients in (10.183) are presumed to vanish identically, as 
does the polarization.  The stress 0ABΣ =  in (10.130) and (10.201), and 
the Cauchy stress 0abσ =  in (10.131).  The total stress of (10.78) reduces, 
in vacuum, to the usual quasi-electrostatic Maxwell stress in the absence of 
polarization (Jackson 1999): 0 0ˆ ˆ ˆ ˆ ˆ( / 2)ab ab a b c ab

cT e e e e gτ ε ε= = − , which in 
turn is identically divergence-free ( ; 0ab

bT = ) and symmetric ( ab baT T= ), 
thereby identically satisfying balances of linear (10.77) and angular 
(10.83) momentum.  As remarked already in Section 10.2.4, energy bal-
ance (10.91) is satisfied identically in vacuum.  In the absence of material, 
relationship (10.218) becomes 0 ,

ˆ ˆ
A AD ε Φ= − , analogous to standard aether 

relation (10.46) for vacuum 0 ,
ˆ ˆ

a ad ε φ= − .  Certain relationships that rely on 
invertibility of (10.144), e.g., (10.153), break down when material coeffi-
cients (10.144) all vanish. 

When the dependence of response functions on polarization vanishes, 
representative free energy of (10.183) corresponds to that of a traditional 
nonlinear thermoelastic material as considered in Section 5.1.3.  In that 
case, all dielectric, piezoelectric, and pyroelectric coefficients vanish iden-
tically, and the second Piola-Kirchhoff stress of (10.201) becomes identi-
cal to that of (5.74), while the entropy of (10.203) becomes identical to 
that of (5.75), up to the same orders of coefficients retained in the Taylor 
series expansion of the free energy.  The electric field then vanishes in a 
non-polar material according to (10.200), e.g., within a conductor in the 
absence of electric current.  It is emphasized that neither electric field nor 
electric displacement need always vanish in vacuum.  

The theory enables description of nonlinear phenomena such as Max-
well’s stress, electrostriction, and effects of higher-order material coeffi-
cients, as discussed in Section 10.3.4.  Transformation formulae among 
material coefficients listed in Section 10.3.3 are consistent with other 
nonlinear theories of thermoelectroelasticity for dielectric solids (Thurston 
1974).  As demonstrated later in Section 10.4, linearization of the theory of 
Section 10.3 recovers the standard constitutive equations of linear piezo-
electric solids (Bond et al. 1949), as well as standard governing equations 
and relationships among material coefficients (Mindlin 1972). 
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While defects are not addressed explicitly in the theory of Chapter 10, a 
few remarks regarding defective dielectric crystals are merited.  Lattice de-
fects are known to strongly affect electromechanical behavior of dielectric 
solids and hence performance of engineering devices fabricated from such 
materials.  For example, dislocations accommodate misfit strains between 
dielectric thin films and substrates in electronic devices (Speck and Pompe 
1994).  In crystals with ionic bonding such as corundum and sodium chlo-
ride, consideration of charge distributions and effects of electric fields be-
comes necessary for describing details of dislocation motion and disloca-
tion reactions (Kronberg 1957; Kliewer and Koehler 1965; Nabarro 1967; 
Hirth and Lothe 1982; Hull and Bacon 1984).  Polarized domains and do-
main walls affect hysteresis and performance of ferroelectric-based actua-
tor systems (Zhang and Bhattacharya 2005).  Dislocations (Bommel et al. 
1955, 1956) and vacancies (Brice 1985) are often important in quartz, a 
piezoelectric crystal used frequently for pressure transducers, resonators, 
and stress gauges (Graham et al. 1965).  Continuum elastoplasticity theo-
ries for dielectric and piezoelectric crystals have been formulated in terms 
of small (Clayton et al. 2008a) and large (Clayton 2010b) strain measures, 
the latter incorporating multiplicative deformation gradient kinematics. 

Vacancies are observed in a number of dielectric materials, and have 
been addressed in theories based on continuum physics (Xiao et al. 2005; 
Xiao and Bhattacharya 2008; Clayton et al. 2008a, b; Clayton 2009b, 
2010b).  Mobile vacancies, in conjunction with climbing dislocations, can 
dominate creep deformation, often preferentially to glide-controlled inelas-
ticity at high temperatures (Weertman 1955; Chang 1960).  In ionic crys-
tals, vacancies typically carry an electric charge (Jamnik and Raj 1996; 
Conrad 2001).  Charged interstitial ions and vacancies, when the crystal is 
held at a temperature enabling their mobility (i.e., diffusion), can contrib-
ute directly to electric current in ionic crystals such as alkali halides (Mott 
and Gurney 1948).  Charged point defects can influence dielectric proper-
ties and electrical loss characteristics of capacitors, oscillators, and tunable 
filters (Damjanovic 1998), for example those comprised of perovskite ce-
ramic crystals such as barium titanate and strontium titanate (Cole et al. 
2003; Nothwang et al. 2005).  Impurities and associated lattice defects of-
ten strongly affect the availability of free electrons and holes that enable 
free electric current conduction in semiconductors.  For example, elec-
tronically active Si and C vacancies are important in silicon carbide (Bern-
stein et al. 2005; Clayton 2010b), a wide band-gap semiconductor.   



534      10 Dielectrics and Piezoelectricity 

10.4 Linear Elastic Dielectric Solids 

Two approximations are often made to simplify the governing equations of 
deformable dielectrics.  The first is the assumption of geometric linearity, 
i.e., small deformations.  The second approximation is the assumption that 
terms on the order of the product of the electric field and polarization, as 
well as those on the order of the square of the electric field, can be omitted 
in the momentum balances.   

Geometrically linear mechanics is often sufficient and relevant because 
dielectric solids are non-metallic and hence often brittle, for example engi-
neering ceramics under tensile loading.  In such materials, when subjected 
to large mechanical stresses, fracture precludes attainment of large defor-
mations that require use of a geometrically nonlinear continuum theory.  In 
the geometrically linear regime, Section 10.2.2 is unnecessary, since the 
distinction between undeformed and deformed configurations is not made 
explicitly, and displacements are measured with respect to a single (possi-
bly curvilinear) coordinate system with fixed origin, as discussed in Sec-
tion 2.5.3.  Linear and angular momentum balances (10.77) and (10.83) are 
unchanged as a result of the assumption of geometric linearity.  However, 
the local energy balance of the nonlinear theory, i.e., (10.94), reduces to 

; ; ˆ ˆab a a
a b a ae u q r e pρ σ ρ= − + + �� � , with u the displacement, in the geometri-

cally linear regime.   
Linear electrostatics is deemed valid when terms on the order of the 

square of the electric field and the product of electric field and polarization 
entering Maxwell’s stress tensor are all small.  In that case, body force 
(10.71) and Maxwell stress (10.72) are omitted, and local linear and angu-
lar momentum balances (10.77) and (10.83) reduce to those of classical 
continua of Chapter 4, i.e., (4.17) and (4.26) respectively.  With these re-
ductions, the term in parentheses in (10.92) still vanishes, and the final 
form of the local energy balance, (10.94), remains unchanged.  However, 
the stress tensor is now symmetric, and hence the skew part of the velocity 
gradient does not contribute to the time rate of change of internal energy.  
The framework of linear electrostatics is very often used out of mathemati-
cal convenience and practicality, since in linear elastic dielectric bodies, 
the Cauchy stress tensor exhibits the usual symmetry and divergence prop-
erties of the stress tensor of its representation in classical linear elasticity.   

The theory described in what follows in Section 10.4 combines the 
aforementioned assumptions of geometric linearity and linear electrostat-
ics, i.e., vanishing of Maxwell’s stress tensor.  The forthcoming treatment 
thus reduces to a standard framework for linear elastic dielectric and pie-
zoelectric crystals (Bond et al. 1949; Haskins and Hickman 1950; Mindlin 
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1972; Pan 2001) in the absence of electrodynamic effects, i.e., in the quasi-
electrostatic approximation.   

10.4.1 Governing Equations 

Governing equations of linear dielectrics in the context of the quasi-
electrostatic approximation of Section 10.2.1 are summarized as follows.  
Maxwell’s equations (10.49) and (10.52) remain valid: 

 ,̂ˆa ae φ= − , ;
ˆ ˆa

ad ρ= , (10.238) 
and referential analogs (10.61) and (10.67) are not needed.  Maxwell’s 
stress of (10.72) is omitted by definition, such that the balances of linear 
and angular momentum exhibit their traditional forms of Section 4.1.3: 

 ;
ab a a
b b aσ ρ+ = , [ ] 0abσ = . (10.239) 

The local balance of energy of (10.93)-(10.94) reduces as follows for a lin-
ear elastic dielectric: 

 ; ˆ ˆab a a
ab a ae q r e pρ σ ε ρ= − + + ��� , (10.240) 

where ( );ab a buε =� �  is the symmetric strain rate of (2.191).  The analog of 

(10.100) implies that the total distortion is thermoelastic, as in (5.254): 
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= = =

 (10.241) 

The entropy inequality of (10.98)-(10.99) reduces to 

 1ˆ ˆ, , ( ) , 0ρ ψ θη θ
θ

+ − + − ∇ ≥σ ε e p q� ��� , (10.242) 

or in index notation, 
 ( )

1
,; ˆ ˆ ( ) 0ab a a

a aa bu e p qσ ρ ψ θη θ θ−+ − + − ≥� ��� . (10.243) 

10.4.2 Constitutive Assumptions 

In lieu of (10.110)-(10.114) that apply for the geometrically nonlinear re-
gime, the following constitutive functions are suggested for linear elastic 
dielectric solids: 

        ( )ˆ, , , , , axψ ψ θ θ= ∇ε p g , ( ),ˆ, , , , ,ab a a ap xψ ψ ε θ θ= g ; (10.244) 

          ( )ˆ, , , , , axη η θ θ= ∇ε p g , ( ),ˆ, , , , ,ab a a ap xη η ε θ θ= g ; (10.245) 
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       ( )ˆ, , , , , axθ θ= ∇σ σ ε p g , ( ),ˆ, , , , ,ab ab
ab a a ap xσ σ ε θ θ= g ; (10.246) 

         ( )ˆ, , , , , axθ θ= ∇q q ε p g , ( ),ˆ, , , , ,a a
ab a a aq q p xε θ θ= g ; (10.247) 

          ( )ˆ ˆ ˆ, , , , , axθ θ= ∇e e ε p g , ( ),ˆ ˆ ˆ, , , , ,a a
ab a a ae e p xε θ θ= g . (10.248) 

Notice that (10.244)-(10.248) differ from the constitutive assumptions of 
linear thermoelasticity in (5.262)-(5.265) only via addition of the polariza-
tion p̂  as an independent state variable and prescription of electric field ê  
as a dependent response function.  Incorporation of polarization as an in-
dependent variable in the thermodynamic response functions enables de-
scription of energies associated with the dielectric permittivity, the piezo-
electric effect, and the pyroelectric effect.  The rationale for inclusion of 
particular variables other than p̂  in the response functions (e.g., thermo-
dynamic potentials) is explained in Section 5.4.1 in the context of linear 
thermoelasticity of non-polarized solids.   

10.4.3 Thermodynamics 

From the chain rule and (10.244), the time rate of change of the free en-
ergy is 

 ab a a
ab a ,a

p̂
p̂

ψ ψ ψ ψψ ε θ γ
ε θ θ
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

� �� � , (10.249) 

where ,( ) /a ad dtγ θ= .  Substitution of (10.249) into dissipation inequality 
(10.243) then gives 

 
,

,

ˆ ˆ
ˆ

       0.

ab a
ab a

ab a

a
a

a
a

e p
p

q

ψ ψσ ρ ε ρ
ε

θψ ψρ η θ ρ γ
θ θ θ

⎛ ⎞ ⎛ ⎞∂ ∂
− + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂⎛ ⎞− + − − ≥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

��

�
 (10.250) 

Arguments analogous to those following (10.123) then result in vanishing 
of terms in parentheses in (10.250).  The following stress-strain, electric 
field-polarization, and entropy-temperature relations emerge: 

 ψρ ∂=
∂

σ
ε

, ˆ
ˆ
ψρ ∂=
∂

e
p

, ψη
θ

∂
= −

∂
. (10.251) 

The dependence of free energy on temperature gradient vanishes: 

 
,

0
a

ψ
θ
∂

=
∂

, (10.252) 
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leading to reduced forms of constitutive functions (10.244)-(10.246) and 
(10.248): 

 ( )ˆ, , , , axψ ψ θ= ε p g , ( )ˆ, , , , axη η θ= ε p g , (10.253) 
 ( )ˆ, , , , axθ=σ σ ε p g , ( )ˆ ˆ ˆ, , , , axθ=e e ε p g . (10.254) 

The rate of local entropy production vanishes identically: 

 ; ; ( )

ˆ ˆ      0,

a a
L a a

ab a
ab a

q r e q r

e p

θΓ ρθη ρ ρ ψ θη ρ

σ ε ρψ ρθη

= + − = − − + −

= + − − =

�� ��
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 (10.255) 

and the conduction inequality remains:  
 , 0a

C aqθΓ θ= − ≥ . (10.256) 
The conduction inequality can be satisfied unconditionally, for example, 
by applying Fourier’s law of (5.277), with abk  a symmetric and positive 
semi-definite matrix of thermal conductivity: 

 ,
a ab

bq k θ= − , 1 1
, , , 0a ab
a a bq kθ θ θ θ θ− −− = ≥ . (10.257) 

From (10.251), (10.255), and (10.257), the local energy balance can be ex-
pressed as  

 , ;( )ab
b a

d k r
dt

ψρθη ρθ θ ρ
θ

∂⎛ ⎞= − = +⎜ ⎟∂⎝ ⎠
� . (10.258) 

By the chain rule as in (10.249), 
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 (10.259) 

where thermal stress coefficients, pyroelectric coefficients, and specific 
heat per unit mass at constant strain and constant polarization are, respec-
tively, 
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. (10.260) 

Equating (10.258) and (10.259) results in the temperature rate equation 
 , ; ˆ( ) ( )ab ab a

b a ab ac k p rρ θ θ θ β ε χ ρ= − + +�� � . (10.261) 

10.4.4 Representative Free Energy 

Conceivably, the free energy potential of the first of (10.253) could be ex-
panded in a Taylor series about a reference state, with such an expansion 
incorporating material coefficients corresponding to derivatives of the po-
tential of arbitrary order, as was demonstrated in Section 5.4.3 in the con-
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text of thermoelasticity.  However, as explained following (5.300), coeffi-
cients defined as derivatives of orders three and higher in strain should 
consistently be omitted from the energy potential, since second- and 
higher-order products of displacement gradients are omitted implicitly in 
the stress and strain of the first of (10.251) via the assumption of geometric 
linearity.  Similarly, when the Maxwell stress is omitted as in the present 
case of electric linearity, material coefficients defined as derivatives of or-
ders three and higher in polarization should be omitted from the energy po-
tential for consistency.  Piezoelectric coefficients consisting of derivatives 
of higher than first order in either of polarization or strain should also be 
omitted in the linear case.  Thus, the following linearized form of (10.204) 
suffices for linear elastic dielectrics: 
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abcd ab abc
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− ∆ − ∆ −

^
 (10.262) 

where the expansion is about a strain-free, non-polar reference state at the 
reference temperature, with ; 0a b abu ε= = , ˆ 0ap = , and 0 0θ θ= >  in this 
reference state. 

Material constants in (10.262) are defined as follows.  Isothermal sec-
ond-order elastic and dielectric constants, respectively, are 
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.  (10.263) 

Piezoelectric and pyroelectric constants are defined, respectively, as 
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and thermal stress coefficients and specific heat per unit volume at con-
stant strain and polarization are 
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. (10.265) 

Analogously to (10.219)-(10.220), the following symmetries emerge for 
elastic, dielectric, piezoelectric, and thermal stress coefficients: 
 abcd bacd abdc cdab= = =^ ^ ^ ^ , (10.266) 

 ab baΛ Λ= , abc acb∆ ∆= , ab baβ β= , (10.267) 
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meaning that abcd^  contains up to 21 independent entries, abc∆  contains up 
to 18 independent entries, and abΛ  and abβ  each contain up to 6 inde-
pendent entries. 

From the first of (10.251) and (10.262), the stress tensor is 

         0 ˆ+ ,ab ab ab abcd cab ab
cd c

ab

J pψσ τ τ ρ ε ∆ β θ
ε
∂

= ≈ = = − ∆
∂

^  (10.268) 

where, as in the geometrically linear theory of elasticity in (5.301), the dif-
ference between Kirchhoff and Cauchy stresses is typically omitted, and 
will be omitted henceforth, such that ab abσ τ≈ .  The first term in the final 
expression of (10.268) is attributed to mechanical strain, the second to the 
inverse piezoelectric effect, and the third to thermoelastic coupling.   

To the same order of approximation, from the second of (10.251) and 
(10.262), the electric field satisfies 

 0ˆ ˆ
ˆ ˆ

a ab abc a
b bc

a a

e p
p p
ψ ψρ ρ Λ ∆ ε χ θ∂ ∂

= ≈ = + − ∆
∂ ∂

, (10.269) 

where the first term on the far right is attributed to the electric polarization, 
the second to the direct piezoelectric effect, and the third to thermoelectric 
coupling, i.e., pyroelectricity.  The electric displacement in terms of po-
larization, strain, and temperature is then, from (10.46), 

       0 0 0 0
ˆ ˆ ˆ ˆ( )a a a ab ab abc a

b bcd e p g pε ε Λ ε ∆ ε ε χ θ= + = + + − ∆ . (10.270) 
Upon inverting (10.269), the polarization vector can be written in terms of 
the electric field as 

 
1 1 1

1 .

ˆ ˆ

ˆ    ,

a acd a
b ba ba cd ba

a cd
ba b cd b

p e

e e

Λ Λ ∆ ε Λ χ θ

Λ ε ς θ

− − −

−

= − + ∆

= + + ∆
 (10.271) 

where piezoelectric and pyroelectric coefficients, analogously to (10.209) 
and (10.211), are defined as 

 . 1bc bcd
a abe Λ ∆−= , 1 b

a abς Λ χ−= . (10.272) 
Substitution of (10.271) into (10.270) then provides a constitutive relation-
ship between electric displacement and electric field: 

 

1 1 1
0

0 0

1 1 1
. 0 . . .

ˆ ˆ( )( )

        
ˆ     =( )

ˆ    ,

a ab ab c cde c
bc bc de bc

abc a
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a a b a cde a c
b b c de c

ab abc a
b bc

d g e

e

e e

ε Λ Λ Λ ∆ ε Λ χ θ

ε ∆ ε ε χ θ

Λ ε δ Λ ∆ ε Λ χ θ

ε ε ς θ

− − −

− − −

= + − + ∆

+ − ∆

+ − + ∆

= + + ∆

 (10.273) 

with the permittivity tensor abε  and dimensionless relative permittivity 
tensor ab

Rε  
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 (10.274) 

Now consider the stress tensor of (10.268), which can be expressed in 
components using (10.271) as 

 

1 .

. 1

1 .
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ˆ+ ( )
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−

−
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 (10.275) 

where second-order isothermal, linear elastic constants at fixed electric 
field are, similarly to (10.210), 

 . 1
ˆ
abcd abcd eab cd abcd eab fcd
e e efe∆ ∆ Λ ∆−= + = −^ ^ ^ . (10.276) 

Following similar arguments used to obtain (5.302) and (5.303), the fol-
lowing relationships emerge among second-order material coefficients of 
Section 10.3.5 and those of the geometrically linear theory of (10.263)-
(10.265): 

                    (
(

)
)

(
(

)
)

. . . .
a b c dabcd ABCD
A B C Dδ δ δ δ=^ ^ , (

(
)
)

. .
a bab AB
A BΛ Λ δ δ= , (10.277) 

             (
(

)
)

. . .
b cabc ABC a

A B C∆ ∆ δ δ δ= , .
a A a

Aχ χ δ= , (
(

)
)

. .
a bab AB
A Bβ β δ δ= . (10.278) 

Similarly, for the other material coefficients introduced in Section 10.4.4, 
 (

(
)
)

(
(

)
)

ˆˆ . . . .
a b c dabcd ABCD

e A B C DE δ δ δ δ=^ ^ , (
(

)
)

. .
a bab AB
A Bε ε δ δ= , (10.279) 

 (
(

)
)

. . .
b cabc ABC a

A B Ce e δ δ δ= , .
a A a

Aς ς δ= . (10.280) 

Thus, all arguments regarding symmetry of material coefficients discussed 
in Section 10.3.6 and Appendix A apply identically for material coeffi-
cients of the linear theory.  For example, linear piezoelectric and pyroelec-
tric coefficients of (10.264) vanish identically in centrosymmetric crystals.  
Voigt’s notation can be used in the linear theory in a similar fashion to that 
of (10.221)-(10.227).  For example, in Voigt’s notation with barred lower-
case indices spanning 1,2,...6 , free energy (10.262) becomes 

 
0

0

1 1 ˆ ˆ ˆ+
2 2

ˆ          ln .

ab ab ab
a a b ab b

a a
a a

p p p

p Cε

ρ ψ ε ε Λ ∆ ε

θβ ε θ χ θ θ
θ

= +

− ∆ − ∆ −

^
 (10.281) 

All material coefficients introduced to this point in Section 10.4 are iso-
thermal coefficients.  Transformation formulae between these coefficients 



10.4 Linear Elastic Dielectric Solids      541 

and their isentropic counterparts can be obtained by substitution of 
(10.277)-(10.280) into (10.176)-(10.179), for example. 

Substituting (10.273) and (10.275) into the second of (10.238) and the 
first of (10.239), and using the first of (10.238) and the definition 

( );ab a buε = , the following relationships are obtained for a linear elastic di-

electric with homogeneous material properties: 
 ; ; ,

ˆ ˆabc ab a
b ca ba ae u ε φ ς θ ρ− + = , (10.282) 

 .
ˆ ; ; ,

ˆ ( )abcd cab ab d ab a a
e c db cb d bu e e u bφ χ β θ ρ+ − + = −��^ . (10.283) 

Energy balance (10.261) becomes, with (10.271) and the approximation 
0ρ ρ≈  used for the specific heat: 

 { }1 , .
; ; ;

1 ˆ( )ab ab a b cd
ba a b ab a c d ak u e u r

Cε

θ θ θ β χ Λ φ ς θ ρ−⎡ ⎤= − − − − +⎢ ⎥⎣ ⎦
�� �� � . (10.284) 

Equalities (10.282)-(10.284) represent 5 coupled differential equations in 5 
unknowns—three components of displacement ( , )au x t , electrostatic po-
tential ˆ( , )x tφ , and temperature ( , )x tθ —presuming that free charge den-
sity ˆ ( , )x tρ , mechanical body force ( , )ab x t , and heat source ( , )r x t  are ei-
ther prescribed via independent equations or vanish identically.  In the 
absence of temperature effects and free charges, (10.282) and (10.283) are 
identical to a standard set of linear piezoelectric relations listed by Mindlin 
(1972). 

10.4.5 Constitutive Equations of Linear Piezoelectricity 

In the classical theory of linear piezoelectricity (Bond et al. 1949), the me-
chanical field variables are stress abσ  and strain abε , either of which may 
be assigned as the independent variable, and the electrical field variables 
are electric field ˆae  and electric displacement ˆ

ad , either of which may be 
assigned as the independent variable.  Constitutive equations at a fixed 
temperature (i.e., omitting pyroelectricity and thermal expansion) are writ-
ten in the following four equivalent sets (Bond et al. 1949; Thurston 1974): 

                 ˆ
ˆˆ ˆ,  ;ab abcd cab a abc ab

e cd c bc be e d e eσ ε ε ε= − = +^  (10.285) 
               1

ˆ
ˆ ˆˆ,  ;ab abcd cab a abc ab

cd c bc bd
h d e h dσ ε ε ε −= − = − +^  (10.286) 

             1
ˆ .

ˆ ˆˆ(S ) ,  ;cd c a a bc ab
ab abcd cab bc bd

g d e g dσε σ σ ε −= + = − +  (10.287) 

                ˆ .
ˆˆ ˆ(S ) ,  .cd c a a bc ab

ab e abcd cab bc bd e d d eσε σ σ ε= + = +  (10.288) 



542      10 Dielectrics and Piezoelectricity 

Relationships among material coefficients entering (10.285)-(10.288) are 
listed in Table 10.1.  Notice that (10.285) is consistent with (10.273) and 
(10.275) at the reference temperature, implying that the constitutive theory 
of Sections 10.4.1-10.4.4, derived via linearization of the nonlinear contin-
uum theory of elastic dielectrics of Section 10.3, is consistent with stan-
dard linear piezoelectricity (Bond et al. 1949; Haskins and Hickman 1950; 
Mindlin 1972).  Relationships between coefficients introduced in (10.262) 
with polarization as the independent electrical field variable and those en-
tering (10.285) are given in (10.272), (10.274), and (10.276). 

 
Table 10.1 Coefficient relationships in linear piezoelectricity (Bond et al. 1949) 

Inversions Differences Piezoelectric coefficients 

ˆ ˆ . . . .2 (S )abcd a b b a
cdef e f e fd d

δ δ δ δ= +^  .( ) cd
ab ab a bcde dσε ε− =  ˆ. ..( ) (S )d de

abc ad bc ade e bcd g eσε= =  

ˆ ˆ . . . .2 (S )abcd a b b a
e e cdef e f e fδ δ δ δ= +^  1 1 .( ) cd

ab ab a bcdg hσε ε− −− =  ˆ. ..( )d de
abc ad bc ade e bce h dε= = ^  

1
.

ac a
cb bε ε δ− =  .

ˆ ˆ( )abcd ab fcd
e fd

e h− =^ ^  1
ˆ. ..( ) (S )d de

abc ad bc ade bcd
g d hσε

−= =  
1

.( )ac a
cb bσ σε ε δ− =  ˆˆ .(S S ) f

e abcd ab fcdd
d g− =  1

ˆ. ..( ) ( )d de
abc ad bc ade bcd

h e gε −= = ^  

 
Often in practice, low deformation rate (i.e., mechanically quasi-static) 

experiments are idealized as isothermal, while mechanical stress wave 
propagation (i.e., acoustic) experiments are idealized as adiabatic or isen-
tropic.  Thus in such cases, (10.285)-(10.288) can be used verbatim for iso-
thermal conditions, while these same equations can be used for isentropic 
conditions by replacing all isothermal material coefficients with their isen-
tropic counterparts (Bond et al. 1949; Thurston 1974).   



Appendix A: Crystal Symmetries and Elastic 
Constants 

In anisotropic materials, constitutive relations and corresponding material 
coefficients depend on the orientation of the body with respect to the refer-
ence coordinate system.  This Appendix discusses symmetry operations for 
point groups and Laue groups comprising the seven crystal systems first 
introduced in Chapter 3.  Requisite terminology and definitions are given 
in Section A.1.  Listed in Section A.2 are matrix forms of generic polar 
tensors (i.e., material coefficients) of orders one, two, three, and four for 
each Laue group, and forms for individual crystal classes comprising each 
Laue group for polar tensors of odd rank.  Second- and third-order elastic 
constants are given particular attention in Section A.3.  The content gener-
ally applies to materials whose elastic behavior is independent of deforma-
tion gradients of orders higher than one, more specifically hyperelastic ma-
terials of grade one.  The discussion and tabular results of Appendix A 
summarize a number of previous descriptions (Hearmon 1946, 1956; Bond 
et al. 1949; Schmid and Boas 1950; Landau and Lifshitz 1959; Brugger 
1964, 1965; Truesdell and Noll 1965; Thurston 1974; Teodosiu 1982). 

A.1 Crystal Classes, Point Groups, and Laue Groups 

Under an orthogonal transformation of Cartesian reference coordinates 
→X QX , deformation gradient /= ∂ ∂F x X  and right Cauchy-Green 

strain ( ) / 2T= −E F F 1  transform as →F FQ  and T→E Q EQ , respec-
tively.  Consider the free energy density in the first of (5.6) for an elastic 
crystal at fixed temperature, i.e., the strain energy density.  The specific 
form of the elastic mechanical response function, in this case the strain en-
ergy density, respects the symmetry, or lack thereof, of the material: 
 ( ) ( )Tψ ψ=Q EQ E . (A.1) 

The set  of all orthogonal tensors Q  that leave the mechanical response 
function unaffected, i.e., those operations for which (A.1) is satisfied, is 
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called the symmetry group or isotropy group for the material.  For two 
transformations 1 2, ∈Q Q , their product 1 2 ∈Q Q .  Furthermore, 
∈Q  implies 1T −= ∈Q Q .  Every isotropy group contains the identity 

map =Q 1  and the inversion = −Q 1 .  Subgroups consisting of all proper 
orthogonal tensors ( det 1= +Q ) of the isotropy groups comprise the rota-
tion groups + .  Any member of particular group +  can be created by a 
product of rotation matrices called generators of that group, labeled n

NR .  
Any entry of  for that group can then be obtained from entries of +  via 
use of the inversion.  The group of all rotations, reflections, and transla-
tions that leave a structure invariant is called the space group.  A space 
group can include combinations of translations, rotations, and reflections 
(i.e., screw and glide operations) individually not contained in that space 
group (Chaikin and Lubensky 1995).  The set of all rotations and reflec-
tions that preserve a structure at a point is called the point group.  Crystals 
sharing the same point group are said to belong to the same crystal class.  
In three dimensions, the number of distinct space groups is 230, and the 
number of distinct point groups or crystal classes is thirty-two.   

Every crystal class falls into one of eleven Laue groups.  Each Laue 
group corresponds to a different set of rotations +  to which elastic me-
chanical response functions in the context of (A.1) are invariant.  Table 
A.1 lists Laue groups, point groups, and generators for all crystal classes, 
following Thurston (1974).  The notation n

NR  denotes a right-handed rota-
tion by angle 2 / nπ  about an axis in the direction of unit vector N.  Bold-
face indices i, j, and k denote unit vectors of a right-handed orthonormal 
basis for X, and 1/ 23 ( )−= + +m i j k .  Also denoted by asterisk in Table 
A.1 are the eleven crystal point groups—one per Laue group—with an in-
version center or center of symmetry (i.e., those that are centrosymmetric).  
The seven crystal systems of Fig. 3.1 whose symmetry elements are listed 
in Table A.2 are recovered from the eleven Laue groups, since two Laue 
groups comprise each of the cubic, tetragonal, rhombohedral, and hexago-
nal crystal systems.  The alpha-numeric notation used to label each point 
group gives details about symmetries of crystals in that group, and a num-
ber of different notational schemes exist in crystallography for labeling 
point (and space) groups.  The reader is referred to Thurston (1974), 
Rohrer (2001), and references therein for a more detailed explanation.  
Modern Hermann-Mauguin international symbols are used in column five 
of Table A.1, following Rohrer (2001).  Columns six and seven of Table 
A.1 follow the scheme of Thurston (1974), who in turn cites Groth (1905). 
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Table A.1 Laue groups, generators, point groups, and crystal classes 

Crystal 
system 

Laue 
group 

# Generators Point 
group 

Crystal class # 

N 1 1 1  triclinic asymmetric 1 Triclinic 
   1  triclinic pinacoidal* 2 
M 2 2

kR  2 monoclinic sphenoidal 3 

   m monoclinic domatic 4 

Mono-
clinic 

   2/m monoclinic prismatic* 5 
O 3 2

iR , 2
jR  222 orthorhombic disphenoidal 6 

   mm2 orthorhombic pyramidal 7 

Ortho-
rhombic 

   mmm orthorhombic dipyramidal* 8 
TII 4 4

kR  4 tetragonal pyramidal 10 

   4  tetragonal disphenoidal 9 

Tetrago-
nal 

   4/m tetragonal dipyramidal* 13 
TI 5 4

kR , 2
iR  422 tetragonal trapezohedral 12 

   4mm ditetragonal pyramidal 14 
   42m  tetragonal scalenohedral 11 

Tetrago-
nal 

   4/mmm ditetragonal dipyramidal* 15 
RII 6 3

kR  3 trigonal pyramidal 16 Rhom-
bohedral    3  trigonal rhombohedral* 17 

RI 7 3
kR , 2

iR  32 trigonal trapezohedral 18 

   3m ditrigonal pyramidal 20 

Rhom-
bohedral 

   3m  ditrigonal scalenohedral* 21 
HII 8 6

kR  6 hexagonal pyramidal 23 

   6  trigonal dipyramidal 19 

Hexago-
nal 

   6/m hexagonal dipyramidal* 25 
HI 9 6

kR , 2
iR  622 hexagonal trapezohedral 24 

   6mm dihexagonal pyramidal 26 
   6 2m  ditrigonal dipyramidal 22 

Hexago-
nal 

   6/mmm dihexagonal dipyramidal* 27 
CII 10 2

iR , 2
jR , 3

mR  23 cubic tetartoidal 28 Cubic 

   3m  cubic diploidal* 30 
CI 11 4

iR , 4
jR , 4

kR  432 cubic gyroidal 29 

   43m  cubic hextetrahedral 31 

Cubic 

   3m m  cubic hexoctahedral* 32 
Transversely iso-
tropic** 

12 ϕ
kR , 0 2ϕ π< <    

Isotropic** 13 all proper rotations   
*Denotes a point group with an inversion center                     **Not a natural crystal system 
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Particular aspects of each Laue group are discussed next.  The reader is 
referred to Bond et al. (1949), Landau and Lifshitz (1959), and Teodosiu 
(1982) for additional details.  Formal standards on terminology and as-
signment of coordinate systems for crystalline solids are given by Bond et 
al. (1949). 

