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Preface

 

Chemometrics is an interdisciplinary field that combines statistics and chemistry.
From its earliest days, chemometrics has always been a practically oriented subdis-
cipline of analytical chemistry aimed at solving problems often overlooked by
mainstream statisticians. An important example is solving multivariate calibration
problems at reduced rank. The method of partial least-squares (PLS) was quickly
recognized and embraced by the chemistry community long before many practitioners
in statistics considered it worthy of a “second look.”

For many chemists, training in data analysis and statistics has been limited to
the basic univariate topics covered in undergraduate analytical chemistry courses
such as univariate hypothesis testing, for example, comparison of means. A few
more details may have been covered in some senior-level courses on instrumental
methods of analysis where topics such as univariate linear regression and prediction
confidence intervals might be examined. In graduate school, perhaps a review of
error propagation and analysis of variance (ANOVA) may have been encountered
in a core course in analytical chemistry. These tools were typically introduced on a
very practical level without a lot of the underlying theory. The chemistry curriculum
simply did not allow sufficient time for more in-depth coverage. However, during
the past two decades, chemometrics has emerged as an important subdiscipline, and
the analytical chemistry curriculum has evolved at many universities to the point
where a small amount of time is devoted to practical application-oriented introduc-
tions to some multivariate methods of data analysis.

This book continues in the practical tradition of chemometrics. Multivariate
methods and procedures that have been found to be extraordinarily useful in ana-
lytical chemistry applications are introduced with a minimum of theoretical back-
ground. The aim of the book is to illustrate these methods through practical examples
in a style that makes the material accessible to a broad audience of nonexperts.
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1.1 CHEMICAL MEASUREMENTS — A BASIS FOR 
DECISION MAKING

 

Chemical measurements often form the basis for important decision-making activities
in today’s society. For example, prior to medical treatment of an individual, extensive
sets of tests are performed that often form the basis of medical treatment, including an
analysis of the individual’s blood chemistry. An incorrect result can have life-or-death
consequences for the person receiving medical treatment. In industrial settings, safe
and efficient control and operation of high energy chemical processes, for example,
ethylene production, are based on on-line chemical analysis. An incorrect result for
the amount of oxygen in an ethylene process stream could result in the introduction
of too much oxygen, causing a catastrophic explosion that could endanger the lives
of workers and local residents alike. Protection of our environment is based on chemical
methods of analysis, and governmental policymakers depend upon reliable measure-
ments to make cost-effective decisions to protect the health and safety of millions of
people living now and in the future. Clearly, the information provided by chemical
measurements must be reliable if it is to form the basis of important decision-making
processes like the ones described above.
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1.2 CHEMICAL MEASUREMENTS — THE THREE-
LEGGED PLATFORM

 

Sound chemical information that forms the basis of many of humanity’s important
decision-making processes depends on three critical properties of the measurement
process, including its (1) chemical properties, (2) physical properties, and (3) sta-
tistical properties. The conditions that support sound chemical measurements are
like a platform supported by three legs. Credible information can be provided only
in an environment that permits a 

 

thorough understanding

 

 

 

and control 

 

of these three
critical properties of a chemical measurement:

1. Chemical properties, including stoichiometry, mass balance, chemical
equilibria, kinetics, etc.

2. Physical properties, including temperature, energy transfer, phase transi-
tions, etc.

3. Statistical properties, including sources of errors in the measurement
process, control of interfering factors, calibration of response signals,
modeling of complex multivariate signals, etc.

If any one of these three legs is missing or absent, the platform will be unstable
and the measurement system will fail to provide reliable results, sometimes with
catastrophic consequences. It is the role of statistics and chemometrics to address
the third critical property. It is this fundamental role that provides the primary
motivation for developments in the field of chemometrics. Sound chemometric
methods and a well-trained work force are necessary for providing reliable chemical
information for humanity’s decision-making activities. In the subsequent sections,
we begin our presentation of the topic of chemometrics by defining the term.

 

1.3 CHEMOMETRICS

 

The term chemometrics was first coined in 1971 to describe the growing use of
mathematical models, statistical principles, and other logic-based methods in the
field of chemistry and, in particular, the field of analytical chemistry. Chemometrics
is an interdisciplinary field that involves multivariate statistics, mathematical mod-
eling, computer science, and analytical chemistry. Some major application areas of
chemometrics include (1) calibration, validation, and significance testing; (2) opti-
mization of chemical measurements and experimental procedures; and (3) the extrac-
tion of the maximum of chemical information from analytical data.

In many respects, the field of chemometrics is the child of statistics, computers,
and the “information age.” Rapid technological advances, especially in the area of
computerized instruments for analytical chemistry, have enabled and necessitated
phenomenal growth in the field of chemometrics over the past 30 years. For most of
this period, developments have focused on multivariate methods. Since the world
around us is inherently multivariate, it makes sense to treat multiple measurements
simultaneously in any data analysis procedure. For example, when we measure the
ultraviolet (UV) absorbance of a solution, it is easy to measure its entire spectrum
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quickly and rapidly with low noise, rather than measuring its absorbance at a single
wavelength. By properly considering the distribution of multiple variables simulta-
neously, we obtain 

 

more information 

 

than could be obtained by considering each
variable individually. This is one of the so-called 

 

multivariate advantages

 

. The addi-
tional information comes to us in the form of correlation. When we look at one variable
at a time, we neglect correlation between variables, and hence miss part of the picture.

A recent paper by Bro described four additional advantages of multivariate
methods compared with univariate methods [1]. Noise reduction is possible when
multiple redundant variables are analyzed simultaneously by proper multivariate
methods. For example, low-noise factors can be obtained when principal component
analysis is used to extract a few meaningful factors from UV spectra measured at
hundreds of wavelengths. Another important multivariate advantage is that partially
selective measurements can be used, and by use of proper multivariate methods,
results can be obtained free of the effects of interfering signals. A third advantage
is that false samples can be easily discovered, for example in spectroscopic analysis.
For any well characterized chemometric method, aliquots of material measured in
the future should be properly explained by linear combinations of the training set
or calibration spectra. If new, foreign materials are present that give spectroscopic
signals slightly different from the expected ingredients, these can be detected in the
spectral residuals and the corresponding aliquot flagged as an outlier or “false
sample.” The advantages of chemometrics are often the consequence of using mul-
tivariate methods. The reader will find these and other advantages highlighted
throughout the book.

 

1.4 HOW TO USE THIS BOOK

 

This book is suitable for use as an introductory textbook in chemometrics or for use
as a self-study guide. Each of the chapters is self-contained, and together they cover
many of the main areas of chemometrics. The early chapters cover tutorial topics

including hypothesis testing. The aim of Chapter 2 is to review suitable protocols
for the planning of experiments and the analysis of the data, primarily from a
univariate point of view. Topics covered include defining a research hypothesis, and
then implementing statistical tools that can be used to determine whether the stated

normal distribution and extends it to the multivariate normal distribution. An example
is given showing the analysis of near infrared spectral data for raw material testing,

covers principal component analysis (PCA), one of the workhorse methods of
chemometrics. This is a topic that all basic or introductory courses in chemometrics

least-squares, one of the single most common application areas for chemometrics.
Multivariate calibration refers generally to mathematical methods that transform and
instrument’s response to give an estimate of a more informative chemical or physical
variable, e.g., the target analyte. Together, Chapters 3, 4, and 5 form the introductory
core material of this book.
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hypothesis is found to be true. Chapter 3 builds on the concept of the univariate

where two degradation products were detected at 0.5% to 1% by weight. Chapter 4

should cover. Chapter 5 covers the topic of multivariate calibration, including partial
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The remaining chapters of the book introduce some of the advanced topics of
chemometrics. The coverage is fairly comprehensive, in that these chapters cover

robust multivariate methods. Robust methods are insensitive to the presence of
outliers. Most of the methods described in Chapter 6 can tolerate data sets contam-
inated with up to 50% outliers without detrimental effects. Descriptions of algorithms
and examples are provided for robust estimators of the multivariate normal distri-
bution, robust PCA, and robust multivariate calibration, including robust PLS. As

important topic of experimental design. While its position in the arrangement of this
book comes somewhat late, we feel it will be much easier for the reader or student
to recognize important applications of experimental design by following chapters

tivariate classification and pattern recognition. These types of methods are designed
to seek relationships that describe the similarity or dissimilarity between diverse
groups of data, thereby revealing common properties among the objects in a data
set. With proper multivariate approaches, a large number of features can be studied
simultaneously. Examples of applications in this area of chemometrics include the
identification of the source of pollutants, detection of unacceptable raw materials,
intact classification of unlabeled pharmaceutical products for clinical trials through
blister packs, detection of the presence or absence of disease in a patient, and food
quality testing, to name a few.

matical methods that are intended to enhance signals by decreasing the contribution
of noise. In this way, the “true” signal can be recovered from a signal distorted by

mathematical resolution of multivariate data sets from evolving systems into descrip-
tive models showing the contributions of pure constituents. The ability to correctly
recover pure concentration profiles and spectra for each of the components in the
system depends on the degree of overlap among the pure profiles of the different
components and the specific way in which the regions of these profiles are overlapped.

chemometrics. Chapter 12 includes descriptions of methods such as the generalized
rank annihilation method (GRAM) and parallel factor analysis (PARAFAC). The main
advantage of three-way calibration methods is their ability to estimate analyte concen-

reviews some of the most active areas of research in chemometrics.

 

1.4.1 S

 

OFTWARE

 

 A

 

PPLICATIONS

 

Our experience in learning chemometrics and teaching it to others has demon-
strated repeatedly that people learn new techniques by using them to solve inter-
esting problems. For this reason, many of the contributing authors to this book
have chosen to illustrate their chemometric methods with examples using
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such, Chapter 6 provides an excellent follow-up to Chapters 3, 4, and 5.
Chapter 7 covers the advanced topic of nonlinear multivariate model estimation,

with its primary examples taken from chemical kinetics. Chapter 8 covers the

on calibration and nonlinear model estimation. Chapter 9 covers the topic of mul-

Chapter 10, Signal Processing and Digital Filtering, is concerned with mathe-

other effects. Chapter 11, Multivariate Curve Resolution, describes methods for the

Chapter 12 describes three-way calibration methods, an active area of research in

trations in the presence of unknown, uncalibrated spectral interferents. Chapter 13



 

Introduction to Chemometrics

 

5

 

Microsoft

 

®

 

 Excel, MATLAB, or other powerful computer applications. For many
research groups in chemometrics, MATLAB has become a workhorse research tool,
and numerous public-domain MATLAB software packages for doing chemometrics
can be found on the World Wide Web. MATLAB is an interactive computing envi-
ronment that takes the drudgery out of using linear algebra to solve complicated
problems. It integrates computer graphics, numerical analysis, and matrix compu-
tations into one simple-to-use package. The package is available on a wide range
of personal computers and workstations, including IBM-compatible and Macintosh
computers. It is especially well-suited to solving complicated matrix equations using
a simple “algebra-like” notation. Because some of the authors have chosen to use
MATLAB, we are able to provide you with some example programs. The equivalent
programs in BASIC, Pascal, FORTRAN, or C would be too long and complex for
illustrating the examples in this book. It will also be much easier for you to exper-
iment with the methods presented in this book by trying them out on your data sets
and modifying them to suit your special needs. Those who want to learn more about
MATLAB should consult the manuals shipped with the program and numerous web
sites that present tutorials describing its use.

 

1.5 GENERAL READING ON CHEMOMETRICS

 

A growing number of books, some of a specialized nature, are available on chemo-
metrics. A brief summary of the more general texts is given here as guidance for
the reader. Each chapter, however, has its own list of selected references.

 

J

 

OURNALS

 

1

 

. Journal of Chemometrics

 

 (Wiley) — Good for fundamental papers and applications
of advanced algorithms.

2.

 

Journal of Chemometrics and Intelligent Laboratory Systems 

 

(Elsevier) — Good for
conference information; has a tutorial approach and is not too mathematically heavy.

3. Papers on chemometrics can also be found in many of the more general analytical
journals, including: 

 

Analytica Chimica Acta

 

, 

 

Analytical Chemistry

 

, 

 

Applied Spectros-
copy

 

, 

 

Journal of Near Infrared Spectroscopy

 

, 

 

Journal of Process Control

 

, and 

 

Tech-
nometrics.

 

B

 

OOKS
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INTRODUCTION

 

Typically, one of the main errors made in analytical chemistry and chemometrics
is that the chemical experiments are performed with no prior plan or design. It is
often the case that a researcher arrives with a pile of data and asks “what does it
mean?” to which the answer is usually “well what do you think it means?” The
weakness in collecting data without a plan is that one can quite easily acquire
data that are simply not relevant. For example, one may wish to compare a new
method with a traditional method, which is common practice, and so aliquots or
test materials are tested with both methods and then the data are used to test which
method is the best (Note: for “best” we mean the most suitable for a particular
task, in most cases “best” can cover many aspects of a method from highest purity,
lowest error, smallest limit of detection, speed of analysis, etc. The “best” method
can be defined for each case). However, this is not a direct comparison, as the
new method will typically be one in which the researchers have a high degree of
domain experience (as they have been developing it), meaning that it is an opti-
mized method, but the traditional method may be one they have little experience
with, and so is more likely to be nonoptimized. Therefore, the question you have
to ask is, “Will simply testing objects with both methods result in data that can
be used to compare which is the better method, or will the data simply infer that
the researchers are able to get better results with their method than the traditional
one?” Without some design and planning, a great deal of effort can be wasted and
mistakes can be easily made. It is unfortunately very easy to compare an optimized
method with a nonoptimized method and hail the new technique as superior, when
in fact, all that has been deduced is an inability to perform both techniques to the
same standard.

Practical science should not start with collecting data; it should start with a
hypothesis (or several hypotheses) about a problem or technique, etc. With a set of
questions, one can plan experiments to ensure that the data collected is useful in
answering those questions. Prior to any experimentation, there needs to be a con-
sideration of the analysis of the results, to ensure that the data being collected are
relevant to the questions being asked. One of the desirable outcomes of a structured
approach is that one may find that some variables in a technique have little influence
on the results obtained, and as such, can be left out of any subsequent experimental
plan, which results in the necessity for less rather than more work.

Traditionally, data was a single numerical result from a procedure or assay; for
example, the concentration of the active component in a tablet. However, with
modern analytical equipment, these results are more often a spectrum, such as a
mid-infrared spectrum for example, and so the use of multivariate calibration models
has flourished. This has led to more complex statistical treatments because the result
from a calibration needs to be validated rather than just a single value recorded. The
quality of calibration models needs to be tested, as does the robustness, all adding
to the complexity of the data analysis. In the same way that the spectroscopist relies
on the spectra obtained from an instrument, the analyst must rely on the results
obtained from the calibration model (which may be based on spectral data); therefore,
the rigor of testing must be at the same high standard as that of the instrument
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manufacturer. The quality of any model is very dependent on the test specimens
used to build it, and so sampling plays a very important part in analytical method-
ology. Obtaining a good representative sample or set of test specimens is not easy
without some prior planning, and in cases where natural products or natural materials
are used or where no design is applicable, it is critical to obtain a representative
sample of the system.

The aim of this chapter is to demonstrate suitable protocols for the planning of
experiments and the analysis of the data. The important question to keep in mind
is, “What is the purpose of the experiment and what do I propose as the outcome?”
Usually, defining the question takes greater effort than performing any analysis.
Defining the question is more technically termed defining the research hypothesis,
following which the statistical tools can be used to determine whether the stated
hypothesis is found to be true.

One can consider the application of statistical tests and chemometric tools to be
somewhat akin to torture—if you perform it long enough your data will tell you
anything you wish to know—but most results obtained from torturing your data are
likely to be very unstable. A light touch with the correct tools will produce a much
more robust and useable result then heavy-handed tactics ever will. Statistics, like
torture, benefit from the correct use of the appropriate tool.

 

2.1 SOURCES OF ERROR

 

Experimental science is in many cases a quantitative subject that depends on
numerical measurements. A numerical measurement is almost totally useless
unless it is accompanied by some estimate of the error or uncertainty in the
measurement. Therefore, one must get into the habit of estimating the error or
degree of uncertainty each time a measurement is made. Statistics are a good way
to describe some types of error and uncertainty in our data. Generally, one can
consider that simple statistics are a numerical measure of “common sense” when
it comes to describing errors in data. If a measurement seems rather high compared
with the rest of the measurements in the set, statistics can be employed to give a
numerical estimate as to how high. This means that one must not use statistics
blindly, but must always relate the results from the given statistical test to the data
to which the data has been applied, and relate the results to given knowledge of
the measurement. For example, if you calculate the mean height of a group of
students, and the mean is returned as 296 cm, or more than 8 ft, then you must
consider that unless your class is a basketball team, the mean should not be so
high. The outcome should thus lead you to consider the original data, or that an
error has occurred in the calculation of the mean.