The triclinic crystal system contains Laue group N or 1.  This system 
has the lowest material symmetry; a triclinic crystal has no symmetry axes 
or planes.  Though the coordinate system corresponding to n

NR  in Table 
A.1 may be chosen arbitrarily (Landau and Lifshitz 1959), standard con-
ventions do exist for selecting i, j, and k for a given specimen (Bond et al. 
1949). 

Monoclinic crystals belong to Laue group M or 2 in the numbering 
scheme of Table A.1.  Crystals of this system possess at any point, an axis 
of symmetry of second order, a single plane of reflection symmetry, or 
both.  The coordinate system corresponding to n

NR  is chosen such that k is 
aligned along the axis of symmetry or is perpendicular to the plane of 
symmetry. 

The orthorhombic system includes Laue group O or 3.  It describes crys-
tals with three mutually perpendicular twofold axes, two mutually perpen-
dicular planes of reflection symmetry, or both.  The coordinate system cor-
responding to n

NR  is chosen such that i and j are aligned along the twofold 
axes or perpendicular to the planes of symmetry.  If in this case k is also a 
plane of symmetry, then the orthorhombic crystal is also orthotropic. 

The tetragonal system includes Laue groups TII (4) and TI (5).  Crystals 
of group TII have a single axis of fourfold symmetry.  The k axis is chosen 
parallel to this axis.  Crystals of the tetragonal subsystem TI possess, in 
addition to this fourfold axis, an axis of twofold symmetry along vector i.   

The rhombohedral system includes Laue groups RII (6) and RI (7).  
Crystals of these groups have an axis of threefold symmetry, convention-
ally called the c-axis when the Bravais-Miller system is used.  For this rea-
son, sometimes the rhombohedral system is referred to as the trigonal sys-
tem.  Furthermore, sometimes groups 6 and 7 are labeled as belonging to 
the hexagonal system, even though crystals of these groups do not possess 
an axis of sixfold symmetry.  The unit vector k is taken parallel to the axis 
of symmetry, that is, parallel to the c-axis.  Crystals of group RI also pos-
sess an axis of twofold symmetry parallel to unit vector i. 

The hexagonal system contains Laue groups HII (8) and HI (9).  These 
crystals have an axis of sixfold symmetry, conventionally labeled the c-
axis.  According to the notation in Table A.1, unit vector k is aligned par-
allel to the axis of sixfold symmetry.  Crystals of group HI also possess an 
axis of twofold symmetry parallel to unit vector i. 
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The cubic crystal system includes Laue groups CII (10) and CI (11).  
Cubic crystals have three twofold axes of symmetry.  The coordinate sys-
tem is chosen such that i, j, and k are each parallel to one of these cube 
axes.  Groups CII and CI are distinguished by their generators as is clear 
from Table A.1. 

Two other forms of symmetry not corresponding to any natural crystal 
class arise often: transverse isotropy and isotropy.  The rotation group +  
for transverse isotropy, i.e., group 12 in Table A.1, includes the unit tensor 
and all rotations n

kR  where k is normal to the plane of isotropy and 
1 n< < ∞ .  When +  consists of all proper orthogonal tensors, the mate-
rial is isotropic; otherwise, it is anisotropic (i.e., aleotropic).  The rotation 
group for isotropy is labeled 13.  Isotropic materials are always centro-
symmetric.   
 
Table A.2 Symmetry elements of crystal systems, after Thurston (1974) 

Crystal system Essential symmetry 
Triclinic None 
Monoclinic One 2-fold axis or one plane 
Orthorhombic Three orthogonal 2-fold axes or 2 planes intersecting via a 2-fold axis 
Tetragonal Either a 4-fold rotation axis or a 4-fold rotation-inversion axis 
Rhombohedral One 3-fold axis but no 6-fold rotation or 6-fold rotation-inversion axis 
Hexagonal Either a 6-fold rotation axis or a 6-fold rotation-inversion axis 
Cubic Four 3-fold rotation axes which also implies three 2-fold axes 

A.2 Generic Material Coefficients 

Material coefficients are listed in matrix form in Tables A.3-A.7 for each 
of the thirty-two point groups, following Thurston (1974), who in turn re-
fers to Mason (1966).  The point group numbers used in Tables A.3 and 
A.6 correspond to those in the rightmost column of Table A.1.  The Laue 
group numbers used in Tables A.4, A.5, and A.7 correspond to those in the 
third column of Table A.1.  Tensors of rank (i.e., order) one are given in 
Table A.3, of rank two in Tables A.4 and A.5, of rank three in Table A.6, 
and of rank four in Table A.7.  These are all so-called polar tensors of 
Thurston (1974), defined as derivatives of thermodynamic potentials with 
respect to state variables measured in some thermoelastically undistorted 
state.  This undistorted state could be the stress-free reference configura-
tion of thermoelasticity (Chapter 5 and Chapter 10), or the stress-free in-
termediate configuration(s) of finite elastoplasticity (Chapter 6-Chapter 9).  
State variables in these contexts of geometrically nonlinear mechanics 
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must have components referred to the coordinate system corresponding to 
the undistorted state, and not referred to the deformed spatial configura-
tion, for example.  Obviously, the state variables and resulting material co-
efficients must also be referred to a single consistent configuration; e.g., 
two-point tensors of material coefficients may not always exhibit the 
symmetries evident in Tables A.3-A.7.  Material coefficients as defined in 
the present context are constants at an undistorted reference state wherein 
vector- and tensor-valued independent thermodynamic state variables such 
as electric polarization and strain vanish, and wherein the material exhibits 
the full symmetry of its original crystal structure.  Tangent material coeffi-
cients do not necessarily obey the definition of a polar tensor used here in 
Appendix A and may have different symmetries than those listed in the 
forthcoming tables.  For example, the matrix of isotropic tangent elastic 
moduli in (5.119) depends on up to eight independent scalar functions and 
does not generally exhibit the same symmetries as the matrix formed from 
two independent second-order elastic constants in (5.121) and (5.122). 

Examples of polar tensors of rank one include pyroelectric coefficients 
of (10.197), (10.206), and (10.211).  Examples of polar tensors of rank two 
include thermal stress coefficients of (5.68), (5.85), and (5.201); second-
order thermal expansion coefficients of (5.201); Gruneisen’s tensor enter-
ing (5.223); dielectric susceptibilities of (10.189) and (10.205); and the di-
electric permittivity tensor of (10.208).  Examples of polar tensors of rank 
three include piezoelectric coefficients of (10.191), (10.205), and (10.209).  
Polar tensors of rank four include the second-order elastic stiffness tensor 
of (5.65), (5.85), and (5.90), as well as its inverse, i.e., the tensor of sec-
ond-order compliance constants measured in an undistorted reference state. 

Coefficients of polar tensors of odd rank vanish identically for all eleven 
classes of centrosymmetric crystals.  Coefficients of polar tensors of rank 
three also vanish for non-centrosymmetric crystal class 432 (point group 
29) because of other symmetry properties of this cubic structure (Thurston 
1974).  Tensors of rank one, e.g., pyroelectric coefficients, vanish in all but 
ten of the twenty-one crystal classes lacking an inversion center. 

Indices of coefficients listed in Tables A.3-A.7 are referred to rectangu-
lar Cartesian axes 1 2 3, ,X X X .  Care must be taken to properly account for 
the relationship between these axes and the crystallographic axes, espe-
cially when interpreting experimental data for elastic constants of materials 
of less than cubic symmetry.  Standards exist for various crystal classes 
(Bond et al. 1949), though in some cases ambiguities arise leading to dif-
ferent sign conventions for the coefficients (Winey et al. 2001).  Methods 
for identifying material symmetry of a substance given the values of sec-
ond-order elastic constants referred to a known—but otherwise arbitrary 
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with respect to material structure—coordinate system have been developed 
(Cowin and Mehrabadi 1987).   

Tensors of rank two are written first in Table A.4 without presuming 
symmetry a priori; symmetric forms are then indicated in Table A.5, corre-
sponding for example to thermal stress or thermal expansion coefficients.  
Notably, symmetric polar tensors of rank two are diagonal in form for 
crystals of all Laue groups that are not triclinic or monoclinic.  Further-
more, for cubic crystals (and for isotropic solids), polar tensors of rank two 
are spherical with only one unique entry.   
 
Table A.3 Forms of rank one polar tensors (Thurston 1974) 

Point groups: 1 3 4 7,10,14,16,20,23,26 Others 
Components 1 0 1 0 0 
 2 2 0 0 0 
 3 0 3 3 0 
No. constants: 3 1 2 1 0 

 
Table A.4 Forms of rank two polar tensors (Thurston 1974) 

Laue groups*: 1 2 3 4,6,8 5,7,9,12 10,11,13 
Components 11 11 11 11 11 11 
 12 0 0 12 0 0 
 13 13 0 0 0 0 
 21 0 0 -12 0 0 
 22 22 22 11 11 11 
 23 0 0 0 0 0 
 31 31 0 0 0 0 
 32 0 0 0 0 0 
 33 33 33 33 33 11 
No. constants: 9 5 3 3 2 1 

*Includes transversely isotropic (12) and isotropic (13) 
 
Table A.5 Forms of symmetric rank two polar tensors (Thurston 1974) 

Laue groups*: 1 2 3 4,6,8 5,7,9,12 10,11,13 
Components 11 11 11 11 11 11 
 12 0 0 0 0 0 
 13 13 0 0 0 0 
 12 0 0 0 0 0 
 22 22 22 11 11 11 
 23 0 0 0 0 0 
 13 13 0 0 0 0 
 23 0 0 0 0 0 
 33 33 33 33 33 11 
No. constants: 6 4 3 2 2 1 

*Includes transversely isotropic (12) and isotropic (13) 
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Tensors of orders three and four, on the other hand, are written for con-
ciseness by assuming additional symmetries.  Specifically in Table A.6, 
the last two indices are reduced to one according to the Voigt (1928) nota-
tion, assuming that these indices correspond to differentiation of the ther-
modynamic potential with respect to a symmetric variable.  For example, 
the nine components of a symmetric second-order tensor reduce to six ac-
cording to the correspondence  

 
11 ~ 1, 22 ~ 2, 33 ~ 3,

23 32 ~ 4, 31 13 ~ 5, 12 21 ~ 6.= = =
 (A.2) 

In Table A.6, the first index spanning 1,2,3 which varies among the three 
rows of that matrix corresponds to the component of the polar tensor aris-
ing from differentiation of a thermodynamic potential with respect to a 
vector.  The second index spanning 1,2,…6 which varies among six col-
umns corresponds to differentiation with respect to a symmetric second 
order tensor.  When this polar tensor describes piezoelectric-type coeffi-
cients, for example, the vector is the electrical variable and the tensor is the 
symmetric elastic strain or stress.  The convention used here is consistent 
with that of Section 10.3.6. 
 
Table A.6 Forms of rank three polar tensors (Thurston 1974) 

Point groups: 1 3 4 6 7 9 10,23 11 
Components 11 0 11 0 0 0 0 0 
 12 0 12 0 0 0 0 0 
 13 0 13 0 0 0 0 0 
 14 14 0 14 0 14 14 14 
 15 0 15 0 15 0 0 0 
 16 16 0 0 0 15 0 0 
 21 21 0 0 0 0 0 0 
 22 22 0 0 0 0 0 0 
 23 23 0 0 0 0 0 0 
 24 0 24 0 24 -15 0 0 
 25 25 0 25 0 14 -14 14 
 26 0 26 0 0 0 0 0 
 31 0 31 0 31 31 0 0 
 32 0 32 0 32 -31 0 0 
 33 0 33 0 33 0 0 0 
 34 34 0 0 0 0 0 0 
 35 0 35 0 0 0 0 0 
 36 36 0 36 0 36 0 36 
No. constants: 18 8 10 3 5 4 1 2 

 
 
 
 



A.2 Generic Material Coefficients      551 

Table A.6 (Continued)  

Point groups: 12,24 14,26* 16 18 19 20 22 28,31 
Components 0 0 11 11 11 0 11 0 
 0 0 -11 -11 -11 0 -11 0 
 0 0 0 0 0 0 0 0 
 14 0 14 14 0 0 0 14 
 0 15 15 0 0 15 0 0 
 0 0 -22 0 -22 -22 0 0 
 0 0 -22 0 -22 -22 0 0 
 0 0 22 0 22 22 0 0 
 0 0 0 0 0 0 0 0 
 0 15 15 0 0 15 0 0 
 -14 0 -14 -14 0 0 0 14 
 0 0 -11 -11 -11 0 -11 0 
 0 31 31 0 0 31 0 0 
 0 31 31 0 0 31 0 0 
 0 33 33 0 0 33 0 0 
 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 14 
No. constants: 1 3 6 2 2 4 1 1 

*Includes transversely isotropic  
 

The coefficients in Table A.7 are written assuming symmetry with re-
spect to each individual pair of indices, consistent with Section 5.1.5.  This 
symmetry reduces the maximum number of independent coefficients from 
34=81 to 6×6=36.  For example, for the case of elastic moduli, each index 
spanning 1,2,…6 corresponds to differentiation of the strain energy density 
with respect to an independent component of strain.  However, the matri-
ces listed in Table A.7 are more generic than elastic moduli that result 
from the assumption of hyperelasticity, and do not require that the 6×6 ma-
trix of coefficients is symmetric.  Thus Table A.7 admits coefficients de-
fined via differentiation of a thermodynamic potential with respect to two 
different symmetric, second-order tensors.  The additional symmetry that 
would arise from differentiation with respect to the same symmetric sec-
ond-order tensor further reduces the maximum number of independent co-
efficients to 21.  This is discussed by example in the context of second-
order elastic constants in Section A.3.  
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Table A.7 Forms of rank four polar tensors (Thurston 1974) 

1 
N 

2 
M 

3 
O 

4 
TII 

5 
TI 

6 
RII 

7 
RI 

8 
HII 

9 

HI 
10 

CII 
11 
CI 

12 

t-i 
13
iso 

11 11 11 11 11 11 11 11 11 11 11 11 11 
12 12 12 12 12 12 12 12 12 12 12 12 12 
13 13 13 13 13 13 13 13 13 13 12 13 12 
14 0 0 0 0 14 14 0 0 0 0 0 0 
15 15 0 0 0 -25 0 0 0 0 0 0 0 
16 0 0 16 0 2×62 0 2×61 0 0 0 0 0 
21 21 21 12 12 12 12 12 12 13 12 12 12 
22 22 22 11 11 11 11 11 11 11 11 11 11 
23 23 23 13 13 13 13 13 13 12 12 13 12 
24 0 0 0 0 -14 -14 0 0 0 0 0 0 
25 25 0 0 0 25 0 0 0 0 0 0 0 
26 0 0 -16 0 -2×62 0 -2×61 0 0 0 0 0 
31 31 31 31 31 31 31 31 31 12 12 31 12 
32 32 32 31 31 31 31 31 31 13 12 31 12 
33 33 33 33 33 33 33 33 33 11 11 33 11 
34 0 0 0 0 0 0 0 0 0 0 0 0 
35 35 0 0 0 0 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 0 0 0 0 0 
41 0 0 0 0 41 41 0 0 0 0 0 0 
42 0 0 0 0 -41 -41 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 0 0 0 0 0 
44 44 44 44 44 44 44 44 44 44 44 44 A* 
45 0 0 45 0 45 0 45 0 0 0 0 0 
46 46 0 0 0 2×52 0 0 0 0 0 0 0 
51 51 0 0 0 -52 0 0 0 0 0 0 0 
52 52 0 0 0 52 0 0 0 0 0 0 0 
53 53 0 0 0 0 0 0 0 0 0 0 0 
54 0 0 -45 0 -45 0 -45 0 0 0 0 0 
55 55 55 44 44 44 44 44 44 44 44 44 A* 
56 0 0 0 0 2×41 2×41 0 0 0 0 0 0 
61 0 0 61 0 -62 0 61 0 0 0 0 0 
62 0 0 -61 0 62 0 -61 0 0 0 0 0 
63 0 0 0 0 0 0 0 0 0 0 0 0 
64 64 0 0 0 25 0 0 0 0 0 0 0 
65 0 0 0 0 14 14 0 0 0 0 0 0 
66 66 66 66 66 A* A* A* A* 44 44 A* A* 
36 20 12 10 7 12 8 8 6 4 3 6 2 
* 11 12A = −   
 
The discussion in Section A.1 pertains to a geometrically nonlinear re-

sponse, as implied by (A.1).  For geometrically linear or small-strain rep-
resentations, the same symmetries in material coefficients listed in Tables 
A.3-A.7 still apply, following from appropriate linearization of the finite 
deformation descriptions.  
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As implied in the discussion of polar tensors above, (A.1) can be ex-
tended to apply when the free energy density (or another thermodynamic 
potential such as internal energy density) depends on other state variables, 
for example temperature in thermoelastic bodies or electric polarization in 
dielectric bodies.  However, as noted by Thurston (1974), when polar ten-
sors of odd rank are involved (e.g., piezoelectric constants in electrome-
chanical theories), the number of operations needed to describe all kinds of 
symmetry in the response functions requires extension beyond those gen-
erators shared by all crystal classes within a given Laue group listed in Ta-
ble A.1.  This is evident from Table A.6, wherein sixteen different forms 
of rank three polar tensors are required to address the non-centrosymmetric 
point groups.  Put another way, polar tensors of odd rank require precise 
consideration of which of the thirty-two point groups a crystal structure be-
longs, not just which of the eleven Laue groups it falls into.  Delineation of 
symmetries of magnetic properties, outside the scope of this text, evidently 
requires introduction of ninety magnetic crystal classes (Thurston 1974). 

A.3 Elastic Constants 

Consider a hyperelastic body with a strain energy density function ex-
pressed in polynomial form as 

 
( )0 0

1 1
2! 3!
1                         ....
4!

ABCD ABCDEF
AB AB CD AB CD EF

ABCDEFGH
AB CD EF GH

E E E E E E

E E E E

Ψ ρ ψ= = +

+ +
 (A.3) 

Strain energy per unit reference volume is 0Ψ , strain energy per unit mass 
is ψ , mass density is 0ρ , and elastic constants at null elastic strain (i.e., in 
the undistorted state) satisfy 

 
2

0

0

ABCD

AB CDE E
Ψ

=

∂
=
∂ ∂

E

, (second-order elastic constants); (A.4) 

 
3

0

0

ABCDEF

AB CD EFE E E
Ψ

=

∂
=
∂ ∂ ∂

E

, (third-order constants); (A.5) 

 
4

0

0

ABCDEFGH

AB CD EF GHE E E E
Ψ

=

∂
=
∂ ∂ ∂ ∂

E

, (fourth-order constants); (A.6) 

and so forth for elastic constants of orders higher than four.  Recall from 
(5.10) that in a hyperelastic material of grade one, the second Piola-
Kirchhoff stress tensor satisfies 
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 0 0
0

AB BA

AB AB BAE E E
Ψ ΨψΣ ρ Σ
∂ ∂∂

= = = =
∂ ∂ ∂

, (A.7) 

leading to  

 1
2

AB ABCD ABCDEF
CD CD EFE E EΣ = + , (A.8) 

where terms of orders four and higher in the strain E are dropped from 
(A.3) henceforth.  From the symmetry of strain tensor E and the hyperelas-
tic definitions of the elastic moduli in (A.4) and (A.5), 

   
( )( ) ( )( )

( )( )( ) ( )( )( )

       ,

...,

AB CD CD ABABCD

AB CD EF AB EF CDABCDEF

= =

= =
  (A.9) 

implying that the tensor of second-order elastic constants contains at most 
21 independent entries, and the tensor of third-order elastic constants at 
most 56 independent entries.   

In the compact notation of Brugger (1964), Thurston (1974), and Teo-
dosiu (1982), components of the stress and moduli are re-written to take 
advantage of these symmetries: 
 ( ) ~AB AΣ Σ , ( )( ) ~AB CD AB , ( )( )( ) ~AB CD EF ABC . (A.10) 
Barred indices span 1,2,…6 and correspond to unbarred pairs of indices as 
indicated in (A.2).  Consistent with (A.10), strains and second-order elastic 
compliances are re-written as 
 ( )2 (1 )ABAB AE Eδ= + , ( )( )4S (1 )(1 )SAB CDAB CD ABδ δ= + + , (A.11) 

recalling from (5.148) that elastic moduli and compliances are inverses of 
each other: 
 . . . .2S CDEF E F F E

ABCD A B A Bδ δ δ δ= + , .S BC C
AB Aδ= . (A.12) 

As a consequence of hyperelasticity, the elastic coefficients exhibit the re-
maining symmetries 
 ( )ABAB = , ABC BAC ACB CAB= = = , ( )S SAB AB= . (A.13) 

Using (A.10) and (A.11), the strain energy density of (A.3) is 

 ( )0
1 1 ...
2! 3!

AB ABC
B BA A A CE E E E E EΨ = + + , (A.14) 

and the stress tensor of (A.8) is written compactly in Voigt’s notation as 

 1
2

A AB ABC
B B CE E EΣ = + . (A.15) 

Other condensed notations exist for elastic coefficients (Birch 1947; Mur-
naghan 1951; Hearmon 1953; Toupin and Bernstein 1961); transformation 
formulae among several notations are given by Brugger (1964).   
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The number of independent elastic coefficients for a given substance 
may be further reduced because of material symmetry associated with the 
structure of the substance.  Specifically, the strain energy density 0Ψ  for 
crystals of a particular Laue group is invariant with respect to rotations of 
reference coordinates belonging to the proper rotation group +  of that 
Laue group.  This requires that the strain energy density depend only on 
certain scalar functions, called invariants, of E (or of the symmetric de-
formation tensor T=C F F ) that leave the energy unchanged with respect 
to such rotations (Smith and Rivlin 1958).  Scalar invariants of E are la-
beled as 1 2, ,... PI I I .  The stress (A.7) can then be found as  

 0

1

P
AB

ABE
λ

λ λ

Ψ Ι
Σ

Ι=

∂ ∂
=

∂ ∂∑ . (A.16) 

Lists of invariants for each Laue group are given by Truesdell and Noll 
(1965) and Teodosiu (1982) and are not repeated here.  Consideration of 
the list of invariants for each Laue group enables deduction of the inde-
pendent elastic coefficients for that group, as explained for example by 
Teodosiu (1982).  Alternative arguments providing the independent elastic 
constants for various Laue groups are provided by Landau and Lifshitz 
(1959).  

Tables A.8 and A.9 list independent second- and third-order elastic con-
stants, respectively, for the eleven Laue groups of crystals, for transversely 
isotropic materials, and for isotropic bodies.  The bottom row in each col-
umn provides the total number of independent coefficients.  The reduced 
notation of Brugger (1964) explained in (A.10)-(A.15) is used in Tables 
A.8 and A.9.  Table A.8 applies for (second-order) elastic compliance as 
well as elastic stiffness constants, while Table A.9 applies only for (third-
order) elastic stiffness constants.  As a result of (A.11), differences in fac-
tors of two arise among some entries of Tables A.7 and A.8.  Notice that 
footnotes for Table A.9 continue onto the following page. 

Second- and third-order elastic constants are often obtained from ex-
perimental measurements of sound velocities in stress-free and homogene-
ously stressed crystals, respectively (Thurston and Brugger 1964; Thomas 
1968; Thurston 1974; Hiki 1981).  Constants of orders four and higher, not 
listed here, may be important in some shock compression events (Graham 
1992) and can be estimated from temperature dependence of lower-order 
elastic coefficients or deviations from a linear relationship between sound 
velocity and initial stress (Markenscoff 1977; Hiki 1981). 
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Table A.8 Second-order elastic constants (Brugger 1965; Teodosiu 1982) 

1 
N 

2 
M 

3 
O 

4 
TII 

5 
TI 

6 
RII 

7 
RI 

8 
HII 

9 

HI 
10 

CII 
11 
CI 

12 

t-i 
13
iso 

11 11 11 11 11 11 11 11 11 11 11 11 11 
12 12 12 12 12 12 12 12 12 12 12 12 12 
13 13 13 13 13 13 13 13 13 12 12 13 12 
14 0 0 0 0 14 14 0 0 0 0 0 0 
15 15 0 0 0 15 0 0 0 0 0 0 0 
16 0 0 16 0 0 0 0 0 0 0 0 0 
22 22 22 11 11 11 11 11 11 11 11 11 11 
23 23 23 13 13 13 13 13 13 12 12 13 12 
24 0 0 0 0 -14 -14 0 0 0 0 0 0 
25 25 0 0 0 -15 0 0 0 0 0 0 0 
26 0 0 -16 0 0 0 0 0 0 0 0 0 
33 33 33 33 33 33 33 33 33 11 11 33 11 
34 0 0 0 0 0 0 0 0 0 0 0 0 
35 35 0 0 0 0 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 0 0 0 0 0 
44 44 44 44 44 44 44 44 44 44 44 44 B* 
45 0 0 0 0 0 0 0 0 0 0 0 0 
46 46 0 0 0 -15 0 0 0 0 0 0 0 
55 55 55 44 44 44 44 44 44 44 44 44 B* 
56 0 0 0 0 14 14 0 0 0 0 0 0 
66 66 66 66 66 A* A* A* A* 44 44 A* A* 
21 13 9 7 6 7 6 5 5 3 3 5 2 

* 66 11 12
66 11 12: 2 ; S 2(S S )A = − = −   

  44 11 12
44 11 12: 2 ; S 2(S S )B = − = −   
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Table A.9 Third-order stiffness constants (Brugger 1965) 

1 
N 

2 
M 

3 
O 

4 
TII 

5 
TI 

6 
RII 

7 
RI 

8 
HII 

9 
HI 

10 
CII 

11 
CI 

12 
t-i 

13 
iso 

111 111 111 111 111 111 111 111 111 111 111 111 111 
112 112 112 112 112 112 112 112 112 112 112 112 112 
113 113 113 113 113 113 113 113 113 113 112 113 112 
114 0 0 0 0 114 114 0 0 0 0 0 0 
115 115 0 0 0 115 0 0 0 0 0 0 0 
116 0 0 116 0 116 0 116 0 0 0 0 0 
122 122 122 112 112 A* A* A* A* 113 112 112 112 
123 123 123 123 123 123 123 123 123 123 123 123 123 
124 0 0 0 0 124 124 0 0 0 0 0 0 
125 125 0 0 0 125 0 0 0 0 0 0 0 
126 0 0 0 0 -116 0 -116 0 0 0 0 0 
133 133 133 133 133 133 133 133 133 112 112 133 112 
134 0 0 0 0 134 134 0 0 0 0 0 0 
135 135 0 0 0 135 0 0 0 0 0 0 0 
136 0 0 136 0 0 0 0 0 0 0 0 0 
144 144 144 144 144 144 144 144 144 144 144 144 L* 
145 0 0 145 0 145 0 145 0 0 0 0 0 
146 146 0 0 0 B* 0 0 0 0 0 0 0 
155 155 155 155 155 155 155 155 155 155 155 155 M* 
156 0 0 0 0 C* C* 0 0 0 0 0 0 
166 166 166 166 166 D* D* D* D* 166 155 M* M* 
222 222 222 111 111 222 222 222 222 111 111 111 111 
223 223 223 113 113 113 113 113 113 112 112 113 112 
224 0 0 0 0 E* E* 0 0 0 0 0 0 
225 225 0 0 0 F* 0 0 0 0 0 0 0 
226 0 0 -116 0 116 0 116 0 0 0 0 0 
233 233 233 133 133 133 133 133 133 113 112 133 112 
234 0 0 0 0 -134 -134 0 0 0 0 0 0 
235 235 0 0 0 -135 0 0 0 0 0 0 0 
236 0 0 -136 0 0 0 0 0 0 0 0 0 
244 244 244 155 155 155 155 155 155 166 155 155 M* 
245 0 0 -145 0 -145 0 -145 0 0 0 0 0 
246 246 0 0 0 G* 0 0 0 0 0 0 0 
255 255 255 144 144 144 144 144 144 144 144 144 L* 
256 0 0 0 0 H* H* 0 0 0 0 0 0 
266 266 266 166 166 I* I* I* I* 155 155 M* M* 
333 333 333 333 333 333 333 333 333 111 111 333 111 
334 0 0 0 0 0 0 0 0 0 0 0 0 
335 335 0 0 0 0 0 0 0 0 0 0 0 
336 0 0 0 0 0 0 0 0 0 0 0 0 
344 344 344 344 344 344 344 344 344 155 155 344 M* 
345 0 0 0 0 0 0 0 0 0 0 0 0 
346 346 0 0 0 -135 0 0 0 0 0 0 0 
355 355 355 344 344 344 344 344 344 166 155 344 M* 
356 0 0 0 0 134 134 0 0 0 0 0 0 
366 366 366 366 366 J* J* J* J* 144 144 J* L* 
444 0 0 0 0 444 444 0 0 0 0 0 0 
445 445 0 0 0 445 0 0 0 0 0 0 0 
446 0 0 446 0 145 0 145 0 0 0 0 0 
455 0 0 0 0 -444 -444 0 0 0 0 0 0 
456 456 456 456 456 K* K* K* K* 456 456 K* N* 
466 0 0 0 0 124 124 0 0 0 0 0 0 
555 555 0 0 0 -445 0 0 0 0 0 0 0 
556 0 0 -446 0 -145 0 -145 0 0 0 0 0 
566 566 0 0 0 125 0 0 0 0 0 0 0 
666 0 0 0 0 -116 0 -116 0 0 0 0 0 
56 32 20 16 12 20 14 12 10 8 6 9 3 
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Table A.9 (Continued) 
* 111 112 222                   114 2 124 (2 111 112 222) / 4 (111 112) / 4                   
 (115 3 125) / 2              115 2 125 (113 123) / 2              (111 3 112 2 123) /8
 (114 3 1

A E I M
B F J N
C

= + − = − − × = × − − = −
= − + × = − − × = − = − × + ×
= + × 24) / 2                (115 125) / 2 (144 155) / 2           

 (2 111 112 3 222) / 4 (114 124) / 2 (112 123) / 2             
G K

D H L
= − − = − −

= − × + − × = − = −

 

 

Highly symmetric materials are given special consideration in the text 
that follows.  Specifically considered are cubic crystals, transversely iso-
tropic materials, and isotropic materials. 

A.3.1 Cubic Symmetry 

Cubic crystals include Laue group numbers 10 and 11 in the notation of 
Table A.1.  Both groups exhibit three independent second-order elastic 
constants.  Group 10 exhibits eight independent third-order elastic con-
stants, while group 11 exhibits six independent third-order elastic con-
stants.  All second rank polar tensors (e.g., thermal expansion coefficients) 
are spherical or diagonal in cubic crystals, as is clear from Table A.4.  Ne-
glecting third- and higher-order elastic coefficients, and when the coordi-
nate system is chosen coincident with the cube axes, strain energy density 
(A.3) can be written as (Thurston 1974) 

       

12 2 44
0 .

11 12 44 2 2 2
11 22 33

2 44 2 2 2
. 11 22 33

2 44 2 2 2
. 12 23 31

11 12
11

1 ( )
2

1        ( 2 ) ( ) ( ) ( )
2

1    ( ) ( ) ( ) ( )
2
1    ( ) 2 ( ) ( ) ( )
2

1       ( ) ( )
2

A AB
A AB

A AB
A AB

A
A

E E E

E E E

K E E E E E E

K E E E E

E

Ψ

µ

= +

⎡ ⎤+ − − + +⎣ ⎦

′ ′ ′ ′ ′ ′⎡ ⎤= + − + +⎣ ⎦

⎡ ⎤= + + +⎣ ⎦

′+ −

{ }

2 2 2
22 33

2 44 2 2 2
. 12 23 31

2 2 2
12 23 31

2 2 2 2
. 12 23 31

( ) ( )

1    ( ) 2 ( ) ( ) ( )
2

       2 ( ) ( ) ( )

1    ( ) 2 ( ) ( ) ( ) ,
2

A
A

AB
AB

A AB
A AB

E E

K E E E E

E E E E E

K E E E E E E

µ

µ µ

′ ′⎡ ⎤+ +⎣ ⎦

⎡ ⎤= + + +⎣ ⎦

′ ′ ⎡ ⎤+ − + +⎣ ⎦

′ ′ ′ ⎡ ⎤= + + + +⎣ ⎦

 (A.17) 

where . / 3C
AB AB AB CE E Eδ′ = −  is the deviatoric part of the strain tensor, sat-

isfying the identity 
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    2 2 2 2 2 2
11 22 33 12 23 31( ) ( ) ( ) 2 ( ) ( ) ( )AB

ABE E E E E E E E′ ′ ⎡ ⎤= + + + + +⎣ ⎦ . (A.18) 

Second-order bulk modulus K and shear moduli µ  and µ′  are defined, re-
spectively, in terms of cubic second-order elastic constants as 

    11 121 ( 2 )
3

K = + , 11 121 ( )
2

µ = − , 44 11 121 ( )
2

µ′ = − − . (A.19) 

When 0µ′ = , the material becomes isotropic in the materially linear ap-
proximation of (A.17).  An anisotropy ratio A (Zener 1948) measuring the 
deviation from isotropy is typically defined according to the formula 

44 11 12 442 /( ) /A µ= − = .  When anisotropy ratio 1A = , the solid is 
perfectly isotropic.  To ensure that the elastic strain energy density of 
(A.17) remains positive for any nonzero strain, the second-order cubic 
elastic constants are constrained by 0K > , 0µ > , and 44 0> . 

When the deformation is spherical, the deformation gradient becomes 
1/ 3

. .
a a
A AF J δ=  in Cartesian coordinates with strain 2 / 3(1/ 2)( 1)AB ABE J δ= − , 

so that 2 / 3
. (3/ 2)( 1)A
AE J= −  and 0ABE′ = .  In that case, all but the first 

term vanish on the right side of the final equality in (A.17), and the stress 
state is purely hydrostatic.  The second Piola-Kirchhoff stress tensor be-
comes 2 / 3(3 / 2)( 1)AB ABK JΣ δ= −  for spherical deformation, the Cauchy 
stress tensor becomes 1/ 3 1/ 3(3 / 2)( )ab abK J Jσ δ−= − ,  and the Cauchy 
pressure becomes 1/ 3 1/ 3(3 / 2)( )p K J J−= − . 

Elastic stress wave propagation (i.e., acoustic waves) and methods of 
determination of elastic constants in cubic crystals from ultrasonic meas-
urements are discussed in detail by Thurston (1974).  A procedure for de-
termining cubic elastic constants at high pressures from sound wave ve-
locities is outlined by Dandekar (1970). 

A.3.2 Transverse Isotropy 

Materials with transverse isotropy, belonging to rotation group 12 of Table 
A.1, exhibit five independent second-order elastic constants.  Thus, the 
second-order moduli of transversely isotropic solids exhibit the same form 
as those of hexagonal crystals of Laue groups 8 and 9, as is clear from Ta-
ble A.8.  However, transversely isotropic materials have only nine inde-
pendent third-order elastic constants.  This is in contrast to hexagonal crys-
tals which exhibit twelve independent constants (group 8) or ten constants 
(group 9).  Transverse isotropy does not correspond to naturally occurring, 
single crystal Bravais lattices, but can emerge in polycrystalline samples 
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via texturing.  It is also commonly used to describe properties of certain 
kinds of fiber-reinforced composite materials, for example those with ran-
domly or periodically distributed cylindrical fibers oriented perpendicular 
to a plane of symmetry. 

A.3.3 Isotropy 

Isotropic solids exhibit two second-order elastic constants and three third-
order elastic constants.  The second-order elasticity tensor is constructed 
from two independent constants in Cartesian reference coordinates as 
 ( )ABCD AC BD AD BC AB CDµ δ δ δ δ λδ δ= + + ,  (A.20) 
where µ  is the shear modulus andλ  is Lamé’s constant.  The third-order 
elastic constants of an isotropic elastic body can be written as (Toupin and 
Bernstein 1961; Teodosiu 1982) 
 123

1ν = , 144
2ν = , 456

3ν = , (A.21) 
leading to the following representation of the third-order elastic moduli: 

1

2

3

             ( ) ( )

                    ( )

             ( ) ( )

                   (

ABCDEF AB CD EF

AB CE DF CF DE CD AE BF AF BE

EF AC BD AD BC

AC BE DF BF DE BD AE CF AF CE

AD B

ν δ δ δ

ν δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ
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δ δ
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⎡+ + + +⎣

⎤+ + ⎦
⎡+ + + +⎣

+ ) ( ) .E CF BF CE BC AE DF AF DEδ δ δ δ δ δ δ δ ⎤+ + + ⎦

 (A.22) 

In the absence of material nonlinearity (i.e., omitting the third-order 
elastic constants), the strain energy density and stress-strain relations are 
simply 

 2
0 .

1 ( )
2

A AB
A ABE E EΨ λ µ= + , (A.23) 

 . 2AB C AB AB
CE EΣ λ δ µ= + . (A.24) 

Three other elastic constants are often introduced to describe the isotropic 
mechanical behavior demonstrated in (A.23): elastic modulus E, Poisson’s 
ratio ν , and bulk modulus K.  Relationships among the five isotropic sec-
ond-order elastic constants are listed in Table A.10.  To ensure that the 
elastic strain energy density of (A.23) remains positive for all non-zero 
strains, isotropic elastic constants are restricted to 0µ > , 0E > , 0K > , 
and 1 1/ 2ν− < ≤ .  When 1/ 2ν = , then / 3Eµ = , 1/ 0K = , K →∞ , and 
the material is elastically incompressible.   

Using definitions in Table A.10, stress-strain relations (A.24) become 
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 2AB ABEΣ µ′ ′= , . .3A A
A AKEΣ = . (A.25) 

The first of (A.25) relates the deviatoric (i.e., traceless) parts of second 
Piola-Kirchhoff stress and right Cauchy-Green strain, and the second re-
lates spherical parts of stress and strain measures.  When the deformation 
is spherical with 1/ 3

. .
a a
A AF J δ= , the stress state is hydrostatic, with Cauchy 

pressure 1/ 3 1/ 3(3 / 2)( )p K J J−= − ; the same relationship is observed for 
materials with cubic symmetry as mentioned already in Section A.3.1. 

Returning now to the materially nonlinear case, third-order elastic con-
stants can be related to pressure derivatives of tangent bulk and shear 
moduli, K  and µ  respectively, at an undistorted stress-free state as (Teo-
dosiu 1982) 

     1 2 3
0

82
9p

KK
p

ν ν ν
=

∂
− = + +

∂
, 2 3

0

1 4
3 3p

K K
p
µ µ ν ν

=

∂
− = + + +

∂
. (A.26) 

A more in-depth treatment of pressure derivatives of elastic coefficients, 
including those of anisotropic crystals, is given by Thurston (1974). 
 
Table A.10 Relationships among second-order elastic constants of isotropic solids 
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In many applications, the effect of elastic material nonlinearity on de-
viatoric stresses may be negligible.  For example, in ductile metallic crys-
tals, plastic yielding (i.e., dislocation glide) may take place before large 
deviatoric elastic strains are attained.  However, because dislocation glide 
is isochoric as discussed in Section 3.2 of Chapter 3, volumetric strains 
cannot be accommodated inelastically in the absence of defects (e.g., in the 
absence of vacancy formation, void growth, or fracture).  In such cases, it 
may be prudent discard from (A.3) only terms of order greater than two in 
the deviatoric strains: 

 0 1
1 1
2 3

ABCD AB CD EF
AB CD AB CD EFE E K E E EΨ δ δ δ= − , (A.27) 

where for an isotropic solid, setting AB ABE δ∝ in (A.22) and (A.27) gives 

 1 1 2 3
82
9

K ν ν ν= − − − . (A.28) 

The bulk modulus usually increases with increasing (compressive) pres-
sure, in which case from (A.26) and (A.28), 1 0K > .  The first term in 
(A.27) can be anisotropic; for the particular case of isotropic second-order 
elasticity (Clayton 2005b) 

 2 3
0 . 1 .

1 1( ) ( )
2 3

A AB A
A AB AK E E E K EΨ µ ′ ′= + − , (A.29) 

resulting in the stress-strain relations 
 . 2AB C AB AB

CKE EΣ δ µ ′= + , (A.30) 
where the apparent bulk modulus is 
 1 .

A
AK K K E= − . (A.31) 

Deviatoric and spherical parts of the second Piola-Kirchhoff stress are 
then, respectively, 
 2AB ABEΣ µ′ ′= , . .3A A

A AKEΣ = . (A.32) 
The approach taken in (A.27)-(A.32) is comparable to that of Murnaghan 
(1944), who assumed a bulk modulus linearly dependent on pressure. 

Naturally occurring isotropic single crystals are rare, a notable exception 
being tungsten single crystals at room temperature and small deformations 
(Hirth and Lothe 1982).  The isotropic description is often used for aggre-
gates of a large number of polycrystals with random texture and for amor-
phous solids such as non-crystalline polymers and glasses.  Though typi-
cally the (isotropic) elastic constants of polycrystals are measured directly 
using mechanical testing or ultrasonic techniques, theoretical methods ex-
ist for estimating effective isotropic elastic constants of an aggregate from 
anisotropic elastic constants of its constituents.  A number of methods 
based on various averaging or self-consistent assumptions have been de-
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veloped, as can be found in texts on micromechanics (Mura 1982; Nemat-
Nasser and Hori 1993; Buryachenko 2007).  The two simplest, yet still 
physically realistic, methods are referred to as Voigt’s approximation and 
Reuss’s approximation. 

In Voigt’s approximation, all single crystals of the volume element of a 
polycrystalline are assigned the same strain E, and the total stress sup-
ported by the polycrystal is taken as the volume average of the stresses in 
each crystal.  This leads to the definition of the Voigt average second-order 
elastic constants 
 1 ( )ABCD ABCD

V
V

V X dV−= ∫ , (A.33) 

where the average components ABCD
V  and the local single crystal constants 

ABCD , the latter listed in Table A.8 for crystals of different Laue groups, 
are all referred to the same global Cartesian coordinate system.  The refer-
ence volume of the aggregate is denoted by V.  Omitting elastic constants 
of orders three and higher, the average second Piola-Kirchhoff stress is 
 AB ABCD

V V CDEΣ = , (A.34) 
where ABCD

V  is assumed in the present application to exhibit isotropic 
symmetry of the form in (A.20).  For an imposed spherical strain tensor 

. / 3F
CD F CDE E δ= , substituting (A.33) into the trace of (A.34) gives 

     
. .

. . . . . .

.
. . . .

13( ) ( )

            9 ,

A A CD F F A C
V A V A F CD F A C

V
A C F F
A C F V F

E E dV
V

E K E

Σ δ= =

= =

∫  (A.35) 

since the integrand in (A.35) is a scalar invariant.  The Voigt average bulk 
modulus VK  follows in full tensor notation and reduced Voigt notation, 
respectively, as 

    

. 1111 2222 3333 1122 2233 3311
. .

11 22 33 12 23 13

1 1 2( )
9 9

1                    2( ) .
9

A B
V A BK ⎡ ⎤= = + + + + +⎣ ⎦

⎡ ⎤= + + + + +⎣ ⎦

 (A.36) 

When single crystals of the aggregate are cubic, comparison with (A.19) 
demonstrates that (A.36) is exact.  For an imposed shear strain 12E , rela-
tion (A.34) gives 
 12 1212

12 122 2V V VE EΣ µ= = , (A.37) 
where the Voigt average shear modulus Vµ  is given by (Hill 1952) 
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.
.. . . ..

11 22 33 12 23 13 44 55 66

1 13 3
30 10
1    ( ) ( ) 3( ) .

15

AB A B AB
V AB A B AB VKµ ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦

⎡ ⎤= + + − + + + + +⎣ ⎦

 (A.38) 

For an aggregate composed of cubic single crystals with elastic constants 
of the form listed in (A.19), the final expression in (A.38) reduces to  

 11 12 441 3 2 3( ) ( )
5 5 5 5Vµ µ µ µ′= − + = + + . (A.39) 

In the Reuss approximation, all single crystals of the element of poly-
crystal are assigned the same stress Σ , and the strain E supported by the 
polycrystal is taken as the volume average of the strains in each crystal.  
This leads to the definition of Reuss average second-order elastic compli-
ance 
 1(S ) S ( )R ABCD ABCD

V

V X dV−= ∫ , (A.40) 

where average components (S )R ABCD  and local single crystal constants 
SABCD  are all referred to the same global Cartesian coordinate system.  Re-
call that general forms of single crystal compliance tensors are listed in 
Table A.8 for crystal classes of each of the eleven Laue groups.  The Reuss 
average bulk modulus RK  is found, using a procedure similar to (A.35), as 
(Hill 1952; Mura 1982) 
 

1.
. . 11 22 33 12 23 131/ S S S S 2(S S S )A B

R A BK
−

⎡ ⎤= = + + + + +⎣ ⎦ . (A.41) 

The Reuss average shear modulus Rµ  is (Hill 1952) 
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11 22 33 12 23 13

1
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1 4(S S S ) 4(S S S )
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               3(S S S ) .

Rµ

−
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⎤+ + + ⎦

 (A.42) 

For cubic single crystals, the Reuss average shear modulus reduces to  

 
1 1

11 12 44

4 3 2 3
5( ) 5 5 5( )Rµ µ µ µ

− −
⎡ ⎤ ⎡ ⎤

= + = +⎢ ⎥ ⎢ ⎥′− +⎣ ⎦ ⎣ ⎦
. (A.43) 

The Reuss average bulk modulus is exact, and is the same as the Voigt av-
erage bulk modulus, when single crystals of the aggregate are cubic in 
symmetry.  The difference between polycrystalline shear moduli computed 
using Voigt and Reuss averaging when single crystals of the aggregate are 
cubic is 

 
44 11 12 2

44 11 12

3 [2 ( )]
5 [4 3( )]V Rµ µ − −

− =
+ −

. (A.44) 
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It is noted that Voigt and Reuss averaged bulk moduli depend only on six 
of the up to 21 independent single crystal elastic constants.  Voigt and 
Reuss averaged shear moduli depend only on nine of up to 21 independent 
single crystal elastic constants. 

It can be shown (Hill 1952; Mura 1982; Nemat-Nasser and Horii 1999) 
that Voigt average (A.33) provides an upper bound to the exact effective 
elastic stiffness constants of a heterogeneous polycrystal, and the inverse 
of the Reuss average (A.40) provides a lower bound for the elastic stiff-
ness.  For the true effective bulk modulus EK  and shear modulus Eµ , the 
following bounds apply, for example:  
 R E VK K K≤ ≤ , R E Vµ µ µ≤ ≤ . (A.45) 
Voigt and Reuss definitions of effective elastic constants in (A.33) and 
(A.40) also can be prescribed when the overall behavior of the material is 
anisotropic, though in that case (A.24) does not strictly apply. 



 



Appendix B: Lattice Statics and Dynamics 

A brief overview of the governing equations of classical mechanics of dis-
crete (e.g., particle or atomic) systems is given.  This overview provides 
insight into general methods often used in mechanics, in an analogous 
fashion, to describe behavior of continuous bodies, e.g., Hamilton’s prin-
ciple and the Euler-Lagrange equations.  A description of lattice statics 
then offers insight into atomic-scale origins of stress tensors and elastic 
coefficients.  This account is not comprehensive; areas not explicitly ad-
dressed are relativistic effects, lattice vibrations, electronic structure, ther-
mal, optical, and electrical properties of matter, or topics in quantum and 
statistical mechanics.  While terms lattice statics and lattice dynamics are 
used often, unless noted otherwise the description applies to any discrete 
particle system with conservative internal forces, regardless of whether or 
not such particles occupy positions on a regular lattice. 

B.1 Dynamics 

Governing equations of classical mechanics of discrete particle systems are 
now surveyed briefly.  Successively discussed are Newton’s equations of 
motion, Lagrange’s equations, and equations of motion in Hamiltonian 
form.  Much of the survey follows from Pauling and Wilson (1935) and 
Born (1960).  Terms particle and atom are often used interchangeably. 

B.1.1 Newton’s Equations 

Newton’s equations of motion for a discrete particle system are written in 
indicial notation as 

 ˆa a a
i i i im r f f= +�� , (B.1) 

Angled brackets denote atomic labels.  In (B.1), im  and ir  are the con-

stant mass of atom i and the spatial position vector of (the nucleus) of atom 
i.  Atomic nuclei are treated as ideal rigid point masses.  The non-
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conservative force acting on particle i is written ˆ
if , and the conservative 

force acting on particle i is written if .  Relation (B.1) is expressed in the 

spatial (i.e., current) configuration spanned by constant orthonormal basis 
vectors in an inertial frame, e.g., Cartesian coordinates.  The conservative 
force by definition is the position gradient of an energy potential: 

 a ab
i b

i

f
r
Φδ ∂

= −
∂

. (B.2) 

If instead curvilinear coordinates are used, the appropriate particle accel-
eration1 must be incorporated in (B.1), and contravariant components of 
(the inverse of the) metric tensor replace abδ  in (B.2).  Potential energy Φ  
depends, by definition, only on nuclear coordinates, i.e.,  

 ( )i i N
Φ Φ

∈
= r , (B.3) 

where N denotes the set of atoms comprising the system.  Forces of me-
chanical, electrostatic, and/or gravitational origin can be expressed using 
(B.2).  Dependence on species of each atom i is implicit in (B.3), which is 
applicable for systems with multiple atomic species.  Non-conservative 
forces include time-dependent external forces and forces that depend ex-
plicitly on velocity, e.g., certain electromagnetic, viscous, and other dissi-
pative forces.   

B.1.2 Lagrange’s Equations 

Hamilton’s principle can be used to obtain equations of motion for a con-
servative system that apply in any coordinate system (e.g., curvilinear co-
ordinates).  A scalar Lagrangian function L  is introduced as 

 ( ),i i i N
Φ

∈
= = −r r�L L K , (B.4) 

where K  is the kinetic energy of the system.  Positions and velocities can 
be expressed in generalized coordinates in (B.4).  Hamilton’s principle is 
stated as 

 
2

1

constant
t

t

dt =∫ L , (B.5) 

                                                      
1 For example, denoting by { }..a

bc  the Christoffel symbols of the second kind, 

                   { }..( )a a a b c
bci i i i

DA r r r
Dt

= +� � � . 
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meaning that the motion of the atoms or particles over the (arbitrary) inter-
val 1 2t t t≤ ≤  results a stationary value of the integrated Lagrangian, i.e., 
the action integral.  This stationary value can correspond to a maximum, 
minimum, or saddle point.  Equations of motion consistent with (B.5) are 
obtained as general solutions of the following variational problem: 

 
2

1

0
t

t

dtδ =∫ L , (B.6) 

where δ  is the first variation.  Using (B.4) and integrating by parts, 

 

2 2

1 1

2

1

1

1

           ,

t t N

i i
it t i i

t N

i
it i i

dt dt

d dt
dt

δ δ δ

δ

=

=

⎡ ⎤∂ ∂
= +⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞∂ ∂⎢ ⎥⎜ ⎟= −
⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑∫ ∫

∑∫

r r
r r

r
r r

�i i
�

i
�

L L
L

L L
 (B.7) 

where admissible variation iδr  presumably vanishes (e.g., by definition) 

at endpoints 1t  and 2t .  Substituting (B.7) into (B.6), the resulting Euler-
Lagrange equations are  

 0
i i

d
dt

∂ ∂
− =

∂ ∂r r�
L L , ( 1,2,... )i N= . (B.8) 

Prescribing the total kinetic energy as the sum 
1

(1/ 2) N
i i ii

m
=

= ∑ r r� �iK  

and using (B.2) and (B.4), Newton’s laws (B.1) are recovered from (B.8) 
when forces are conservative, i.e., when ˆ 0i =f  in (B.1).  However, parti-

cle coordinates and velocities need not always be referred to a Cartesian 
frame in (B.4)-(B.8); ir  can represent a triplet of generalized scalar (cur-

vilinear) coordinates of particle i as opposed to its position vector in Carte-
sian space (Pauling and Wilson 1935).  A more general derivation treating 
non-conservative and non-holonomic systems is given by Synge (1960).  
By an analogous procedure, as discussed in Section 5.6.2, Hamilton’s 
principle can be used to obtain the local balance of momentum and consti-
tutive laws for a non-dissipative continuous body, e.g., a hyperelastic solid.   

B.1.3 Hamilton’s Equations 

The Euler-Lagrange equations for a discrete system in (B.8) are second-
order differential equations in time.  These can be expressed in so-called 
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canonical form as a system of first-order differential equations by intro-
ducing, via a Legendre transformation, the Hamiltonian H : 

 
( ) ( )

( )

3

1

2

, , ;

, ,  det 0.

N

k k k k k k
k

k k l l
k l

q p p q q q
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q q

=

= −

⎛ ⎞∂
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� �

H L

L
 (B.9) 

A change of notation for kinematic variables is used: triplets of generalized 
coordinates 1 2, ,... Nr r r  are expressed as scalars 1 2 3, ,... Nq q q , and simi-

larly generalized velocities are expressed as scalars 1 2 3, ,... Nq q q� � � .  General-
ized momenta are defined as the scalars 

 k
k

p
q
∂

=
∂ �
L , ( 1,2,...3 )k N= . (B.10) 

Noting that in the differential 
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H , (B.11) 

the inner term in parentheses vanishes by (B.10), canonical equations of 
motion are deduced as 

 k
k

q
p
∂

=
∂

� H , k
k

p
q
∂

= −
∂

� H , ( 1,2,...3 )k N= . (B.12) 

Since for the conservative systems considered here, the Hamiltonian in 
(B.9) does not depend explicitly on time, 
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k k k

d q p
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Noting that in conservative systems with a stationary coordinate frame, 

 
3 3
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N N

k k k
k k k

p q q
q= =

∂
= =

∂∑ ∑� �
�
K

K , (B.14) 

the Hamiltonian becomes 
 2 Φ= − = +H K L K . (B.15) 

Together, (B.13) and (B.15) express that the sum of kinetic and potential 
energies of the system remains constant.  This is analogous to the energy 
balance (4.44) for insulated, continuous bodies subjected only to conserva-
tive body forces and subjected to no surface forces.  A more general deri-
vation of the canonical equations of classical dynamics valid for non-
conservative systems is given by Synge (1960).   
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B.2 Statics 

Successively discussed next are governing equations, interatomic poten-
tials, atomic stress measures, and atomic origins of elasticity coefficients.  
The interpretation of stress and elastic coefficients is restricted to solids 
that deform homogeneously without inner translations, for example centro-
symmetric crystals deforming according to the Cauchy-Born hypothesis 
(Born and Huang 1950) in the absence of lattice vibrations and ionic po-
larization.  Example formulae for stresses and second- and third-order elas-
tic coefficients are given for systems described by pair potentials and the 
embedded atom method, with Cauchy’s symmetry restrictions demon-
strated in the former case.  The forthcoming treatment of lattice statics is 
restricted to coincident Cartesian coordinate systems in referential and de-
formed configurations of the atomic ensemble.  By definition, nuclear vi-
brations associated with zero-point, thermal, acoustic, and/or electromag-
netic phenomena are omitted in the context of molecular or lattice statics.  
Hence, contributions of such vibrations to the free energy are excluded in 
what follows.  Zero-point kinetic energy (particularly of electrons) implic-
itly affects bonding energies and hence atomic force interactions, but such 
effects are incorporated implicitly in what follows via prescription of em-
pirical interatomic force potentials. 

B.2.1 Governing Equations 

Governing equations of motion for molecular or lattice statics are those of 
(B.1) in the absence of atomic velocities and accelerations: 

 ˆ 0a a
i if f+ = , (B.16) 

where again non-conservative and conservative forces acting on particle i 
are respectively denoted by ˆ

if  and if .  Statics corresponds to a system at 

null kinetic energy, as is clear from (B.14), and also corresponds to a sys-
tem at null absolute temperature (i.e., 0 Kθ = ) if temperature θ  is as-
sumed to depend only on kinetic energy of the nuclei in the atomic system.  
For example, B3 k 2N θ = K  for N atoms of an ideal gas with random ve-
locities, where Bk  is Boltzmann’s constant.  Balance relations (B.16) can 
be obtained from a variational principle incorporating external forces: 

 
1

ˆ
N

i i
i

δ δΦ δ
=

− = =∑f riL , (B.17) 

whence from (B.3), 
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i ii

ΦδΦ δ δ
= =

∂
= = −

∂∑ ∑r f r
r
i i . (B.18) 

B.2.2 Interatomic Potentials and Forces 

Interatomic force potentials are often expressed as a series of terms of the 
general format 

( ) ( ) ( )1 2 3
1 1 1 1 1 1

, , ...
N N N N N N

i ij ij jk ki
i i j i j k

Φ Φ Φ Φ
= = = = = =

= + + +∑ ∑∑ ∑∑∑r r r r r , (B.19) 

where the vector describing the spatial separation between two atoms is  
 ij j i= −r r r . (B.20) 

In (B.19), 1Φ  is a one-body potential that can represent conservative forces 
arising from an external field such as gravity.  In the second term on the 
right side of (B.19), 2Φ  accounts for pairwise interactions, while in the 
third term 3Φ  accounts for three-body interactions, and so forth implied for 
higher-order terms in the series.  Also implied in (B.19) is vanishing of the 
contribution to the potential energy for a particular term when atomic indi-
ces are repeated, e.g., 2 ( ) 0ijΦ =r  for i j= .  Some redundancy is included 

in the notation (B.19) since arguments of each function are not independ-
ent: ij ji= −r r  and ij jk ik+ =r r r .  Because of this redundancy, poten-

tials are often recast such that summation proceeds over reduced numbers 
of pairs and triplets of atoms, for example. 

Henceforth the term 1Φ  is not considered, and effects of all conservative 
and non-conservative external forces are simultaneously incorporated in 
vector ˆ

if .  With this change in notation, variations of potential energy re-

sult only from interactions among two or more atoms (e.g., from bond co-
hesion or repulsion).  This is reflected by 

( ) ( ) ( )2 3,
1 1 1 1 1

, , ....
N N N N N

ij ij ij jk kii j N
i j i j i j k

Φ Φ Φ Φ∈
≠ = = = = =

= = + +∑∑ ∑∑∑r r r r r  (B.21) 

Relation (B.21), unlike (B.19), is invariant under rigid spatial translations 
of the system.  Potentials incorporating additional degrees of freedom in 
the form of angular coordinates are also possible.  For example, rotational 
degrees of freedom may be used to model molecules as single particles, or 
to address aspects of electric polarization.  Incorporation of rotational de-
grees of freedom and conjugate interatomic moments are not considered 
here, though their inclusion can provide insight into origins of couple 
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stresses in generalized continuum theories (Zhou and McDowell 2002).  
Note also that electronic degrees of freedom are not explicitly addressed in 
(B.3) or (B.19), following the Born-Oppenheimer approximation that pre-
sumes that electrons follow ions adiabatically, remaining in their ground 
states for instantaneous positions of the nuclei (Nielsen and Martin 1985).   

A conservative interatomic force can be introduced as 

 a ab ab a
ij jib b

ij ji

f f
r r
Φ Φδ δ∂ ∂

= = − = −
∂ ∂

. (B.22) 

The static equilibrium equations (B.16) then become, from (B.21), 
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cN N N N
jka ab ab ab
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implying that the total interaction force is 

 
1 1

N N
a ab a
i ijb

j jij

f f
r
Φδ

= =

∂
= = −

∂∑ ∑ . (B.24) 

Potential Φ  in (B.21) may generally depend upon interactions between 
two ( 2Φ ), three ( 3Φ ), and more atoms, and hence on distances and orienta-
tions among multiple atoms.  A more specific form of potential energy 
(B.21) depending only on scalar interatomic distances is  

 ( ) ,ij i j N
i j

rΦ Φ ∈
≠

= , (B.25) 

where the distance between atoms i and j is written as follows: 

 1/ 2( )ij ij ij jir r= =r ri , ij ij ji

ij ij ij

r

r r

∂
= = −

∂

r r

r
. (B.26) 

Notice that (B.25) is not restricted to two-body interactions.  The intera-
tomic force resulting from (B.25), in this case called a central force, and 
the total internal force are then found, respectively, for the particular case 
of exclusively central forces as 

 ij
ij

ij ijr r
Φ∂

=
∂

r
f , 

1

N
ij

i
j ij ijr r

Φ
=

∂
= −

∂∑
r

f . (B.27) 

A vast number of different potentials have been developed for various 
substances by physics, chemistry, materials science, and engineering 
communities over the previous century; a few specific potentials are de-
scribed here for illustrative purposes.  The Lennard-Jones pair potential 
obeys (Lennard-Jones 1924; see also extension for ionic crystals by Len-
nard-Jones (1925)) 
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where ( )rφ  is the local pair potential and ε  and σ  are scalar constants.  
Interatomic force vector (B.27) for a Lennard-Jones system is then 
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24 2ij ij
ij

ij ij ij ij ijr r r r r
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r r
f . (B.29) 

Obviously, (B.28) and (B.29) only account for pairwise interactions.  Such 
pair potentials alone are usually insufficient for modeling behavior of ani-
sotropic crystalline solids, including the full set of independent elastic con-
stants, as will be demonstrated by example later in Section B.2.6.  The 
Lennard-Jones potential is often used to address dipole interactions in 
atomic models of noble gas crystals and molecular crystals (Gilman 2003).   