One needs to be extremely careful about errors in data, as the largest error will
always dominate. If there is a large error in a reference method, for example, small
measurement errors will be superseded by the reference errors. For example, if one
used a bench-top balance accurate to one hundredth of a gram to weigh out one
gram of substance to standardize a reagent, the resultant standard will have an
accuracy of only one part per hundredth, which is usually considered to be poor for
analytical data.
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Statistics must not be viewed as a method of making sense out of bad data, as
the results of any statistical test are only as good as the data to which they are
applied. If the data are poor, then any statistical conclusion that can be made will
also be poor.

Experimental scientists generally consider there to be three types of error:

1.

 

Gross error

 

 is caused, for example, by an instrumental breakdown such
as a power failure, a lamp failing, severe contamination of the specimen
or a simple mislabeling of a specimen (in which the bottle’s contents are
not as recorded on the label). The presence of gross errors renders an
experiment useless. The most easily applied remedy is to repeat the
experiment. However, it can be quite difficult to detect these errors, espe-
cially if no replicate measurements have been made.

2.

 

Systematic error

 

 arises from imperfections in an experimental procedure,
leading to a bias in the data, i.e., the errors all lie in the same direction
for all measurements (the values are all too high or all too low). These
errors can arise due to a poorly calibrated instrument or by the incorrect
use of volumetric glassware. The errors that are generated in this way can
be either constant or proportional. When the data are plotted and viewed,
this type of error can usually be discovered, i.e., the intercept on the

 

y

 

-axis for a calibration is much greater than zero.
3.

 

Random error 

 

(commonly referred to as noise) produces results that are
spread about the average value. The greater the degree of randomness,
the larger the spread. Statistics are often used to describe random errors.
Random errors are typically ones that we have no control over, such as
electrical noise in a transducer. These errors affect the precision or repro-
ducibility of the experimental results. The goal is to have small random
errors that lead to good precision in our measurements. The precision of
a method is determined from replicate measurements taken at a similar
time.

 

2.1.1 S

 

OME

 

 C

 

OMMON

 

 T

 

ERMS

 

Accuracy

 

: An experiment that has small systematic error is said to be accurate,
i.e., the measurements obtained are close to the true values.

 

Precision

 

: An experiment that has small random errors is said to be precise,
i.e., the measurements have a small spread of values.

 

Within-run

 

: This refers to a set of measurements made in succession in the
same laboratory using the same equipment.

 

Between-run

 

: This refers to a set of measurements made at different times,
possibly in different laboratories and under different circumstances.

 

Repeatability

 

: This is a measure of within-run precision.

 

Reproducibility

 

: This is a measure of between-run precision.

 

Mean

 

, 

 

Variance, 

 

and 

 

Standard Deviation: 

 

Three common statistics can be
calculated very easily to give a quick understanding of the quality of a
dataset and can also be used for a quick comparison of new data with some
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prior datasets. For example, one can compare the mean of the dataset with
the mean from a standard set. These are very useful exploratory statistics,
they are easy to calculate, and can also be used in subsequent data analysis
tools. The 

 

arithmetic mean 

 

is a measure of the average or central tendency
of a set of data and is usually denoted by the symbol . The value for the
mean is calculated by summing the data and then dividing this sum by the
number of values (

 

n

 

).

(2.1)

The 

 

variance 

 

in the data, a measure of the spread of a set of data, is related to
the precision of the data. For example, the larger the variance, the larger the spread
of data and the lower the precision of the data. Variance is usually given the symbol

 

s

 

2

 

 and is defined by the formula:

(2.2)

The 

 

standard deviation

 

 of a set of data, usually given the symbol 

 

s

 

, is the square
root of the variance. The difference between standard deviation and variance is that
the standard deviation has the same units as the data, whereas the variance is in units
squared. For example, if the measured unit for a collection of data is in meters (

 

m

 

)
then the units for the standard deviation is 

 

m

 

 and the unit for the variance is 

 

m

 

2

 

. For
large values of 

 

n

 

, the 

 

population standard deviation 

 

is calculated using the formula:

(2.3)

If the standard deviation is to be estimated from a small set of data, it is more
appropriate to calculate the 

 

sample standard deviation

 

, denoted by the symbol ,
which is calculated using the following equation:

(2.4)

The 

 

relative standard deviation 

 

(or 

 

coefficient of variation

 

), a dimensionless
quantity (often expressed as a percentage), is a measure of the relative error, or noise
in some data. It is calculated by the formula:

 (2.5)

When making some analytical measurements of a quantity (

 

x

 

), for example the
concentration of lead in drinking water, all the results obtained will contain some

x

x
x

n
i= ∑

s
x x

n
i2

2

=
−∑( )

s
x x

n
i=
−∑( )2

ŝ

ˆ
( )

s
x x

n
i=
−

−
∑ 2

1

RSD = s
x
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random errors; therefore, we need to repeat the measurement a number of times (

 

n

 

).
The standard error of the mean, which is a measure of the error in the final answer,
is calculated by the formula:

(2.6)

It is good practice when presenting your results to use the following represen-
tation:

 (2.7)

Suppose the boiling points of six impure ethanol specimens were measured using
a digital thermometer and found to be: 78.9, 79.2, 79.4, 80.1, 80.3, and 80.9

 

°

 

C. The
mean of the data, , is 79.8

 

°

 

C, the standard deviation, 

 

s

 

, is 0.692

 

°

 

C. With the value
of 

 

n

 

 

 

=

 

 6, the standard error, 

 

s

 

m

 

, is found to be 0.282

 

°

 

C, thus the true temperature of
the impure ethanol is in the range 79.8 

 

±

 

 0.282

 

°

 

C (

 

n

 

 

 

=

 

 6).

 

2.2 PRECISION AND ACCURACY

 

The ability to perform the same analytical measurements to provide precise and
accurate results is critical in analytical chemistry. The quality of the data can be
determined by calculating the precision and accuracy of the data. Various bodies have
attempted to define 

 

precision

 

. One commonly cited definition is from the International
Union of Pure and Applied Chemistry (IUPAC), which defines precision as “relating
to the variations between variates, i.e., the scatter between variates.”[1] 

 

Accuracy 

 

can
be defined as the ability of the measured results to match the true value for the data.
From this point of view, the standard deviation is a measure of precision and the mean
is a measure of the accuracy of the collected data. In an ideal situation, the data would
have both high accuracy and precision (i.e., very close to the true value and with a
very small spread). The four common scenarios that relate to accuracy and precision

and accuracy simultaneously, so common practice is to be more concerned with the
precision of the data rather than the accuracy. Accuracy, or the lack of it, can be
compensated in other ways, for example by using aliquots of a reference material, but
low precision cannot be corrected once the data has been collected.

To determine precision, we need to know something about the manner in which
data is customarily distributed. For example, high precision (i.e., the data are very
close together) produces a very narrow distribution, while low precision (i.e., the
data are spread far apart) produces a wide distribution. Assuming that the data are
normally distributed (which holds true for many cases and can be used as an
approximation in many other cases) allows us to use the well understood mathemat-
ical distribution known as the normal or Gaussian error distribution. The advantage
to using such a model is that we can compare the collected data with a well
understood statistical model to determine the precision of the data.

s
s

n
M =

x
s

n
±

x
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Although the standard deviation gives a measure of the spread of a set of results
about the mean value, it does not indicate the way in which the results are distributed.
To understand this, a large number of results are needed to characterize the distri-
bution. Rather than think in terms of a few data points (for example, six data points)
we need to consider, say 500 data points, so the mean, , is an excellent estimate
of the true mean or population mean, 

 

µ

 

. The spread of a large number of collected
data points will be affected by the random errors in the measurement (i.e., the
sampling error and the measurement error) and this will cause the data to follow
the normal distribution. This distribution is shown in Equation 2.8:

(2.8)

where 

 

µ

 

 is the true mean (or 

 

population mean

 

), 

 

x

 

 is the measured data, and 

 

σ

 

 is the
true standard deviation (or the 

 

population standard deviation

 

). The shape of the

the spread of the data, the narrower the distribution curve.
It is common to measure only a small number of objects or aliquots, and so one

has to rely upon the 

 

central limit theorem 

 

to see that a small set of data will behave
in the same manner as a large set of data. The central limit theorem states that “as
the size of a sample increases (number of objects or aliquots measured), the data
will tend towards a normal distribution.” If we consider the following case:

 

y

 

 

 

=

 

 

 

x

 

1

 

 

 

+

 

 

 

x

 

2

 

 

 

+

 

 … 

 

+

 

 

 

x

 

n

 

(2.9)

 

FIGURE 2.1

 

The four common scenarios that illustrate accuracy and precision in data: (a)
precise but not accurate, (b) accurate but not precise, (c) inaccurate and imprecise, and (d)
accurate and precise.

Precise but not 
accurate 

Target 

(a) (b) 

(c) (d) 

Accurate but not 
precise 

Target 

Inaccurate and
imprecise

Target 

Accurate and 
precise 

Target 

x

y
x= − −exp[ ( ) / ]µ σ
σ π

2 22

2
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where 

 

n

 

 is the number of independent variables, 

 

x

 

i

 

, that have mean, 

 

µ

 

, and variance,

 

σ

 

2

 

, then for a large number of variables, the distribution of 

 

y

 

 is approximately normal,
with mean 

 

Σ

 

µ

 

 and variance 

 

Σ

 

µ

 

2

 

, despite whatever the distribution of the independent
variable 

 

x

 

 might be.

 

2.3 PROPERTIES OF THE NORMAL DISTRIBUTION

 

The actual shape of the curve for the normal distribution and its symmetry around
the mean is a function of the standard deviation. From statistics, it has been shown
that 68% of the observations will lie within 

 

±

 

1 standard deviation, 95% lie within

 

±

 

2 standard deviations, and 99.7% lie within 

 

±

 

3 standard deviations of the mean
(see Figure 2.3). We can easily demonstrate how the normal distribution can be

 

FIGURE 2.2

 

The normal distribution showing the effect of the spread of the data with a
mean of 40 and standard deviations of 3, 6, and 12.

 

FIGURE 2.3

 

A plot of the normal distribution showing that approximately 68% of the data
lie within 

 

±

 

1 standard deviation, 95% lie within 

 

±

 

2 standard deviation, and 99.7% lie within

 

±

 

3 standard deviations.
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populated using two six-sided dice. If both dice are thrown together, there is only
a small range of possible results: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. However, some
results have a higher frequency of occurrence due to the number of possible com-
binations of values from each single die. For example, one possible event that will
result in a 2 or a 12 being the total from the dice is a 1 or a 6 on both dice. To
obtain a sum of 7 on one roll of the dice there are a number of possible combinations
(1 and 6, 2 and 5, 3 and 4, 4 and 3, 5 and 2, 6 and 1). If you throw the two dice a
small number of times, it is unlikely that every possible result will be obtained, but
as the number of throws increases, the population will slowly fill out and become
normal. Try this yourself.

(

 

Note: The branch of statistics concerned with measurements that follow the
normal distribution are known as parametric statistics. Because many types of
measurements follow the normal distribution, these are the most common statistics
used. Another branch of statistics designed for measurements that do not follow the
normal distribution is known as nonparametric statistics.)

The confidence interval is the range within which we can reasonably assume a
true value lies. The extreme values of this range are called the confidence limits.
The term “confidence” implies that we can assert a result with a given degree of
confidence, i.e., a certain probability. Assuming that the distribution is normal, then
95% of the sample means will lie in the range given by:

(2.10)

However, in practice we usually have a measurement of one specimen or aliquot
of known mean, and we require a range for µ. Thus, by rearrangement:

 (2.11)

Thus,

 (2.12)

The appropriate value of t (which is found in the statistical tables) depends both
on (n – 1), which is the number of degrees of freedom and the degree of confidence
required (the term “degrees of freedom” refers to the number of independent devi-
ations used in calculating σ). The value of 1.96 is the t value for an infinite number
of degrees of freedom and the 95% confidence limit.

For example, consider a set of data where:

 = 100.5
  s = 3.27
  n = 6

µ σ µ σ− < < +1 96 1 96. .
n

x
n

x
n

x
n

− < < +1 96 1 96. .
σ µ σ

µ σ= ±x t
n

x
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The 95% confidence interval is computed using t = 2.57 (from Table 2.1)

Summary statistics are very useful when comparing two sets of data, as we can
compare the quality of the analytical measurement technique used. For example, a
pH meter is used to determine the pH of two solutions, one acidic and one alkaline.
The data are shown below.

TABLE 2.1 
The t-Distribution

Value of t for a Confidence 
Interval of 90% 95% 98% 99%

Critical value of |t| for
P values of

0.10 0.05 0.02 0.01

Number of degrees 
of freedom

1 6.31 12.71 31.82 63.66
2 2.92 4.30 6.96 9.92
3 2.35 3.18 4.54 5.84
4 2.13 2.78 3.75 4.60
5 2.02 2.57 3.36 4.03
6 1.94 2.45 3.14 3.71
7 1.89 2.36 3.00 3.50
8 1.86 2.31 2.90 3.36
9 1.83 2.26 2.82 3.25

10 1.81 2.23 2.76 3.17
12 1.78 2.18 2.68 3.05
14 1.76 2.14 2.62 2.98
16 1.75 2.12 2.58 2.92
18 1.73 2.10 2.55 2.88
20 1.72 2.09 2.53 2.85
30 1.70 2.04 2.46 2.75
50 1.68 2.01 2.40 2.68

1.64 1.96 2.33 2.58

Note: The critical values of |t| are appropriate for a two-tailed test. For a one-tailed test, use
the |t| value from the column with twice the P value.

pH Meter Results for the pH of Two Solutions, One Acidic and One Alkaline
Acidic 
solution

5.2 6.0 5.2 5.9 6.1 5.5 5.8 5.7 5.7 6.0

Alkaline 
solution

11.2 10.7 10.9 11.3 11.5 10.5 10.8 11.1 11.2 11.0

∞

µ = ±100 5 2 57
3 27

6
. .

.

µ = ±100 5 3 4. .
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For the acidic solution, the mean is found to be 5.6, with a standard deviation
of 0.341 and a relative standard deviation of 6.0%. The alkaline solution results
give a mean of 11.0, a standard deviation of 0.301 and a relative standard deviation
of 2.7%. Clearly, the precision for the alkaline solution is higher (RSD 2.7%
compared with 6.0%), indicating that the method used to calibrate the pH meter
worked better with higher pH. Because we expect the same pH meter to give the
same random error at all levels of pH, the low precision indicates that there is a
source of systematic error in the data. Clearly, the data can be very useful to
indicate the presence of any bias in an analytical measurement. However, what is
good or bad precision? The RSD for a single set of data does not give the scientist
much of an idea of whether it is the experiment that has a large error, or whether
the error lies with the specimens used. Some crude rules of thumb can be employed:
a RSD of less than 2% is considered acceptable, whereas an RSD of more than
5% might indicate error with the analytical method used and would warrant further
investigation of the method.

Where possible, we can employ methods such as experimental design to allow
for an examination of the precision of the data. One key requirement is that the
analyst must make more than a few measurements when collecting data and these
should be true replicates, meaning that a set of specimens or aliquots are prepared
using exactly the same methodology, i.e., it is not sufficient to make up one solution
and then measure it ten times. Rather, we should make up ten solutions to ensure
that the errors introduced in preparing the solutions are taken into account as well
as the measurement error. Modern instruments have very small measurement errors,
and the variance between replicated measurements is usually very low. The largest
source of error will most likely lie with the sampling and the preparation of solutions
and specimens for measuring.

The accuracy of a measurement is a parameter used to determine just how close
the determined value is to the true value for the test specimens. One problem with
experimental science is that the true value is often not known. For example, the
concentration of lead in the Humber Estuary is not a constant value and will vary
depending upon the time of year and the sites from which the test specimens s are
taken. Therefore, the true value can only be estimated, and of course will also contain
measurement and sampling errors. The formal definition of accuracy is the difference
between the experimentally determined mean of a set of test specimens, , and the
value that is accepted as the true or correct value for that measured analyte, µ0. The
difference is known statistically as the error (e) of x, so we can write a simple
equation for the error:

 (2.13)

The larger the number of aliquots or specimens that are determined, the greater
the tendency of  toward the true value µ0 (which is obtained from an infinite
number of measurements). The absolute difference between µ and the true value is
called the systematic error or bias. The error can now be written as:

 (2.14)

x

e x o= − µ

x

e x o= − + −µ µ µ
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The results obtained by experimentation (  and σ) will be uncertain due to
random errors, which will affect the systematic error or bias. These random errors
should be minimized, as they affect the precision of the method.

Several types of bias are common in analytical methodology, including laboratory
bias and method bias. Laboratory bias can occur in specific laboratories, due to an
uncalibrated balance or contaminated water supply, for example. This source of bias
is discovered when results of interlaboratory studies are compared and statistically
evaluated. Method bias is not readily distinguishable between laboratories following
a standard procedure, but can be identified when reference materials are used to
compare the accuracy of different methods. The use of interlaboratory studies and
reference materials allows experimentalists to evaluate the accuracy of their analysis.

2.4 SIGNIFICANCE TESTING

To decide whether the difference between the measured values and standard or
references values can be attributable to random errors, a statistical test known as a
significance test can be employed. This approach is used to investigate whether the
difference between the two results is significant or can be explained solely by the
effect of random variations. Significance tests are widely used in the evaluation of
experimental results. The term “significance” has a real statistical meaning and can
be determined only by using the appropriate statistical tools. One can visually
estimate that the results from two methods produce similar results, but without the
use of a statistical test, a judgment on this approach is purely empirical. We could
use the empirical statement “there is no difference between the two methods,” but
this conveys no quantification of the results. If we employ a significance test, we
can report that “there is no significant difference between the two methods.” In these
cases, the use of a statistical tool simply enables the scientist to quantify the differ-
ence or similarity between methods. Summary statistics can be used to provide
empirical conclusions, but no quantitative result. Quantification of the results allows
for a better understanding of the variables impacting on our data, better design of
experiments, and also for knowledge transfer. For example, an analyst with little
experimental experience can use significance testing to evaluate the data and then
incorporate these quantified results with empirical judgment. It is always a good
idea to use one’s common sense when applying statistics. If the statistical result flies
in the face of the expected result, one should check that the correct method has been
used with the correct significance level and that the calculation has been performed
correctly. If the statistical result does not confirm the expected result, one must be
sure that no errors have occurred, as the use of a significance test will usually confirm
the expected result.

The obligation lies with the analyst to evaluate the significance of the results
and report them in a correct and unambiguous manner. Thus, significance testing is
used to evaluate the quality of results by estimating the accuracy and precision errors
in the experimental data.

The simplest way to estimate the accuracy of a method is to analyze reference
materials for which there are known values of µ for the analyte. Thus, the difference

x
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between the experimentally determined mean and the true value will be due to both
the method bias and random errors.

Before we jump in and use significance tests, we need to first understand
the null hypothesis. In making a significance test we test the truth of a hypothesis,
which is known as a null hypothesis. The term “null” is used to imply that there
is no difference between the observed and known values other than that which
can be attributed to random variation. Usually, the null hypothesis is rejected if
the probability of the observed difference’s occurring by chance is less than 1
in 20 (i.e., 0.05 or 5%). In such a case, the difference is said to be significant
at the 0.05 (or 5%) level. This also means there will be a 1 in 20 chance of
making an incorrect conclusion from the test results. Test objects at the extremes
of the distribution can be incorrectly classified as being from outside the true
population, and objects that are, in fact, outside the true population can be
incorrectly classified as being from the sample population. We must be aware
that statistical tests will sometimes highlight occasional anomalies that must be
investigated further rather than rejected outright. These effects are most com-
monly seen when using statistical control charts, where there are a number of
specimens measured over a long period of time. For example, in a control chart
used to monitor a process over a period of 100 sample intervals, we expect to
find, on the average, five test objects outside the statistical bounds. Significance
testing falls into two main sections: testing for accuracy (using the student
t-test) and testing for precision (using the F-test).

2.4.1 THE F-TEST FOR COMPARISON OF VARIANCE (PRECISION)

The F-test is a very simple ratio of two sample variances (the squared standard
deviations), as shown in Equation 2.15

 (2.15)

where s1
2 is the variance for the first set of data and s2

2 is the variance for the
second data set. Remember that the ratio must return an F value such that F ≥ 1,
so the numerator and denominator must be arranged appropriately. Care must
be taken to use the correct degrees of freedom when reading the F table value
to ensure that they are matched to the denominator and numerator.

If the null hypothesis is retained, i.e., there is no statistical significant difference
between the two variances, then the calculated F value will approach 1. Some critical

ways; to test for a significant difference in the variances of the two samples or to
test whether the variance is significantly higher or lower for either of the two data
sets, hence two tables are shown, one for the one-tailed test and one for the two-
tailed test.

F
s

s
= 1

2

2
2
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TABLE 2.2a
Critical Values for F for a One-Tailed Test (p = 0.05)

v1

v2 1 2 3 4 5 6 7 8 9 10 20 30 •

1 161.4 199.5 215.7 224.6 230.2 234 236.8 238.9 240.5 241.9 248 250.1 254.3

2 18.51 19 19.16 19.25 19.3 19.33 19.35 19.37 19.38 19.4 19.45 19.46 19.5

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.62 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6 5.96 5.8 5.75 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.5 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.1 4.06 3.87 3.81 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.38 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.5 3.44 3.39 3.35 3.15 3.08 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 2.94 2.86 2.71

10 4.96 4.1 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.77 2.7 2.54

20 4.35 3.49 3.1 2.87 2.71 2.6 2.51 2.45 2.39 2.35 2.12 2.04 1.84

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 1.93 1.84 1.62

• 3.84 3 2.6 2.37 2.21 2.1 2.01 1.94 1.88 1.83 1.57 1.46 1

Note: v1 = number of degrees of freedom of the numerator; v2 = number of degrees of freedom of the denominator.
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TABLE 2.2b
Critical Values for F for a Two-Tailed Test ( p = 0.05)

v1

v2 1 2 3 4 5 6 7 8 9 10

1 647.7890 799.5000 864.1630 899.5833 921.8479 937.1111 948.2169 956.6562 963.2846 968.6274
2 38.5063 39.0000 39.1655 39.2484 39.2982 39.3315 39.3552 39.3730 39.3869 39.3980
3 17.4434 16.0441 15.4392 15.1010 14.8848 14.7347 14.6244 14.5399 14.4731 14.4189
4 12.2179 10.6491 9.9792 9.6045 9.3645 9.1973 9.0741 8.9796 8.9047 8.8439
5 10.0070 8.4336 7.7636 7.3879 7.1464 6.9777 6.8531 6.7572 6.6811 6.6192
6 8.8131 7.2599 6.5988 6.2272 5.9876 5.8198 5.6955 5.5996 5.5234 5.4613
7 8.0727 6.5415 5.8898 5.5226 5.2852 5.1186 4.9949 4.8993 4.8232 4.7611
8 7.5709 6.0595 5.4160 5.0526 4.8173 4.6517 4.5286 4.4333 4.3572 4.2951
9 7.2093 5.7147 5.0781 4.7181 4.4844 4.3197 4.1970 4.1020 4.0260 3.9639
10 6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 3.9498 3.8549 3.7790 3.7168
20 5.8715 4.4613 3.8587 3.5147 3.2891 3.1283 3.0074 2.9128 2.8365 2.7737
30 5.5675 4.1821 3.5894 3.2499 3.0265 2.8667 2.7460 2.6513 2.5746 2.5112
• 5.0239 3.6889 3.1161 2.7858 2.5665 2.4082 2.2875 2.1918 2.1136 2.0483

Note: v1 = number of degrees of freedom of the numerator; v2 = number of degrees of freedom of the denominator.
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22 Practical Guide to Chemometrics

For example, suppose we wish to determine whether two synthetic routes for
producing the same product have the same precision. The data for the two routes
are shown below.

To test that the precision of the two routes is the same, we use the F test, so

As we are testing for a significant difference in the precision of the two routes,
the two-tailed test value for F is required. In this case, at the 95% significance level,
for 5 degrees of freedom for both the numerator and denominator, the critical value
of F is 7.146. As the calculated value from the data is smaller than the critical value
of F, we can see that the null hypothesis is accepted and that there is no significant
difference in the precision of the two synthetic routes.

The F test is a very simple but powerful statistical test, as many other tests
require the variances of the data or populations to be similar (i.e., not significantly
different). This is quite logical; it would be rather inappropriate to test the means
of two data sets if the precisions of the data were significantly different. As mentioned
previously, the precision is related to the reproducibility of the data collected. If we
have poor reproducibility, then the power and the significance of further testing are
somewhat limited.

2.4.2 THE STUDENT T-TEST

This test is employed to estimate whether an experimental mean, , differs signif-
icantly from the true value of the mean, µ. This test, commonly known as the t-test,
has several possible variations: the standard t-test, the paired t-test, and the t-test
with nonequal variance. The computation of each test is quite simple, but the analyst
must ensure that the correct test procedure is used.

In the case where the deviation between the known and the experimental values
is considered to be due to random errors, the method can be used to assess accuracy.
If this assumption is not made, the deviation becomes a measure of the systematic
error or bias. The approach to accuracy is limited to where test objects can be
compared with reference materials, which is not always the case, for example, where

Synthetic Route 1 (% yield) Synthetic Route 2 (% yield)
79.4 78.0
77.1 81.2
76.2 80.5
77.5 78.2
78.6 79.8
77.7 79.5
= 77.7 = 79.5

s1 = 1.12 s2 = 1.26
s1

2 = 1.25 s2
2 = 1.58

n = 6 n = 6 

x x

F = =1 58
1 25

1 26
.
.

.

x
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Statistical Evaluation of Data 23

an unusual sample matrix is present. In most cases, when a reference material is not
available, a standard reference method is used. Of course the reference method gives
only an estimate of the true value and may itself be incorrect (i.e., not the true value)
but the methodology does provide a procedural standard that can be used for com-
parison. It is very important to be able to perform the standard reference method as
well as any new method, as poor accuracy and precision in the reference results will
invalidate any statistical test results.

The numerical value of the t-test to be compared with critical values of t from
tables is calculated from experimental results using the following formula:

(2.16)

If the calculated value of t (without regard to sign) exceeds a certain critical
value (defined by the required confidence limit and the number of degrees of
freedom) then the null hypothesis is rejected. For example, a method for determining
lead by atomic absorption returned the following values for a standard reference
material containing 38% Pb: 38.9, 37.4, and 37.1%

Let us test the result for any evidence of systematic error. We calculate the
appropriate summary statistics and the critical value of t:

Comparing the calculated value of t with the critical value at the 95% confidence

critical level at the desired confidence level, so the null hypothesis is retained and
there is no evidence of systematic error in these data.

It is worth noting that the critical t value for an infinite number of test objects
at the 95% confidence limit is 1.96 and here, with a sample size of n = 3, the value
is 4.3, so clearly the larger the number of test objects, the smaller the t critical value
becomes. For example, for a sample size of n = 6 (and therefore 5 degrees of
freedom), the t critical value is 2.57. This is useful, as n = 6 is a very common
number of test objects to run in an analytical test, and so remembering the critical
value saves one from hunting statistical tables. If the calculated value for a data set
is less than 2.57, the null hypothesis is retained, and if it is greater than 2.57 the
null hypothesis is rejected.

t
x

n

= − µ
σ

x

t

=

=

=

= − =

37 8

0 964

38 9

37 8 38 9
0 964

3

1 9

. %

. %

. %

. .
.

.

σ

µ

88

4 30ttables,95% = .
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2.4.3 ONE-TAILED OR TWO-TAILED TESTS

This may seem like the introduction of jargon into the hypothesis testing but actually
it is just more common sense. As has been mentioned, the sign of the value used in
the t-test is meaningless—it can be positive or negative. This is because the mean
of a sample set may be lower (negative sign) or higher (positive sign) than the
accepted true value. The normal distribution is symmetrical about the mean, so if
all one wishes to determine is whether the two means are from the same population
(i.e., there is no significant difference in the means) then you can use a two-tailed
test, as the value can be either higher or lower than the true mean. However, if one
wishes to determine whether a sample mean is either higher or lower, a one-tailed
test must be used. This is very useful, especially when one wants to compare limits
of detection. For example, this approach can be used to determine whether a new
method has a significantly lower limit of detection, rather than just a lower limit of
detection.

As mentioned previously, experimentalists need to consider the questions they
want to have answered before using statistical tests, as the quality of the results is
dependent upon the right question’s being asked. As with the F test, care must be
taken when using these tests to ensure that the correct values are used. Many
spreadsheets will also perform statistical testing, but the answers are often not as
clear (they often return a probability of significance that some find is somewhat less
clear than a simple comparison). The other piece of jargon that one will come across
when using significance testing is the number of degrees of freedom (d.o.f.), usually
given the notation (n – 1), where n is the number of objects (or the number of
experiments performed). The best way to understand d.o.f. is to think of the number
of things that have varied during the collecting of the data. If you run one experiment
or take one sample there is no possible variation, therefore d.o.f. will be equal to
zero. However, if you measure six objects (or perform six experiments), there are
five possible sources of variation. The correction for d.o.f is very important, espe-
cially when comparing data sets with different numbers of experiments, but the rule
for calculating it remains the same; d.o.f. is the number of possible variations within
the data collected.

There are three major uses for the t-test:

1. Comparison of a sample mean with a certified value
2. Comparison of the means from two samples
3. Comparison of the means of two methods with different samples

All three of these situations can be tested for statistical significance, the only
difference is the type of test used in each case. In most cases in the real analytical
world, the first and last cases are the most commonly encountered.

2.4.4 COMPARISON OF A SAMPLE MEAN WITH A CERTIFIED VALUE

A common situation is one in which we wish to test the accuracy of an analytical
method by comparing the results obtained from it with the accepted or true value
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Statistical Evaluation of Data 25

of an available reference sample. The utilization of the test is illustrated in the
following example:

 (obtained from 10 replicate test objects)
s = 0.6
µ = 83 (the accepted value or true value of the reference material)

Using the general form of Student’s t-test, we calculate a value of t from the 
experimental data.

From tables, we obtain the critical value of t = 1.83 for a one-tailed test (i.e., the
result from our method is significantly higher than the reference sample value at the 95%
confidence limit). Comparing the calculated value of t with the critical value of t, we
observe that the null hypothesis is rejected and there is a significant difference between
the experimentally determined mean compared with the reference result. Clearly, the
high precision of the method (0.6) compared with the deviation between mean result
and the accepted or true value (85–83), contributes to the rejection of the null hypothesis.

2.4.5 COMPARISON OF THE MEANS FROM TWO SAMPLES

This version of the t-test is used when comparing two methods. Usually a new method
that is under development is compared with an existing approved method. Cases like
this exist when there is no suitable reference sample available for testing the new
method. This situation is quite common, as there are many possible sample matrices
and only limited availability of reference materials. This test is slightly different from
the one previously described because in this case there will be two standard deviations
(one for each method) as well as the two means. Prior to conducting the test, we first
need to ensure that the variances for both methods are statistically similar prior to
performing any analysis on the sample means. Hence, we perform the F test first. The
following example is used to illustrate the comparison.

First, we will perform the F test to ensure that the variances from each method
are statistically similar.

Reference Method New Method
= 6.40 = 6.56

s1 = 0.126 s2 = 0.179
s1

2 = 0.015 s2
2 = 0.032

n = 10 n = 10

x = 85

t
x
s

n

= − = − =µ 85 83
0 6

10

10 5
.

.

x 1 x 2

F
s

s
= = =1

2

2
2

0 032
0 015

2 13
.
.

.
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For a two-tailed test (as we are testing to determine that the two variances are
statistically similar), the critical value from tables gives F9.9 = 4.026 at the 95%
confidence limit. As the calculated value for F is lower than the critical value, we
accept the null hypothesis that there is no significant difference in the variances from
the two methods.

We can now apply the t-test. However, as there are two standard deviations, we
must first calculate the pooled estimate of the standard deviation, which is based on
their individual standard deviations. To do this we use Equation 2.17:

 (2.17)

giving the following result

The calculated value of t is computed using Equation 2.18:

 (2.18)

giving the result, t = 2.35.

As there are 18 degrees of freedom, the critical value for t at the 95% confidence
limit for a two-tailed test is 2.10. Given that the calculated value for t is greater than
the critical value, the null hypothesis is rejected, and we conclude there is a statistical
significant difference between the new method and the reference method. We con-
clude that the two methods have similar precision but significantly different accuracy.