Popular potentials for solids incorporating interactions among more than 
two atoms (i.e., three-body and higher-order terms) include those of Daw 
and Baskes (1983, 1984), Finnis and Sinclair (1984), Stillinger and Weber 
(1985), Tersoff (1988), and Brenner (1990).  For metallic solids, a poten-
tial is often written as a sum of a pairwise interaction term and an N-body 
term accounting for the embedding energy (Daw and Baskes 1983, 1984; 
Finnis and Sinclair 1984).  For certain materials such as many pure metals 
and covalent solids without long-range (e.g., unscreened Coulomb) forces 
between nuclei, interaction forces between an atom and its neighbors often 
decay rapidly for separation distances beyond some cut-off radius, often on 
the order of several lattice parameters.    

In the embedded atom method of Daw and Baskes (1983, 1984), all 
forces are of central type, and the form of (B.25) is 

 ( ) ( ) ( )
1 1 1

1
2

N N
i

ij i ij
i i j

r U r
Ν

Φ Φ ρ φ
= = =

= = +∑ ∑∑ , (B.30) 

where the second term on the right side of the final equality is recognizable 
as a pair potential.  The first term U on the right of (B.30), called the em-
bedding function, is generally a nonlinear function of  

 ( )
1

N
j

i ij
j

g rρ
=

=∑ , ( )j i≠ , (B.31) 

where jg  is the electron density function.  Interatomic force (B.27) is 
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where the following compact notation is used for derivatives of functions 
and for scalar atomic separation distance: 
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UU
ρ

∂′ =
∂

, 
r
φφ ∂′ =
∂

, gg
r
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∂

, ij ijr r= = r . (B.33) 

Functions U, g, and φ , often very complex, can be deduced and param-
eterized for different materials via calibration to properties obtained inde-
pendently from physical experiments or quantum mechanical calculations.  
Even though the potential energy (B.30) depends only on interatomic dis-
tances (i.e., r), the first sum on the right side of (B.30) implicitly accounts 
for bond angle effects associated with electron density because the double 
sum incorporating embedding function U generally involves relative sepa-
ration distances among more than two atoms taken at a time.  This is in 
contrast to pair potentials which do not address bond angle changes. 

Various interpretations of stress have been proposed in the context of 
discrete atomic systems (Nielsen and Martin 1983, 1985; Zhou 2003; Chen 
and Lee 2005).  The stress (or traction) concept traditionally describes di-
rectional forces, normalized per unit area, acting on internal or external 
surfaces of continuous bodies in the context of continuum mechanics and 
Cauchy’s theorem, e.g., (4.2)-(4.5).  Ambiguities can arise when attempts 
are made to extract the stress tensor from discrete dynamic systems (Tsai 
1979; Nielsen and Martin 1985; Lutsko 1988; Cheung and Yip 1991; Zhou 
2003, 2005; Zimmerman et al. 2004; Chen and Lee 2005).  For static sys-
tems considered here, momentum associated with particle velocities is ex-
cluded, the definition of a stress tensor is more straightforward.  A local 
singular stress tensor s is defined on a per atom basis as (Zhou 2003) 

 ( )
1 1

1 ( )
2

N N

ij ij ij
i j

δ
= =

= ⊗ −∑∑s r r f r r , (B.34) 

where (.)δ  is Dirac’s delta function.  Integration over a spatial volume Ω  
then provides the atomistic analog of the continuum Cauchy stress tensor 
supported by that volume: 

 ( )
1 1

1
2

N N

ij ij
i j

d
Ω

Ω
Ω = =

= = ⊗∑∑∫σ s r r f . (B.35) 

Definition (B.34) is considered equivalent to the virial stress (Tsai 1979) 
when atomic velocities vanish, and its spatial average in (B.35) has been 
used to interpret results in the context of pair potentials (Born and Huang 
1954) and the embedded atom method (Horstemeyer and Baskes 1999).  
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Stress tensor (B.35) can also be expressed directly in terms of atomic co-
ordinates2 ir  (Nielsen and Martin 1985).  For exclusively central force in-

teractions, symmetry of stress tensor (B.34) follows trivially from (B.27): 
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a bN N
ij ijab ba

i j ij ij

r r

r r
Φσ σ

Ω = =

∂
= =

∂∑∑ . (B.36) 

B.2.3 Kinematics of Homogeneous Deformation 

Now consider a collection N of discrete atoms that occupy a regular lattice 
in an undeformed reference configuration 0B .  The position of atom i in 
configuration 0B  is denoted by vector iR .  The position of atom i in cur-

rent configuration B is again denoted by spatial vector ir .  First consider a 

crystal structure with a monatomic basis.  Under a homogeneous deforma-
tion in the sense of Born and Huang (1954), the kinematic relationship be-
tween reference and deformed atomic coordinates, in the absence of rigid 
body translations, is 

 i i=r FR , .
a a A

Ai ir F R= , (B.37) 

where F is a 3 3×  matrix with positive determinant, analogous to the de-
formation gradient of continuum mechanics introduced in (2.112), though 
here F need not be a gradient of any vector field.  Next consider a crystal 
structure with a polyatomic basis, that is, a lattice with multiple atoms per 
point on a Bravais lattice.  In the reference configuration, 

 ( ) ( ) ( )0l
k kl= +R R R , (B.38) 

where notation ( )l
k  denotes atom k within primitive unit cell l.  The nota-

tion 0( )k  denotes the basis vector for atom k within cell zero.  The notation 
( )l  denotes the Bravais lattice vector for unit cell l, that is  

                                                      
2 In the absence of applied torques, ab baσ σ= , and using (B.2) and (B.24), 
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with iA  the primitive Bravais lattice vectors and il  integers.  A homoge-
neous deformation for a crystal with a polyatomic basis, in the sense of 
Born and Huang (1954), is expressed as the vector sum 

 ( ) ( ) ( )0l l
k k k= +r q FR . (B.40) 

Vector 0( )kq  represents a uniform displacement (i.e., translation) of all at-
oms of particular type k, as might occur for example when an ionic crystal 
becomes polarized under an electric field.  Vector 0( )kq  can also be used to 
represent an inner displacement for a sub-lattice of a crystal with a polya-
tomic basis wherein each atom does not occupy a center of inversion 
symmetry (Wallace 1972; Cousins 1978; Tadmor et al. 1999), for example 
diamond or silicon.  When such crystals are subjected to affine far-field 
boundary conditions, inner displacements result in a lower potential energy 
than would arise if inner translations were absent. 

Henceforward in Appendix B, considered are conditions for which inner 
displacements vanish, i.e., 0( ) 0k =q  for all atoms 1,2,...k K=  in the basis.  
Under these conditions, (B.37) can be used in place of (B.40) for crystal 
structures with polyatomic bases since there is no distinction among mo-
tions of atoms or ions of different types k.  Additional discussion of homo-
geneous deformations in the context of the Cauchy-Born hypothesis is 
given in Section 3.1.2 of Chapter 3.  Various definitions exist for atomic-
level representations of first- and higher-order deformation gradients for 
ensembles of atoms deforming heterogeneously (Zimmerman et al. 2009); 
such locally heterogeneous deformations are not addressed in Appendix B.  
As discussed by Wallace (1972), when the ensemble of atoms (i.e., the 
crystal) is of finite dimensions, non-homogeneous deformations can 
emerge locally where external forces are applied along the boundary.  De-
viations from perfect periodicity can also occur at free boundary surfaces.  

The following notation for referential interatomic separation vectors and 
spatial interatomic displacement vectors, respectively, is introduced: 

 ij j i= −R R R , (B.41) 

 ( )ij ij ij ij= − = −q r R F 1 R , (B.42) 

with the second of (B.42) applicable under homogeneous deformations of 
the kind in (B.37).  Following from (B.20), (B.37), and (B.41),  

 ij ij=r FR , .
a a A

Aij ijr F R= . (B.43) 

For homogeneous deformation, ( ),ij ij ij=r r F R  with ijR  constants, so 
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The analog of the right Cauchy-Green strain of (2.156) is introduced as 

 . .
1 ( )
2

a b
AB A ab B ABE F Fδ δ= − . (B.45) 

The following notation is used for magnitudes of reference interatomic 
separation vectors, analogous to (B.26): 

 1/ 2( )ij ij ij jiR R= =R Ri , ij ij ji
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Then the difference in squared lengths of spatial and reference atomic po-
sition vectors, analogous to (2.157), is 

 2 2 2 A B
ABij ij ij ijr R R E R− = . (B.47) 

Noting that 
 1/ 2

. .( )a A b B
A ab Bij ij ijr F R F Rδ= , (B.48) 

the following identities that are particularly useful for describing systems 
with central force interactions can be derived (Tadmor et al. 1996; Chung 
and Namburu 2003): 
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B.2.4 Stresses and Moduli for Homogeneous Deformations 

At null temperature and when all atomic coordinates undergo homogene-
ous deformation, the free energy density 0Ψ  (or equivalently, the internal 
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energy density or strain energy density) of the solid in a continuum sense 
can be equated in a straightforward manner with the potential energy nor-
malized per unit reference volume: 
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where the volume of the atomic system in the reference configuration is 
denoted by 0 0NΩ = Ω , with 0Ω  (non-italic font) the average atomic vol-
ume occupied by each atom of the unit cell as defined in Section 3.1.1, and 
N is the total number of atoms in the system.  When the system consists of 
but a single primitive unit cell, then 0 0P KΩ = Ω = Ω , where PΩ  is the 
volume of the primitive cell and K is the number of atoms in the basis of 
the crystal structure.  Consideration of a single unit cell subjected to peri-
odic boundary conditions is a standard means of analyzing an infinitely re-
peating, perfect crystal structure, thereby accounting for all pertinent inter-
actions among atoms within the unit cell and those comprising the 
surrounding (infinite) crystal.  The cohesive energy of the crystal in the 
reference configuration, ( )ijΦ R , is subtracted from the right of (B.53) 

such that by the usual convention of continuum elasticity theory, the strain 
energy vanishes at null deformation, i.e., 0 ( ) 0Ψ =1 .  However 0 ( ) 0Ψ =1  is 
not mandatory; for example, the reference configuration can include de-
fects.  Because only derivatives of energy with respect to ijr  enter rela-

tionships that follow for stresses and tangent moduli, the magnitude of ad-
ditive constant ( )ijΦ R , consisting of the total ground state energy at null 

temperature, is inconsequential.  Such ground state total energy of the at-
oms comprising the reference crystal includes zero-point kinetic and po-
tential (e.g., electrostatic interaction) energies of electrons and nuclei when 
the latter occupy regular sites in a perfect undeformed crystal.    

Using (B.53) and recalling that reference interatomic separation vectors 
are fixed during deformation ( / 0)ij∂ ∂ =R F , stresses and elastic coeffi-

cients can be computed using the chain rule of differentiation along with 
formulae (B.43)-(B.52) if the behavior of the solid is assumed hyperelastic.  
An atomic measure of the first Piola-Kirchhoff stress for homogeneous de-
formations is  
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Notice that in the first double sum in (B.54), the summation proceeds only 
over independent atomic position vectors, i.e., over ijr  with j i> .  The 

factor of two arises in the denominator of the term following the final 
equality in (B.54) because in the final double sum, summation proceeds 
over all possible pairs satisfying i j≠  with / /ij ji∂ ∂ = −∂ ∂r r .  Definition 

(B.54) is not restricted exclusively to pair potentials.  For example, using 
(B.21) and writing out explicitly the contributions of the three-body poten-
tial, 
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The term in parentheses in the rightmost expression in (B.55) is the three-
body contribution to the double sum in (B.54).  Average atomic Cauchy 
stress, i.e., static virial stress, then obeys, following (4.26) and Table 4.13, 
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3 In Table 4.1, 1

. .det( )ba A bA a
a AF P Fσ −= , but in (B.56), 1

. .det( )ab A bA a
a AF P Fσ −= .  

The difference is inconsequential in the case of symmetric Cauchy stresses as 
would arise from central forces, i.e., (B.36), or when the atomic system supports 
no externally supplied torque (Nielsen and Martin 1985).  Consistency could be 
obtained by defining the average atomic Cauchy stress as the transpose of that in 
(B.35) (Nielsen and Martin 1985), though in that case the definition of stress 
would become inconsistent with the convention adopted by Zhou (2003) and ref-
erences therein. 
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in agreement with (B.35). 
Tangent elastic coefficients follow from additional differentiation of the 

strain energy per unit reference volume with respect to macroscopic de-
formation F or macroscopic strain E.  A two-point tensor of second-order 
elastic moduli is, analogous to (5.53), 
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Repeated use of the summation symbol is omitted in the abbreviated nota-
tion of (B.57).  Hence, summation applies over four sets of repeated 
atomic labels, as should be clear from the context.  Recalling from (5.60), 
in Cartesian coordinates, 
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the tangent second-order elasticity tensor referred to the reference configu-
ration is  
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A two-point tensor of third-order elastic stiffness coefficients is, similarly 
to (5.55), 
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Similarly to (B.58) and recalling from (5.61), in Cartesian coordinates, 
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Substitution of (B.59) and (B.60) into (B.61) then provides the third-order 
tangent elastic stiffness coefficients ABCDEF^  in terms of atomic coordi-
nates and derivatives of the interatomic potential.  Note that (B.57)-(B.61) 
evolve with deformation or strain.  Tangent moduli for a particular 
(un)strained configuration are evaluated using the corresponding values of 

ijr  and F in that configuration.   

As discussed in Section 5.1.3, elastic constants are typically introduced 
as derivatives of the strain energy density at the reference configuration, 
with that energy expressed as a Taylor series about the undistorted refer-
ence state.  Elastic constants evaluated at the reference state corresponding 
to an undeformed lattice are found simply by setting ij ij=r R , =F 1 , and 

evaluating derivatives of the potential at ij ij=r R .  These reference elas-

tic constants are denoted with an over-bar in the following expressions: 

 
2

0

1A ,
2

aAbB ac A bd B
ij klc d

i j ij kl
k l

R R
r r

Φ δ δ
Ω ≠

=≠

∂
=

∂ ∂∑
r R

 (B.62) 

 
2

0

1 ,
2

ABCD Ae B Cf D
ij kle f

i j ij kl
k l

R R
r r

Φ δ δ
Ω ≠

=≠

∂
=

∂ ∂∑
r R

^  (B.63) 

 
3

0

1A ,
2

aAbBcC ad A be B cf C
ij kl mnd e f

i j ij kl mn
k l
m n

R R R
r r r

Φ δ δ δ
Ω ≠

=≠
≠

∂
=

∂ ∂ ∂∑
r R

 (B.64) 

        

. . .

3

. . .
0

2

. .
0

2

0

A

1     
2

1     
2

1     
2

ABCDEF aAbCcE B D F ACEF BD AECD BF ABCE DF
a b c

ad eb fc A C E B D F
a b cij kl mnd e f

i j ij kl mn
k l
m n

ad eb A C E F BD
a bij kld e

i j ij kl
k l

R R R
r r r

R R
r r

δ δ δ δ δ δ

Φ δ δ δ δ δ δ
Ω

Φ δ δ δ δ δ
Ω

Φ
Ω

≠
=≠

≠

≠
=≠

= − − −

∂
=

∂ ∂ ∂

∂
−

∂ ∂

∂
−

∂

∑

∑

r R

r R

^ ^ ^ ^

. .

2

. .
0

1     .
2

ad eb A E C D BF
a bij kld e

i j ij kl
k l

ad eb A B C E DF
a bij kld e

i j ij kl
k l

R R
r r

R R
r r

δ δ δ δ δ

Φ δ δ δ δ δ
Ω

≠
=≠

≠
=≠

∂

∂
−

∂ ∂

∑

∑

r R

r R

 (B.65) 



B.2 Statics      583 

Second-order elastic constants ABCD^  depend on second-order deriva-
tives of energy potential Φ  with respect to atomic coordinates, and third-
order elastic constants ABCDEF^  depend on second- and third-order deriva-
tives of the potential energy.  Tangent moduli (under homogeneous defor-
mations) and reference elastic constants of orders four and higher can be 
obtained by further differentiation and use of the chain rule.   

Use of (B.53)-(B.65) does not necessarily require that the reference con-
figuration correspond to a perfect lattice, merely that atomic bond vectors 
deform homogeneously according to (B.37) from the (possibly defective) 
state at which the elasticity coefficients are measured4.  The crystal need 
not deform homogeneously in the process of achieving this original defec-
tive state.  Stresses and tangent moduli for a defective crystal at a particu-
lar value of macroscopic deformation F can be obtained using (B.55)-
(B.61).  For example, Dienes (1952) computed elasticity coefficients of 
copper and sodium crystals containing vacancies and interstitials using the 
atomic model of Fuchs (1936).  Chung and Namburu (2003) and Chung 
(2004) computed tangent moduli of graphene with vacancies and intersti-
tials using the multi-body potential of Brenner (1990).  Clayton and Chung 
(2006) and Chung and Clayton (2007) calculated effects on tangent elastic 
moduli of vacancies, screw dislocations, screw dislocation dipoles, and 
twist disclinations in BCC tungsten single crystals, using the multi-body 
atomic potential of Finnis and Sinclair (1984). 

B.2.5 Harmonic and Anharmonic Interactions 

In what follows next, the potential energy is expressed in generalized 
polynomial form about a perfect reference state, leading to relations for 
stress and elastic stiffness tensors in terms of harmonic (i.e., linear force-
displacement) and anharmonic (i.e., nonlinear force-displacement) parts of 
the potential energy.  Anharmonic interactions must be incorporated to 
properly account for third-order elastic constants, and are also important in 
the vicinity of defect cores wherein large atomic displacements arise 
(Gallego and Ortiz 1993; Yavari et al. 2007).  Anharmonicity must also be 
considered to address thermal expansion and temperature dependent elastic 
moduli in the context of thermoelasticity (Thomsen 1970; Phillips 2001); 
such dynamic effects are not formally considered here, however, in the 

                                                      
4 If the reference configuration includes defects, then by definition iR  does 

not correspond to atomic coordinates in a perfect crystal structure for all i.  In such 
cases, interatomic forces will not always vanish in the reference configuration.  
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context of lattice statics.  Relationships among atomic force coefficients, 
lattice vibrational frequencies, and continuum thermomechanical proper-
ties (e.g., temperature-dependent elastic coefficients, thermal expansion 
coefficients, and strain-dependent Gruneisen parameters) in the context of 
finite deformation theory are outlined by Thomsen (1970).  

Expanding the potential energy of (B.21) in a series about the reference 
state in a polynomial of interatomic displacements ij ij ij= −q r R , 
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Repeated use of the summation symbol is again omitted in the abbreviated 
notation of (B.66).  Summation in the second term on the right of (B.66) 
applies over two sets of repeated atomic labels, that in the third term over 
four sets, and that in the fourth term over six sets.  The second term on the 
right side of (B.66) vanishes identically if, as assumed henceforth in Sec-
tion B.2.5 for simple illustrative purposes (Clayton and Bammann 2009), 
atoms in reference state 0B  are free of external and internal forces5: 

 . ( / ) 0a a b
bij ijH rδ Φ

=
= ∂ ∂ =

r R
. (B.67) 

Denoted by 0Φ  is a cohesive or total ground state energy of the reference 
lattice or crystal structure, conventionally negative in algebraic sign.   

Introducing matrix notation for interatomic stiffness coefficients: 
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the potential energy in (B.66) becomes 
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5 Condition (B.67) is an approximation that need not hold for arbitrary poten-

tials; contributions of nonzero a
ijH  could affect subsequently derived quantities.    
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Since ij ji= −r r , the atomic stiffness matrix in the first of (B.68) exhibits 

the natural symmetries 
 ab ab ba ab ab ba

ijkl jilk klij jikl ijlk kljiH H H H H H= = = − = − = − . (B.70) 

Other forms and symmetries of harmonic stiffness coefficients are listed 
by Maradudin et al. (1971).  Symmetries can be deduced for anharmonic 
coefficients abc

ijklmnH  via (B.68).   

Noting from (B.44) that ./a b a
bkl klq r δ∂ ∂ = , the average spatial (e.g., me-

chanical Cauchy) stress of (B.36) and (B.56) becomes 
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and under likewise conditions of homogeneous deformation, the two-point 
stress tensor (B.55) is 
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In the harmonic approximation, products of order higher than two in in-
teratomic displacements are dropped from (B.69), leading to the following 
expressions for interatomic forces, Cauchy stress, and first Piola-Kirchhoff 
stress: 
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Returning now to the general case admitting anharmonic terms, second- 
and third-order elastic constants at the reference state first introduced in 
(B.62)-(B.65) can be rewritten as 
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Clearly third- (and higher-order) elastic constants depend on anharmonic 
terms in the potential energy, as noted by Thurston and Brugger (1964), 
Kaga (1968), and Maugin (1999).  On the other hand, third-order (and 
higher-order) interatomic stiffness coefficients abc

ijklmnH  do not affect the 

second-order elastic constants. 
Expansion (B.69), while generic in the sense that many types of interac-

tions (e.g., pair-wise and multi-body, central and non-central force) are 
admitted, may be cumbersome for computation of elastic constants for spe-
cific potentials that are not expressed explicitly in terms of interatomic 
separation vectors.  For example, expressions for second- and third-order 
elastic constants for cubic crystals obtained from the embedded atom 
method are given by Chantasiriwan and Milstein (1996) in terms of deriva-
tives with respect to scalar interatomic distances r  as opposed to deriva-
tives with respect to interatomic separation vectors.  As will be demon-
strated explicitly in Section B.2.6, such expressions (Chantasiriwan and 
Milstein 1996) for second- and third-order elastic constants analogously 
contain derivatives of up to orders two and three, respectively, of the po-
tential energy function with respect to scalar atomic separation distance. 
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B.2.6 Examples: Pair Potential and Embedded Atom Method 

For illustrative purposes, stresses and tangent elasticity coefficients are 
computed for pair potentials and embedded atom potentials.  First consider 
a generic pair potential φ  of the type following the first equality in (B.28), 
for example.  The two-point stress tensor can be found using (B.51) as 
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where / rφ φ′ = ∂ ∂  with the appropriate atomic subscripts implied.  The av-
erage atomic Cauchy stress is then 
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Second-order tangent elastic moduli are found as 
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Third-order tangent moduli resulting from a pair potential are obtained 
from further differentiation as 
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For a stress-free reference configuration, by definition ij ij=r R , =F 1 , 

and 0Ω Ω= .  In that case, (B.78)-(B.81) become, using over-bars to de-
note quantities in the undistorted state, 
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Average stress measures vanish by definition in (B.82) and (B.83), second-
order elastic constants in (B.84) depend on first and second derivatives of 
the potential energy with respect to atomic separation distance r, and third-
order elastic constants in (B.85) depend on first, second, and third deriva-
tives of the potential energy with respect to r.   

Notice from (B.80) and (B.81) that tangent moduli (and consequently, 
the elastic constants in (B.84) and (B.85)) exhibit peculiar symmetries as a 
consequence of exclusive use of a pair potential to describe interatomic 
forces in crystals without inner displacements (i.e., non-polarized centro-
symmetric crystals).  These symmetries are often referred to as Cauchy’s 
relations (Love 1927; Born and Huang 1954).  In addition to the usual 
symmetries for hyperelastic moduli listed in (5.57) and (A.9), for a mate-
rial obeying Cauchy’s relations, the second-order elastic moduli obey 

 ABCD ACBD ADCB= =^ ^ ^ , (B.86) 
or in Voigt’s notation (A.2), 

  
12 66 13 55 23 44

14 56 25 46 36 45

,  ,  ,
,  ,  .
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Cauchy’s relations reduce the maximum number of independent second-
order elastic coefficients for a material of arbitrary anisotropy from 21 to 
15.  For cubic crystals (Section A.3.1), since 12 13 23= =^ ^ ^ , the number 
of independent second-order constants is reduced from three to two via 

 12 44=^ ^ . (B.88) 
Cauchy’s relations for second-order constants are not physically realistic 

for most crystalline solids.  However, they can be reasonably appropriate 
in some cubic ionic crystals, e.g., certain alkali halides, whose long-range 
pairwise interactions are primarily of the Coulomb type (i.e., (10.11)), with 
attractive forces emerging between alkali and halide ions and repulsive 
forces emerging between ions of the same kind.  Each ion of an alkali hal-
ide crystal (rock salt structure) lies at a center of symmetry (Born and 
Huang 1954; Maradudin et al. 1971).  The Coulomb potential energy of a 
pair of ions decays with separation distance only as 1/ r  and accounts for 
most of the cohesive energy of the lattice.  Incorporation of other shorter-
range interactions in the total potential energy (Mott and Gurney 1948) can 
account for other pairwise and/or multi-body atomic force interactions 
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(e.g., repulsive overlap forces and/or attractive and repulsive van der 
Waals forces) and enables deviation from Cauchy’s relations. 

In an isotropic solid (Section A.3.3) obeying Cauchy’s relations, the 
number of independent second-order elastic constants is reduced from two 
to one via the restriction λ µ= , implying that Poisson’s ratio is 1/ 4ν =  
for an isotropic elastic body whose atoms interact only via a pair potential.  
Also in this case, the ratio of shear modulus to bulk modulus is 

/ 3/ 5Kµ = .  Cauchy’s restrictions do not, however, render a cubic crystal 
structure isotropic because µ′  can still be nonzero in (A.19).   

Cauchy’s relations for third-order constants can be derived from (B.85) 
in a similar manner.  For cubic crystals of the highest elastic symmetry 
(i.e., those of Laue group CI of Table A.1), the number of independent 
third-order elastic constants is reduced from six to three.  Cauchy’s rela-
tions for the third-order elastic constants in this case are (Chantasiriwan 
and Milstein 1996) 

 112 166=^ ^ , 123 144 456= =^ ^ ^ . (B.89) 
Contributions from vibrational free energy can affect the elastic constants: 
even when atomic interactions are described by pair potentials, Cauchy’s 
relations do not necessarily apply at finite temperatures (Kaga 1968) or 
even at absolute zero (i.e., null temperature), with the latter deviations a 
result of zero-point kinetic energy contributions (Wallace 1972). 

Now consider the embedded atom potential (Daw and Baskes 1983, 
1984) of (B.30)-(B.33), consisting of an N-body term U and a generic pair 
potential φ .  The two-point stress tensor P found using identity (B.51) is 
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where the compact notation /U U ρ′ = ∂ ∂ ,  /g g r′ = ∂ ∂ , and / rφ φ′ = ∂ ∂ is 
used.  The average spatial stress tensor (i.e., akin to the mechanical 
Cauchy stress) is  
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Second-order tangent elastic moduli are found as 
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The third-order tangent moduli resulting from the embedded atom poten-
tial are calculated, after further differentiation, as (Chantasiriwan and Mil-
stein 1996) 
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For a reference configuration free of both internal and external forces, 
ij ij=r R , =F 1 , and 0Ω Ω= .  In this case, (B.90)-(B.93) degenerate to 
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While interatomic (internal) forces from N-body and two-body terms need 
not vanish in this configuration, i.e., 0g

=
′ ≠

r R
 and 0φ

=
′ ≠

r R
 in general, 

average stresses in (B.94) and (B.95) still vanish for a crystal lattice in 
static equilibrium (Huang 1950) in the absence of external forces.   

Second-order elastic constants in (B.96) depend on first and second de-
rivatives (with respect to atomic separation distance r) of the potential en-
ergy functions g and φ ; third-order constants in (B.97) depend on first, 
second, and third derivatives of these functions with respect to r.  The em-
bedded atom method can be used to reproduce second- and third-order 
elastic constants of cubic crystals without imposition of Cauchy’s symme-
tries.  However, when a linear embedding function is used such that 

(0)U U U ρ′= +  with constantU ′ = , the embedded atom method degener-
ates to a pair potential of the form 2 ( ) ( ) / 2 ( )r r U g rΦ φ ′= + , as noted by 
Daw and Baskes (1984).  In that degenerate case, Cauchy’s relations are 
recovered, e.g., (B.88) and (B.89) for a cubic crystal of Laue group CI.  

Relations (B.78)-(B.97) are limited to central force interactions of the 
type described by (B.27).  Explicit methods of computation of elastic coef-
ficients of crystalline solids exhibiting non-central force interactions can 
be found in representative works of Chung and Namburu (2003) and Oh 
and Slattery (2008), for example. 

The preceding treatment in Appendix B did not consider explicitly the 
origin of mechanical properties from the perspective of electronic structure 
(e.g., quantum mechanical principles governing atomic bonding); however, 
electronic structure does implicitly affect all functional forms and parame-
ters entering the (empirical) interatomic potentials considered thus far.  
Gilman (2003) discusses the electronic basis of mechanical properties of 
solids, including elastic coefficients, plastic properties such as dislocation 
mobility, and surface properties such as surface energy and fracture resis-
tance.  Wallace (1972) provides an exhaustive mathematical treatment of 
atomic origins of thermoelastic behavior of crystals, including lattice stat-
ics and dynamics of polyatomic structures (e.g., those undergoing inner 
displacements); large deformations; harmonic and anharmonic effects; sur-
face effects; explicit electronic contributions; and sample calculations us-
ing various potentials, with comparisons of theoretical results to experi-
mental data for a number of different crystalline materials.  



Appendix C: Discrete Defects in Linear Elasticity 

The focus of much of this text—specifically parts of Chapters 3 and Chap-
ters 6, 7, 8, and 9—has centered on continuum models of crystalline solids 
containing continuous distributions of lattice defects.  Effects of individ-
ual, i.e., discrete, defects on the response of an otherwise elastic solid are 
considered in Appendix C.  These effects are quantified via solutions of 
boundary value problems obtained using continuum elasticity theory.  
Elasticity solutions for line and point defects provide insight into stored 
energies addressed elsewhere via internal state variables in continuum con-
stitutive models, as discussed in Chapters 6, 8, and 9; stored energies of 
lattice defects also enter expressions for residual volume changes as dis-
cussed in Chapter 7.  Fundamental concepts of theoretical strength and 
Peierls stress that can provide insight into failure and yielding, respec-
tively, of crystalline solids are also presented in this Appendix. 

Most solutions presented in Appendix C follow from treating the body 
containing the defect as isotropic and linear elastic, though some anisot-
ropic elasticity solutions are provided for energies of dislocations of orien-
tations that arise frequently in cubic and hexagonal crystals.  Compact 
closed-form solutions do not seem to exist for nonlinear elastic solids (i.e., 
large deformations and/or higher-order elastic constants), and lengthy 
nonlinear elasticity solutions for field variables of crystals with discrete 
defects, often obtained via iterative methods (Willis 1967; Teodosiu 1982) 
fall outside the scope of this Appendix. 

Linear elastic solutions offer quantitative accuracy for field variables 
such as stress, strain, and strain energy density far from the defect core, 
which itself cannot be treated accurately via linear or even nonlinear elas-
ticity (Teodosiu 1982), since the non-convex energy density of the highly 
distorted crystal structure is not addressed by standard continuum elasticity 
theories.  The core region surrounding a line defect extends on the order of 
one to ten lattice parameters and typically accounts for on the order of ten 
percent of the total energy per unit length of the dislocation line (Teodosiu 
1982; Hull and Bacon 1984).  The size of the dislocation core, and its ef-
fect on slip resistance, is treated in an approximate sense in the final Sec-
tion of Appendix C by the Peierls model (Peierls 1940; Nabarro 1947; 
Eshelby 1949b; Foreman et al. 1951).  Very accurate studies of defect core 
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structures and properties require fully resolved atomic/molecular statics 
calculations or possibly even quantum mechanical treatments.   

No new derivations or new solutions are developed in this Appendix.  
Instead, existing formulae are collected from a number of sources (Frenkel 
1926; Peierls 1940; Cottrell 1953; Eshelby 1949b, 1954, 1956; Eshelby et 
al. 1953; Foreman 1955; Seeger and Haasen 1958; Nabarro 1967; Owen 
and Mura 1967; Huang and Mura 1970; Li and Gilman 1970; Liu and Li 
1971; Kuo and Mura 1972; Li 1972; De Wit 1973; Steeds 1973; Hirth and 
Lothe 1982; Teodosiu 1982; Hull and Bacon 1984; Phillips 2001). 

C.1 Volterra Defects 

Volterra (1907) determined field variables (i.e., displacements, strains, and 
stresses) for a hollow isotropic, linear elastic cylinder subjected to the fol-
lowing process: cutting a plane passing from the axis of the cylinder 
through one side, rigidly translating or rotating one face of the cut with re-
spect to the other, joining the material together via removal or insertion of 
the appropriate amount of the same kind of matter, and then removing ex-
ternal forces from the cylinder.  Love (1927) used the term “dislocation” to 
describe Volterra’s solutions, and Taylor (1934) suggested use of 
Volterra’s solutions to describe real line defects observed experimentally 
in crystalline solids.  In the modern literature, Volterra’s elastic defects 
corresponding to translational displacement discontinuities are labeled 
simply as “dislocations”, while Volterra’s elastic defects corresponding to 
rotational discontinuities are usually called “disclinations”, the latter as 
termed by Frank (1958).   
 

 
Fig. C.1 Cartesian coordinate system (a) and cylindrical coordinate system (b) 
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The present treatment is restricted to small deformations (i.e., geometri-

cally linear theory) in elastic bodies of infinite dimensions.  Hence, there is 
no need to consider changes in defect geometry (e.g., Burgers vectors and 
tangent lines) associated with changes in configuration of the body.  Carte-
sian and cylindrical coordinate systems are shown in Fig. C.1(a) and Fig. 
C.1(b), respectively.  Straight line defects are considered in Section C.1, 
with unit tangent line 3ξ=ξ e  always oriented parallel to the 3x -axis, as 
shown in Fig. C.2(a).  The dislocation line itself, and the total length of 
this line, are simply labeled L.  The surface across which displacements are 
discontinuous is denoted by Σ , with unit normal vector 2= −M e . 

Following De Wit (1973), the special cylindrical coordinates of Fig. 
C.1(b) are related to Cartesian coordinates via  

 2 2 1/ 2
1 2[( ) ( ) ]R x x= + , (C.1) 

 ( ) ( ) ( ) ( )1
2 1 1 2 2tan /x x H x H x H xθ π−= + − ⎡ − − ⎤⎣ ⎦ , (C.2) 

 3 3x x= . (C.3) 
The range of 1tan−  in (C.2) is limited to principle values ( / 2,  / 2)π π− ; 
hence the angular coordinate is restricted to the range π θ π− < < .  Coor-
dinate θ is multi-valued across the half-plane π± , with a jump of magni-
tude 2π .  Heaviside (step) function (.)H  in (C.2) satisfies 

 ( ) 0 ,
1 .

x a
H x a

a x
∀ <⎧

− = ⎨ ∀ <⎩
 (C.4) 

Discontinuities in displacement and rotation of the material occur across 
the semi-infinite plane Σ .  Specifically, jumps in displacement vector u 
and rotation vector w for an elastic body containing a Volterra line defect 
with an axis of rotation passing through the origin 0=x  are (De Wit 
1973) 

 a b b c
a a abcu b xε ω= + , (C.5) 

 a b 1
2

bc
a abc aw ε Ω ω= − =c fd ge h , (C.6) 

where b and ω are the Burgers vector and Frank vector, respectively, and 
the jump in an arbitrary quantity a across singular surface Σ  satisfies  

 a b ( ) ( )3 3, ,a a a a R x a R x
θ π θ π

+ −

→ →−
= − = − . (C.7) 

The notion that b and ω  are spatially constant for Volterra line defects 
follows from Weingarten’s theorem (Weingarten 1901), as explained in 
detail by De Wit (1973) and Teodosiu (1982).   
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The following relationships for displacement gradients (i.e., distortions), 
strains, and rotations from Section 3.2.4 apply in the context of geometric 
linearity: 

 ;
L P

a b ab ab abu β β β= = + ; (C.8) 

 L P
ab ab abε ε ε= + , L P

ab ab abΩ Ω Ω= + ; (C.9) 
 L L L

ab ab abβ ε Ω= + , ( )
L L
ab abε β= , [ ]

L L
ab abΩ β= ; (C.10) 

 P P P
ab ab abβ ε Ω= + , ( )

P P
ab abε β= , [ ]

P P
ab abΩ β= . (C.11) 

The elastic or lattice displacement gradient is denoted by Lβ  and the plas-
tic displacement gradient is denoted by Pβ .  An additive decomposition of 
the total displacement gradient applies as is clear from (C.8).  The dis-
placement gradients on the right of (C.8) are sometimes called distortions, 
whose elastic and plastic parts are further separated into skew rotation and 
symmetric strain tensors in (C.10) and (C.11).  Some authors (De Wit 
1973; Mura 1982) use transposes of the quantities in (C.8)-(C.11) for defi-
nitions of distortions and rotations.   

In contrast to the theory of elastoplasticity with continuous distributions 
of defects described in much of Chapters 3 and 6-9, in the context of dis-
crete defects the plastic distortion is discontinuous.  More specifically, 
plastic distortion is singular along Σ , as implied by (3.85) in the context of 
finite deformations (Rice 1971).  Furthermore, since displacement (C.5) is 
discontinuous across Σ , (C.8) results in singular values of total distortion 

;a bu  at Σ .  On the other hand, as will be demonstrated later, elastic strain 
L
abε  is defined to be continuous and non-singular everywhere except at the 

core of the defect, i.e., except along the line 3ξ=ξ e .  Physically, one can 
imagine the cutting and rigid translation and rotation processes of 
Volterra’s construction as the source of plastic distortion, and the residual 
deformation remaining in the body after the material is joined across the 
cut as the source of elastic distortion. 

Gradients of rotation are also important for describing kinematics of line 
defects.  In the geometrically linear theory, the gradient of the rotation vec-
tor w is decomposed into an elastic and plastic part: 

 L P
ab a ,b ab abwκ κ κ= = + , (C.12) 

 ..,
1
2

L Lcd
ab acd b abκ ε Ω ϕ= − − , ..,

1
2

P Pcd
ab acd b abκ ε Ω ϕ= − + . (C.13) 

De Wit (1973) labels the transposes of κ , Lκ , and Pκ  the total bend-
twist, elastic bend-twist, and plastic bend-twist, respectively.  The term ϕ  
is a contribution from disclinations to the elastic or plastic bend-twist not 
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arising from gradients of the rotation vector or the distortion.  Hence ϕ  
contributes nine independent micropolar degrees of freedom.  The micro-
rotation in (C.13) is related to the micropolar rotation introduced in the 
continuum dislocation-disclination theory of Section 3.3.3 and (3.275) as 
follows: 

 [ ]1
2

. cd
ab acd bQϕ ε= . (C.14) 

Analogously to the distortion, total and plastic bend-twists exhibit singu-
larities along Σ , while the elastic bend-twist is defined to be continuous 
and non-singular except at the core of the defect.  Notice in (C.12) and 
(C.13) that the rotation gradients (i.e., bend-twists) and micropolar rotation 
are all transposes of definitions used by De Wit (1973). 

For traditional (i.e., translational) dislocations, 0=ϕ  and it is possible 
to divide the total distortion β  and total rotation w into sums of (i) elastic 
parts that are non-singular except at the core and (ii) plastic parts that are 
singular on Σ  and vanish elsewhere.  For disclinations (i.e., rotational de-
fects), 0≠ϕ  and it is not possible to define an elastic distortion and elastic 
rotation that are non-singular everywhere except at the core.  However, for 
disclinations it is still possible to define a (symmetric) elastic strain and an 
elastic bend-twist that are non-singular everywhere except along the dis-
clination line.  Relation (C.8) still applies in such cases, but the elastic dis-
tortion is not defined uniquely when discrete disclinations are present.   

Shown in Fig. C.2(b) and C.2(c) are edge dislocations defined according 
to ⊥b ξ .  Shown in Fig. C.2(d) is a screw dislocation defined by b ξ& .  
Shown in Fig. C.2(e) and C.2(f) are twist disclinations defined according 
to ⊥ω ξ .  Shown in Fig. C.2(d) is a wedge disclination defined by ω ξ& . 

Formulae for displacements, distortions, rotations, bend-twists, stresses, 
and strain energies resulting from each kind of defect in Fig. C.2 are given 
later in Sections C.1.1-C.1.4.  In each case, the defect is contained within 
an isotropic linear elastic body of infinite extent.  Unless noted otherwise, 
formulae are obtained from De Wit (1973) with minor differences in nota-
tion, some of which have been explained already following (C.8) and 
(C.12).  Defects of mixed character are discussed in Section C.1.5.  Strain 
energies of dislocation lines of particular orientations in anisotropic bodies 
are provided in Section C.1.6, primarily following from derivations of 
Foreman (1955).   

 



598      Appendix C: Discrete Defects in Linear Elasticity 

 
Fig. C.2 Volterra’s line defects: defect line (a); edge dislocations (b), (c); screw 

dislocation (d); twist disclinations (e), (f); wedge disclination (g) 

C.1.1 Edge Dislocation 

The Burgers vector and its magnitude for an edge dislocation with super-
posed components of Fig. C.2(b) and Fig. C.2(c) are, respectively, 

 1 1 2 2b b= +b e e , 
1/ 22 2

1 2( ) ( )b b b⎡ ⎤= +⎣ ⎦ . (C.15) 

Corresponding non-vanishing components of the plastic distortion tensor 
are 

 ( ) ( )12 1 1 2
P b H x xβ δ= − , ( ) ( )22 2 1 2

P b H x xβ δ= − , (C.16) 
with (.)δ  Dirac’s delta function and (.)H  the Heaviside step function.  
The first index of the plastic distortion corresponds to the Burgers vector, 
the second to the normal to the slip plane or surface of discontinuity Σ . 

The linearized dislocation density tensor α  introduced in (3.230) in the 
context of continuum plasticity theory is written again in the present con-
text of discrete defects as 

 . ,
da abc Pd

b cα ε β= , (C.17) 
with non-vanishing Cartesian components 

 ( ) ( )13 1 1 2b x xα δ δ= , ( ) ( )23 2 1 2b x xα δ δ= . (C.18) 
The first index of the dislocation density corresponds to the Burgers vec-
tor, the second to the tangent line.  For consistency with Chapter 3, distor-
tions and dislocation densities as defined here are transposes of those used 
by De Wit (1973).  The notation convention used here, on the other hand, 
is the same as that used by Nye (1953).   
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Displacements induced by the edge dislocation in an isotropic elastic 
solid of infinite dimensions and Poisson’s ratio ν  are 

2
1 2 2 2

1 1 2 2

( )(1 2 ) ln
2 4 (1 ) 4 (1 )

x x b xu b R
R R

θ ν
π π ν π ν

⎡ ⎤⎡ ⎤
= + + − +⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦

, (C.19) 

2
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2 22 2

( )(1 2 ) ln
4 (1 ) 2 4 (1 )

b x x xu R b
R R

θν
π ν π π ν
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, (C.20) 

 3 0u = . (C.21) 
Non-vanishing parts of the total distortion , ,a b a buβ =  in rectangular coor-
dinates are 
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Elastic distortions are defined as those parts of β  that are nonsingular eve-
rywhere except at the dislocation core, i.e., except at radial coordinate 

0R = : 
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 13 31 23 32 33 0.L L L L Lβ β β β β= = = = =  (C.30) 
Elastic strain components ( )

L L
ab abε β=  are then obtained as follows: 
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L b x x x b x x x
R R R R

ε
π ν π ν

⎡ ⎤ ⎡ ⎤
= − − −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 (C.32) 

 

2
1 2 1 2

22 2 4

2
2 1 1 2

2 4

( )(1 2 ) 2
4 (1 )

( )        (1 2 ) 2 ,
4 (1 )

L b x x x
R R

b x x x
R R

ε ν
π ν

ν
π ν

⎡ ⎤
= − − −⎢ ⎥− ⎣ ⎦

⎡ ⎤
+ − +⎢ ⎥− ⎣ ⎦

 (C.33) 

 13 23 33 0.L L Lε ε ε= = =  (C.34) 
The elastic dilatation, i.e., elastic volume change in the context of geomet-
ric linearity, is 

 11 22 33 1 2 2 12

1 2 ( ).
2 (1 )

L L L b x b x
R

νε ε ε
π ν

−
+ + = − −

−
 (C.35) 
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An elastic rotation Lw can be defined as that part of the total rotation non-
singular except at the defect core, with components ( ) / 2L L bc

a abcw ε Ω= −  
given for an edge dislocation by 

 1 2 0L Lw w= = , 3 1 1 2 22

1 ( )
2

Lw b x b x
Rπ

= − + . (C.36) 

The micropolar rotation tensor vanishes by definition for an edge disloca-
tion: 0abϕ = .  Elastic bend-twist components are 

 1 1
31 1 1 2 2 4 2

1 ( )
2

L x bb x b x
R R

κ
π π

= + − , (C.37) 

 2 2
32 1 1 2 2 4 2

1 ( )
2

L x bb x b x
R R

κ
π π

= + − , (C.38) 

 3
33 1 1 2 2 4

1 ( )L xb x b x
R

κ
π

= + , (C.39) 

 11 12 13 21 22 23 0L L L L L Lκ κ κ κ κ κ= = = = = = . (C.40) 
The stress field of an edge dislocation, using isotropic linear elasticity 

relation (see e.g., Sections 5.4 and A.3.3) 

 .2
1 2

L Lc
ab ab c ab

νσ µ ε ε δ
ν

⎡ ⎤⎛ ⎞= + ⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
 (C.41) 

is calculated as 

 
2 2

2 1 2 1 1 2
11 1 22 4 2 4

( ) ( )2 2 ,
2 (1 )

x x x x x xb b
R R R R

µσ
π ν

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= − + − −⎨ ⎬⎢ ⎥ ⎢ ⎥− ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
 (C.42) 

 
2 2

2 1 2 1 1 2
22 1 22 4 2 4

( ) ( )2 2 ,
2 (1 )

x x x x x xb b
R R R R

µσ
π ν

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= − − − +⎨ ⎬⎢ ⎥ ⎢ ⎥− ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
 (C.43) 

 2 1
33 1 22 2 ,

(1 )
x xb b
R R

µνσ
π ν

⎧ ⎫= − −⎨ ⎬
− ⎩ ⎭

 (C.44) 

 
2 2

1 1 2 2 1 2
12 1 22 4 2 4

( ) ( )2 2 ,
2 (1 )

x x x x x xb b
R R R R

µσ
π ν

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= − − −⎨ ⎬⎢ ⎥ ⎢ ⎥− ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
 (C.45) 

 13 23 0σ σ= = . (C.46) 
One can verify that the stress field of (C.42)-(C.46) satisfies the static 
equilibrium equations in the absence of body forces: .., 0ab

bσ =  (De Wit 
1973).  The strain energy density is expressed most easily in cylindrical 
coordinates in terms of the magnitude b of the Burgers vector (Teodosiu 
1982): 
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2

2
2 2 2

1 (1 2 sin )
2 8 (1 )

ab L
ab

bW
R

µσ ε ν θ
π ν

= = −
−

. (C.47) 

The strain energy per unit length of an isotropic linear elastic cylinder con-
taining the defect is 

 
2

( )( )( ) ln
4 (1 )

C

R

CR

b RE W R dR d
R

π

π

µθ
π ν−

⎛ ⎞
= = ⎜ ⎟− ⎝ ⎠

∫ ∫ , (C.48) 

where CR  is the radius of the dislocation core.  The strain energy per unit 
length can be decomposed into dilatational and deviatoric parts as (Seeger 
and Haasen 1958) 

 
2 2

2

1 2( )( )( ) ln
12 (1 )

C

R

D D
CR

b RE W R dR d
R

π

π

µ ν νθ
π ν−

⎛ ⎞− −
= = ⎜ ⎟− ⎝ ⎠

∫ ∫ , (C.49) 

 
2 2

2

1( )( )( ) ln
6 (1 )

C

R

S S
CR

b RE W R dR d
R

π

π

µ ν νθ
π ν−

⎛ ⎞− +
= = ⎜ ⎟− ⎝ ⎠

∫ ∫ , (C.50) 

where the volumetric strain energy per unit volume is 2
.( ) / 2La

D aW K ε= , 
the deviatoric strain energy is . . . . . .( / 3)( / 3)La a Lc Lb b Ld

S b b c a a dW µ ε δ ε ε δ ε= − − , 
and the bulk modulus is 2 (1 ) /(3 6 )K µ ν ν= + − .  The core energy cannot 
be adequately described by continuum elasticity theory and is not explic-
itly included in the derivation of (C.48)-(C.50).  However, if the core en-
ergy is known a priori, a value of CR  can be defined such that E implicitly 
contains both the core energy and the elastic strain energy, as explained in 
Section C.4.3 in the context of the Peierls model (Peierls 1940; Nabarro 
1947). 

Non-vanishing stress components in (C.42)-(C.45) decay as 1/ R  with 
increasing distance from the core.  As the core ( 0R = ) is approached, elas-
tic strains in excess of 10% are achieved for R b<

�
, and hence linear elas-

ticity theory is not valid in close vicinity of the dislocation line, i.e., within 
the core region.  At distances far from the dislocation line, stresses and 
elastic strains decay to zero as R → ∞ , but the energy per unit length E of 
(C.48) decays only logarithmically and hence diverges (i.e., is unbounded) 
in the limit R → ∞ .   

C.1.2 Screw Dislocation 

The Burgers vector and its magnitude for a screw dislocation shown in Fig. 
C.2(d) are 

 3 3b=b e , 3b b= . (C.51) 
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The non-vanishing component of the plastic distortion is 
 ( ) ( )32 3 1 2

P b H x xβ δ= − . (C.52) 
The non-vanishing part of the dislocation density (C.17) is 

 ( ) ( )33 3 1 2b x xα δ δ= . (C.53) 
Displacements induced by an isolated screw dislocation in an isotropic 

elastic solid of infinite dimensions and Poisson ratio ν  are 

 1 0u = , 2 0u = , 3
3 2

bu θ
π

= . (C.54) 

Non-vanishing parts of the total distortion are 

 3 2
31 22

b x
R

β
π

= − , ( ) ( )3 1
32 3 1 222

b x b H x x
R

β δ
π

= + − . (C.55) 

Elastic distortion components are 

 3 2
31 22
L b x

R
β

π
= − , 3 1

32 22
L b x

R
β

π
= , (C.56) 

 11 12 21 22 13 23 33 0.L L L L L L Lβ β β β β β β= = = = = = =  (C.57) 
Elastic strain components are 

 3 2
13 24
L b x

R
ε

π
= − , 3 1

23 24
L b x

R
ε

π
= . (C.58) 

The elastic dilatation vanishes: 
 11 22 33 0.L L Lε ε ε+ + =  (C.59) 

An elastic rotation ( ) / 2L L bc
a abcw ε Ω= −  can be introduced: 

 3 1
1 24
L b xw

Rπ
= , 3 2

2 24
L b xw

Rπ
= , 3 0Lw = . (C.60) 

The micropolar rotation 0abϕ =  identically for a screw dislocation.  Elas-
tic bend-twist components are 

 
2

3 1
11 2 2

2( )1
4

L b x
R R

κ
π

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
, 

2
3 2

22 2 2

2( )1
4

L b x
R R

κ
π

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
, (C.61) 

 3 1 2
12 21 42
L L b x x

R
κ κ

π
= = − , 3 1 3

13 42
L b x x

R
κ

π
= − , 3 1 2

23 42
L b x x

R
κ

π
= − , (C.62) 

 31 32 33 0L L Lκ κ κ= = = . (C.63) 
The stress field of a screw dislocation aligned along the 3x -axis, ob-

tained using isotropic linear elasticity relation (C.41) is 

 3 2
13 22

b x
R

µσ
π

= − , 3 1
23 22

b x
R

µσ
π

= , (C.64) 

 11 12 22 33 0σ σ σ σ= = = = . (C.65) 
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One can verify that (C.64) satisfies the static equilibrium equations 
.., 0ab

bσ =  (De Wit 1973).  The elastic strain energy density is 

 
2

2 2

1
2 8

ab L
ab

bW
R

µσ ε
π

= = . (C.66) 

The strain energy per unit length of the cylinder containing the defect is 

 
2

( )( )( ) ln
4

C

R

CR

b RE W R dR d
R

π

π

µθ
π−

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∫ ∫ , (C.67) 

with CR  the dislocation core radius.  Strain energy is purely deviatoric:  

 ( )( )( ) 0
C

R

D D
R

E W R dR d
π

π

θ
−

= =∫ ∫ , (C.68) 

 
2

( )( )( ) ln
4

C

R

S S
CR

b RE W R dR d
R

π

π

µθ
π−

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∫ ∫ . (C.69) 

As was observed for edge dislocations, non-vanishing stress and strain 
components decay as 1/ R  for an isolated screw dislocation, and thus for 
R b<
�

 strains are large and linear elasticity theory is no longer valid.  At 
distances far from the dislocation line, stresses and elastic strains decay to 
zero as R → ∞ , but the energy per unit length E again decays only loga-
rithmically with increasing R.  

C.1.3 Twist Disclination 

The combined Frank vector, and its magnitude, for a twist disclination 
passing through the origin with components shown in Fig. C.2(e) and 
C.2(f) are, respectively, 

 1 1 2 2ω ω= +ω e e , 
1/ 22 2

1 2( ) ( )ω ω ω⎡ ⎤= +⎣ ⎦ . (C.70) 

Non-vanishing components of the plastic distortion are 
 ( ) ( )12 2 3 1 2

P x H x xβ ω δ= − , (C.71) 
 ( ) ( )22 1 3 1 2

P x H x xβ ω δ= − − , (C.72) 
 ( ) ( )32 2 1 1 2

P x H x xβ ω δ= − − . (C.73) 
Non-vanishing components of the micro-rotation tensor are 

 ( ) ( )12 1 1 2H x xϕ ω δ= − , ( ) ( )22 2 1 2H x xϕ ω δ= − . (C.74) 
The nonzero plastic strain components are 

 ( ) ( )2
12 3 1 22
P x H x xωε δ= − , (C.75) 
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 ( ) ( )22 1 3 1 2
P x H x xε ω δ= − − , (C.76) 

 ( ) ( )2
23 1 1 22
P x H x xωε δ= − − . (C.77) 

Non-vanishing components of the plastic bend-twist are 

 ( ) ( )2
11 1 22
P H x xωκ δ= − − , (C.78) 

 ( ) ( ) ( ) ( )2
12 1 1 2 1 1 22
P x H x x H x xωκ δ ω δ′= − − + − , (C.79) 

 ( ) ( )22 2 1 2
P H x xκ ω δ= − , (C.80) 

 ( ) ( )2
31 3 1 22
P x x xωκ δ δ= , (C.81) 

 ( ) ( )2
32 3 1 22
P x H x xωκ δ ′= − − , (C.82) 

 ( ) ( )2
33 1 22
P H x xωκ δ= − − . (C.83) 

The dislocation density tensor in the geometrically linear micropolar 
theory is defined as follows (De Wit 1973), consistent with (3.276): 

 . , . ,( ) ( )da abc Pd fde abc Pd fde P
b c bf ec b c bf ecα ε β δ ε ϕ ε ε δ ε κ= + = + , (C.84) 

and reduces to (C.17) in the absence of micro-rotation ϕ .  The disclination 
density tensor in the geometrically linear theory is 

 . , . ,( )ab bcd a bcd P a
c d c dθ ε ϕ ε κ= = . (C.85) 

This is the transpose of the disclination density tensor defined by De Wit 
(1973), but it is consistent with the notation of Chapter 3 of the present 
text.  Using (C.14), definition (C.85) is found to be consistent with the lin-
earization of the disclination density tensor given in (3.277): 

 ,
1
2

ab aef bcd
cef dQθ ε ε= . (C.86) 

In particular, for a twist disclination, non-vanishing components of (C.84) 
are 

 ( ) ( )13 2 3 1 2x x xα ω δ δ= , ( ) ( )23 1 3 1 2x x xα ω δ δ= − , (C.87) 
implying that the straight disclination line imparts a contribution to the dis-
location density tensor.  This is analogous to the contribution from mi-
cropolar rotation Q to torsion tensor T̂  in the theory of Section 3.3.3 in 
(3.249) and (3.272).  The disclination density tensor (C.85) has nonzero 
components 

 ( ) ( )13 1 1 2x xθ ω δ δ= , ( ) ( )23 2 1 2x xθ ω δ δ= . (C.88) 
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The first index of the disclination tensor in (C.88) corresponds to the Frank 
vector, the second to the tangent line.   

The displacement field of a twist disclination is 
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1 3 2 1 2
1 2 32 2

( )(1 2 ) ln
4 (1 ) 2 4 (1 )

x x x xu R x
R R

ω θν ω
π ν π π ν
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, (C.89) 
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, (C.90) 
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. (C.91) 

Cartesian distortion (i.e., displacement gradient) components are 
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 (C.92) 
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(C.96) 
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 (C.97) 
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 (C.99) 

 33 0β = . (C.100) 
Because the total distortion β  contains terms linear in θ , and because an-
gular coordinate θ  is discontinuous (i.e., multi-valued) with a jump of 
magnitude 2π  as half-plane π±  ( 2 10,  0x x= < ) is traversed (Fig. C.1), an 
elastic distortion that is non-singular (i.e., simultaneously continuous and 
bounded or finite) except at the core 0R =  cannot be extracted naturally 
from (C.92)-(C.100).  On the other hand, an elastic strain tensor that is 
non-singular except at the core can be extracted from the symmetric part of 
the total distortion: 
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 (C.103) 
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 33 0Lε = . (C.106) 
The remaining (plastic) parts of the symmetric displacement gradient ten-
sor ( )

P L
ab ababε β ε= −  correspond to (C.75)-(C.77).  The elastic dilatation is 
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 (C.107) 

The total rotation vector / 2bc
a abcw ε β= −  is 

 ( ) ( )1
1 2 1 1 2

1
2 2

w x H x xω θ ω δ
π

= − − , (C.108) 

 2
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w ω θ
π

= , (C.109) 

 [ ] ( ) ( )3
3 1 2 2 1 2 3 1 22

1
2 2

xw x x x H x x
R

ω ω ω δ
π

= − − − . (C.110) 

Because the total rotation w, like β , contains terms linear in θ , an elastic 
rotation that is non-singular except at the disclination core (i.e., at 0R = ) 
cannot be extracted naturally from (C.108)-(C.110).  However, an elastic 
bend-twist that is non-singular except at the core can be extracted from the 
gradient of the rotation vector: 
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 [ ]33 1 2 2 12

1
2

L x x
R

κ ω ω
π

= − , (C.114) 

 13 23 0L Lκ κ= = . (C.115) 
The remaining (plastic) parts of the bend twist P L

ab ab abκ κ κ= −  correspond 
to (C.78)-(C.83).   

The stresses obtained from linear isotropic elasticity theory1 (C.41) and 
the elastic strains (C.101)-(C.106) are   
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 (C.116) 

                                                      
1 Generalized continuum elasticity theories, for example those admitting couple 

stresses, are popular for describing elastic fields of discrete disclination and dislo-
cation lines (Minagawa 1977; Lazar and Maugin 2005) but such applications of 
these theories are not addressed in Appendix C. 
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 (C.117) 
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One can verify that the (Cauchy) stress components of (C.116)-(C.121) 
satisfy the static equilibrium equations in the absence of body forces: 

.., 0ab
bσ =  (De Wit 1973).   
Stress components are singular at 0R = ; hence, linear elasticity theory 

breaks down at small distances from the disclination line.  At distances far 
from the disclination line, stresses and elastic strains decay only logarith-
mically with R and hence diverge as R → ∞ .  The elastic strain energy 
density / 2ab L

abW σ ε=  of the defect likewise diverges at large distances 
from the core of the defect. 

C.1.4 Wedge Disclination 

The Frank vector and its magnitude for an isolated wedge disclination 
passing through the origin as shown in Fig. C.2(g) are 

 3 3ω=ω e , 3ω ω= . (C.122) 
Notice that 3ω  can be positive or negative in algebraic sign, corresponding 
in Volterra’s construction to removal or insertion of a wedge of matter.  
The non-vanishing component of the plastic distortion is 
 ( ) ( )22 3 1 1 2

P x H x xβ ω δ= − . (C.123) 
The non-vanishing component of the micro-rotation is 

 ( ) ( )32 3 1 2H x xϕ ω δ= − . (C.124) 
The nonzero plastic strain component is 

 ( ) ( )22 3 1 1 2
P x H x xε ω δ= − . (C.125) 

The non-vanishing component of the plastic bend-twist is 
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 ( ) ( )32 3 1 2
P H x xκ ω δ= − . (C.126) 

For a wedge disclination, (C.84) vanishes.  The disclination density de-
fined in (C.85) has the nonzero component 

 ( ) ( )33 3 1 2x xθ ω δ δ= . (C.127) 
The displacement field of a wedge disclination is 

   2 1
1 3

(1 2 ) (ln 1)
2 4 (1 )
x xu Rθ νω

π π ν
⎡ ⎤−
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, (C.128) 

   1 2
2 3

(1 2 ) (ln 1)
2 4 (1 )
x xu Rθ νω
π π ν

⎡ ⎤−
= + −⎢ ⎥−⎣ ⎦

, (C.129) 

  3 0u = . (C.130) 
Displacement gradient (i.e., distortion) components in Cartesian coordi-
nates are 
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  13 23 31 32 33 0β β β β β= = = = = . (C.135) 
Because the total distortion β  contains terms linear in θ , an elastic distor-
tion that is non-singular except at 0R =  cannot be extracted naturally from 
(C.131)-(C.135).  However, an elastic strain tensor that is non-singular ex-
cept at the core can be extracted from the symmetric part of the total dis-
tortion as follows: 
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 13 23 33 0L L Lε ε ε= = = . (C.139) 
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The remaining (plastic) part of the symmetric displacement gradient 

( )
P L
ab ababε β ε= −  corresponds to (C.125).  The elastic dilatation is 

 [ ]3
11 22 33 2(1 2 )ln 1 .

4 (1 )
L L L R

ω
ε ε ε ν

π ν
+ + = − −

−
 (C.140) 

The total rotation vector / 2bc
a abcw ε β= −  is 

 1 2 0w w= = , 3
3 2

w ω θ
π

= . (C.141) 

Because the total rotation w, like β , contains a term linear in θ , an elastic 
rotation that is non-singular except at 0R =  cannot be extracted naturally 
from (C.141).  However, an elastic bend-twist that is non-singular except 
at the core can be extracted from the gradient of the rotation vector: 

 3 2
31 22
L x

R
ω

κ
π

= − , 3 1
32 22
L x

R
ω

κ
π

= , (C.142) 

 11 12 13 21 22 23 33 0L L L L L L Lκ κ κ κ κ κ κ= = = = = = = . (C.143) 
The remaining (plastic) part of the bend twist P L

ab ab abκ κ κ= −  corresponds 
to (C.126).  Stress components obtained from linear isotropic elasticity 
theory (C.41) and elastic strains (C.136)-(C.139) are   
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 3
33 2 ln ,

2 (1 ) 1 2
Rµω νσ ν

π ν ν
⎡ ⎤= +⎢ ⎥− −⎣ ⎦

 (C.147) 

 13 23 0σ σ= = . (C.148) 
One can verify that stresses of (C.145)-(C.148) satisfy the static equilib-
rium equations in the absence of body forces (De Wit 1973).  The alge-
braic sign of the disclination (i.e., positive or negative value of 3ω ) dic-
tates the sign of each of the nonzero stress components. 

Some stress components are singular at 0R = ; hence, linear elasticity 
theory is not valid within the core.  At distances far from the disclination 
line, stresses and elastic strains decay only logarithmically with R and 
hence diverge as R → ∞ .  The elastic strain energy density / 2ab L

abW σ ε=  
of the defect likewise diverges at large distances from the core. 