2.4.6 COMPARISON OF TWO METHODS WITH DIFFERENT TEST 
OBJECTS OR SPECIMENS

Sometimes when comparing two methods in analytical chemistry we are unable to
obtain true replicates of each specimen or aliquot, due to limited availability of the
test material or the requirements of the analytical method. In these cases, each test
object or specimen has to be treated independently for the two methods, i.e., it is
not possible to calculate a mean and standard deviation for the samples as each

s
n s n s

n n
2 1 1

2
2 2

2

1 2

1 1

2
=

− + −
+ −

( ) ( )

s2 9 0 015 9 0 032
18

0 0235= × + × =. .
.

s = 0 153.

t
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+






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
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
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specimen analyzed is different. It is worth remembering that the t-test is not for
testing the specimens but the methods that have been used to analyze them. The
type of test that is used for this analysis of this kind of data is known as the paired
t-test. As the name implies, test objects or specimens are treated in pairs for the two
methods under observation. Each specimen or test object is analyzed twice, once
by each method. Instead of calculating the mean of method one and method two,
we need to calculate the differences between method one and method two for each
sample, and use the resulting data to calculate the mean of the differences  and
the standard deviation of these differences, sd. The use of the paired t-test is illustrated
using the data shown below as an example.

We calculate the t statistic using Equation 2.19:

 (2.19)

Using the results from Equation 2.19, we obtain the following value for the
calculated value of the t-statistic:

The critical value of t at the 95% confidence limit is 2.26, so we accept the null
hypothesis that there is no significant difference in the accuracy of the two methods.
The paired t-test is a common type of test to use, as it is often the availability of
test objects or specimens that is the critical factor in analysis.

2.5 ANALYSIS OF VARIANCE

In the previous section, Student’s t-test was used to compare the statistical signifi-
cance of mean results obtained by two different methods. When we wish to compare
more than two methods or sample treatments, we have to consider two possible
sources of variation, those associated with systematic errors and those arising from

Aliquot Method One Method Two Difference
1 90 87 3
2 30 34 −4
3 62 60 2
4 47 50 −3
5 61 63 −2
6 53 48 5
7 40 38 2
8 88 80 8
9 76 78 −2

10 10 15 −5

xd

t
x n

s
d

d

=

t = =0 4 10
4 029

0 31
.
.

.
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28 Practical Guide to Chemometrics

random errors. To conform to standard nomenclature used with design of experi-
ments, it is useful to state here that the sample means are the same as the treatment
means, which is the term normally associated with design of experiments (DoE).
Subsequently, we will use both sample and treatment means synonymously.

Analysis of variance (ANOVA) is a useful technique for comparing more than
two methods or treatments. The variation in the sample responses (treatments) is
used to decide whether the sample treatment effect is significant. In this way, the
data can be treated as random samples from h normal populations having the same
variance, σ2, and differing only by their means. The null hypothesis in this case is
that the sample means (treatment means) are not different and that they are from
the same population of sample means (treatments). Thus, the variance in the data
can be assessed in two ways, namely the between-sample means (treatment means)
and the within-sample means (treatment means).

A common example where ANOVA can be applied is in interlaboratory trials
or method comparison. For example, one may wish to compare the results from four
laboratories, or perhaps to evaluate three different methods performed in the same
laboratory. With inter-laboratory data, there is clearly variation between the labora-
tories (between sample/treatment means) and within the laboratory samples (treat-
ment means). ANOVA is used in practice to separate the between-laboratories
variation (the treatment variation) from the random within-sample variation. Using
ANOVA in this way is known as one-way (or one factor) ANOVA.

2.5.1 ANOVA TO TEST FOR DIFFERENCES BETWEEN MEANS

Let us use an example to illustrate how the ANOVA calculations are performed on some
test data. A chemist wishes to evaluate four different extraction procedures that can be
used to determine an organic compound in river water (the quantitative determination
is obtained using ultraviolet [UV] absorbance spectroscopy). To achieve this goal, the
analyst will prepare a test solution of the organic compound in river water and will
perform each of the four different extraction procedures in replicate. In this case, there
are three replicates for each extraction procedure. The quantitative data is shown below.

From the data we can see that the mean values obtained for each extraction
procedure are different; however, we have not yet included an estimate of the effect
of random error that may cause variation between the sample means. ANOVA is
used to test whether the differences between the extraction procedures are simply
due to random errors. To do this we will use the null hypothesis, which assumes
that the data are drawn from a population µ and have a variance of σ2.

Extraction Method Replicate Measurements 
(arbitrary units)

Mean Value 
(arbitrary units)

A 300, 294, 304 299
B 299, 291, 300 296
C 280, 281, 289 283
D 305, 310, 300 305

Overall Mean 296
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2.5.2 THE WITHIN-SAMPLE VARIATION 
(WITHIN-TREATMENT VARIATION)

The variance, s2, can be determined for each extraction method using the following
equation:

(2.20)

Using the data from above, we obtain the following result:

Variance for method

Variance for method

Variance for method

Variance for method

If we now take the average of these method variances, we obtain the within-
sample (within-treatment) estimate of the variance.

This is known as the mean square because it is a sum of the squared terms (SS)
divided by the number of degrees of freedom. This estimate has 8 degrees of freedom;
each sample estimate (treatment) has 2 degrees of freedom and there are four samples
(treatments). One is then able to calculate the sum of squared terms by multiplying
the mean square (MS) by the number of degrees of freedom.

2.5.3 BETWEEN-SAMPLE VARIATION 
(BETWEEN-TREATMENT VARIATION)

The between-treatment variation is calculated in the same manner as the within-
treatment variation.

Method mean variance 

            =

s
x x

n
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−
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Summarizing these results, we have:

Within-sample mean square = 25 with 8 d.o.f.
Between-sample mean square = 86 with 3 d.o.f.

The one-tailed F test is used to test whether the between-sample variance is
significantly greater than the within-sample variance. Applying the F test we obtain:

crit = 4.006 (p = 0.05). As the calculated
value of F is less than the critical value of F, the null hypothesis is accepted and
we conclude there is no significant difference in the method means.

A result indicating the differences are significantly different in a one-way ANOVA
would be indicative of various problems, which could range from one mean being
very different, to all means being different, and as such it is important to use a simple
method to estimate the source of this variation. The simplest method of estimating the
difference between different mean values is to calculate the least significant difference
(l.s.d.). A simple method for deciding the cause of a significant result is to arrange the
means in increasing order and compare the difference between adjacent means with
the least significant difference. The l.s.d. is calculated using the following formula:

 (2.21)

where s is the within-sample estimate of variance and h(n – 1) is the number of
degrees of freedom. For the data used previously, the least significant difference is

which, when compared with the data for the adjacent means, gives:

, , ,

The difference between adjacent values clearly shows that there are no signifi-
cance differences in the means, as the least significant difference, 9.63, is much
larger than any of the differences between the pairs of results (the largest difference
is between A and C is only 1.0 in magnitude).

2.5.4 ANALYSIS OF RESIDUALS

Results for which the mean values of the samples (treatments) are different, but which
have the same variance, is said to be homoscedastic, as opposed to having different
variance, which is said to be heteroscedastic. Thus, in the case of homoscedastic varia-
tion, the variance is constant with increasing mean response, whereas with heteroscedastic
variation the variance increases with the mean response. ANOVA is quite sensitive to

Fcalc = =86
25

3 44.

l.s.d. =




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× −s
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2
3
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
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× =. .

xA = 25 5. xB = 25 0. xC = 24 5. xD = 25 0.
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heteroscedasticity because it attempts to use a comparison of the estimates of variance
from different sources to infer whether the treatments have a significant effect. If the
data tends to be heteroscedastic, it might be necessary to transform the data to stabilize
the variance and repeat the ANOVA. Typical transformations for experimental data
would be taking the square root, logarithm, reciprocal, or reciprocal square root.

It is common to use a shorter calculation than the one described previously to
achieve the results from ANOVA (or to simply use software). The shortened form
of the calculation involves summing the squares of the deviations from the overall
mean and dividing by the number of degrees of freedom. Assessing total variance
this way takes into account both the within- and between-treatment variations. There
is a direct relationship between the sum of between- and within-treatment variations,
so by calculating the between-treatment variation and the total variation, one can
obtain the within-treatment variation using subtraction.

The table below shows the summary approach for the ANOVA calculations.

In the above table, N is the total number of measurements, n is the number of
replicate measurements for each sample or treatment, h is the number of treatments,
Ti is the sum of the measurements for the ith sample or treatment, T is the grand
total of all measurements, and Σx2 is the sum of squares of all the data points.

We can illustrate this approach with some new data that were collected to
determine whether there is a random sampling effect, rather than a fixed effect,
which is the source of variation in the data. The data collected were for the deter-
mination of arsenic in coal. The data consisted of five samples of coal and each
sample was analyzed four times. The data for arsenic content (ng/g) is shown below:

The first step is to calculate the mean squares. It is worth remembering that, as
the calculation is based upon variance in the data, one can always subtract a common
value from the data to make the longhand calculation easier. This will have no effect

Source of Variation Sum of Squares
Degrees of 
Freedom

Between-samples 
(treatments)

h − 1

Within-samples (treatments) By subtraction By subtraction
Total N − 1

Coal Sample Arsenic Content (ng/g) Mean
A 72, 73, 72, 71 72
B 73, 74, 75, 73 74
C 74, 75, 74, 76 75
D 71, 72, 71, 73 72
E 76, 75, 71, 76 75
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on the result (and if the calculations are performed by computer, it is not relevant).
For this data, the common scalar 70 has been removed from all the data.

For the arsenic data, n = 4, h = 5, N = 20, and Σx2 = 331. We can now use this
data to set up an ANOVA table:

From the ANOVA table we can see that the between-treatment mean square is much
larger than the within-treatment mean square, but to test the significance of this we use the
F-test:

Fcalc = 12/0.53 = 5.446

The Fcrit(4,15) value from tables at the 95% confidence limit for a two-tailed test is
3.804. Therefore, the Fcalc value is larger then the critical value, which means there is
a significant difference in the sampling (treatment) error compared with the analytical
error. This finding is very important, especially for environmental data where sampling
is very much a part of the analytical methodology, as there is a drive among analysts
to gain better and better analytical precision by the employment of higher-cost, high-
resolution instruments, but without proper attention to the precision in the sampling
procedure. This fact is often borne out in the field of process analysis, where instead
of sampling a process stream at regular intervals and then analyzing the samples in a
dedicated laboratory (with high precision), analyzers are employed on-line to analyze
the process stream continuously, hence, reducing the sampling error. Often these
instruments have poorer precision than the laboratory instruments, but the lower sam-
pling error means that the confidence in the result is high.

One can conclude that ANOVA can be a very useful test for evaluating both
systematic and random errors in data, and is a useful addition to the basic statistical
tests mentioned previously in this chapter. It is important to note, however, there are
other factors that can greatly influence the outcome of any statistical test, as any
result obtained is directly affected by the quality of the data used. It is therefore
important to assess the quality of the input data, to ensure that it is free from errors.
One of the most commonly encountered errors is that of outliers.

Sample Data (Original Values — 70) T T 2

A 2, 3, 2, 1 9 81
B 3, 4, 5, 3 15 225
C 4, 5, 4, 6 19 361
D 1, 2, 1, 3 7 49
E 6, 5, 7, 6 24 576

Sum of Squares Degrees of Freedom Mean Squares
Between-sample (treatment) 1291/4-742/20 = 49 4 49/4 = 12
Within-sample (treatment) 8 15 8/15 = 0.53
Total 331-742/20 = 57 19

T =∑ 74 T 2 1292=∑
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2.6 OUTLIERS

The inclusion of bad data in any statistical calculation can lead the unwary to false
conclusions. The effect of one or a few erroneous data points can totally obscure under-
lying trends in the data, and it is especially true in experimental science when the number
of samples used is few and the cost of the experimentation is high. Clearly, the best manner
in which to avoid including outliers in your data is to have sufficient replicates for all
samples, but often this is not possible in practice. There are two common sources of
outliers in data, the first being outliers in the analytical measurement or samples. These
are called experimental outliers. The second case is where the error lies not with the
measurement but with the reference value either being incorrectly entered into a data book
or the standard being made up incorrectly. These kinds of errors are not that uncommon,
but they are too easily ignored. One cannot simply remove data that does not seem to fit
the original hypothesis; the data must be systematically scrutinized to ensure that any
suspected outliers can be proven to lie outside the expected range for that data.

For a quick investigation of a small number of data (less than 20 values), one
can use the Dixon Q test, which is ready-made for testing small sets of experimental
data. The test is performed by comparing the difference between a suspected outlier
and its nearest data point with the range of the data, producing a ratio of the two
(i.e., a Qcalc value, see Equation 2.22), which is then compared with critical values
of Q from tables (see Table 2.3).

(2.22)

TABLE 2.3
Critical Values of Dixon’s Q Test for a Two-Tailed 
Test at the 95% Confidence Level[2] 

3 0.970
4 0.829
5 0.710
6 0.625
7 0.568
8 0.526
9 0.493

10 0.466
11 0.444
12 0.426
13 0.410
14 0.396
15 0.384
16 0.374
17 0.365
18 0.356
19 0.349
20 0.342

Q = −
−

suspect value nearest value
largest value ssmallest value
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As is common with all other hypothesis tests covered in this chapter, the calcu-

is rejected and the suspect data is treated as an outlier. Note that the result from the
calculation is the modulus result (all negatives are ignored).

If we examine the data used in the arsenic in coal example (for sample or
treatment E), we have the following results: arsenic content (ng/g) 76, 75, 71, 76.

The hypothesis we propose to test is that 71 ng/g is not an outlier in this data.
Using the Dixon Q test, we obtain the following result:

Comparing the calculated value with the critical value for the 95% level,
Qcrit = 0.829, we observe that the calculated value is lower, so the suspect data point
is retained, e.g., 71 ng/g arsenic is not an outlier.

It is useful to see what effect retaining or not retaining a data point has on the
mean and standard deviation for a set of data. The table below shows descriptive
statistics for this data.

From the above table it is clear that the main effect is on of the standard deviation,
which is an order of magnitude smaller when the suspected point is rejected. This
example illustrates how it is important to apply a suitable statistical test, as simply
examining the effect of deleting a suspected outlier on the standard deviation may
have led us to incorrectly reject the data point. The result from the Q test is clearly
quite close (the calculated value is very similar to the critical value), but the data point
is not rejected. It is important to get a “feel” of how far a data point must be away
from the main group of data before it will be rejected. Clearly, if the main group of
data has a small spread (or range from highest to lowest value) then the suspect value
will not have to lie very far away from the main group of data before it is rejected. If
the main group of data has a wide spread or range, then the outlier will have to lie far
outside the range of the main group of data before it will be seen as an outlier.

For the data from the arsenic in the coal example, if we replaced the 71 ng/g
value with 70 ng/g, we would obtain Qcalc = 0.833, which is greater than the Qcrit =
0.829, and so it would now be rejected as an outlier.

Typically, two types of “extreme values” can exist in our experimentally mea-
sured results, namely stragglers and outliers. The difference between the two is the
confidence level required to distinguish between them. Statistically, stragglers are
detected between the 95% and 99% confidence levels; whereas outliers are detected
at >99% confidence limit. It is always important to note that no matter how extreme
a data point may be in our results, the data point could in fact be correct, and we
need to remember that, when using the 95% confidence limit, one in every 20 samples
we examine will be classified incorrectly.

s
Retaining 71 ng/g 74.5 2.4
Rejecting 71 ng/g 75.6 0.58

Q = −
−

= − =71 75
76 71

4
5

0 8.

x

DK4712_C002.fm  Page 34  Thursday, March 2, 2006  5:04 PM

© 2006 by Taylor & Francis Group, LLC

lated value of Q is compared with the appropriate critical value (shown in Table
2.3), and if the calculated value is greater than the critical value, the null hypothesis



Statistical Evaluation of Data 35

A second method that can be employed for testing for outliers (or extreme values)
in experimental data are the Grubbs’ tests (Grubbs’ 1, 2, and 3). The formulae can
be found in Equation 2.23, Equation 2.24, and Equation 2.25, respectively,

 (2.23)

(2.24)

 (2.25)

where s is the standard deviation, xi is the suspected extreme value, xn and x1 are
the most extreme values, and sn−2 is the standard deviation for the data excluding
the two most extreme values.

What is unique about the use of the Grubbs’ tests is that, before the tests are
applied, data are sorted into ascending order. The test values for G1, G2, and G3 are
compared with values obtained from tables (see Table 2.4), as has been common
with all the tests discussed previously. If the test values are greater than the tabulated
values, we reject the null hypothesis that they are from the same population and
reject the suspected values as outliers. Again, the level of confidence that is used in
outlier rejection is usually at the 95 and 99% limits.