612      Appendix C: Discrete Defects in Linear Elasticity 

The strain energy per unit length of an elastic cylinder containing a 
wedge disclination line with Frank vector magnitude 3ω ω=  is (Huang and 
Mura 1970) 
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∫ ∫
 (C.149) 

The energy per unit length E diverges at distances away from the defect at 
a rate of 2 2Rω , demonstrating the high energy of uncompensated wedge 
disclination lines.  In crystal lattices, full wedge disclinations can exhibit 
Frank vectors of magnitude / 2ω π=  for cubic crystals with the tangent 
line parallel to a cube axis, and / 3ω π=  for hexagonal crystals with the 
tangent line parallel to the c-axis of the conventional unit cell (De Wit 
1971; Li 1972).  In either case, because the product 2 2Rµω  becomes large 
at even moderate distances away from the core, disclinations tend to form 
partial dipole configurations to minimize their total elastic strain energy 
(Li 1972; Seefeldt 2001). 

C.1.5 Mixed Line Defects 

Straight line defects of mixed character are easily represented by superpo-
sition of the results of Sections C.1.1-C.1.4.  A mixed dislocation with unit 
tangent line ξ  and Burgers vector b can be decomposed into the sum of a 
screw dislocation with Burgers vector Sb  and edge dislocation with Bur-
gers vector Eb  using basic vector mathematics (Hirth and Lothe 1982): 

 = +S Eb b b , ( )=Sb b ξ ξi , ( )= × ×Eb ξ b ξ . (C.150) 
Similarly, a mixed disclination aligned along unit tangent vector ξ  can be 
expressed as the sum of a wedge disclination with Frank vector Wω  and a 
twist disclination of Frank vector Tω  via the vector addition relation 

( ) ( )= + = + × ×W Tω ω ω ω ξ ξ ξ ω ξi .   
Upon selection of a Cartesian coordinate system with 3ξ e& , the dis-

placement, displacement gradient, rotation, and rotation gradient fields can 
then be superposed for a generic line defect with both a Burgers vector of 
mixed character (screw and edge) and a Frank vector of mixed character 
(wedge and twist).  Jumps in displacement and rotation in (C.5) and (C.6) 
demonstrate such a superposition.  When superposing fields of dislocations 
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and disclinations, an elastic rotation cannot be defined that is non-singular 
except at the core of the mixed defect, since the elastic rotation is unde-
fined for the disclination alone.  Because the results of Sections C.1.1-
C.1.4 are obtained using linear isotropic elasticity, stress fields and strain 
energy densities can be superposed to determine the fields of mixed 
straight line defects.   

In particular, the elastic strain energy per unit length of a straight dislo-
cation line of possibly mixed character in the linear isotropic approxima-
tion is 

  
2

2 21( )( )( ) cos sin ln
4 1

C

R

CR

b RE W R dR d
R

π

π

µθ φ φ
π ν−

⎛ ⎞⎡ ⎤= = + ⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝ ⎠
∫ ∫ , (C.151) 

where 1cos | / |bφ −= b ξi  is the angle between the Burgers vector and tan-
gent line.  When 0φ = , (C.151) reduces to formula (C.67) for a screw dis-
location; when / 2φ π= , (C.151) reduces to formula (C.48) for an edge 
dislocation.  The superposition procedure outlined above is rigorous only 
for a single line defect, and does not account for interactions that would 
arise between two different defects with distinct tangent lines and the same 
total Burgers and Frank vectors.   

C.1.6 Dislocation Energies in Anisotropic Crystals 

For anisotropic crystals, field variables such as stress, strain, and strain en-
ergy density depend on the orientation of the defect and its Burgers or 
Frank vector with respect to directions in the crystal lattice.  Methods for 
obtaining solutions for dislocations in anisotropic linear elasticity theory 
are outside the scope of this Appendix, but are described elsewhere in a 
number of references (Eshelby 1949b; Eshelby et al. 1953; Foreman 1955; 
Stroh 1958; Head 1964; Steeds 1973; Bacon et al. 1979; Hirth and Lothe 
1982; Teodosiu 1982).  Listed next are strain energies per unit length of 
Volterra dislocation lines in particular orientations, with emphasis directed 
towards configurations found in cubic and hexagonal lattices for which 
concise analytical solutions exist.  Disclinations in anisotropic media are 
not considered. 

The strain energy per unit length of a straight dislocation line in an infi-
nite linear elastic body can be written in the general form 
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∫ ∫ , (C.152) 
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where 1/ 2( )b = b bi  is the magnitude of the Burgers vector, R is the radial 
distance from the dislocation core, and CR  is the cut-off radius from the 
core.  The tangent line is again oriented along the 3x -axis: 3ξ=ξ e .  The 
strain energy E is then determined by the energy factor K̂ , with dimen-
sions of stress or energy per unit volume, that depends upon the orientation 
of the defect and the symmetry of the crystal.  Let the Burgers vector be 
decomposed into an edge component 1 1 2 2b b= +Eb e e  and a screw compo-
nent 3 3b=Sb e  via (C.150), consistent with Fig. C.2.  In an isotropic body, 
the energy factor reduces to ˆ /(1 )K µ ν= −  for a straight edge dislocation 
in (C.48) and to K̂ µ=  (i.e., the elastic shear modulus) for a straight screw 
dislocation in (C.69). 

Analytical solutions are available for K̂  when either of the following 
conditions is satisfied (Foreman 1955): (i) each axis of the Burgers vector 
of the dislocation ( 1x , 2x , and 3x ) falls along an axis of two-fold symme-
try or (ii) any axis of the Burgers vector of the dislocation ( 1x , 2x , or 3x ) 
is an axis of six-fold symmetry.  From Table A.2, Table A.8, and the ana-
lysis of Foreman (1955), such results are available for dislocations of par-
ticular orientations in elastic solids belonging to Laue groups TI, HII, HI, 
CII, and CI, i.e., high-symmetry tetragonal, hexagonal, and cubic crystals.  
The energy factor in these cases can be written as (Foreman 1955) 

                       2 2 2
1 1 2 2 3 32

1ˆ ˆ ˆ ˆ( ) ( ) ( )K K b K b K b
b

⎡ ⎤= + +⎣ ⎦ , (C.153) 

with 
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, (C.154) 

            
1/ 222

2 1 11
ˆ ˆK K

⎛ ⎞
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⎝ ⎠

^
^

, ( )1/ 244 55
3K̂ = ^ ^ , ( )1/ 211 22Ĉ = ^ ^ . (C.155) 

Independent second-order elastic constants AB^  (in Voigt’s notation of 
(A.2)) are listed in Table A.8 for crystals of each Laue group, where barred 
indices span 1,2,...6A = .  Elastic constants must be expressed in the same 
Cartesian coordinate system used to describe the dislocation line and Bur-
gers vector, in some cases requiring a change of coordinates such as in 
(5.99)-(5.100). 
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First consider cubic crystals with the cube axes ([100] ,[010],[001] ) 
aligned coincident with the Cartesian coordinate system ( 1x , 2x , 3x ).  In 
this case, (C.154) and (C.155) reduce to 

    
1/ 244 11 12

11 12
1 2 11 11 12 44

( )ˆ ˆ ( )
( 2 )

K K
⎡ ⎤−

= = + ⎢ ⎥+ +⎣ ⎦

^ ^ ^^ ^
^ ^ ^ ^

, 44
3K̂ =^ . (C.156) 

Substitution of (C.156) into (C.153) provides the energy factor for a dislo-
cation with tangent line along a [001]  direction in a cubic lattice, i.e., 

[001]ξ & .  Table C.1 lists reduced representations of energy factor K̂  for 
such dislocations with Burgers vectors b in 100 , 110 , and 111  direc-
tions.   
 
Table C.1 Energy factors for dislocations in cubic crystals (Foreman 1955) 

Dislocation type Line Slip plane Burgers vector K̂  
Screw [001] - [001] 

3K̂ * 
Edge [001] {100} [100] 

1K̂ * 
Mixed [001] {100} 1/2 [101] 

1 3
ˆ ˆ( ) / 2K K+ * 

Edge [001] {110} 1/2 [110] 
1 2

ˆ ˆ( ) / 2K K+ * 
Mixed [001] {110} 1/2 [111] 

1 2 3
ˆ ˆ ˆ( ) / 3K K K+ + * 

Screw [101]  - 1/2 [101] 
3K̂ ** 

Edge [101] {100} 1/2 [101]  1K̂ ** 
Mixed [101] {100} [100] 

1 3
ˆ ˆ( ) / 2K K+ ** 

Edge [101] {110} [010] 
2K̂ ** 

Mixed [101] {110} 1/2 [111] 
2 3

ˆ ˆ( 2 ) / 3K K+ ** 
Mixed [101] {111} 1/2 [110] 

1 2 3
ˆ ˆ ˆ( 2 ) / 4K K K+ + ** 

Edge [101] {112} 1/2 [111]  1 2
ˆ ˆ(2 ) / 3K K+ ** 

*Equations (C.156)  **Equations (C.154), (C.155), (C.157), and (C.158) 
 

A cubic crystal with crystallographic axes ([10 1] ,[010],[101] ) parallel 
to respective Cartesian axes ( 1x , 2x , 3x ) also fulfills symmetry condition (i) 
listed above.  For a cubic crystal containing a dislocation line aligned 
along a [101]  direction, the following transformation formulae apply: 

 11 11 12 442 2′ ′ ′= + +^ ^ ^ ^ , 22 11′=^ ^ , (C.157) 
 12 12′=^ ^ , 44 66 44′= =^ ^ ^ , 55 11 122 ′ ′= −^ ^ ^ , (C.158) 
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with AB′^  the (three independent) elastic constants in the original crystal-
lographic coordinate system.  Unprimed elastic constants from (C.157) and 
(C.158) are then substituted into (C.153)-(C.155) to obtain the energy fac-
tor K̂  for a dislocation line along a [101]  direction in a cubic crystal, i.e., 

[101]ξ & .  Table C.1 lists reduced representations of K̂  for such disloca-
tions with Burgers vectors b parallel to 100 , 110 , and 111  direc-
tions.   

Finally consider hexagonal crystals, again with the dislocation line par-
allel to the 3x -axis.  Consider dislocations for which any one of the coor-
dinate directions 1x , 2x , or 3x  and the c-axis [0001]  coincide.  Since the c-
axis is an axis of six-fold symmetry and since second-order elastic con-
stants of hexagonal crystals are invariant for any rotations about the c-axis, 
condition (ii) mentioned above is satisfied and (C.153)-(C.155) can be 
used directly, without a coordinate transformation.  Particular forms of K̂  
for screw dislocations oriented along [0001]  and edge dislocations on 
basal {0001} and first-order prism {1 100}  planes are listed in Table C.2. 

 
Table C.2 Energy factors for dislocations in hexagonal crystals (Foreman 1955) 

Dislocation type Slip plane Burgers vector K̂  
Screw - * 44 11 12 1/ 2[( / 2)( )]−^ ^ ^  
Edge {0001}  1/3 [1120]  11 33 1/ 2 13

1/ 244 11 33 1/ 2 13

33 11 33 1/ 2 13 44

( )

[( ) ]
[( ) 2 ]

⎡ ⎤+⎣ ⎦

⎧ ⎫−
×⎨ ⎬

+ +⎩ ⎭

^ ^ ^

^ ^ ^ ^
^ ^ ^ ^ ^

 

Edge {1100}  1/3 [1120]  11 2 12 2 11[( ) ( ) ]/(2 )−^ ^ ^  
*Any b parallel or perpendicular to the c-axis [0001] 

C.2 Defect Loops 

Lattice defects can often appear in crystals as closed loops rather than as 
straight lines.  This occurs for several reasons.  Firstly, dislocation lines 
cannot terminate abruptly within a crystal structure, but rather must termi-
nate at external or internal (e.g., grain) boundaries, at intersections with 
other defects, or on themselves (i.e., loops).  Secondly, dislocations often 
multiply or nucleate in the form of loops via Frank-Read sources (Read 
1953; Kocks et al. 1975; Hirth and Lothe 1982; Hull and Bacon 1984).  
Considered in Section C.2 are dislocation and disclination loops whose 
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tangent lines lie completely within a single plane.  Helical defects whose 
tangent lines are not confined to a single plane are possible (Owen and 
Mura 1967; Hull and Bacon 1984) but are not addressed here.   

Consider a generic defect loop of radius A shown in Fig. C.3.  The 
curved defect line L of total length 2 Aπ  lies within the plane 3 0x = .  Cy-
lindrical coordinates R  and θ  are introduced, satisfying (C.1)-(C.3).  The 
unit tangent vector to the defect is θξ=ξ e , with θe  a dimensionless unit 
vector in physical coordinates (Section 2.4.2).  The Burgers vector or 
Frank vector of the defect, not shown in Fig. C.3, determines the type of 
loop.  Specifically considered in what follows are screw dislocation loops, 
prismatic dislocation loops, circular dislocation loops with constant Bur-
gers vector in the plane of the loop (i.e., shear dislocation loops), twist dis-
clination loops, and wedge disclination loops.  Defect energies are pro-
vided for each of these kinds of loops contained in isotropic linear elastic 
solids of infinite extent.  

 

 
Fig. C.3 Defect loop and cylindrical and Cartesian coordinate systems 

 
First consider a screw dislocation loop, for which the orientation of the 

Burgers vector varies spatially so that it always remains parallel to the dis-
location line, leading to b θ=b e  where b is a constant.  Owen and Mura 
(1967) call this a rotational dislocation loop.  The only non-vanishing 
component of the dislocation density tensor of (C.17) in this case is, in cy-
lindrical coordinates, 

 ( ) ( )3b R A xθθα δ δ= − . (C.159) 
The stress field resulting from (C.159) in an infinitely extended, isotropic 
linear elastic body is given by Owen and Mura (1967) and is too lengthy to 
repeat here.  The energy per unit length E is (Owen and Mura 1967) 
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, (C.160) 

where CR A�  has been assumed, with CR  the radius of a curved tube 
(i.e., core region) of material encasing the dislocation line.  Recall that µ  
is the elastic shear modulus and ν  is Poisson’s ratio. 

Next consider a prismatic dislocation loop, for which the orientation of 
the Burgers vector is constant and always perpendicular to the tangent line, 
leading to 3b=b e  where b is a constant.  This is a circular edge disloca-
tion.  The only non-vanishing component of dislocation density tensor 
(C.17) is 

 ( ) ( )3 3b R A xθα δ δ= − . (C.161) 
The energy per unit length E of a prismatic dislocation loop in an isotropic 
linear elastic body of infinite dimensions is (Owen and Mura 1967) 
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, (C.162) 

where CR A�  has been assumed.  
Now consider a mixed dislocation loop, for which the orientation of the 

Burgers vector is constant and within the plane of the loop, leading to 
1 2 2 2b b= +b e e , with constants 2 2 1/ 2

1 2 1 2,  ,  and [( ) ( ) ]b b b b b= + .  This is of-
ten called a circular shear dislocation or shear dislocation loop (Hull and 
Bacon 1984).  The only non-vanishing components of the dislocation den-
sity tensor (C.17) are 

 [ ] ( ) ( )1 2 3cos sinR b b R A xθα θ θ δ δ= + − , (C.163) 
 [ ] ( ) ( )1 2 3sin cosb b R A xθθα θ θ δ δ= − + − . (C.164) 

The energy per unit length E in an infinitely extended, isotropic linear elas-
tic solid is (Owen and Mura 1967) 
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 (C.165) 

where CR A�  has been assumed.  
Next consider a twist disclination loop, for which the orientation of the 

Frank vector is constant and perpendicular to the tangent line, leading to 
3ω=ω e , where ω  is a constant.  This is a circular edge disclination in the 

terminology of Huang and Mura (1970).  The only non-vanishing compo-
nent of the disclination density tensor of (C.85) is 

 ( ) ( )3 3R A xθθ ωδ δ= − . (C.166) 



C.3 Point Defects      619 

The energy per unit length E of a twist disclination loop in a linear elastic 
isotropic body of infinite dimensions is (Huang and Mura 1970; Liu and Li 
1971) 

   
2 2 8 8ln

4 3C

R AE
R

µω
π

⎡ ⎤⎛ ⎞
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, (C.167) 

where CR A�  has been assumed.  
Finally consider a wedge disclination loop, for which the orientation of 

the Frank vector is constant and within the plane of the loop, leading to 
1 2 2 2ω ω= +ω e e , with constants 2 2 1/ 2

1 2 1 2,  ,  and [( ) ( ) ]ω ω ω ω ω= + .  This is 
a circular wedge disclination with constant Frank vector.  The only non-
vanishing components of the disclination density tensor (C.85) are, in this 
case, 

 [ ] ( ) ( )1 2 3cos sinR R A xθθ ω θ ω θ δ δ= + − , (C.168) 
 [ ] ( ) ( )1 2 3sin cos R A xθθθ ω θ ω θ δ δ= − + − . (C.169) 

The energy per unit length E of a circular wedge disclination loop in an 
isotropic linear elastic body of infinite dimensions is (Liu and Li 1971; 
Kuo and Mura 1972) 

   
2 2 8 8ln .

8 (1 ) 3C

R AE
R

µω
π ν

⎡ ⎤⎛ ⎞
≈ −⎢ ⎥⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦

 (C.170) 

where CR A�  has been assumed. 
Disclination loop energies in isotropic elastic bodies were also com-

puted analytically by Li and Gilman (1970) at large distances away from 
the loop.  Notice from (C.167) and (C.170) that disclination loop energies 
diverge at distances away from the core at a rate of 2 2Rω , similar to what 
was observed for straight disclination lines in (C.149).  On the other hand, 
dislocation loop energies per unit line length in (C.160), (C.162), and 
(C.165) are constant for fixed values of A and CR ; i.e., the dislocation loop 
energies per unit line length do not depend on radial coordinate R. 

C.3 Point Defects 

The continuum model of a point defect considered in Section C.3 consists 
of a sphere of one material forced into a spherical hole of a different radius 
in a larger sample of a possibly different material.  This type of model can 
be used to describe inclusions, interstitial atoms, and substitutional atoms 
of larger size than those of the sample when the radius of the inserted 
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sphere is larger than that of the hole in the surrounding medium.  In that 
case, when the inserted sphere is rigid and the surrounding medium is of 
infinite extent, the radial strain in the vicinity of the sphere is compressive.  
This model can also be used to describe vacancies or substitutional atoms 
of smaller size than those of the surrounding medium, via insertion of a 
sphere of smaller radius than the radius of the hole, then contracting the 
boundary of the hole such that it is bound to the sphere, followed by re-
moval of external forces.  In that case, when the inserted sphere is rigid 
and the surrounding medium is of infinite extent, the radial strain in the vi-
cinity of the sphere is tensile.   

The spherically symmetric model of a point defect in an isotropic linear 
elastic medium has been considered by a number of authors (Bitter 1931; 
Eshelby 1954, 1956; Holder and Granato 1969; Hirth and Lothe 1982; 
Teodosiu 1982).  The description below follows mainly from the presenta-
tion of Teodosiu (1982). 

Spherical coordinates and generic problem geometry are shown in Fig. 
C.4(a) and Fig. C.4(b), respectively.  Spherical coordinates are related to 
Cartesian coordinates as follows (see also Table 2.1): 

 1 sin cosx R θ ϕ= , 2 sin sinx R θ ϕ= , 3 cosx R θ= ; (C.171) 
 2 2 2 1/ 2

1 2 3[( ) ( ) ( ) ]R x x x= + + . (C.172) 
The radius of the inclusion prior to elastic relaxation is 0r , and the radius 
of the elastic body in which the inclusion is immersed is 0R .  When the in-
clusion is rigid, its radius of course remains fixed at 0r .  When the inclu-
sion is deformable, on the other hand, its final radius may differ from 0r  
after it is forced into or bonded to the surrounding medium via application 
of external forces, and then these external forces removed.   

 

 
Fig. C.4 Coordinate systems (a) and geometry of spherical inclusion (b) 
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For spherically symmetric problems of the present kind, displacement 
field u is of the form 

 ( )R Ru u R= , 0u uθ ϕ= = . (C.173) 
Physical components of the  small strain tensor (i.e., dimensionless strains 
in spherical coordinates of Section 2.4.3) then follow from differentiation 
of (C.173): 

 ,RR R Ruε = , Ru
Rθθ ϕϕε ε= = , 0R Rθ ϕ θϕε ε ε= = = . (C.174) 

All of the strains are considered elastic in the present treatment, e.g., plas-
ticity is not considered.   

Stresses, in physical components of spherical coordinates, in a linear 
isotropic elastic body with the above strain field are computed as follows 
using the linearized version of (A.24) or using (5.321) in the isothermal 
case: 

 ,( 2 ) 2 R
RR R R

uu
R

σ λ µ λ= + + , (C.175) 

 , 2( ) R
R R

uu
Rθθ ϕϕσ σ λ λ µ= = + + , (C.176) 

 0R Rθ ϕ θϕσ σ σ= = = . (C.177) 
Substitution of this stress field into the static equilibrium equations (i.e., 
the first row of Table 5.2 with vanishing acceleration) in the absence of 
body forces provides the differential equation (Bitter 1931) 

 ,
, 22 2 0R R R

R RR

u uu
R R

+ − = , (C.178) 

which has the general solution 

 2R
Au BR

R
= + , (C.179) 

with constants A and B whose values depend on the boundary conditions. 

C.3.1 Rigid Defect in Infinite Body 

First, let the body surrounding the spherical defect of radius 0r  be of infi-
nite extent, i.e., 0R → ∞ , and let the sphere be rigid.  The corresponding 
boundary conditions are 

 ( ) 0Ru ∞ → , ( )0 2
04R

Vu r
r

δ
π

= , (C.180) 

with Vδ the volume change resulting from the change in dimensions of the 
hole into which the sphere is inserted.  Using (C.179), the constants are 
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4
VA δ
π

= , 0B = . (C.181) 

Notice that A has dimensions of volume and measures the “strength” of the 
defect (Eshelby 1954).  The displacement field is thus 

 3 1
,( )a a au AR x A R− −= = − . (C.182) 

Non-vanishing strains and stresses are 
 32RR ARε −= − , 3ARθθ ϕϕε ε −= = ; (C.183) 

 34RR ARσ µ −= − , 32 ARθθ ϕϕσ σ µ −= = . (C.184) 
The dilatation and pressure vanish identically: 

 0RR θθ ϕϕε ε ε+ + = , 1 ( ) 0
3 RRp θθ ϕϕσ σ σ= − + + = , (C.185) 

implying that the elastic medium is in a state of deviatoric stress.  The 
strain energy density is 

 2 66W A Rµ −= , (C.186) 
and the average strain energy per unit volume W (and its equivalent aver-
age deviatoric energy density SW ) of an elastic ball of radius 0R  surround-
ing the defect is obtained as 

  

0

0

1
3 3 2
0 0

32
0

3 3 3
0 0 0 0

4 ( ) 4
3

6            1 .
( )

R

S
r

W W R r R WdR

rA
R r r R

π π

µ

−
⎡ ⎤= = −⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦

∫
 (C.187) 

The total volume change v∆  of any region of the medium containing the 
inclusion is, upon applying the divergence theorem (2.193), 

 
.,

2
2 2

0 0

    ( ) (sin )( )( ) 4 .

a a
a a

v s

v u dv u n ds

AR R d d A V
π π

θ θ ϕ π δ−

∆ = =

= = =

∫ ∫

∫ ∫
 (C.188) 

The final equality in (C.187) makes use of (C.188).  The total volume 
change is positive and the radial stress is compressive when 0A > .  This 
situation corresponds to a rigid interstitial atom imparting volume increase 

Vδ , or to a substitutional atom of volume larger by Vδ  than an atom of 
the elastic medium.  On the other hand, the volume change is negative and 
the radial stress tensile when 0A < .  This situation corresponds to a miss-
ing atom (i.e., vacancy) of volume decrease Vδ , or to a substitutional 
atom of volume smaller by Vδ  than an atom of the elastic medium.  In a 
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polyatomic structure, the atomic species of the defect will generally affect 
the sign and magnitude of the volume change, as will the electric charge of 
the defect in an ionic solid.  In such cases, it is possible for a vacancy to 
cause local expansion of the surrounding crystal, i.e., 0A >  (Mott and 
Littleton 1938; Sprackling 1976).   

Volume change Vδ  is often called the relaxation volume of a point de-
fect, while the sum 0Vδ ± Ω  is often called the formation volume.  The re-
laxation volume Vδ  can be estimated by equating the normalized forma-
tion energy of the defect with the strain energy (C.187), as demonstrated in 
Section 7.4.1 of Chapter 7.  Atomic lattice statics calculations can be used 
to more accurately determine relaxation and formation volumes, including 
effects of geometric and material nonlinearities2, anisotropy, and boundary 
conditions (Garikipati et al. 2006).  Effects of the defect on the surround-
ing elastic medium can also be represented by a force dipole tensor 
(Eshelby 1954, 1956; Teodosiu 1982; Garikipati et al. 2006).   

C.3.2 Rigid Defect in Finite Body 

Now let the isotropic elastic body surrounding the spherical defect of ra-
dius 0r  be of finite extent, i.e., 0R  is bounded, and let the sphere be rigid.  
The boundary conditions are 

 ( )0 0RR Rσ = , ( )0 2
04R

Vu r
r

δ
π

= , (C.189) 

with Vδ  a constant with dimensions of volume.  Using (C.175) and 
(C.179), the integration constants are 
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0

41
4 3

rVA
K R

δ µ
π

−
⎡ ⎤⎛ ⎞
⎢ ⎥= + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

, 3
0

4
3

AB
KR
µ

= , (C.190) 

with elastic bulk modulus 2 / 3K λ µ= + .  The nonzero part of the dis-
placement field is  

    

1 13 3
20 0

3
0 0 0

4 41 1
4 3 3 3R

r rV Vu R R
K R KR K R

δ µ µδ µ
π π

− −

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥= + + +⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

. (C.191) 

Non-vanishing components of strain and stress are 

                                                      
2 Section 7.4 of Chapter 7 also describes a means for accounting for effects of 

nonlinear elasticity, specifically a pressure-dependent shear modulus, on the over-
all volume change associated with a point defect in an isotropic elastic body. 
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; (C.192) 

  
3

3

0

4 1RR
RAR
R

σ µ −
⎡ ⎤⎛ ⎞
⎢ ⎥= − − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

, 
3

3

0

2 1 2 RAR
Rθθ ϕϕσ σ µ −

⎡ ⎤⎛ ⎞
⎢ ⎥= = + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

. (C.193) 

The dilatation and pressure are nonzero but constant: 

 3
0

43RR
AB

KRθθ ϕϕ
µε ε ε+ + = = , 3

0

1 4( )
3 RR

Ap
Rθθ ϕϕ
µσ σ σ= − + + = − . (C.194) 

When 0 0R R r� � , stress and strain fields of the solution outlined in Sec-
tion C.3.1 are recovered.   

The total volume change produced in the entire elastic sphere surround-
ing the inclusion is 

 

( )2
0 0
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0

4 3(1 )4 4 1 4
3 1

3(1 ) 4    1 .
1 3
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K R
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ν µδ
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−

−⎛ ⎞ ⎡ ⎤∆ = = + =⎜ ⎟ ⎢ ⎥+⎝ ⎠ ⎣ ⎦
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 (C.195) 

Even when the defect is small relative to the medium (i.e., even when 
0 0R r� ), relation (C.195) indicates that the volume change of the finite 

medium with a stress-free outer surface is increased over that of infinite 
body in (C.188) by a factor of 3(1 ) /(1 )ν ν− + , on the order of 1.6 when 
Poisson ratio 0.3ν = .   

The total volume change is positive and the pressure is tensile (i.e., p is 
negative in algebraic sign) when 0A > .  This situation corresponds to a 
rigid interstitial atom imparting volume increase Vδ , or to a substitutional 
atom of volume larger by Vδ  than an atom of the elastic medium.  The to-
tal volume change is negative and the hydrostatic stress is compressive 
when 0A < .  This situation corresponds to a missing atom (i.e., vacancy) 
imparting local volume change Vδ , or to a substitutional atom of volume 
smaller by Vδ  than an atom of the surrounding medium.  It is possible for 
the magnitude of the relaxation volume v∆  of a point defect to exceed the 
atomic volume 0Ω  (Garikipati et al. 2006), in which case the net forma-
tion volume of a vacancy, i.e., the sum 0v∆ + Ω , will be negative in alge-
braic sign.  As mentioned in Section C.3.1, it is also possible for a vacancy 
to induce local expansion ( 0v∆ > ), e.g., as might occur for a charged de-
fect in an ionic crystal with strong repulsive Coulomb forces arising 
among ions surrounding the defect. 
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C.3.3 Deformable Defect in Finite Body 

Finally, let the body surrounding the spherical defect of radius 0r  be of fi-
nite extent, i.e., 0R  is bounded, and let the sphere be elastic and isotropic, 
with possibly different elastic constants than the surrounding medium.  
Generalizing (C.179), the radial displacement is bounded at the origin and 
satisfies 

 
2

0 0

0

  ( ),
        ( ),R

AR BR r R R
u

CR R r

−⎧ + < ≤⎪= ⎨
≤⎪⎩

 (C.196) 

with C a constant to be determined from additional boundary conditions.  
In this case, the boundary conditions are 

     ( ) ( )0 0RR RRr rσ σ ′= , ( )0 0RR Rσ = , ( ) ( )0 0 2
04R R

Vu r u r
r

δ
π

′− = , (C.197) 

with Vδ the local volume change resulting from the sum of changes in di-
mensions of the hole and sphere when the sphere is inserted.  In (C.197) 
and henceforth, primed quantities correspond to the inclusion, e.g., 

Ru CR′ = , while unprimed quantities correspond to the surrounding me-
dium, e.g., 2

Ru AR BR−= + .  Boundaries of the inclusion and medium are 
perfectly bonded at 0R r= , but the displacements of inclusion and sur-
rounding medium may differ at 0r  since the initial radii of the sphere and 
hole differ.  The integration constants in (C.196) are obtained using 
(C.197) as (Teodosiu 1982) 
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with the elastic bulk modulus of the inclusion denoted by K ′ .  Constants A 
and B degenerate to those of (C.190) when the inclusion becomes rigid and 
K ′ → ∞ .   

Radial displacements in the body and inclusion are, henceforward pre-
suming small defects in large bodies such that 3

0 0( / ) 1r R � ,   

                
3

2

0

41
3R

Ru AR
K R
µ−

⎡ ⎤⎛ ⎞
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⎢ ⎥⎝ ⎠⎣ ⎦

, 3
0

4
3R

Au R
K R
µ′ = −
′

. (C.200) 

Non-vanishing stresses within the surrounding finite elastic body are 
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Dilatation and hydrostatic pressure in the surrounding body are nonzero 
but constant: 

        3
0

4
RR

A
KRθθ ϕϕ
µε ε ε+ + = , 3

0

1 4( )
3 RR

Ap
Rθθ ϕϕ
µσ σ σ= − + + = − . (C.202) 

The only non-vanishing stress arising within the elastic inclusion is hydro-
static: 

 3
04RR p Arθθ ϕϕσ σ σ µ −′ ′ ′ ′− = − = − = = , (C.203) 

meaning that the inclusion is subjected to uniform hydrostatic stress.   
The net volume change in the elastic medium surrounding the inclusion 

is calculated as 
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 (C.204) 

The volume change of the inclusion is 

 ( )
1

2 3
0 0 0

4 44 4 1
3 3Rv r u r Cr V

K K
µ µπ π δ

−
⎛ ⎞′ ′∆ = = = − +⎜ ⎟′ ′⎝ ⎠

. (C.205) 

The volume change of the medium is positive and the pressure in the me-
dium is negative (tensile) when 0Vδ > .  The volume change of the inclu-
sion is negative and the pressure in the inclusion is positive (compressive) 
when 0Vδ > .  This situation corresponds to an elastic interstitial atom of 
local volume increase Vδ , or to an elastic substitutional atom of initial 
volume larger by Vδ  than an atom of the surrounding medium.  The vol-
ume change of the medium is negative and the pressure positive (compres-
sive), and the volume change of the inclusion is positive and the pressure 
in the inclusion negative (tensile), when 0A < .  This scenario corresponds 
to an elastic substitutional atom of volume smaller by Vδ  than an atom of 
the surrounding medium.   

The use of continuum elastic properties (e.g., bulk modulus K ′ ) for an 
inclusion of atomic dimensions is a severe and questionable approxima-
tion.  However, the results of Section C.3.3 would also apply for inclusions 
much larger than atomic dimensions, for which continuum elasticity theory 
is more applicable.  
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C.4 Dislocation Nucleation and Motion 

Linear elastic models of dislocations, in some cases combined with simple 
discrete atomic representations of defect cores in the context of lattice stat-
ics, can provide insight into shear stresses required to enact dislocation nu-
cleation, dislocation motion, or fracture.  These models omit thermal ef-
fects that can dominate dislocation kinetics at moderate and high 
temperatures in many solids.  Reviewed in Section C.4 are models based in 
part on linear elasticity: Frenkel’s model of shear failure (Frenkel 1926), a 
model for homogeneous dislocation nucleation (Cottrell 1953), and the 
Peierls model of the dislocation core and dislocation glide resistance 
(Peierls 1940; Nabarro 1947; Eshelby 1949b). 

C.4.1 Frenkel Model 

Consider two regions of a crystal separated by a plane.  Assume that one 
region is held fixed, while the other is displaced rigidly by an amount u in 
the direction of the Burgers vector b for slip, the latter which lies in the 
plane of separation (i.e., in the slip plane).  Since the crystal structure is re-
stored to an equilibrium configuration when the magnitude of displace-
ment is 1/ 2( )b = b bi , the shear stress τ  required to enact the relative dis-
placement should vanish when u is an integer multiple of b.  The simplest 
representation of the shear stress that satisfies this periodicity condition is 

 sin 2 uC
b

τ π⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (C.206) 

where C is a constant with dimensions of energy per unit volume or stress.  
In the context of atomic lattice statics (see Section B.2), (C.206) implies a 
sinusoidal interatomic force potential for relative displacements of atoms 
on either side of the slip plane if long-range forces associated with higher-
order neighbors are omitted.   

A scalar measure of shear strain associated with the displacement is 
/(2 )u dε = ; for a linear elastic body, the resulting shear stress is 

 2 2
2
u u
d d

τ µε µ µ= = = , (C.207) 

with µ  the appropriate shear elastic constant for the plane and direction 
under consideration and d the separation distance between slip planes.  The 
crystal need not have isotropic or cubic symmetry.   

Equating (C.206) and (C.207), and assuming small strains such that 
sin(2 / ) 2 /u b u bπ π≈ , results in the constant C and the shear stress τ :  
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The maximum of the shear stress in (C.208) is called the theoretical stress 
or theoretical strength of the crystal: 

 
/ 4 2 10T u b

b
d

µ µτ τ
π=

= = ≈ . (C.209) 

The derivation of (C.206)-(C.209) is often attributed to Frenkel (1926).  
The theoretical strength of (C.209) can be considered as an upper bound 
for the shear stress required for nucleation of a straight dislocation line 
within an otherwise perfect crystal.  The theoretical strength is often used 
as an order of magnitude estimate of the maximum shear stress a crystal 
can support before fracture, and has been suggested as a failure criterion 
for high pressure loading of single crystals (Graham and Brooks 1971; 
Clayton 2009a).  The assumption of linear elasticity entering the derivation 
is questionable, however, since the shear strain at the stress maximum is 
often fairly large: 1/ 2/(8 ) (3/ 2) /8 0.15b d = ≈  for 1

2 110 {1 11}< >  shear in 
FCC crystals or 1

2 111 {1 10}< >  shear in BCC crystals.  Analytical formu-
lae such as (C.209) should be used with caution, especially in brittle and 
polyatomic structures, since certain crystallographic planes may be more 
or less prone to fracture as a result of atomic bonding (e.g., electrostatic 
charge imbalances) and crystal structure (Schultz et al. 1994).  An analo-
gous derivation in terms of separation distance and Young’s modulus nor-
mal to the fracture plane can be used to estimate the stress and surface en-
ergy associated with tensile (i.e., cleavage) fracture on preferred planes in 
anisotropic single crystals (Gilman 1960; Mishra and Thomas 1977).  
Formula (C.209), with ratio /b d  replaced with the magnitude of twinning 
shear jγ , has been suggested as a criterion for twin nucleation stress (Bell 
and Cahn 1957), with such a criterion for the theoretical stress required for 
twinning in the null temperature limit verified for several cubic metals by 
quantum mechanical calculations (Paxton et al. 1991). 

C.4.2 Loop Nucleation in a Perfect Crystal 

Consider a shear dislocation loop of radius A in an isotropic linear elastic 
crystal with total strain energy given by (C.165): 



C.4 Dislocation Nucleation and Motion      629 

2

2

5 8 4 23(2 ) ln (2 )
4(1 ) 2 3 9

2             ln .
2

C

C

b A AA E
R

b A A
R

µ ππ ν ν π
ν

µ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞≈ − − + + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

≈ ⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (C.210) 

In the second approximation of (C.210), Poisson’s ratio 0ν =  has been as-
sumed to simplify the derivations that follow.  The work P done by the ap-
plied shear stress τ  in creating the loop is that required to displace the area 
enclosed by the loop by the magnitude b of one Burgers vector: 

 2P A bπ τ= . (C.211) 
The net energy cost (enthalpy change, or equivalently, the change in Gibbs 
free energy in the athermal situation) ( )AΗ  associated with loop forma-
tion is  
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and is stationary (specifically, maximized) when 
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Here H is measured in terms of absolute energy rather than energy per unit 
spatial volume as in (4.8).   

Solving (C.213) for A, the critical radius for nucleation, denoted as NA , 
satisfies 
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and the maximum of the enthalpy in (C.212) is then calculated to be 
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In the absence of thermal sources of energy, loop nucleation requires (Hull 
and Bacon 1984) 

 20 ln 1N
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C

A
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Η
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= ⇔ =⎜ ⎟
⎝ ⎠

, (C.216) 

giving a nucleation radius of [exp(1) / 2]N CA R= .  Then from (C.214), the 
critical nucleation stress is 
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of the same order of magnitude of the theoretical shear stress (C.209).  The 
preceding derivation is attributed to Cottrell (1953).   

Even when thermal fluctuations are present enabling 0NΗ > , energy of 
such thermal fluctuations is usually insufficient to permit homogeneous 
nucleation of dislocation loops in metals at experimentally measured yield 
stresses at room temperature (Hull and Bacon 1984).  Instead, the ex-
tremely high values of theoretical stresses to create straight lines (C.209) 
and loops (C.217) relative to experimentally measured yield stresses in 
ductile crystalline solids—usually on the order of 10-4µ–10-2µ  (Friedel 
1964)—indicate that dislocation nucleation tends to take place at defects 
within the crystal or at its surface, e.g., at stress concentrators such as point 
defects, inclusions, or pre-existing dislocations.   

C.4.3 Peierls Model 

The treatment in Section C.4.1 offers an estimate for the stress needed to 
generate a dislocation line by merging descriptions motivated by both lat-
tice statics (C.206) and continuum linear elasticity (C.207).  A similar ap-
proach was initiated by Peierls (1940) to derive the shear stress required to 
move an existing line defect, rather than generate it.  The treatment of 
Peierls (1940) offers an estimate of the width of the core of an edge dislo-
cation line in a simple cubic crystal and the shear stress required to enact 
uniform glide of this dislocation.   

The original analysis of Peierls—which addressed an edge dislocation in 
a simple cubic crystal with isotropic elastic properties—was refined and 
extended by Nabarro (1947, 1952), Foreman et al. (1951), and Huntington 
(1955).  Elastic anisotropy was addressed by Eshelby (1949b) and Fore-
man (1955).  Extensive descriptions of the Peierls model, some including 
its derivation, can be found in books on dislocations (Friedel 1964; Na-
barro 1967; Hirth and Lothe 1982; Hull and Bacon 1984; Phillips 2001).  
The forthcoming description follows mainly from the text of Hirth and 
Lothe (1982), who in turn cite the aforementioned original authors.   

Consider an edge dislocation in a cubic lattice of Burgers vector 
1b=b e , tangent line 3ξ=ξ e , and slip plane 2 0x = , as shown in Fig. C.5. 

Distance between slip planes is denoted by d.  Displacements and strains 
do not vary with 3x , as was the case for Volterra edge dislocations of the 
same line orientation discussed in Section C.1.1, and the problem is there-
fore one of plane strain in the 1 2x x -plane.   
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The displacements at the slip plane 2 0x =  are assumed to satisfy3 

  
( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1

1 1 1 1 1

2 ,0 ,  0 ;
2

2 ,0 ,  0 ;
2

bu x u x x

bu x u x x

∆ = − >

∆ = + <
  (C.218) 

where quantity 1u∆  describes the difference in displacements of two adja-
cent atoms immediately above and below the slip plane, sometimes called 
the disregistry.  Specifically with regards to the configuration in Fig. C.5, 

1 1 1B A
u u u∆ = − , where subscripts A and B denote, respectively, adjacent 

atoms in rows above and below the plane 2 0x = .  Limiting values of the 
displacement in the slip plane are assumed to follow the equalities 

 ( ) ( )1 1 2 1 1 2, 0 , 0
4
bu x x u x x→ ∞ = = − → −∞ = = , (C.219) 

meaning that the disregistry 1u∆  of (C.218) vanishes as 1x → ±∞ .  The so-
lution 1 1( ,0)u x is not known a priori, but is instead determined simultane-
ously from atomic periodicity considerations and continuum elasticity the-
ory as explained in what follows.   
 

 
 

Fig. C.5 Edge dislocation in a cubic lattice 
 

                                                      
3 This is the opposite of the sign convention used by Hirth and Lothe (1982), 

who insert the extra half plane of atoms of the dislocation in the region 2 0x < . 
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Henceforward, consider the upper half of the crystal, for which 2 0x > .  
Shear stresses in the slip plane are assumed to follow a periodic sinusoidal 
law of the same form as in (C.206): 
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 (C.220) 

where (C.218) has been used.  Applying continuum linear elasticity, 

 ( ) 1
12 1,0 ux

d
σ µ ∆

= − , (C.221) 

where the appropriate shear modulus is 12 12/(2 )µ σ ε= , with 12ε  the shear 
strain.  Equating the first of (C.220) and (C.221) for small 1u∆ , the solu-
tion for constant C is identical to that in (C.208), and the shear stress act-
ing on the slip plane is 

 ( ) 1
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4,0 sin
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ubx
d b

πµσ
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⎝ ⎠

. (C.222) 

A continuous distribution of infinitesimal edge dislocations, of the same 
line orientation as in Fig. C.5 but distributed along the 1x -axis, can be used 
to satisfy (C.218) and (C.219).  The differential element of Burgers vector 
for each of these dislocations is denoted by 1 1( )b x dx′ ′ ′  for the differential 
interval 1 1 1 1x x x dx′ ′ ′< < +  along the 1x -axis.  The cumulative Burgers vec-
tor resulting from this distribution is given by an integral over the slip 
plane: 
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The shear stress resulting from this distribution of infinitesimal edge dislo-
cations in a linear elastic isotropic solid is calculated as (Peierls 1940; 
Eshelby 1949b) 
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 (C.224) 

At equilibrium, the shear stress from the interaction of sheared atomic 
planes in (C.222) must balance the shear stress of the continuum elastic 
field of the dislocation in (C.224), i.e., their sums must vanish: 
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 1
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The solution of (C.225) is 

 1 11 1
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where /(2 2 )dζ ν= − .  One can readily verify that (C.226) satisfies the 
end conditions (C.219).  The disregistry (C.218) exhibits a maximum mag-
nitude of / 2b  as 1 0x → .   

The complete stress field of the Peierls edge dislocation with Burgers 
vector 1b=b e , tangent line 3ξ=ξ e , and slip plane 2 0x =  is (Hirth and 
Lothe 1982) 
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 13 23 0σ σ= = . (C.231) 
Above, 2 2x xζ ζ± → +  for 2 0x >  and 2 2x xζ ζ± → −  for 2 0x < .  The 
stress field of the Peierls edge dislocation in (C.227)-(C.231) reduces to 
that of Volterra’s model in (C.42)-(C.46) when 2 2 1/ 2

1 2[( ) ( ) ]R x x ζ= + � , 

1 1 1b b= =b e e  and 2 0b =  (Hirth and Lothe 1982).  However, unlike 
Volterra’s dislocation, the stress components are all non-singular along the 
dislocation line 0R =  in the Peierls model.  Strains are still large in the 
Peierls model as the defect line is approached, with a maximum of 

11( 0) 2 /( )R b dε π= = , on the order of unity.   
For a stationary edge dislocation, the strain energy per unit length ac-

cording to the Peierls model is 
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where the logarithmic term accounts for the elastic strain energy in the 
crystal.  The second term in brackets accounts for stresses acting along the 



634      Appendix C: Discrete Defects in Linear Elasticity 

surface of the cylinder of radius R enclosing the dislocation line (Hirth and 
Lothe 1982).  The final term of unity in brackets accounts for the misfit 
energy stored in the stretched atomic bonds along the plane 2 0x =  that 
follows from integration of the periodic shear stress law in (C.222). 

Equating (C.48) and (C.232), an estimate of the core radius from the 
Peierls treatment is 

 6 52 exp
4(1 )CR νζ

ν
⎡ ⎤−

= ⎢ ⎥−⎣ ⎦
. (C.233) 

The value 2 /(1 )dζ ν= −  is often called the width of the dislocation.  The 
magnitude of the disregistry within the region 1xζ ζ− < <  exceeds / 4b . 

The misfit energy in (C.232) must be refined to account for movement 
of the dislocation.  Let the dislocation line translate uniformly by a dis-
tance bα  in the 1x -direction, where α  is a scalar.  After a rather lengthy 
series of mathematical operations not repeated here, it can be shown that 
the total energy per unit length of the dislocation can be expressed as fol-
lows (Peierls 1940; Nabarro 1947; Huntington 1955; Hirth and Lothe 
1982): 
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where the energetic contribution depending on the dislocation’s position 
α , i.e., the final term in brackets, is written 
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with the periodic Peierls energy barrier to dislocation motion defined as 
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The shear stress required to surmount this barrier is defined as the maxi-
mum slope of ( )E α , normalized to dimensions of stress (i.e., energy per 
unit volume) via division by the square of the Burgers vector: 
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 (C.237) 
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The shear stress Pτ  in (C.237) is called the Peierls stress or, less com-
monly, the Peierls-Nabarro stress. 

Now consider a screw dislocation in a cubic lattice with Burgers vector 
3b=b e , tangent line 3ξ=ξ e , and slip plane 2 0x = .  The distance between 

slip planes is again denoted by d.  Derivation of the displacement function 
and stress field follows a similar procedure as was used for the edge dislo-
cation: the shear stresses at the slip plane arising from the elastic strain 
field of a distribution of infinitesimal screw dislocations balance those 
arising from the periodic forces associated with differences in displace-
ments of adjacent atoms immediately above and below the slip plane.  Iso-
tropic linear elastic behavior is again assumed.   

The non-zero component of displacement along the slip plane is 

 1 1
3 1( ,0) tan

2
xbu x

π ζ
− ⎛ ⎞
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, (C.238) 

where the scalar / 2dζ = .  The stress field is 
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 11 12 22 33 0σ σ σ σ= = = = . (C.240) 
Above, 2 2x xζ ζ± → +  for 2 0x >  and 2 2x xζ ζ± → −  for 2 0x < .  The 
stresses of the Peierls screw dislocation in (C.239) reduce to those of the 
Volterra screw dislocation in (C.64) when 2 2 1/ 2

1 2[( ) ( ) ]R x x ζ= + �  and 

3b b=  (Hirth and Lothe 1982).  However, unlike Volterra’s solution, the 
stress components are non-singular along 0R =  in the Peierls model.   

For a stationary screw dislocation, the strain energy per unit length ac-
cording to the Peierls model is 
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, (C.241) 

where the logarithmic term accounts for the elastic strain energy in the 
crystal.  The final term of unity in brackets accounts for the misfit energy 
stored in the stretched atomic bonds along the plane 2 0x = .  There is no 
additional work of stresses at R in contrast to the edge dislocation in 
(C.232).   

Equating (C.67) and (C.241), an estimate of the core radius from the 
Peierls treatment is 

 2 exp( 1)CR ζ= − . (C.242) 
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The value 2 dζ =  is the width of the screw dislocation.  The width of the 
Peierls edge dislocation exceeds that of the Peierls screw dislocation by a 
factor of 1/(1 )ν− , or ~1.4 for a typical Poisson’s ratio ν of 0.3.   

The misfit energy in (C.241) must be refined to account for movement 
of the dislocation.  Let the dislocation line translate uniformly by a dis-
tance bα  in the 1x -direction, where α  is a scalar.  The total energy per 
unit length becomes 

   ( )
2 4ln 1 2exp cos 4

4 2
b RE

b
µ πζ πα

π ζ
⎡ ⎤⎛ ⎞ ⎛ ⎞+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦
� , (C.243) 

where the final term in brackets depending on the instantaneous position of 
the dislocation line is written 
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with the periodic Peierls energy barrier to dislocation motion 
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The Peierls stress Pτ  for the screw dislocation is then defined as 
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The preceding treatment of edge and screw dislocations assumed iso-
tropic elastic behavior for each region of the crystalline body above and 
below the slip plane 2 0x = .  Effects of anisotropy can be incorporated by 
following analytical approaches of Eshelby (1949b) and Foreman (1955).  
Omitting effects of bulk continuum stresses at R for edge dislocations, en-
ergy per unit length and Peierls stress are written in a generic form that ap-
plies for edge or screw dislocations as 
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where K̂  is the anisotropic energy factor for the corresponding dislocation 
in Section C.1.6, with examples listed Tables C.1 or C.2.  The dislocation 
width is 

 
ˆ

2
ˆ

K dζ
µ

= , (C.249) 

where µ̂  is the appropriate choice of shear elastic coefficient entering 
(C.221).  For example, for the edge dislocation configuration in Fig. C.5  
(specifically [100](010)  slip with dislocation line [001] ), 1212 66µ̂ = =^ ^ .  
For the screw dislocation considered previously with line along the 3x -axis 
and slip plane 2 0x =  (specifically [001](010)  slip with dislocation line 
[001] ), the appropriate shear elastic constant is 2323 44µ̂ = =^ ^ .   

While original derivations of Peierls (1940) and Nabarro (1947) consid-
ered simple cubic structures (i.e., ab d= = , where a is the lattice parame-
ter of (3.2)), the same derivation has been applied to other cubic crystal 
structures (Eshelby 1949b).  Recall from Section A.3.1 that cubic crystals 
exhibit three independent second-order elastic stiffness constants 11^ , 

12^ , and 44^ .  Energy factors K̂  for various kinds of dislocations in cu-
bic crystals are listed in terms of these constants in Table C.1.  To repre-
sent the effective shear modulus µ̂  in (C.249) for preferred directions in 
cubic lattices, it becomes prudent to introduce the three independent sec-
ond-order elastic compliance coefficients for cubic solids (Steeds 1973): 
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, (C.250) 
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 44 44

1S =
^

. (C.252) 

Coefficients in (C.250)-(C.252) are all referred to a Cartesian coordinate 
system with axes parallel to the cube axes of the crystal.  Consider now the 
primary slip systems for simple cubic (SC), body centered cubic (BCC), 
and face centered cubic (FCC) crystals listed in Table 3.4.   

For shearing in a <100> direction on a {010} plane, the primary slip 
mode for SC structures, the appropriate elastic constant is simply (Eshelby 
1949b)  

 44
{100}

44

1ˆ
S

µ = =^ . (C.253) 
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For shearing in a <110> direction on a {111} plane, the primary slip mode 
for FCC structures, the shear constant is (Nabarro 1947) 

          
44 11 12

{111} 44 11 12
44 11 12

1 3 ( )ˆ
(2 / 3)S (2 / 3)(S S ) 2( )

µ −
= =

+ − + −
^ ^ ^
^ ^ ^

. (C.254) 

Gilman (2003) notes that in cubic crystals, the shear elastic constant 
should be independent of shearing direction on {100} or {111} families of 
planes.  However, µ̂  does depend on direction for shearing on {110} 
planes.  For example, for shearing in a <111> direction on a {110}  plane, 
often the primary slip mode for BCC structures, the shear constant is 
(Eshelby 1949b) 
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For shearing in a <110> direction on a {110}  plane (Gilman 2003), the 
shear elastic constant is 
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whereas along a <100> direction on a {110} plane, it is (Gilman 2003) 

 44
{110} 100

44

1ˆ
S

µ < > = =^ . (C.257) 

For the degenerate situation of isotropy, 11 12 44S S S / 2− =  and the coeffi-
cients computed via (C.253)-(C.257) all reduce to the isotropic shear 
modulus, i.e., 11 12 44ˆ ( ) / 2µ µ= = − =^ ^ ^ . 

The equations listed in Section C.4.3 for stress fields, energies, and slip 
resistance (i.e., Peierls stress) are regularly used as estimates of such quan-
tities for non-cubic crystal structures and for polyatomic lattices.  The the-
ory has also been applied regularly to both metals and nonmetals.  Limita-
tions inherent in the simple sinusoidal atomic force law (C.220) will of 
course limit the accuracy of predictions; e.g., Coulomb interactions among 
ions of the same and different species in ionic crystals are not formally ad-
dressed.  Additional refinements to atomic force interaction models used in 
Peierls-Nabarro treatments were made by Foreman et al. (1951) and Hunt-
ington (1955).  Several variations of energy (C.247) accounting for differ-
ent kinds of atomic force laws are listed by Foreman (1955).      

The Peierls model suggests that the energy per unit length of the dislo-
cation should decrease with increasing interplanar spacing d and increasing 
dislocation width 2ζ .  It also suggests that edge dislocations should be 
more mobile than screw dislocations in most crystals, since typically Pois-



C.4 Dislocation Nucleation and Motion      639 

son’s ratio 0ν > .  For example, 43.6 10Pτ µ−= ×  for edge dislocations and 
33.7 10Pτ µ−= ×  for screw dislocations in an isotropic solid with b d=  

and 0.3ν = .  Johnston and Gilman (1959) found that at a given applied 
stress, edge components of dislocation loops move considerably faster than 
screw components in lithium fluoride single crystals.  This phenomenon 
(i.e., edge dislocation components more mobile than screw components) is 
known to occur similarly in many cubic metals.   

The Peierls stress is thought to provide a more accurate measure of the 
shear yield stress in most crystals than does the theoretical stress (C.209).  
However, the Peierls stress neglects effects of temperature, correlated and 
uncorrelated atomic fluctuations (Kuhlmann-Wilsdorf 1960), and in metal-
lic crystals above cryogenic temperatures the Peierls barrier is often easily 
overcome by thermal activation (Kocks et al. 1975; Hull and Bacon 1984).  
Possible velocity-dependent contributions to dislocation drag that may be 
important at high rates of deformation are also omitted, since the Peierls 
stress accounts only for the static component of lattice friction.  Such con-
tributions include viscous, phonon, and electron drag (Kocks et al. 1975; 
Gilman 1979).  Resistances to slip arising from interaction forces, for ex-
ample interactions among dislocations (Taylor 1934; Beltz et al. 1996), 
dislocations and point defects, and dislocations and inclusions or second-
phase particles, often far exceed resistance from lattice friction.  However, 
the Peierls stress may be significant relative to other sources of glide resis-
tance in some cases.  These include crystals with low defect densities de-
formed at very low temperatures wherein thermal effects and interaction 
forces between defects are small, and some ionic or covalent solids 
(Friedel 1964; Farber et al. 1993).  Nabarro (1997) and Gilman (2003) pro-
vide more recent critical reviews of Peierls-type models of glide resistance, 
including comparisons with experimental data for solids with various crys-
tal structures and various kinds of atomic bonding.  It is possible for the 
dislocation glide resistance to approach the theoretical strength in very stiff 
or brittle solids (e.g., some nonmetals); in such cases, the theoretical stress 
(C.209) would provide a more accurate representation of the shear strength 
than the Peierls stress, with the latter underestimating the strength.   

A key assumption implicit in (C.220) is that the shear stress at 1x  result-
ing from interatomic forces depends only on the local value of disregistry 
at 1x .  A recent reformulation of the Peierls model relaxing this assump-
tion to account for nonlocality (Miller et al. 1998) has been demonstrated 
to enable closer agreement with lattice statics calculations for dislocation 
energies. 
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Another limitation of the Peierls model is its presumption of linear elas-
tic constitutive behavior for the bulk crystal.  Extension of the derivation to 
account for general nonlinear elastic behavior does not appear straightfor-
ward.  However, results of the original derivation can be extended—in a 
simple and physically plausible, if not completely rigorous manner—to 
consider effects of superposed hydrostatic stress (i.e., pressure p) in crys-
tals of cubic symmetry.  Recall that in cubic crystals, pressure results only 
in a volume change and imparts no shear deformation, with a reduction in 
the instantaneous lattice parameter occurring when pressure is compressive 
(i.e., when 0p > ).  Under an imposed pressure, the lattice parameter, Bur-
gers vector magnitude b, and interplanar spacing d presumably all change 
by the same fraction, since b and d are proportional to the lattice parameter 
(see Section 3.1.1).  Thus the ratio / bζ  is unchanged by effects of pres-
sure, and the Peierls stress of (C.237), (C.246), and (C.248) is modified 
only by effects of pressure on the elastic coefficients entering these expres-
sions.  For example, in the isotropic elastic approximation for a screw dis-
location, letting µ�  denote a pressure-dependent shear modulus (i.e., a tan-
gent shear stiffness), (C.246) is replaced with 

 22 expP
d

b
πτ µ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
� , ( )pµ µ=� � . (C.258) 

Recall from (A.26) that, to first order in an isotropic material, the depend-
ence of shear modulus on pressure depends on the material’s second-order 
elastic constants and several of its third-order elastic constants.  Chua and 
Ruoff (1975) found that yield and flow stresses for slip in polycrystalline 
potassium (body centered cubic structure (Wyckoff 1963)) increased with 
increasing hydrostatic pressure by about the same proportion as the elastic 
coefficients, justifying the use of (C.258).  Effects of temperature θ  on 
elastic properties can be incorporated following similar arguments, since 
thermal expansion is spherical in cubic crystals.  In that case, the tangent 
shear modulus ( , )pµ µ θ=� �  in (C.258), for example.  Such a description 
would not account for kinetics of thermally activated dislocation motion, 
however, whereby effects of temperature on glide resistance tend to be 
much greater than changes in shear modulus with temperature.  Typically, 
the shear modulus increases with increasing pressure and decreases with 
increasing temperature, though exceptions are possible.  The same argu-
ments would apply towards estimates of the theoretical strength: µ  in 
(C.209) can be replaced with its pressure- and temperature-dependent 
counterpart.   



Appendix D: Kinematic Derivations 

Appendix D provides an interpretation of the total covariant derivative of 
the deformation gradient in the context of deformation of a differential line 
element.  Next, derivation of Piola’s identity for the Jacobian determinant 
of the deformation gradient is given.  Compatibility conditions for the de-
formation gradient and symmetric deformation tensor are addressed using 
convected basis vectors and geometric concepts.  Finally, anholonomic 
connection coefficients are obtained via use of convected basis vectors.   

D.1 Total Covariant Derivative of Deformation Gradient 

Consider the Taylor-like series for deformed differential line element in 
the spatial configuration a

a xd dx T B= ∈x g  given in (2.114).  In what fol-
lows in (D.1), a second-order accurate approximation is used, meaning 
terms of orders three and higher in reference element 0

A
A Xd dX T B= ∈X G  

are truncated from the series expansion.  In tensor form, (2.114) can then 
be written as follows, using (2.4), (2.56), (2.59), (2.112), and (2.116):  

,
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g  (D.1) 

In a homogeneous deformation in the continuum sense, . : 0a
A BF =  by defini-

tion (Truesdell and Toupin 1960), in which case d d=x F X  is exact.  

D.2 Piola’s Identity for the Jacobian Determinant 

Identity (2.145), most typically and compactly expressed as 1
. :( ) 0a
A aJ F− = , 

is derived in full below: 
1
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(continued...) 
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 (D.2) 

 
Relations (2.56), (2.59), (2.73), (2.112), (2.116), and (2.142)-(2.144) have 
been consulted in derivation (D.2).  The inverse identity in (2.146), i.e., 

1
. :( ) 0A
a AJF − = , can be derived using a completely analogous procedure.  

Truesdell and Toupin (1960) attribute these identities (i.e., (2.145), 
(2.146), and (D.2)) to Euler and Jacobi as well as Piola.   

For completeness, identity (2.73) and its counterpart in the spatial con-
figuration are derived below: 
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 (D.4) 

In deriving (D.3) and (D.4), (2.143) and symmetries of covariant indices of 
the Christoffel symbols have been used, along with identities (2.57) and 
(2.60), the latter two derived in full as follows.  From (2.11) and (2.56), the 
partial derivative of the referential metric with components ( )ABG X  is 
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Similarly, from (2.12) and (2.59), the partial derivative of spatial metric 
with components ( )abg x  is 
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Also for completeness, relationship (2.141) relating differential volumes 
and the Jacobian determinant is derived directly.  With minor abuse of no-
tation, letting AdX , BdX , and CdX  denote components of distinct vectors 
comprising edges of a differential element of reference volume dV, 
 1 2 3( ) A B C

ABCdV d d d dX dX dXε= × =X X Xi . (D.7) 
Similarly, for the current configuration, 
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 1 2 3( ) a b c
abcdv d d d dx dx dxε= × =x x xi . (D.8) 

It follows from the final identity in Table 2.3 that 
 6 A B C ABCdX dX dX dVε= . (D.9) 
Finally, using (2.115), i.e., linear transformation ., .

a a A a A
A Adx x dX F dX= = , 

along with (D.7)-(D.9), 
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in agreement with the definition of Jacobian invariant J in (2.142): 

               . . .
1
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ABC a b c
abc A B CJ F F Fε ε= , 1 1 1 1
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1
6
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ABC a b cJ F F Fε ε− − − −= . (D.11) 

In the common coordinate systems of Table 2.1, referential volume ele-
ment 1 2 3dV GdX dX dX=  is  

 
2

( )( )( )                  (Cartesian coordinates),
( )( )( )( )           (cylindrical coordinates),
( sin )( )( )( )    (spherical coordinates).
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 (D.12) 

The following identities for the Jacobian or its inverse are also noted: 
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abc ABC a b c

A B CJ F F Fε ε= . (D.16) 
Truesdell and Toupin (1960) also attribute identities (D.15) to Piola.  Nan-
son’s formula (2.148) is easily derived after inverting the first of (D.16): 
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Squaring both sides of (D.17), dividing by 2dS , and then taking the square 
root of the result, the ratio of scalar area elements is then obtained: 

 1 1 1
. .( )A ab B AB
a b A B A B

ds J F g F N N J C N N
dS

− − −= = . (D.18) 

Finally, material time derivatives of spatial volume element dv  and ori-
ented spatial surface element an ds  are computed, respectively, as follows: 
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 (D.20) 

In derivation (D.19), relation (2.181) has been used.  In derivation (D.20), 
relations (2.148), (2.176), and (2.181) have been used. 