TABLE 2.4
Critical Values of G for the Grubbs’ Test

95% Confidence Limit 99% Confidence Limit

G1 G2 G3 G1 G2 G3

3 1.153 2.00 — 1.155 2.00 —
4 1.463 2.43 0.9992 1.492 2.44 1.0000
5 1.672 2.75 0.9817 1.749 2.80 0.9965
6 1.822 3.01 0.9436 1.944 3.10 0.9814
7 1.938 3.22 0.8980 2.097 3.34 0.9560
8 2.032 3.40 0.8522 2.221 3.54 0.9250
9 2.110 3.55 0.8091 2.323 3.72 0.8918
10 2.176 3.68 0.7695 2.410 3.88 0.8586
12 2.285 3.91 0.7004 2.550 4.13 0.7957
13 2.331 4.00 0.6705 2.607 4.24 0.7667
15 2.409 4.17 0.6182 2.705 4.43 0.7141
20 2.557 4.49 0.5196 2.884 4.79 0.6091
25 2.663 4.73 0.4505 3.009 5.03 0.5320
30 2.745 4.89 0.3992 3.103 5.19 0.4732
35 2.811 5.026 0.3595 3.178 5.326 0.4270
40 2.866 5.150 0.3276 3.240 5.450 0.3896
50 2.956 5.350 0.2797 3.336 5.650 0.3328

G
x x

s
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The following example shows how the Grubbs’ test is applied to chemical data.
The results obtained for the determination of cadmium in human hair by total reflection
x-ray fluorescence (TXRF) are shown below:

Cadmium (ng/g)

First, we arrange the data in ascending order of magnitude:

n = 16, mean = 1.922, s = 0.548, = 0.2025

The 95% confidence limit for Grubbs’ critical values for the data are:

G1 = 2.409, G2 = 4.17, and G3 = 0.6182.

Comparing the calculated values of G with the critical values, we observe that
there are no outliers in this data. A comparison at the 99% confidence limit also
returns the same result. Again, this result is worth commenting upon, as the range
of values for these data seem quite large (from 1.059 to 2.969), which might indicate
that there are extreme values in the data. There is no statistical evidence of this from
any of the three Grubbs’ tests applied. This is because the data have quite a large
spread, which is indicative of a lack of analytical precision in the results, rather than
the presence of any extreme values. Simply looking at data and seeing high or low
values is not a robust method for determining extreme values.

It is worth noting that a useful rule of thumb can be applied to the rejection of
outliers in data. If more than 20% of the data are rejected as outliers, then one should
examine the quality of the collected data and the distribution of the results.

2.7 ROBUST ESTIMATES OF CENTRAL TENDENCY 
AND SPREAD

Most of the methods discussed previously were based on the assumption that the
data were normally distributed, however there are numerous other possible distribu-
tions. If the number of objects or specimens measured is small, it is often not possible
to determine whether a set of data conform to any known distribution.

1.574 1.275 1.999 1.851 1.924 2.421 2.969 1.249

1.810 1.425 2.914 2.217 1.059 2.187 1.876 2.002

x1

1.059 1.249 1.275 1.425 1.574 1.81 1.851 1.876 1.924 1.999 2.002 2.187 2.217 2.421 2.914 2.969
xn

sn−2
2

G1

2 969 1 922
0 548

1 91= − =. .
.

.

G2

2 969 1 059
0 548

3 485= − =. .
.

.

G3 2
1

13 0 2025
15 0 548

0 584= − ×
×







=.
.

.
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Robust statistics are a set of methods that are largely unaffected by the presence
of extreme values. Commonly used statistics of this type are the median and the
median absolute deviation (MAD). The median is a measure of the central tendency
of the data and can be used to replace the mean value. If the data are normally
distributed (i.e., symmetrical about the mean) then the mean and median will have
the same value. The calculation of the median is very simple. It is calculated by
arranging the data in ascending order. From the series of sorted data, the median is
simply the central number in this series (or the mean of the two center numbers if
the number of points are even).

Below is another example from the analysis of human hairs. The analytical
results are for the concentration of copper (in ng/g):

Copper (ng/g)

Arranging this data in order, we have:

The median is then 47.38, and the mean is 48.79.
The median absolute deviation, MAD, is a robust estimate for gauging the spread

of the data and similar to the standard deviation. To calculate the MAD value, we
use Equation 2.26,

 (2.26)

where  is the median of the data. Using the copper in human hair data as an
example, we obtain the following,

MAD = median (1.09 1.09 1.43 3.19 3.53 4.06 5.55 8.37 16.77 18.04 18.11 41.96)

MAD =

whereas the standard deviation = 15.99.
If the MAD value is scaled by a factor of 1.483, it becomes comparable to the

standard deviation (MADE). In this example, MADE = 7.13, which is less than half
the standard deviation. We can clearly see that although the mean and the median
values are quite similar, the spread of the data is quite different (i.e., there is a large
difference between the MAD and standard deviation).

48.81 30.61 39.01 65.42 44.19 51.44 46.29 50.91 48.47 41.83 29.27 79.34

29.27 30.61 39.01 41.83 44.19 46.29 48.47 48.81 50.91 51.44 65.42 89.34

MAD median( )= −| |x xi

�

�
x

MAD median 29.27 47.38= − −(| |,| . . |, )30 67 47 38 …

4 06 5 55
2

4 805
. .

.
+ =
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Of course, we could use the tests described previously to see whether there are
extreme values in the data, but then we cannot be certain that those extreme values
are outliers or that the data simply does not follow a normal distribution. To answer
this question, we have to look at the origin of the data to try to understand which
tests to apply and for what reason. For example, we would expect replicates of an
analysis to follow a normal distribution, as the errors that are expected would be
random errors. However, in the case of copper in human hair samples, the hair comes
from different people, thus different environments, colors, hair products, etc., so the
distribution of the data is not so easy to estimate.

2.8 SOFTWARE

Most of the methods detailed in this chapter can be performed using computer
software, even nonspecialized software such as a spreadsheet. This saves time and
reduces errors in the data processing stage, but the results are only as good as the
data from which they are derived. There still remains the problem in choosing the
correct test to use for your data and ensuring that the data are in the correct format
for the software, which sometime is not quite as straightforward as one would hope.
It is also worth noting that the output from the software is not as clear as the
comparison of a test result with a tabulated result, as most software packages
commonly estimate the probability level for the calculated test statistic in question
(0 < p ≤ 1), rather than comparing the value of the calculated test statistic to a
tabulated value. Some users can find this confusing. One of the best methods to
ensure that you understand the output from the software is to use data for which
you know the correct answer worked out longhand (one of the previous examples
would suffice) and then use that data with the software package of your choice to
compare the output. Also, be aware that some of the statistical tools available with
many software packages are often not installed by default and have to be installed
when first used.

For example, using Microsoft Excel™ to perform the t-test, one would use the
following syntax:

= TTEST(ARRAY1, ARRAY2, tails, type)

where Array1 and Array2 are the data you wish to use, tails is 1 for one-tailed tests
and 2 for two-tailed tests, and type is 1 for a paired test, 2 for two samples with
equal variance, and 3 for two samples with unequal variance. The output or result
is not a tcalc value but a probability. If we use the data from the previous paired
t-test, the probability returned is 0.77, which is less than the 0.95 probability level,
and, as such, we accept the null hypothesis, which is the same result we obtained
using the longhand method and the t-test tables.

One can also use the Data Analysis Toolbox feature of Microsoft Excel. If this
feature does not appear in the Tool menu, you will need to install it. To perform the
same test, select Tools\Data Analysis Toolbox\t test: Paired two Sample for Means.
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Select the input range for each variable and then output range as a new workbook.
The output is shown below:

2.8.1 ANOVA USING EXCEL

The ANOVA calculation can be performed in Excel only if the Data Analysis Toolbox
has been installed. To perform the calculation, you can select the ANOVA tool under
Tools\Data Analysis\ANOVA Single Factor from the Excel toolbar. Using the fol-
lowing example of arsenic content of coal taken from different parts of a ship’s hold,
where there are five sampling points and four aliquots or specimens taken at each
point, we have the data as shown below:

We wish to determine whether there is a statistically significant difference in
the sampling error vs. the error of the analytical method. It has been previously
mentioned in this chapter that the sampling errors are often much greater than the
analytical errors, and so now we can use ANOVA to illustrate this example.

To perform the analysis, enter the data into an Excel spreadsheet (start at the top
left-hand corner cell A1), then select the ANOVA : Single Factor option from the Tool
Menu. Select all the data by entering $B$2:$E$6 in the input range box (or select the
data using the mouse). Now ensure that you select the Grouped By Rows Radio Button,
as the default is to assume the data are grouped in columns (remember we want to

t-Test: Paired Two Sample for Means

 Variable 1 Variable 2

Mean 55.7 55.3

Variance 642.0111111 518.9

Observations 10 10

Pearson correlation 0.990039365

Hypothesized mean difference 0

d.o.f. 9

t Stat 0.297775

P(T ≤ t) one-tail 0.386317127

t Critical one-tail 1.833113856

P(T ≤ t) two-tail 0.772634254

t Critical two-tail 2.262158887  

Sample Arsenic Content (ng/g)

A 72 73 72 71
B 73 74 75 73
C 74 75 74 76
D 71 72 71 73
E 76 75 71 76
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determine whether there is a difference in the sampling error over the analytical error).
Check that the probability level (alpha) is set to 0.05 (this is the default, but it might
have been changed by another user) to ensure that one is testing at the 95% confidence
level. The output is best saved into another workbook and is shown below:

From these results, it is clear that the random sampling error (the between-group
variance) is statistically significantly different compared with the random analytical
error (the within-groups variance).

Excel, a very powerful tool for many statistical calculations, is widely available.
The routine use of a spreadsheet will dramatically reduce any errors due to incorrect
calculations performed by hand as the data you are using are always visible on
screen and so any errors are easily spotted. Also, saving the workbooks allows one
to review any calculations over time to ensure no errors have occurred.
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ANOVA: Single Factor

SUMMARY

Groups Count Sum Average Variance

A 4 288 72 0.666667

B 4 295 73.75 0.916667

C 4 299 74.75 0.916667

D 4 287 71.75 0.916667

E 4 298 74.5 5.666667

ANOVA

Source of Variation SS df MS F P-value F crit

Between groups 31.3 4 7.825 4.307339 0.016165 3.055568

Within groups 27.25 15 1.816667

Total 58.55 19     
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In this chapter we introduce the multivariate normal distribution and its use for
hypothesis testing in chemometrics. The world around us is inherently multivariate,
and it makes sense to consider multiple measurements on a single object simulta-
neously. For example, when we measure the ultraviolet (UV) absorbance of solution,
it is easy to measure its entire spectrum quickly and rapidly rather than measuring
its absorbance at a single wavelength. We will learn that by properly considering
the distribution of multiple variables simultaneously, we get 

 

more information 

 

than
is obtained by considering each variable individually. This is the so-called 

 

multi-
variate advantage

 

. The additional information comes to us in the form of correlation.
When we look at one variable at a time, we neglect the correlation between variables,
and hence we miss part of the picture.

Before launching into the topic of multivariate distributions, a review of univari-
ate sampling distributions is presented as well as a review of univariate hypothesis
testing. We begin with a discussion of the familiar Gaussian or normal probability
distribution function, the chi-square distribution, and the 

 

F

 

-distribution. A review of
these distribution functions and their application to univariate descriptive statistics
provides the necessary background and sets the stage for an introduction to multi-
variate descriptive statistics and their sampling distributions.

 

3.1 SAMPLING AND SAMPLING DISTRIBUTIONS

 

Any statistical study must begin with a representative sample. By making measure-
ments on a small representative set of objects, we can learn something about the
characteristics of the whole group. The statistical descriptions we develop can then
be used for making inferences and decisions. There are many methods for selecting
a sample, but the most common is 

 

simple random sampling

 

. When the population
being sampled is an infinite population (the usual case in chemistry), each object
selected for measurement must be (1) selected at random from the same population
and (2) selected independently from the other objects.

To a statistician, a population is a 

 

complete collection of measurements on objects that
share one or more common features

 

. For example, one might be interested in determining
the average age of male freshman students at a university. Such a group represents a 

 

finite
population

 

 of size 

 

n

 

, and one could characterize this population by calculating the 

 

popu-
lation mean

 

, 

 

µ

 

, and the 

 

population standard deviation

 

, 

 

σ

 

, for every individual.
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In chemistry, a more relevant example might be the determination of the com-
position of ingredients like pseudoephedrine hydrochloride, microcrystalline cellu-
lose, and magnesium stearate in granules of a pharmaceutical preparation. This
example represents an 

 

infinite population

 

, because the concentration of an ingredient
in an aliquot of material can take on any conceivable value.

The goal of the pharmaceutical manufacturing process is to produce a mixture of
granules having a homogeneous distribution of ingredients that are then fed to a tablet
press. Provided the composition of granules is homogeneous, the tablets so produced
would have uniform potency. In this example, it would not be practical to collect a
comprehensive set of information for the entire manufactured lot. Alternatively, one
might take several small aliquots of granules and assume that all chemical species
have an equal chance of appearing at identical concentrations in the individual aliquots.
Unfortunately, the composition of ingredients is most likely not distributed homoge-
neously throughout the granules, which therefore presents the analyst with a problem
when trying to obtain a representative sample. An inherent sampling error always
transpires owing to the heterogeneity of the population. In addition, an analysis error
exists that is caused by random error present in the measurements used for the analysis.
The resulting final variance, 

 

s

 

2

 

, can be represented as

 

s

 

2

 

 = 

 

s

 

s
2

 

+

 

 

 

s

 

a
2

 

(3.2)

where 

 

s

 

s
2

 

 denotes the sampling variance and 

 

s

 

a
2

 

 represents the variance due to
analysis. Here, the definition of the word “sample” means a 

 

subset of measurements
selected from the population of interest.

 

 Notice that chemists often refer to a sample
as a representative aliquot of substance that is to be measured, which is different
than the definition used by statisticians. The discussion that follows pertains prima-
rily to the sampling of homogeneous populations; a discussion of sampling hetero-
geneous populations can be found in more specialized texts.

 

3.1.1 T

 

HE

 

 N

 

ORMAL

 

 D

 

ISTRIBUTION

 

Consider the situation in which a chemist randomly samples a bin of pharmaceutical
granules by taking 

 

n

 

 aliquots of equal convenient sizes. Chemical analysis is then
performed on each aliquot to determine the concentration (percent by weight) of
pseudoephedrine hydrochloride. In this example, measurement of concentration is
referred to as a 

 

continuous random variable

 

 as opposed to a 

 

discrete random
variable. 

 

Discrete random variables include counted or enumerated items like the
roll of a pair of dice

 

.

 

 In chemistry we are interested primarily in the measurement
of continuous properties and limit our discussion to continuous random variables.

A 

 

probability distribution function

 

 for a continuous random variable, denoted
by 

 

f

 

(

 

x

 

), describes how the frequency of repeated measurements is distributed over
the range of observed values for the measurement. When considering the probability
distribution of a continuous random variable, we can imagine that a set of such
measurements will lie within a specific interval. The area under the curve of a graph
of a probability distribution for a selected interval gives the probability that a
measurement will take on a value in that interval.
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If normal distributions are followed, the probability function curves for the
concentration of pseudoephedrine hydrochloride from the previous example should
follow the familiar bell-shaped curve as shown in Figure 3.1, where 

 

µ

 

 specifies the

 

population mean 

 

concentration for a species and 

 

x

 

 represents an individual concen-
tration value for that species. The probability function for the normal distribution is
given by the function,

(3.3)

where 

 

σ

 

 is the population standard deviation.
The highest point in the curve is represented by the mean because the measure-

ments tend to cluster around some central or average value. Small deviations from
the mean are more likely than large deviations, thus the curve is highest at the mean,
and the tails of the curve asymptotically approach zero as the axes extend to infinity
in both directions. The shape of the curve is symmetrical because negative deviations
from the mean value are just as likely as positive deviations.

In this example, the normal distribution for pseudoephedrine hydrochloride can
be described as 

 

x

 

 

 

=

 

 

 

N

 

(

 

µ

 

, 

 

σ

 

2

 

), where 

 

σ

 

2

 

 is termed the 

 

variance

 

. When sampling an
infinite population, as is the case in this example, it is impossible to determine the
true population mean, 

 

µ

 

, and standard deviation, 

 

σ

 

. A reasonable, more feasible

 

FIGURE 3.1

 

Distribution curves: (a) normal and (b) standard normal.
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approach is to use an assembly of 

 

n 

 

aliquots. In this case, (the mean of the 

 

n

 

aliquots taken) is an estimate of 

 

µ

 

, and 

 

σ

 

 is estimated by 

 

s

 

 (the standard deviation
for the 

 

n

 

 aliquots), which is calculated according to Equation 3.4:

(3.4)

The resulting concentration distribution is now characterized by using the notation
.

 

3.1.2 S

 

TANDARD

 

 N

 

ORMAL

 

 D

 

ISTRIBUTION

 

For convenience, the normal distribution can be transformed to a standard normal
distribution where the mean is zero and the standard deviation equals 1. The trans-
formation is achieved using Equation 3.5:

(3.5)

The probability distribution can now be represented by Equation 3.6

(3.6)

      

normal distribution. In terms of our pharmaceutical example, the normal concentra-
tion distribution for each chemical species with their different means and standard
deviations can be transformed to 

 

z

 

 

 

=

 

 

 

N

 

(0,1). A single table of probabilities, which
can be found in most statistical books, can now be used.

 

3.2 CENTRAL LIMIT THEOREM

 

According to the important theorem known as the 

 

central limit theorem

 

, if 

 

N

 

 samples
of size 

 

n

 

 are obtained from a population with mean, 

 

µ

 

, and standard deviation, 

 

σ

 

,
the probability distribution for the means will approach the normal probability
distribution as 

 

N

 

 becomes large 

 

even if the underlying distribution is nonnormal

 

.
For example, as more samples are selected from a bin of pharmaceutical granules,
the distribution of 

 

N

 

 means, , will tend toward a normal distribution with mean 

 

µ

 

and standard deviation regardless of the underlying distribution.

 

3.2.1 I

 

MPLICATIONS
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 C

 

ENTRAL

 

 L

 

IMIT

 

 T

 

HEOREM

 

With the central limit theorem, we have expanded from dealing with individual
concentration determinations to concentration means. Each chemical species distri-
bution can be transformed to a standard distribution by

(3.7)
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and represented by the notation z = N(0,1). Figure 3.1 shows a plot of the standard
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with functioning as the random variable. Provided that 

 

σ

 

 is known, the population
mean can now be estimated to lie in the range

(3.8)

where 

 

z

 

 is obtained for the desired level of confidence, 

 

α

 

/2, from a table of
probabilities. Equation 3.8 describes what is commonly called the 

 

confidence
interval of the mean

 

 at 100%(1 

 

−

 

 

 

α

 

). Using statistical tables to look up values of

 

z

 

, we can estimate the interval in which the true mean lies at any desired confidence
level. For example, if we determine the average concentration of pseudoephedrine
hydrochloride and its 95% confidence interval in a tablet to be 30.3 ± 0.2 mg, we
would say: “There is a 95% probability that the true mean lies in the interval 30.1
to 30.5 mg.”

 

3.3 SMALL SAMPLE DISTRIBUTIONS

 

The population mean and standard deviation cannot be determined for an infinite
population; hence, they must be estimated from a sample of size 

 

n

 

. When 

 

µ and σ
are estimated from small samples, and σ ≈ s, the uncertainty in their estimates
may be large, depending on the size of n, thus the confidence interval described in
Equation 3.8 must be inflated accordingly by use of the t-distribution. When n is
small, say 3 to 5, the uncertainty is large, whereas when n is large, say 30 to 50,
the uncertainty is much smaller.

3.3.1 THE T-DISTRIBUTION

In order to compensate for the uncertainty incurred by taking small samples of size

confidence intervals, replacing the normal probability distribution based on z values

probability distribution. For small samples of size n, the confidence interval of the
mean is inflated and can be estimated using Equation 3.9

(3.9)

where t expresses a value for n − 1 degrees of freedom at a desired confidence level.
The term degrees of freedom refers to the number of independent deviations

that are used in calculating s. For example, if one wished to estimate the
100%(1 − α) = 95% confidence interval of a mean at n − 1 = 5 degrees of freedom,
the critical value of tα/2 = 2.571 at α/2 = 0.025 obtained from standard t-tables would
be used in Equation 3.9. Here, α/2 = 0.025 represents the fraction of values in the
right-hand tail and the left-hand tail of the t-distribution. The selected values in the
corresponding t-distribution are illustrated graphically in Figure 3.2b. Equation 3.9
does not imply that the sample means are not normally distributed; rather, it suggests
that s is a poor estimate of σ except when n is large.

x

µ σ= ±x z x

µ ≈ x

µ α= ±x t sx/2

( )x xi −

DK4712_C003.fm  Page 46  Tuesday, January 31, 2006  11:50 AM

© 2006 by Taylor & Francis Group, LLC

n, the t probability distribution shown in Figure 3.2 is used in the calculation of

shown in Figure 3.1. When n ≥ 30, the t-distribution approaches the standard normal
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3.3.2 CHI-SQUARE DISTRIBUTION

In the previous section we discussed the ramifications of the uncertainty in estimating
means from small samples and described how the sample mean, , follows a
t-distribution. In this section, we discuss the ramifications of the uncertainty in
estimating s2 from small samples. The variable s2 is called the sample variance,
which is an estimate of the population variance, σ2. For simple random samples of
size n selected from a normal population, the quantity in Equation 3.10

(3.10)

follows a chi-square distribution with n − 1 degrees of freedom. A graph of the

Tables of the areas under the curve are available in standard statistical textbooks

FIGURE 3.2 Illustration of the t-distribution (a) for various degrees of freedom and (b) the
area under the curve equal to 0.95 at 5 degrees of freedom.
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chi-square distribution is shown in Figure 3.3 for selected degrees of freedom.
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and can be used to estimate the confidence interval for sample variances shown
in Equation 3.11

(3.11)

where α represents the fraction of values between the right-hand tail, , and left-
hand tail, , of the chi-square distribution as shown in Figure 3.3a.

3.4 UNIVARIATE HYPOTHESIS TESTING

In the previous sections we discussed probability distributions for the mean and the
variance as well as methods for estimating their confidence intervals. In this section
we review the principles of hypothesis testing and how these principles can be used
for statistical inference. Hypothesis testing requires the supposition of two hypotheses:
(1) the null hypothesis, denoted with the symbol H0, which designates the hypothesis
being tested and (2) the alternative hypothesis denoted by Ha. If the tested null
hypothesis is rejected, the alternative hypothesis must be accepted. For example, if

FIGURE 3.3 Illustration of the chi-square distribution (a) for various degrees of freedom and
(b) the area under the curve equal to 0.95 at 5 degrees of freedom.
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we were making a comparison of two means, and , the appropriate null hypoth-
esis and alternative hypothesis would be:

(3.12)

In order to test these two competing hypotheses, we calculate a test statistic and
attempt to prove the null hypothesis false, thus proving the alternative hypothesis
true. It is important to note that we cannot prove the null hypothesis to be true; we
can only prove it to be false.

3.4.1 INFERENCES ABOUT MEANS

Depending on the circumstances at hand, several different types of mean compari-
sons can be made. In this section we review the method for comparison of two
means with independent samples. Other applications, such as a comparison of means
with matched samples, can be found in statistical texts. Suppose, for example, we
have two methods for the determination of lead (Pb) in orchard leaves. The first
method is based on the electrochemical method of potentiometric stripping analysis
[1], and the second is based on the method of atomic absorption spectroscopy [2].
We perform replicate analyses of homogeneous aliquots prepared by dissolving the
orchard leaves into one homogeneous solution and obtain the data listed in Table 3.1.

We wish to perform a test to determine whether the difference between the two
methods is statistically significant. In other words, can the difference between the
two means be attributed to random chance alone, or are other significant experimental
factors at work? The hypothesis test is performed by formulating an appropriate null
hypothesis and an alternative hypothesis:

(3.13)

In developing the hypothesis, note that a difference of zero between the two means
is equivalent to a hypothesis stating that the two means are equal.

To make the test, we compute a test statistic based on small sample measurements
such as those described in Table 3.1 and compare it with tabulated values. The result

TABLE 3.1
Summary Data for the Analysis of Pb in Orchard Leaves

Method
Potentiometric 

Stripping Atomic Absorption

Sample size, N 5 5

Mean, 5.03 ppb 4.93 ppb

Std. dev., s 0.08 ppb 0.12 ppb
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of the test can have four possible outcomes. If we (1) accept H0 when it is true, then
we have made the correct decision; however, if we (2) accept H0 when Ha is true,
we have made what is called a Type II error. The probability of making such an
error is called β. If we (3) reject H0 when it is false, we have made the correct
decision; however, if we (4) reject H0 when it is true, then we have made what is
called a Type I error. The probability of making such an error is called α.

Most applications of statistical hypothesis testing require that we specify the
maximum allowable probability of making a Type I error, and this is called the
significance level of the test. Typically, significance levels of 0.01 or 0.05 are used.
This implies we have a high degree of confidence in making a decision to reject H0.
For example, when we reject H0 at the 95% confidence level, 5% of the time we
expect to make the wrong decision. In other words, we determine that there is a 5%
probability the difference is due to random chance.” Consequently, we are very
confident we have made the correct decision.

To make the test for the comparison of means described in Equation 3.13, we
compute the test statistic, tcalc,

(3.14)

and compare it with tabulated values of t at n1 + n2 − 2 degrees of freedom at a
significance level α, where sp is the pooled standard deviation.

(3.15)

If tcalc > tα, then we reject H0 at the 100%(1 − α) confidence level. For the data

calc = 2.451 and tα=0.05,ν=8 = 1.860, thus we reject H0

and accept H1 at the 95% confidence level. We say that there is less than a 5%
probability the difference is due to random chance. The language used to describe
the significance level of a hypothesis test and the confidence level of the decision
making implies a relationship between the two. The formula for calculating the
confidence interval of the difference between two means is given in Equation 3.16

(3.16)

where tα/2 is obtained from the t-distribution at n1 + n2 − 2 degrees of freedom
and sp is the pooled standard deviation. Note that a simple rearrangement of this
equation gives a form similar to Equation 3.14. The t-test for the comparison of
means is equivalent to estimating the confidence interval for the test statistic and
then checking to see if the confidence interval contains the hypothesized value for
the test statistic.
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shown in Table 3.1, we have t
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3.4.2 INFERENCES ABOUT VARIANCE AND THE F-DISTRIBUTION

It is sometimes desirable to compare the variances of two populations. For example,

a pooled standard deviation, it might be appropriate to test to see if the variances
are equivalent, e.g., we might ask, “Is the difference between the two variances, s1

2

and s2
2, statistically significant, or can the difference be explained by random chance

alone?” The F-distribution is used for conducting such tests and describes the
distribution of the ratio, F = s1

2/s2
2, for independent random samples of size n1 and

n2. The ratio is always arranged so that F is greater than one, thus the larger of the
two variances, s1

2 and s2
2, is placed in the numerator of the ratio. The F-distribution

has n1 degrees of freedom in the numerator and n2 degrees of freedom in the
denominator. To conduct a one-tailed test to compare the variances of two popula-
tions, the following set of null and alternative hypotheses is formed:

(3.17)

The F-test statistic is computed and compared with tabulated values at signifi-
cance level α.

(3.18)

Following the example shown in Table 3.1, we have F = 2.25 and Fα=0.05,ν1=4,ν2=4 = 6.39
at α = 0.05 and degrees of freedom ν1,ν2 = 4 in the numerator and denominator. We
thus accept H0 at the 95% confidence level and say that the difference between the
two variances is not statistically significant.

3.5 THE MULTIVARIATE NORMAL DISTRIBUTION

As we saw in Section 3.1.1, the familiar bell-shaped curve describes the sampling
distributions of many experiments. Many distributions encountered in chemistry are
approximately normal [3]. Regardless of the form of the parent population, the central
limit theorem tells us that sums and means of samples of random measurements drawn
from a population tend to possess approximately bell-shaped distributions in repeated
sampling. The functional form of the curve is described by Equation 3.19.

(3.19)

The term  is a normalization constant that sets the total area under the curve
to exactly 1.0. The approximate area under the curve within ±1 standard deviation is
0.68, and the approximate area under the curve within ±2 standard deviations is 0.95.
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the data shown in Table 3.1 represent two different populations. Prior to calculating
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The multivariate normal distribution is a generalization of the univariate normal
distribution with p 2 dimensions. Consider a 1 × p vector xi

T obtained by measuring
several variables for the ith observation and the corresponding vector of means for
each variable:

(3.20)

(3.21)

In the example at the beginning of this chapter, we considered the univariate
distribution of pseudoephedrine hydrochloride in a preparation of pharmaceutical
granules. We neglected the other ingredients, including microcrystalline cellulose
and magnesium stearate, which were also in the granules. If we wish to properly
consider the distribution of all three ingredients simultaneously, then we must con-
sider a multivariate distribution with p = 3 variables. Each object or aliquot of
pharmaceutical granules can be assayed for the concentration of each of the three
ingredients; thus each object in a sample of size n is represented by a vector of
length 3. The resulting sample or set of observations is an (n × p) matrix, one row
per object, with variables arranged in columns.

By properly considering the distribution of all three variables simultaneously,
we get more information than is obtained by considering each variable individually.
This is the so-called multivariate advantage. This extra information is in the form
of correlation between the variables.

3.5.1 GENERALIZED OR MAHALANOBIS DISTANCES

For convenience, we normalized the univariate normal distribution so that it had a

Equation 3.6). In a similar fashion, we now define the generalized multivariate
squared distance of an object’s data vector, xi, from the mean, �, where � is the
variance–covariance matrix (described later):

(3.22)

This distance is also called the Mahalanobis distance by many practitioners after
the famous Indian mathematician, Mahalanobis [4]. The distance in multivariate
space is analogous to the normalized univariate squared distance of a single point
(in units of standard deviations) from the mean:

(3.23)
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mean of zero and a standard deviation of one (see Section 3.1.2, Equation 3.5 and
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3.5.2 THE VARIANCE–COVARIANCE MATRIX

The S matrix is the p × p variance–covariance matrix, which is a measure of the
degree of scatter in the multivariate distribution.

(3.24)

The variance and covariance terms and  in the variance–covariance
matrix are given by Equation 3.25 and Equation 3.26, respectively.

(3.25)

(3.26)

Note that the matrix is symmetrical about the diagonal; variances appear on the
diagonal and covariances appear on the off-diagonal. If we were to neglect the
covariance terms from the variance–covariance matrix, any resulting statistical anal-
ysis that employed it would be equivalent to a univariate analysis in which we
consider each variable one at a time. At the beginning of the chapter we noted that
considering all variables simultaneously yields more information, and here we see
that it is precisely the covariance terms of the variance–covariance matrix that
encodes this extra information.

Having described squared distances and the variance–covariance matrix, we are
now in a position to introduce the multivariate normal distribution, which is repre-
sented in Equation 3.27,

(3.27)

where the constant

(3.28)

normalizes the volume of the distribution to 1.00. Comparing Equation 3.27 to
Equation 3.19 reveals significant similarities. Each contains a normalization
constant, and each contains an exponential term that characterizes the squared
normalized distance. In fact, Equation 3.27 is a generalization of Equation 3.19
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to more than one variable. If only one variable (p = 1) is employed in Equation
3.27, the simpler univariate normal distribution described by Equation 3.19 is
obtained.

The variance–covariance matrix can be normalized to give the matrix of corre-
lation coefficients between variables. Recall that the correlation coefficient is the
cosine of the angle, φ, between two vectors. Because the correlation of any variable
with itself is always perfect (ρi,j = 1), the diagonal elements of the correlation matrix,
R, are always 1.00.

(3.29)

(3.30)

3.5.3 ESTIMATION OF POPULATION PARAMETERS FROM SMALL 
SAMPLES

The population parameters � and � completely specify the properties of a multi-
variate distribution. Usually it is impossible determine the population parameters;
therefore, one usually tries to estimate them from a small finite sample of size n,
where n is the number of observations, The population mean vector, l, is approxi-
mated by the sample mean vector, , which is simply the mean of each column in
the data matrix X shown in Figure 3.4. As n becomes large, the approximation in
Equation 3.31 becomes better.

(3.31)

The population variance-covariance matrix, �, is approximated by the sample
variance-covariance matrix, S, when small samples are used. In order to calculate

FIGURE 3.4 Arrangement of a multivariate data set in matrix form.
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the sample variance–covariance matrix, the sample mean vector must be subtracted
row-wise from each row of X. As n becomes large, the approximation in Equation
3.32 becomes better.

(3.32)

3.5.4 COMMENTS ON ASSUMPTIONS

In the multivariate distribution, it is assumed that measurements of objects or aliquots
of material (e.g., a single trial) produces vectors, xi, having a multivariate normal
distribution. The measurements of the p variables in a single object, such as
xi

T = [xi,1, xi,2, ..., xi,p] will usually be correlated. In fact, this is expected to be the
case. The measurements from different objects, however, are assumed to be inde-
pendent. The independence of measurements from object to object or from trial to
trial may not hold when an instrument drifts over time, as with sets of p wavelengths
in a spectrum. Violation of the tentative assumption of independence can have a
serious impact on the quality of statistical inferences. As a consequence of these
assumptions, we can make the following statements about data sets that meet the
above criteria:

• Linear combinations of the columns of X are normally distributed.
• All subsets of the components of X have a multivariate normal distribu-

tion.
• Zero covariance implies that the corresponding variables are indepen-

dently distributed.
• S and  are sufficient statistics when all of the sample information in the

data matrix X is contained in  and S, regardless of the sample size n.
Generally, large n leads to better estimates of  and S.