D.3 Compatibility Conditions via Convected Coordinates 

Compatibility conditions for finite deformations are further examined in 
what follows.  Consider again the deformation gradient F of (2.112).  As-
sume spatial coordinates ( , )a ax x X t=  are at least three times differenti-
able and one-to-one functions of reference coordinates AX .  Denote com-
ponents of deformation gradient F and its inverse, respectively, by 
 . .,( , )a a

A AF X t x= , 1
. .,( , )A A
a aF x t X− = . (D.21) 

For mathematical convenience, constant orthonormal (i.e., Cartesian) basis 
vectors a a=g e  are selected in the current configuration such that  
 .( , ) ( , ) ( )a A

A aX t F X t X= ⊗F e G , (D.22) 
where the scalar products 
 a b abδ=e ei , a b abδ=e ei , .,a a

b bδ=e e . (D.23) 

Convected basis vectors and covectors are assigned, respectively, as 
 1

.( , ) ( , )A A a
ax t F x t−′ =G e , .( , ) ( , )a

A A aX t F X t′ =G e . (D.24) 
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Notice that the sets of basis and dual vectors in (D.24) are reciprocal to one 
another, i.e., 
 1 1

. . . . . ., ,A A b a A b a A
B a B b a B b BF F F F δ δ− −′ ′ = = =G G e e . (D.25) 

From the second of (D.24), deformation gradient (D.22) can be written in 
convected coordinate form as 
 . .( , ) ( ) ( , ) ( )a A B A

A a A BF X t X X t Xδ ′= ⊗ = ⊗F e G G G . (D.26) 
Metric components formed from the convected basis vectors are compo-
nents of the right Cauchy-Green deformation tensor ( , )ABC X t  of (2.153): 
 . . . .( )a b a b

A B A B a b A ab B ABF F F F Cδ′ ′ = = =G G e ei i . (D.27) 
Now consider partial derivatives of the convected basis vectors: 
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where .. 1
. . ( )( )

C
D D a D a

BA a B A a B AF F X xΓ −= ∂ = ∂ ∂ ∂  are coefficients of a linear con-
nection and the notation ,( ) ( ) / ( )B

B BX∂ ⋅ = ∂ ⋅ ∂ = ⋅  is used interchangeably 
for partial differentiation with respect to reference coordinates.  From the 
first of (2.203), or as a consequence of the first of (D.21), the torsion of 
this connection vanishes identically: 
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Next, by inverting a derivation similar to (2.221) and using (D.29), the 
connection coefficients introduced in (D.28) are found to be equivalent to 
those of (2.213): 
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 (D.30) 
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Differentiation of the connection coefficients introduced in (D.28) yields 
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 (D.31) 

Expanding the left side of (D.31) using the product rule of Leibniz gives 
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Skew covariant parts of (D.31) and (D.32) then provide the equalities 
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Since .
a
DF  is non-singular, it follows from (D.33) that 

 ... 0
C

D
EBAR = , (D.34) 

where ...
C

D
EBAR  are components of the Riemann-Christoffel curvature ten-

sor—defined generically in (2.34)—formed from connection coefficients 
..

C
A

BCΓ  of (D.30), the latter constructed from components of the right 
Cauchy-Green deformation tensor ABC  of (D.27).   

The geometric interpretation of the compatibility conditions therefore 
emerges as follows: (i) the torsion tensor of the aforementioned connection 
coefficients vanishes as in (D.29) and (ii) the curvature tensor of these con-
nection coefficients vanishes as in (D.34).  Notice that (D.29) is necessary 
and sufficient for (D.21) to hold (Schouten 1954), as remarked following 
(2.205).  Condition (D.34) then follows automatically as a consequence of 
(D.21) and (D.29).   

By simply interchanging spatial and reference coordinates, an analogous 
procedure can be used to show that the Riemann-Christoffel curvature ten-
sor arising from spatial metric 1 1

. . ., .,( , ) A B A B
ab a AB b a AB bc x t F F X Xδ δ− −= =  associ-

ated with the inverse deformation must also vanish identically in Euclidean 
space. 

D.4 Anholonomic Connection Coefficients 

First consider the lattice deformation in the first equality of (3.34): 
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 . ( , )La
aF x t α

α= ⊗LF g g� . (D.35) 
Convected anholonomic basis vectors and their reciprocals are introduced 
as in (3.53) and (3.54): 
   .( , ) La

ax t Fα α′ =g g� , 1
.( , ) L a
ax t Fα α−′ =g g� , 1

. . ., L La
aF Fα α α

β β βδ
−′ ′ = =g g� � . (D.36) 

The lattice deformation of (D.35) then follows, when expressed in con-
vected coordinates, as 
 . .( )La

aF α β α
α α βδ ′= ⊗ = ⊗LF g g g g� � � . (D.37) 

The metric tensor corresponding to basis vectors (D.36) is identical to that 
of (3.52): 
 . . . .

La Lb La Lb L
a b abg F F F g F Cαβ α β α β α β αβ′ ′ ′= = = =g g g g �� �� i i . (D.38) 

Calculation of the anholonomic partial derivative of the first of (D.36), us-
ing (3.36), results in the intermediate configuration connection coefficients 
first introduced in (3.39): 
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Next consider the plastic deformation gradient in the second equality of 
(3.34): 
 . ( , )P A

AF X tα
α= ⊗PF g G� . (D.40) 

Convected anholonomic basis vectors and their reciprocals are again intro-
duced: 
              1

.( , ) P A
AX t Fα α

−′ =g G� , .( , ) P A
AX t Fα α′ =g G� , .,α α

β βδ′ ′ =g g� � . (D.41) 

The plastic deformation of (D.40) can then be expressed in convected co-
ordinates as 
 . .( )P A

AF α α β
α β αδ ′= ⊗ = ⊗PF g G g g� � � . (D.42) 

The metric tensor corresponding to basis vectors (D.41) is identical to that 
of (3.56): 
           1 1 1 1

. . . .
P A P B P A P B P

A B ABg F F F G F Cαβ α β α β α β αβ
− − − −′ ′ ′= = = =g g G G �� �� i i . (D.43) 
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The anholonomic partial derivative of the first of (D.41), with (3.36), pro-
duces the intermediate configuration connection coefficients first intro-
duced in (3.38): 
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Connection coefficients ..χ
βαΓ�  defined in (D.39) and (D.44) are generally 

different.  However, from (2.203) and (3.31), it follows that their skew co-
variant components (i.e., torsion tensors) are identical: 
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(continued...) 
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Symmetry properties of Levi-Civita connection coefficients in (2.55) and 
(2.58) have also been used in derivation (D.45).  Thus, relation (3.41) is 
verified in derivation (D.45), where ..χ

βακ�  is the anholonomic object: 
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Appendix E: SI Units and Fundamental Constants 

Appendix E includes tables of units and fundamental constants relevant to 
disciplines of mechanics, physical chemistry, and solid state physics.   

E.1 Units 

Table E.1 lists base units, following the International System (SI) of units 
(Thompson and Taylor 2008).  Frequently encountered units derived from 
base units follow in Tables E.2 (named units) and E.3 (unnamed units).   

 
Table E.1 Base SI units of measure 

Quantity Unit Symbol 
Length meter m 
Mass kilogram kg 
Time second s 
Electric current ampere A 
Temperature kelvin K 
Amount of substance mole mol 
Luminous intensity candela cd 

 

Table E.2 Some derived SI units of measure (named units) 

Quantity Name Symbol Relation Relation to base units 
Frequency hertz Hz - s-1 

Force newton N - m kg s-2 
Stress or pressure pascal Pa N/m2 m-1 kg s-2 
Energy joule J N m m2 kg s-2 
Power watt W J/s m2 kg s-3 
Electric charge coulomb C - s A 
Electric potential volt V W/A m2 kg s-3 A-1 

Capacitance farad F C/V m-2 kg-1 s4 A2 
Electric resistance ohm Ω V/A m2 kg s-3 A-2 
Electric conductance siemens S A/V m-2 kg-1 s3 A2 
Magnetic flux weber Wb V s m2 kg s-2 A-1 
Magnetic flux density tesla T Wb/m2 kg s-2 A-1 
Inductance henry H Wb/A m2 kg s-2 A-2 
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Table E.3 Some derived SI units of measure 

Quantity Relation to derived units Relation to base units 
Velocity - m s-1 
Acceleration - m s-2 
Mass density - kg m-3 
Dynamic viscosity Pa s m-1 kg s-1 
Torque or moment N m m2 kg s-2 
Surface tension N/m kg s-2 
Heat flux W/m2 kg s-3 
Heat capacity, entropy J/K m2 kg s-2 K-1 

Specific heat capacity J/(kg K) m2 s-2 K-1 

Specific energy J/kg m2 s-2 
Thermal conductivity W/(m K) m kg s-3 K-1 
Energy density J/m3 m-1 kg s-2 
Electric field V/m m2 kg s-3 A-1 
Electric charge density C/m3 m-3 s A 
Surface charge density C/m2 m-2 s A 
Electric displacement C/m2 m-2 s A 
Electric permittivity F/m m-3 kg-1 s4 A2 
Magnetic permeability H/m m2 kg s-2 A-2 

 
Several frequently encountered non-SI units are listed in Table E.4.  A 

comprehensive treatment of SI units can be found in the recent United 
States National Institute of Standards and Technology (NIST) report of 
Thompson and Taylor (2008). 
 
Table E.4 Some named non-SI units of measure 

Quantity Name Symbol Relation to SI units 
Length angstrom Å 1 Å = 10-10 m 
Force dyne dyn 1 dyn = 10-5 N 
Stress or pressure bar bar 1 bar = 105 Pa  
Energy erg erg 1 erg = 10-7 J 
Electric charge statcoulomb esu 1 esu = 3.336×10-10 C 

E.2 Fundamental Constants 

Table E.5 lists a number of fundamental constants arising in the physical 
sciences, referred to the SI system of units.  
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Table E.5 Fundamental constants 

Name Symbol Value in SI units 
Light velocity in vacuum c c = 2.998×108 m/s 
Standard gravity  g g = 9.807 m/s2 

Electronic mass me me = 9.110×10-31 kg 
Electronic charge e e = 1.602×10-19 C 
Electron volt eV 1 eV = 1.602×10-19 J 
Vacuum permittivity ε0 ε0 = 107/(4πc2) F m/s2 = 8.854×10-12 F/m 
Vacuum permeability µ0 µ0 = 1/(c2ε0)= 4π×10-7 H/m 
Standard pressure atm 1 atm = 1.013×105 N/m2 = 1.013 bar 
Calorie cal 1 cal = 4.184 J 
Universal gas constant R R = 8.314 J/(mol K) 
Avagadro’s number NA NA = 6.022×1023 mol-1 

Atomic mass unit (dalton) u u = 1 g mol-1/NA = 1.661×10-27 kg = 1823me 
Boltzmann’s constant kB kB = 1.381×10-23 J/K = 8.617×10-5 eV/K 
Planck’s constant h h = 2π = 6.626×10-34 J s  
Bohr’s radius a0 1 a0 = 2 2

e/(m e )πε04 = 0.529×10-10 m  
Rydberg’s constant Ry 1 Ry 4 2

em e /[8( h) ]ε0= = 2.180×10-18 J         
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A 

absolute parallelism. see 
teleparallelism 

acceleration 
material, 50 
spatial, 49 

action integral, 257 
activation energy, 295, 298 
activation volume, 299 
adiabatic process, 190 
aether, 501 
aleotropic. see anisotropic 
alkali halides, 99, 588 
Ampere’s law, 484 
anelasticity, 167 
anharmonic, 583, 585 
anholonomic 

basis, 57 
coordinates, 57, 124 
derivative, 58, 86 
function, 14 
object, 58, 87 
space, 14, 57, 80 

anisotropic, 201, 239, 547 
anisotropy ratio, 559 
anti-symmetry, 25, 27 
anti-twinning, 387 
associative plasticity, 309 
atlas, 16 
atomic frequency, 294 
atomic volume, 69, 115 

B 

backstress, 302, 307, 473 
balance 

angular momentum, 177, 262 
angular momentum, elasticity of 

grade two, 268 
energy, 178 
linear momentum, 174, 261 
linear momentum, isotropic linear 

elasticity, 247 
basis, 68 
basis vectors, 18 
bend-twist, 596 
Bianchi’s identity, 28 
body centered cubic, 71 
body force, 174 
Bravais lattice, 67, 70 
Bravais lattice vector, 67 
bulk modulus, 220, 560 

apparent, 562 
isentropic, 228 
isothermal, 228 
pressure derivative, 234 

Burgers 
circuit, 96, 141, 152 
vector, 95 

C 

Cartan 
displacement, 134, 139 
space, 14 
torsion, 25 

Cartesian 
coordinates, 41 
space, 14 

Cauchy’s relations, 588, 592 
Cauchy’s theorem, 171 
Cauchy-Born hypothesis, 75, 126, 

382, 463, 504 
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Cauchy-Green deformation tensor, 
45 

central force, 573 
centrosymmetric, 528, 544 
charge density, 484 

referential, 495 
chart, 16 
chemical potential tensor, 318 
Christoffel symbols, 13, 27, 30 
classical balance laws, 169 
Clausius-Duhem inequality, 182, 

188 
strong form, 189 

cold work, 273, 287, 451 
Coleman-Noll procedure, 206, 508 
compatibility 

connection, 62 
deformation gradient, 56, 58 
finite strain, 59, 646 
small strain, 60 

compliance, 223, 554 
composition, 15 
compound twin, 388 
compressibility, 228 
conductor, electrical, 486 
configuration, 12 

anholonomic, 12 
current, 15 
incompatible. see anholonomic 
intermediate, 2, 82 
isoclinic, 112 
natural, 85 
reference, 15 

connection, 13 
affine. see connection, linear 
coefficients, 23, 31, 165 
crystal, 127, 136, 333 
integrable, 62 
Levi-Civita, 28, 145 
linear, 13, 22, 127 
non-metric, 161 
symmetric, 25 

conservative force, 568 
conservative motion, 99 
conservative process, 189 
constants, fundamental, 654 

constitutive assumptions, 183 
constrained equilibrium state, 181 
continuity equations 

dislocation-disclination, 155 
dislocations, 143 
lattice defects, 164 
mass, 173 
point defects, 163 

convected coordinates, 41, 646 
convected time derivative, 488 
coordinate system, 16 
coordination number, 71 
cotangent 

bundle, 17 
space, 17 

Coulomb’s law, 486 
couple stress, 269, 331, 454, 462 
covariant derivative, 22, 24, 31, 131, 

150 
anholonomic, 285, 406, 433 
partial, 40 
total, 39, 463 

covector. see one-form 
crystal, 1, 67 

class, 544, 545 
elastic, 77 
polycrystal, 1 
single crystal, 1 
structure, 68 
system, 69, 544, 547, 615 

crystal plasticity, 108, 157, 297, 
315, 472 
with twinning, 394 

cubic, 547, 558, 637 
Curie point, 481 
curl, 33 
curvature tensor. see Riemann-

Christoffel curvature 
cylindrical coordinates, 36 

momentum balance in linear 
isotropic elasticity, 248 

D 

damage, 423 
damage mechanics, 443 
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Debye 
Gruneisen parameter, 233 
specific heat model, 211 
temperature, 212 

decomposition 
multiscale, 118, 449 
three-term, 116, 123, 156, 343, 

424, 425, 455 
two-term, 275 

defect, 1, 583, 593 
core, 356 

deformation 
average residual elastic, 348 
elastic, 382 
gradient, 38 
inelastic, 423 
plastic, 384 
rate, 52 
residual, 427 
residual elastic, 337, 395 
residual lattice, 449 
total, 343 
twinning, 379 

detwinning, 392 
diatomic, 68 
dielectric, 481, 486, 504 

linear elastic, 535 
dielectric permittivity, 513 
dielectric susceptibility, 512 
diffeomorphism, 13 
dilatancy, 448 
director theory, 271 
director vector, 130 
disclination, 96, 106, 146 

core, 611 
dipole, 146, 150, 468 
geometrically necessary, 152, 456 
loop, 618 
partial, 149 
radius, 106 
rotation, 476 
signed, 154 
statistically stored, 155, 158, 458, 

459 
total density, 154 
twist, 154, 604 

wedge, 154, 609 
dislocation, 95 

climb, 98, 101 
core, 602, 604, 634, 635 
cross slip, 99 
density rate, 480 
density tensor, 333 
density tensor, intermediate, 142 
density tensor, two-point, 141 
density, singular, 102 
drag, 294 
edge, 96, 144, 598 
energy factor, 614 
flux, 104, 314 
forest, 473 
geometrically necessary, 85, 128, 

140, 399, 456 
glide, 98 
glide resistance, 299 
glissile, 98 
immobile, 144 
loop, 616, 628 
mixed, 96, 612 
mobile, 106, 144 
net density, 144 
nucleation, 629 
partial, 96, 297, 385 
plasticity, 292 
redundant, 145 
screw, 96, 144, 602 
sessile, 98 
signed, 144 
Somigliana, 96 
statistically stored, 145, 158, 401, 

458, 459 
supersonic, 293 
tangent line, 95 
total density, 106, 144, 145, 303 
twinning partial, 390 
velocity, 296 
Volterra, 594 
volume change, edge, 357 
volume change, screw, 358 
width, 634, 636 

displacement, 43, 47 
displacement current, 491 
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disregistry, 631 
dissipation, 192 
dissipation inequality. see Clausius-

Duhem inequality 
dissipation potential, 192 

crystal plasticity, 302 
macroscopic plasticity, 305 

dissipative process, 189 
distortion, 95, 596 
divergence, 33 
divergence theorem, 54 
domain wall, 146, 160, 474 
dot product. see inner product 
double tensor, 39 
double-dot product, 34 
Doyle-Ericksen formula, 205, 282, 

432, 510 
dual 

basis vectors, 18 
map, 40 
product, 18, 34 

E 

eigenstress, 337 
Einstein 

Gruneisen parameter, 233 
space, 28 
specific heat model, 211 
summation convention, 7 
temperature, 211 
tensor, 26, 28, 152 

elastic 
body, 206 
rotation, 120 
stretch, 120 

elastic constants, 553, 582 
adiabatic, 223 
effective, 562 
isentropic, 223 
isothermal, 210, 223, 521 
isotropic, 219, 561 
porous, 438 
second-order, 556 
third-order, 557 

elastic modulus, 560 

elastostatics, 318 
electric current, 484 
electric displacement, 484 

referential, 495 
electric field, 484 

referential, 495 
electromechanical body force, 496 
electrostatic potential, 493 

referential, 495 
electrostriction, 481, 529 
embedded atom method, 574, 589 
energy release rate, 323 
energy-momentum tensor, 318 
enthalpy, 172 
entropy, 172 
entropy production inequality. see 

Clausius-Duhem inequality 
entropy production rate, 189 
equation of state, 212, 236, 238 

Mie-Gruneisen, 234 
equipresence, 185 
Euclidean space, 13, 29, 30, 146 
Euler angles, 216 
Euler-Lagrange equations, 259, 260, 

569 
evolution, 168, 193 
explicit material gradient, 318 
exponential, matrix, 217 
external variable, 167 

F 

face centered cubic, 71 
Faraday’s law, 484 
ferroelectricity, 481, 529 
First Law of Thermodynamics. see 

balance of energy 
first variation, 256, 325 
flat space, 29 
flow rule, 195 

crystal plasticity, 301 
twinning, 416 

Fourier’s law, 189, 193, 207, 241 
fracture, 445 
Frank vector, 106, 148, 153 
Frenkel defect, 116 
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Frenkel model, 627 

G 

Galilean invariance, 490 
Gauss’s law, 484 
Gauss’s theorem, 53 
Gaussian curvature. see scalar 

curvature 
generalized continua, 168, 452, 462 
generalized stacking fault energy, 

385 
generator, 544, 545 
geometrically linear theory, 47, 94, 

178, 180, 191, 534 
elasticity, 238, 244 
plasticity, 311 

geometrically necessary boundaries, 
158 

Gibbs function, 172 
glide plane. see slip plane 
gradient, 33 
gradient theory, 186 
grain boundary, 148, 450 
Gruneisen 

parameter, scalar, 232 
tensor, 225 

Gurson potential, 442 

H 

habit plane, 388 
Hadamard’s jump conditions, 392 
Hall-Petch relation, 454 
Hamilton’s principle, 255, 257, 568 

elasticity of grade two, 264 
elastoplasticity of grade two, 327 

Hamiltonian, 570 
hardening modulus, 303, 309 
harmonic, 583, 585 
harmonic approximation, 368 
heat 

conduction, 193 
flux, 179 
source, 179 

Helmholtz free energy, 172 
heterogeneous, 1, 201, 239 

hexagonal, 546 
hexagonal close packed, 71 
holonomic, 12 

configuration, 87 
coordinates, 14 

homeomorphic, 11, 91 
homeomorphism, 13 
homogeneous, 2 
homogeneous deformation, 75, 576, 

642 
hydrostatic pressure. see pressure 
hydrostatic stress state, 227 
hyperelasticity, 197, 553 

grade one, 199, 238, 256, 257 
grade two, 263, 326 
linear isotropic, 219 

hyperstress, 265, 328 
hypertraction, 267, 330 

I 

identity tensor, 40 
incidental dislocation boundaries, 

158 
inclusion, 112, 619 
incompatibility tensor, 61 
incompressible, 174, 560 
index notation, 7 
infinitesimal theory. see 

geometrically linear theory 
inner product, 20 
insulator, electrical, 486 
integrable 

connection, 133 
space, 14 

internal displacement, 76, 200 
internal energy, 172, 259 
internal state variable, 3, 167, 181, 

187, 193, 279, 280, 458 
interstitial, 115, 161, 374, 619, 622 
invariants, 555 

strain, 219 
inverse, 15 
inversion, 544 
inversion center, 544 
irreversible process, 182, 189 
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irrotational, 56 
isentropic process, 190 
isothermal process, 190 
isotropic, 218, 529, 547, 560 
isotropy group, 544 

J 

Jacobian determinant, 43, 62, 88, 
644 

jerky glide, 295 
J-integral, 323 

K 

kinetic energy, 259 
kinetics, 191 

damage, 445 
plasticity, 194, 291, 472 
porosity, 439 

Kronecker delta, 18 
Kuhn-Tucker conditions, 309 

L 

Lagrangian, 257, 259 
atomic, 568 
elasticity of grade two, 264, 327 

Lamé’s constant, 220, 247 
Laplacian, 33 
latent hardening, 301 
latent hardening ratio, 302 
lattice, 1 

Bravais, 67 
deformation, 77, 82, 108 
deformation rate, 93 
deformation tensor, 93 
distortion, 94 
friction, 639 
parameters, 68 
preserving, 82, 111, 276, 384 
rotation vector, 141 
spin, 93 
statics, 571 
strain, 93, 108 
velocity gradient, 92 

lattice director. see director vector 

Laue group, 544, 545 
length scale, 453, 469 
Lie 

bracket, 25 
derivative, 51, 205, 489 

line element, 39, 93 
locality, 186 
Lorentz force, 486, 497 
Lorentz invariance, 487 

M 

macroscopic plasticity, 111 
magnetic field, 484 
magnetic flux, 484 
magnetic induction. see magnetic 

flux 
magnetic intensity. see magnetic 

field 
magnetization, 485 
manifold, 16 
mass conservation, 173 
mass density, 170 
material force, 319, 321 
material particle, 12 
material time derivative, 48 
Maxwell 

relations in thermostatics, 224 
Maxwell’s equations 

electrodynamics, 484 
electrostatics, 492 
material form, 495 

mechanical threshold, 294, 299 
mechanical twinning, 379 
metric 

connection, 27, 145, 151 
director strain, 130 
intermediate, 87 
space, 14, 145 
tensor, 13, 19, 22, 73 

microforce, 462 
micromorphic, 132 
micropolar, 150, 597 
micro-rotation. see micropolar 
Miller indices, 71 
Miller-Bravais indices, 72 
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misfit parameter, 374 
momentum density, 261 
monatomic, 68 
monoclinic, 546 
motion, 15 
multiplicative decomposition, 80, 81 
multi-well potential, 393 

N 

Nanson’s formula, 45, 63, 103, 142, 
179, 645 

Newton’s equations, 567 
non-conservative motion, 101 
non-Euclidean space, 13 
nonlocal theory, 186 
non-metric space, 14 
non-Riemannian space, 14 
non-symmetric space. see Cartan 

space 
normal derivative, 263 
normality, 195, 308 

O 

objectivity, 185, 201 
one-form, 19 
Onsager’s relations, 192 
orthogonal coordinates, 35 
orthorhombic, 546 
orthotropic, 546 
outer product, 19 

P 

packing factor, 71 
pair potential, 573, 587 
parallel transport, 24, 131, 134 
parent, 385 
Peach-Koehler force, 292, 314 
Peierls 

model, 630 
stress, 300 

perfect lattice, 67 
perfectly plastic, 310 
permeability, vacuum, 485 
permittivity, vacuum, 485 

permutation 
symbols, 32 
tensor, 31, 88 

Pfaffian, 94 
physical components, 35, 214, 245 
piezoelectric coefficients, 512 
piezoelectricity, 481, 529 

linear, 541 
Piola identities, 44, 63, 642 
placement. see configuration 
plastic 

deformation, 82, 273 
deformation rate, 93, 110 
deformation, macroscopic, 122 
deformation, singular, 101 
dissipation, 284, 306, 432 
distortion, 94 
multiplier, 194, 306 
spin, 93, 110, 111, 307 
velocity gradient, 92, 104, 122 

plasticity, 273 
macroscopic, 305 
macroscopic, linear, 316 

point defect, 112, 160, 373, 619 
vector, 162 

point group, 544, 545 
Poisson’s ratio, 560 
polar decomposition, 45, 75, 84, 111 
polar tensor, 547 
polarization, 485 

referential, 496 
polarization current, 492 
polyatomic, 68 
polycrystal plasticity, 111 
pore compaction, 447 
potential energy, 180, 259, 568, 572 
Poynting vector, 492 
Poynting’s theorem, 492 
pressure, 226 
pressure derivatives, elastic 

coefficients, 561 
primitive Bravais lattice vector, 67, 

107 
projection, 17 
pull-back, 42 
push-forward, 42 
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pyroelectric coefficients, 511 
pyroelectricity, 481, 529 

Q 

quasi-electrostatic approximation, 
490 

R 

rate independent plasticity, 309 
rate sensitivity, 298 
reciprocal 

basis vector, 18 
director, 130 
lattice, 72 
lattice vector, 72, 131 

relative permittivity, 513 
relaxation volume, 115 
residual 

deformation, microscopic, 121 
free energy, 291 
lattice deformation, 116 
stress, 344 

Reuss average, 564 
reversible process, 182, 189 
Reynolds transport theorem, 174 
rhombohedral, 546 
Ricci 

curvature, 26 
space, 28 
tensor, 28 

Riemann-Christoffel curvature, 25, 
91, 128, 133, 151, 456, 648 

Riemannian 
connection, 28 
geometry, 27 
metric tensor, 13 
space, 14 

rotation 
disclination, 156 
gradient, 596 
group, 544 
tensor, 45, 47 
vector, 47 

S 

scalar curvature, 26 
Schmid factor, 298 
Schmid tensor, 297 
Schmid’s law, 297 
Schottky defect, 116 
second fundamental form, 263 
second grade elasticity, 262 
second grade elastoplasticity, 323 
Second Law of Thermodynamics. 

see Clausius-Duhem inequality 
self hardening, 301 
self-equilibrated, 344, 369 
semiconductor, 486 
shear modulus, 220, 247, 559 
shearing rate. see slip rate 
shifter, 21, 40 
Shockley partial, 391 
shuffles, twinning, 386 
simple cubic, 71 
singularity, 320 
slip 

direction, 99 
director, 109 
plane, 99 
plane normal, 109 
rate, 105, 110 
system, 99, 100, 101 

solenoidal, 484 
space group, 544 
specific heat 

at constant pressure, 231 
at constant strain, 207, 222, 241 
at constant stress, 222 
at constant volume, 231 
ratio, 225 

specific volume, 228 
spherical coordinates, 37 

momentum balance in linear 
isotropic elasticity, 248 

spin tensor, 53 
stacking fault, 96 
stacking fault energy, 297, 412, 418 
state variable, 182 
Stokes’s theorem, 55, 134 
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strain energy, 206, 241, 553 
strain gradient, 269 
strain tensor 

infinitesimal, 47 
right Cauchy-Green, 46 

stress 
atomic, 575, 579 
Cauchy, 170, 498 
elastic second Piola-Kirchhoff, 

250 
Eshelby, 4, 284, 317, 321, 404, 

432 
first Piola-Kirchhoff, 170 
Kirchhoff, 171 
lattice, 278 
Mandel, 281, 403, 430 
Maxwell, 5, 497, 522 
nominal, 171 
octahedral shear, 308 
Peierls, 635, 636 
relationships among tensors, 171 
resolved shear, 297, 405 
second Piola-Kirchhoff, 171 
total, 498, 522 
virial, 366, 575 
Von Mises, 308 

stress-temperature coefficients, 210, 
244, 521 

stretch tensor, 45 
substitutional atom, 374, 619, 622 
surface charge density, 493 
surface gradient, 263 
surface of composition, 388 
symmetric, 19 
symmetric space, 14 
symmetry, 185 

elastic coefficients, 214 
elements, 547, 615 
material coefficients, 218, 226 
material coefficients, dielectric, 

525 
symmetry group. see isotropy group 

T 

tangent 

bundle, 17 
map, 39 
space, 17 

tangent moduli, 208, 222, 242, 581, 
587, 589 
isotropic, 219 

Taylor-Quinney parameter, 287, 304 
teleparallelism, 61, 128, 139 
temperature, 172 
tensor product. see outer product 
tetragonal, 546 
theoretical strength, 294, 628, 640 
thermal 

conductivity, 189, 247 
deformation, 79, 248 
energy, 211 
expansion coefficient, isotropic, 

229 
expansion coefficients, 79, 221, 

224, 249, 411 
stress coefficients, 224, 511 

thermodynamic 
equilibrium, 181 
flux, 190 
force, 190 
potentials, 173 
process, 182 

thermodynamics 
admissible, 188 
classical, 181 
non-equilibrium, 181 

thermoelastic coupling, 207, 237, 
241, 252 

thermoelasticity, 197 
thermomechanics, 167 
thermostatic potentials, 221 
thermostatics, 181 
torsion, 25, 132, 151, 456 
total Burgers vector, 135, 161 
total covariant derivative, 93, 262, 

641 
trace, 32 
traction, 170 
transpose, 32, 40, 88 
transverse isotropy, 547, 559 
triclinic, 218, 546 
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trigonal. see rhombohedral 
twin, 385 

boundary, 385 
boundary area, 401 
boundary energy, 412 
false, 392 
nucleation stress, 418, 628 
systems, 389 

twinning, 379, 385 
dislocation, 386 
elastic, 386 
elements, 388 
mode, 388 

two-point tensor, 39 

U 

unimodular, 393 
unit cell 

conventional, 67 
primitive, 67 
volume, 68 

units 
SI, 653 

V 

vacancy, 115, 161, 374, 620, 622 
vacuum, 485, 532 
variational derivative. see first 

variation 

vector 
contravariant, 19 
covariant. see one-form 

velocity 
gradient, 50, 52, 92 
material, 48 
spatial, 48 

viscoplasticity, 301, 309, 473 
void, 112, 436 
Voigt 

average, 410, 415, 563 
notation, 215, 246, 526, 550 

volume change 
residual elastic, 351, 476 

volume element, 43, 62, 88, 114 
volumetric deformation 

elastic, 235 
inelastic, 112 

vorticity, 53 

W 

wave speed, elastic shear, 294 
wedge product, 63 
Weingarten’s theorem, 595 

Y 

yield function, 308 
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