• Highly correlated variables should not be included in columns of X. In
this case, computation of multivariate distances becomes problematic
because computation of the inverse of the variance–covariance matrix
becomes unstable (see Equation 3.22).

3.5.5 GENERALIZED SAMPLE VARIANCE

The determinant of S is often called the generalized sample variance. It is propor-
tional to the square of the volume generated by the p deviation vectors, x − .

The generalized sample variance describes the scatter in the multivariate distri-
bution. A large volume indicates a large generalized variance and a large amount of
scatter in the multivariate distribution. A small volume indicates a small generalized
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variance and a small amount of scatter in the multivariate distribution. Note that if
there are linear dependencies between variables, then the generalized volume will
be zero. In this case, the offending row(s) of variables should be identified and
removed from the data set before an analysis is performed.

The total sample variance is the sum of the diagonal elements of the sample
variance–covariance matrix, S. Total variance = s2

1,1 + s2
2,2 +...+ s2

p,p. Geometrically,
the total sample variance is the sum of the squared lengths of the p deviation vectors,
x − .

3.5.6 GRAPHICAL ILLUSTRATION OF SELECTED BIVARIATE

NORMAL DISTRIBUTIONS

In each case, the variance–covariance matrix, S, is given, followed by a scatter plot

FIGURE 3.5 Scatter plots (a) of a bivariate normal distribution (100 points) with a correlation
of 0.75, |S| = 0.44. Ellipses are drawn at 80 and 95% confidence intervals. Contour plots (b)
and mesh plots (c) of the corresponding bivariate normal distribution functions are also shown.
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Some plots of several bivariate distributions are provided in Figure 3.5 to Figure 3.7.
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of the measurements on variable p = 1 vs. p = 2, as well as contour plots and mesh
plots of the corresponding distribution. Bivariate distributions with a high level of
correlation have an elongated ellipsoid shape and |S| approaches zero, whereas
bivariate distributions with a low level of correlation are shorter and wider and
|S| > 0. In the limit, as the correlation between the two variables goes to zero, the
distribution becomes spherical and |S| approaches its data-dependent upper limit. In
the examples that follow, xi,j has been standardized to and, as the
correlation varies from 0 to 1, |S| also ranges from 0 to 1.

centered at the mean. For p-dimensional normal distributions, contours of constant
probability density are ellipsoids in p = 3 dimensions, or hyperellipsoids in p > 3
dimensions, centered about the centroid. The axes of each ellipsoid of constant

FIGURE 3.6 Scatter plots (a) of a bivariate normal distribution (100 points) with a corre-
lation of 0.50, |S| = 0.75. Ellipses are drawn at 80 and 95% confidence intervals. Contour
plots (b) and mesh plots (c) of the corresponding bivariate normal distribution functions
are also shown.
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From the plots of two-dimensional normal distributions in Figure 3.5 through
Figure 3.7, it is clear that contours of constant probability density are ellipses
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density are in the direction of the eigenvectors, e1, e2, ..., en, of S−1, and their lengths
are proportional to the reciprocals of the square roots of the eigenvalues, λ1, λ2, ..., λn.
For a bivariate distribution, there are two axes:

(3.33)

3.5.7 CHI-SQUARE DISTRIBUTION

It can be shown that values of χp
2(α) from the chi-square distribution with p degrees

of freedom give contours that contain (1 − α) × 100% of the volume in the multi-
variate normal distribution curve. For example, picking a value of χp

2(α) = 5.99 for
c with p = 2 and α = 0.05 gives an ellipse that circumscribes 95% of the sample

FIGURE 3.7 Scatter plots (a) of a bivariate normal distribution (100 points) with a correlation
of 0, |S| = 1. Ellipses are drawn at 80 and 95% confidence intervals. Contour plots (b) and
mesh plots (c) of the corresponding bivariate normal distribution functions are also shown.
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population in Figure 3.5 through Figure 3.7. Samples having squared distances less
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than this value will lie inside the ellipse. Samples having squared distances greater
than this will lie outside the ellipse.

3.6 HYPOTHESIS TEST FOR COMPARISON
OF MULTIVARIATE MEANS

Often it is useful to compare a multivariate measurement for an object with the
mean of a multivariate population [5]. To perform the test, we will determine if
a 1 × p vector  is an acceptable value for the mean of a multivariate normal
distribution, �T, according to the null hypothesis and alternative hypothesis
shown in Equation 3.34.

(3.34)

The true values of � and � are usually estimated from a small sample of size
n. When n is very large, the estimates  and S are very good; however, n is usually
small, and thus the estimates  and S have a lot of uncertainty. In this case it is
necessary to make an adjustment for the confidence interval, 100%(1 − α), of the
sample mean and scatter matrix by use of Hotelling’s T 2 statistic.

(3.35)

The T2 statistic is computed and compared with (n − 1)/(n − p)F values at
significance level α, and we reject the null hypothesis, H0, when T 2 > (n − 1)/(n − p)F .

(3.36)

3.7 EXAMPLE: MULTIVARIATE DISTANCES

A set of data is provided in the file called “smx.mat.” The measurements consist of
83 NIR (near-infrared) reflectance spectra of many different lots of sulfamethox-
azole, an active ingredient used in pharmaceutical preparations. The data set has
been partitioned into three parts: a training set of 42 spectra, a test set of 13 spectra,
and a set of 28 “reject” spectra. The reject samples were intentionally spiked with
two degradation products of sulfamethoxazole, sulfanilic acid or sulfanilamide, at
0.5 to 5% by weight. In these exercises, you will inspect the data set, select several
wavelengths, and calculate the Mahalanobis distances of samples using the reflec-
tance measurements at the selected wavelengths to determine whether the NIR
measurement can be used to detect samples with the above impurities. Sample
MATLAB code for performing the analysis is provided at the end of each section.

xT

H H0 1: :x x= ≠� �vs.

x
x
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n p
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p n p
2 1= − − > −
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s

s
H F F= >1
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3.7.1 STEP 1: GRAPHICAL REVIEW OF SMX.MAT DATA FILE

The first step, as in any chemometrics study, begins by plotting the data. Using
the MATLAB plot command, plot the NIR spectra. As seen in Figure 3.8, there
are different baseline offsets between the different spectra, which are typically
due to differences in the particle-size distribution of the measured aliquots. The
effect of baseline offsets can be removed by taking the first derivative of the
spectra. A simple numerical approximation of the first difference can be obtained
by taking the difference between adjacent points using the MATLAB diff com-
mand (Figure 3.9). Use the MATLAB zoom command to investigate small regions
of the derivative spectra, where a significant amount of spectral variability can be
observed. These regions may be useful for finding differences between samples.
By zooming in on selected regions, pick at least four wavelengths for subsequent
analysis. Good candidates will be uncorrelated (neighbors tend to be highly

FIGURE 3.8 NIR reflectance spectra of 83 aliquots of sulfamethoxazole powder.

FIGURE 3.9 First-difference NIR reflectance spectra of 83 aliquots of sulfamethoxazole
powder.

1200 1400 1600 1800 2000 2200 2400 
0.1 

0.15 
0.2 

0.25 
0.3 

0.35 
0.4 

0.45 
0.5 

Lo
g(

1/
R)

 

Wavelength, nm

1200 1400 1600 1800 2000 2200 2400 
−0.03 
−0.02
−0.01

0 
0.01 
0.02 
0.03 
0.04 

1s
t d

iff
er

en
ce

, lo
g(

1/
R)

 

Wavelength, nm

DK4712_C003.fm  Page 60  Tuesday, January 31, 2006  11:50 AM

© 2006 by Taylor & Francis Group, LLC



Sampling Theory, Distribution Functions 61

correlated) and exhibit a lot of variability. In fact, highly correlated variables
should be avoided, since then calculation of the inverse of the variance–covariance
matrix becomes unstable.

MATLAB Example 3.1  

load smx

whos

plot(w,a);

da=diff(a');

figure(2);

plot(w(2:end),da);

zoom;

3.7.2 STEP 2: SELECTION OF VARIABLES (WAVELENGTHS)

Having selected wavelength regions of interest, it will be necessary to find their respective
column indices in the data matrix. Use the MATLAB find command to determine the
indices of the wavelengths you have selected. In the example below, variables at 1484,
1692, 1912, and 2264 nm were selected. These are not necessarily the most informative
variables for this problem and you are encouraged to try and obtain better results by
picking different sets of variables. Once these indices are known, select a submatrix
containing 83 rows (spectra) and 4 columns (wavelength variables). The variables trn,
tst, and rej in the smx.mat file contain the row indices of objects to be partitioned into
a training set, test set, and reject set, respectively. Use the indices trn, tst, and rej to
partition the previous submatrix into three new matrices, one containing the training
spectra, one containing the test spectra, and one containing the reject spectra.

MATLAB Example 3.2

find(w==1484)

find(w==1692)

find(w==1912)

find(w==2264)

% select submatrix of a with 4 wavelengths

wvln_idx=[97 149 204 292]

a4=a(:,wvln_idx);

% Split the data set in 3 parts: training set, test set, and reject set

atrn=a4(trn,:);

atst=a4(tst,:);

arej=a4(rej,:);

3.7.3 STEP 3: VIEW HISTOGRAMS OF SELECTED VARIABLES

The training set will be used to calculate the multivariate mean and variance–covariance
matrix; however, before calculating these parameters, we will graphically examine
the training set to see if it contains measurements that are approximately normally
distributed. This can be accomplished by several methods, the simplest being to
plot histograms of the individual variables. Use the MATLAB hist command to
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make a histogram of each selected variable (type help hist) and note which
variables tend to show normal behavior or a lack of normal behavior. For
example, Figure 3.10 shows a plot of a histogram of the absorbance values at
2264 nm for the training set. The training set contains 42 objects or spectra,
thus it is expected that the corresponding histogram will have some gaps and
spikes.

MATLAB Example 3.3

hist(atrn(:,1),15); % plot a histogram with 15 bins

hist(atrn(:,2),15);

hist(atrn(:,3),15);

hist(atrn(:,4),15);

3.7.4 STEP 4: COMPUTE THE TRAINING SET MEAN

AND VARIANCE–COVARIANCE MATRIX

In Step 4 we use the MATLAB mean, cov, and corrcoef functions to compute , S,

correlation matrix. It can be used to identify the pair of variables that exhibit the
largest correlation and the pair of variables that exhibit the least correlation. After
identifying these matrices, use MATLAB to construct scatter plots using these pairs

nm is plotted against the absorbance at 2264 nm. There is a total of 42 points in the
plot, one for each spectrum or object in the training set. The distribution appears
approximately bivariate normal, with the highest density of points near the centroid
and a lower density of points at the edges of the cluster. Ellipses are drawn at the
80 and 95% confidence intervals.

FIGURE 3.10 Histogram showing the absorbance of the sulfamethoxazole training set at
2264 nm.
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R for the training set. Table 3.2 shows the results of one such calculation, the

of variables. For example, in Figure 3.11, the absorbance of training samples at 1912
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MATLAB Example 3.4

m=mean(atrn)

format short e

s=cov(atrn)

format short

r=corrcoef(atrn)

% Make scatter plots of pairs with high correlation, low correlation

figure(1); plot(atrn(:,3),atrn(:,4),'o');

figure(2); plot(atrn(:,3),atrn(:,2),'o');

TABLE 3.2
Correlation Coefficients between Absorbance at Selected Pairs of 
Wavelengths for Sulfamethoxazole Training Set

Wavelengths (nm)

1484 1692 1912 2264

1484 1.000 0.747 0.851 0.757

1692 0.747 1.000 0.940 0.714

1912 0.851 0.940 1.000 0.690

2264 0.757 0.714 0.690 1.000

FIGURE 3.11 Scatter plot of absorbance at 1912 nm vs. 2264 nm for the sulfamethoxazole
training set. Ellipses are drawn at the 80 and 95% confidence intervals.
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3.7.5 STEP 5: CALCULATE MAHALANOBIS DISTANCES

AND PROBABILITY DENSITIES

A short MATLAB function called m_dist.m is provided for computing the
Mahalanobis distances or generalized distances. Two data sets must be specified,
a training set and a test set. The sample mean vector and sample-covariance
matrix are calculated from the training set. Distances from the training set
centroid are calculated for each object or row in the test set. If you wish to
calculate the distances of the training objects from the centroid of the training
set, then the function can be called with the same data set for the training and
test sets. This function also calculates the probability density function of each
object using Hotelling’s T 2 statistic. In Step 5, we use this function to calculate
the distances and probabilities of objects in the sulfamethoxazole test set and
in the adulterated sulfamethoxazole aliquots in the reject set. The results for
the test set are shown in Table 3.3. Each of the test set objects are found to
have relatively small distances from the mean and lie inside the 95% confidence
interval. For example, test set aliquot 1 has the largest distance from the
centroid, 2.1221. Its probability density is 0.398, which indicates it lies at the
boundary of the 60.2% confidence interval.

TABLE 3.3
Mahalanobis Distances and Probability Densities from Hotelling’s 
T 2 Statistic for Test Samples of Sulfamethoxazole Compared
with the Sulfamethoxazole Training Set

Test Object Mahalanobis Distance
Probability Density 

(Hotelling’s T 2)

1 2.1221 0.398

2 1.5805 0.680

3 1.2746 0.824

4 2.1322 0.393

5 2.0803 0.418

6 1.2064 0.851

7 1.3914 0.773

8 1.4443 0.748

9 1.8389 0.543

10 2.4675 0.249

11 1.3221 0.804

12 1.2891 0.818

13 1.8642 0.530
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MATLAB Example 3.5

[d,pr] = m_dist(atrn,arej);

[d,pr]

[d,pr] = m_dist(atrn,atst);

% calculate dist. and prob., test set vs. trn set.

[d pr]

[d,pr] = m_dist(atrn,arej);

% calculate dist. and prob., rej set vs. trn set.

[d pr]

function [d,pr] = m_dist(atrn,atst);

% [d,pr] = m_dist(atrn,atst);

%

% Function to calculate the Mahalanobis Distances of samples, given atrn

% where atrn is a matrix of column-wise vars. The training set, atrn, is

% used to estimate distances for the test set, atst.

%

% The samples' distances from the centroid are returned in d. The

% probability density (chi-squared) for the distance is given in pr.

%

[r,c]=size(atrn);

[rt,ct]=size(atst);

[am,m]=meancorr(atrn);% always use meancorrected data

atm=atst-m(ones(1,rt),:);

s=(am' * am)./(r-1);% calc inv var-covar matrix

d=atm * inv(s) .* atm;% calc distances for test data

d=sqrt(sum(d')');

pr=1-hot_t(c,r,d);% calc prob level

3.7.6 STEP 6: FIND “ACCEPTABLE” AND “UNACCEPTABLE” OBJECTS

In Step 6, MATLAB’s find command is used to find adulterated aliquots of
sulfamethoxazole that lie outside the 90 and 95% confidence intervals. Selected

distance is 3.148 and the probability density is 0.077, indicating this sample lies
outside the 90% confidence interval. A hypothesis test at the significance level of
0.10 would identify it as an “outlier” or “unacceptable” object. At this point, we
conclude the four wavelengths selected for the analysis are not particularly good
at detecting sulfanilic acid or sulfanilamide in sulfamethoxazole. Selection of
alternative wavelengths can give dramatically better sensitivity for these two
contaminants. Additionally, four wavelength variables may not necessarily be an
optimal number. Good results might be obtained with just three wavelength vari-
ables, or perhaps five wavelength variables are needed. Can you find them? One
way to begin approaching this problem would be to plot the derivatives of the
training spectra using a green color, and plotting the derivatives of the reject spectra
using a red color. The MATLAB zoom command can then be used to explore the
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examples are shown in Table 3.4. At 3% sulfanilic acid by weight, the Mahalanobis
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spectra for regions where there are significant differences between the training
and reject spectra.

MATLAB Example 3.6

% Search for acceptable samples

t=find(pr>.05)'

nm_rej(t,:)

% Search for samples outside the 99% probability level

t=find(pr<0.01)'

pr(t)'

nm_rej(t,:)

pause

% Replot the spectra, rejects in red, training in green

datrn=diff(a(trn,:)');

darej=diff(a(rej,:)');

plot(w(2:end),darej,'r'); hold on;

plot(w(2:end),datrn,'g'); hold off;

% Use the zoom command to find regions with better discriminating power

RECOMMENDED READING

Mark, H. and Workman, J., Statistics in Spectroscopy, Academic Press, San Diego, CA, 1991.
Box, G.E.P, Statistics for Experimenters, John Wiley & Sons, New York, 1978.

TABLE 3.4
Mahalanobis Distances and Probability Densities from Hotelling’s 
T 2 Statistic for Adulterated Samples of Sulfamethoxazole Compared 
with the Sulfamethoxazole Training Set

Description Mahalanobis Distance Probability Density (Hotelling’s T 2)

1% SNA 1.773 0.578

2% SNA 2.885 0.126

3% SNA 3.148 0.077

4% SNA 5.093 0.001

5% SNA 5.919 0.000

1% SNM 1.253 0.833

2% SNM 1.541 0.700

3% SNM 3.158 0.075

4% SNM 3.828 0.018

5% SNM 4.494 0.004

Note: SNA = sulfanilic acid; SNM = sulfanilamide.
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4.1 INTRODUCTION

 

The term principal component analysis (PCA) refers to a method of data analysis
for building linear multivariate models of complex data sets [1]. The linear multi-
variate PCA models are developed using orthogonal basis vectors (eigenvectors),
which are usually called principal components. The principal components model the
statistically significant variation in the data set as well as the random measurement
error. One of the significant goals of PCA is to eliminate the principal components
associated with noise, thereby reducing the dimensionality of complex problems and
minimizing the effects of measurement error.

Before formally introducing the PCA model in this chapter, the stage for
understanding it is set by introducing a hypothetical data set such as high-performance
liquid chromatograph with one that might be obtained from UV/visible diode-
array detector (HPLC-UV/visible diode array). The mathematical model for this
hypothetical data set is easily understood and thus serves as a convenient starting
point for introducing the PCA model. The formal introduction of the PCA model
immediately follows the descriptions of the HPLC-UV/visible data set and includes
a discussion of eigenvectors, eigenvalues, and their relation to the singular-value
decomposition (SVD). After the PCA model is introduced, Section 4.4 discusses
(a) common preprocessing options and mathematical transformations and (b) their
effects on the PCA model. In Section 4.6, the discussion of factors that influence
the results of a PCA analysis is meant to provide practical guidance on the selection
of the appropriate number of factors to include in PCA models. The chapter finishes
up with a section on residuals in PCA models.

 

4.2 SPECTROSCOPIC-CHROMATOGRAPHIC DATA

 

Principal component analysis is most easily explained by showing its applica-
tion on a familiar type of data. In this chapter we show the application of PCA
to chromatographic-spectroscopic data. These data sets are the kind produced
by so-called hyphenated methods such as gas chromatography (GC) or high-
performance liquid chromatography (HPLC) coupled to a multivariate detector
such as a mass spectrometer (MS), Fourier transform infrared spectrometer
(FTIR), or UV/visible spectrometer. Examples of some common hyphenated
methods include GC-MS, GC-FTIR, HPLC-UV/Vis, and HLPC-MS. In all these
types of data sets, a response in one dimension (e.g., chromatographic separa-
tion) modulates the response of a detector (e.g., a spectrum) in a second
dimension.

Consider, as an example, an HPLC-UV/Vis chromatographic data matrix 

 

A

 

,
where two overlapped peaks elute. Let 

 

A

 

 be an 

 

n 

 

×

 

 

 

m

 

 matrix (

 

n

 

 rows of spectra
recorded at 

 

m

 

 wavelengths) of mixture spectra. The data matrix 

 

A

 

 can be expressed
as a product of 

 

k

 

 vectors representing digitized pure-component chromatograms and

 

k

 

 vectors representing digitized pure-component spectra, as shown in Equation 4.1.
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The data matrix 

 

A

 

 expressed by the linear model in Equation 4.1 is often called a

 

bilinear 

 

data matrix.

(4.1)

In Equation 4.1, 

 

C

 

 is the 

 

n

 

 

 

×

 

 

 

k

 

 matrix of pure chromatograms (

 

k

 

 independently
varying components), 

 

P

 

 is the 

 

m

 

 

 

×

 

 

 

k

 

 matrix of pure-component spectra, and the

  

an example of such a data matrix having two overlapped peaks.
Another way of expressing the model in Equation 4.1 is by breaking 

 

A

 

 up into
the sum of the data matrices for each pure component. Notice that one term in the
summation is required for each independently varying component in the mixture.

 

A

 

 

 

=
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1
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k
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k

 

T

 

 

 

+

 

 

 

ε

 

(4.2)

In Equation 4.2, the product 

 

c

 

1

 

p

 

1
T

 

 is the outer product of the concentration profile
of the first pure component times its pure spectrum.

(4.3)

 

4.2.1 B

 

ASIS

 

 V

 

ECTORS

 

The vectors representing the pure-component spectra in 

 

P

 

 shown in Figure 4.1 can
be thought of as 

 

row basis vectors

 

, since each row in the data matrix 

 

A

 

 can be
expressed as a linear combination (mixture) of the pure-component spectra. Simi-
larly, the vectors representing the pure-component chromatograms in 

 

C

 

 can be
thought of as 

 

column basis vectors

 

. Each column in the data matrix 

 

A

 

 can be
expressed as a linear combination (mixture) of the pure chromatograms.

Because the example in Figure 4.1 is simulated, there is no random error present
and the matrix of residual errors, 

 

ε

 

, is zero. In this case we say that 

 

these two sets
of basis vectors span the row space and column space 

 

of 

 

A

 

. The 

 

dimensionality 

 

of
the space is 2 because only two basis vectors are required to span it. For example,
this means that all of the spectra in 

 

A

 

 lie on the plane defined by the two row basis
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matrix ε contains unexplained variance, e.g., measurement error. Figure 4.1 shows
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FIGURE 4.1

 

Simulated HPLC-UV/visible chromatographic data set showing two overlapped peaks with different UV/visible spectra.
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vectors. We say that 

 

the rank of 

 

A

 

 

 

is two

 

. As a point of information, we recognize
that there exists an infinite number vectors that lie in the same plane, and therefore
they will span the same space of 

 

A

 

. Each pair will be a linear combination of the
two sets of basis vectors we have described so far.

Of course, random measurement error is unavoidable when real data are used. If
we now suppose 

 

A

 

 is a 50 

 

×

 

 50 data matrix (50 spectra digitized at 50 points) with
some random error, the exact solution for Equation 4.2 would require 50 pairs or
dyads of basis vectors, one row basis vector and one column basis vector for each
pair. The additional 48 pairs of row and column vectors would be required to account
for the random variation in 

 

A

 

. Usually, we are not interested in building a model that
includes the random errors. Fortunately, by using the appropriate mathematical oper-
ations, we can use our original two basis vectors to reduce the rank or dimensionality
of 

 

A

 

 from 50 to 2 without any significant loss of information. This allows us to
“ignore” the basis vectors that explain random error. This data compression capability
of the PCA model is exploited frequently and is one of its most important features.

 

4.3 THE PRINCIPAL COMPONENT MODEL

 

You undoubtedly recognize that we seldom start out knowing the pure spectra and

knew them, there would not be any point in applying the technique of PCA. Fortu-
nately, with PCA it is possible to compute unique sets of basis vectors that span the
significant space of a data matrix like 

 

A

 

 without prior knowledge.
With PCA, it is possible to build an empirical mathematical model of the data

as described by Equation 4.4 where 

 

T

 

k

 

 is the 

 

n

 

 

 

×

 

 

 

k

 

 matrix of principal component
scores and 

 

V

 

k

 

 is the 

 

m 

 

×

 

 

 

k

 

 matrix of eigenvectors.

 

A

 

 

 

=

 

 

 

T

 

k

 

 V

 

k

 

T

 

 

 

+

 

 

 

ε

 

(4.4)

The eigenvectors in 

 

V

 

k

 

 can be used to form a set of orthonormal row basis vectors
for 

 

A

 

. The eigenvectors are called “loadings” or sometimes “abstract factors” or
“eigenspectra,” indicating that while the vectors form a basis set for the row space
of 

 

A

 

, physical interpretation of the vectors is not always possible (see Figure 4.2).

 

FIGURE 4.2

 

Diagram of a principal component model for the chromatographic-spectroscopic
data set shown in Figure 4.1.
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chromatographic profiles of a data set like the one described in Figure 4.1. If we
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The columns of 

 

T

 

k

 

 are called “scores” and are mutually orthogonal but not normal-
ized. They can be used to form a set of column basis vectors for 

 

A

 

.
For each independent source of variation in the data, a single principal compo-

nent (eigenvector) is expected in the model. The first column of scores and the first
eigenvector (column in 

 

V

 

k

 

) correspond to the first “factor.” The first eigenvector
corresponds to the one with the largest eigenvalue. It can be shown that the first
factor explains the “maximum” amount of variance possible in the original data
(maximum in a least-squares sense). The second factor is the next-most-important
factor and corresponds to the second column of scores and the eigenvector associated
with the second-largest eigenvalue. It “explains” the maximum amount of variance
left in the original data matrix. In short, the data matrix can be partitioned in a sum
of 

 

k

 

 “rank one” 

 

n

 

 

 

×

 

 

 

m

 

 data matrices:

 

A

 

 

 

=

 

 

 

t

 

1

 

v

 

1
T

 

 

 

+

 

 

 

t

 

2

 

v

 

2
T

 

 

 

+

 

 … 

 

+

 

 

 

t

 

k

 

v

 

k
T + ε (4.5)

The outer vector product, t1v1
T, is the variance “explained” by the first factor.

would be required in Equation 4.4 or Equation 4.5 to explain the data, one for each
chemical component. The term “abstract factors” is stressed here because the factors
do not necessarily correspond to the two chemical components.

4.3.1 EIGENVECTORS AND EIGENVALUES

To perform PCA, we need the complete set of eigenvectors, V, and eigenvalues, D,
that diagonalize the square, symmetric variance–covariance matrix, Z, where D is
the diagonal matrix of eigenvalues.

VTZV = D (4.6)

Z(m×m) = ATA (4.7)

To construct the principal component model described by Equation 4.4, we
define Vk and Tk according to Equation 4.8 and Equation 4.9, where Vk contains the
selected k columns from V.

Vk = [v1|v2|…|vk] (4.8)

Tk = A Vk (4.9)

The two MATLAB commands, Z=A'*A; and [V,D]=eig(Z);, are all that is needed
to produce the matrix of eigenvectors Vk and eigenvalues D for Z. The MATLAB
command T=A*V; will compute the principal component scores. For the noise-free two-
component data set in Figure 4.1, only two nonzero eigenvalues and eigenvectors will
emerge. In general, for k components, there will be k nonzero eigenvalues. In the
absence of random measurement error and machine round-off error, the secondary
eigenvalues would be exactly zero (MATLAB’s round-off error is about 3.0 × 10−16).

λ1 > λ2 > … λk > 0 (4.10) 
primary eigenvalues
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For the HPLC-UV/Vis data set in Figure 4.1, exactly two terms or “abstract factors”
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λk+1 = λk+2 … λn = 0 (4.11) 
secondary eigenvalues

For A (n × m) with random experimental error and m < n, there will always be
m nonzero eigenvalues of Z. In this case, it is necessary to delete the unwanted
eigenvectors and eigenvalues (the ones with very small eigenvalues). The very
difficult task of deciding which eigenvalues and eigenvectors should be deleted will
be discussed later.

λk+1 ≈ λk+2 … λm ≈ 0 (4.12)
secondary eigenvalues

The MATLAB eig() function produces the full set of m eigenvectors and eigen-
values for the m × m matrix Z, while we are only interested in retaining the set of
primary eigenvalues and eigenvectors. The MATLAB eig() function does not sort
the eigenvalues and eigenvectors according to the magnitude of the eigenvalues, so
the task of deleting the unwanted ones becomes a little bit harder to do. The following
function sorts the eigenvalues and eigenvectors:

MATLAB EXAMPLE 4.1: FUNCTION TO GIVE SORTED EIGENVECTORS AND EIGEN-

VALUES

function   [v,d]=sort_eig(z);

% [v,d]=sort_eig(z)

% subroutine to calculate the eigenvectors, v, and

% eigenvalues, d, of the matrix, z. The eigenvalues

% and   eigenvectors are sorted in descending order.

[v,d]=eig(z);

eval=diag  (d);     % get e'vals into a vector

[y,index]=sort(-eval);% sort e'vals in descending order

v=v(:,index           % sort e'vects in descending order

d=diag(-y));          % build diagonal e'vals matrix

It is easy to obtain the desired submatrix of primary eigenvalues and eigenvectors
using MATLAB’s colon notation once the eigenvalues and eigenvectors are sorted.
The program in Example 4.2 shows how to put together all of the bits and pieces
of code described so far to into one program that performs PCA of a spectroscopic
data matrix A.

MATLAB EXAMPLE 4.2: PROGRAM TO PERFORM PRINCIPAL COMPONENT 
ANALYSIS OF A SPECTROSCOPIC DATA SET

z=a'*a;          % compute covariance matrix

[V,d]=sort_eig(z);% compute e'vects and e'vals

k=2; % select the number of factors
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V=V(:,1:k);      % retain the first k columns of V

d=d(1:k,1:k);    % retain the kxk submatrix of e'vals

sc=a*V;          % compute the scores

plot(V);      % plot the e'vects and

format short e

disp(diag(d));   % display the e'vals

4.3.2 THE SINGULAR-VALUE DECOMPOSITION

The singular-value decomposition (SVD) is a computational method for simulta-
neously calculating the complete set of column-mode eigenvectors, row-mode eigen-
vectors, and singular values of any real data matrix. These eigenvectors and singular
values can be used to build a principal component model of a data set.

A = U S VT (4.13)

In Equation 4.13 we seek the k columns of U that are the column-mode eigen-
vectors of A. These k columns are the columns with the k largest diagonal elements
of S, which are the square root of the eigenvalues of Z = ATA. The k rows of VT are
the row-mode eigenvectors of A. The following equations describe the relationship
between the singular-value decomposition model and the principal component
model.

T = U S (4.14)

D1/2 = S (4.15)

The SVD is generally accepted to be the most numerically accurate and stable
technique for calculating the principal components of a data matrix. MATLAB has
an implementation of the SVD that gives the singular values and the row and column
eigenvectors sorted in order from largest to smallest. Its use is shown in Example 4.3.
We will use the SVD from now on whenever we need to compute a principal
component model of a data set.

MATLAB EXAMPLE 4.3: PRINCIPAL COMPONENT ANALYSIS USING THE SVD

[u,s,v]=svd(a);

k=2; % Trim the unwanted factors from the model

u=u(:,1:k);

s=s(1:k,1:k);

v=v(:,1:k);
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plot(wv,v); % plot the e'vects and

format short e

disp(diag(s.^2));% display the e'vals

4.3.3 ALTERNATIVE FORMULATIONS OF THE PRINCIPAL 
COMPONENT MODEL

In section 4.3.1, we assumed that the m × m variance–covariance matrix Z was used
as the starting point for the analysis. It is also possible to use the n × n covariance
matrix Z as the starting point. There is a clear mathematical relationship between
the results of the two analyses. First, exactly identical eigenvalues, D, will emerge
from the diagonalization of either Z(n×n) or Z(m×m). When n < m, the extra n + 1
through m eigenvalues from the diagonalization of Z(m×m) would be exactly zero if
it were not for a very small amount of floating-point round-off error.

Vb
TZ(n×n)Vb = D(n×n) (4.16)

For this alternative formulation, we define the matrix of eigenvectors Vb accord-
ing to Equation 4.17. The corresponding principal component model is given by
Equation 4.18.

Vb(n×k) = [v1|v2 |…|vk]b (4.17)

AT
(m×n) = Tb(m×k)Vb

T
(k×n) (4.18)

The scores from analysis of Z(m×m) are related to the eigenvectors of Z(n×n), and
vice versa, by their corresponding normalization constants, which are simply the
reciprocals of the square roots of their eigenvalues. In other words, all one has to
do is normalize the columns of Tb to obtain Vb.

T D−1/2 = Vb (4.19)

The eigenvectors from the analysis of Z(m×m) are sometimes referred to as the
“row-mode” eigenvectors because they form an orthogonal basis set that spans the
row space of A. The eigenvectors from the analysis of Z(n×n) are sometimes referred
to as the “column-mode” eigenvectors because they form an orthogonal basis set
that spans the column space of A.

4.4 PREPROCESSING OPTIONS

Two data-preprocessing options, called mean centering and variance scaling, are
often used in PCA; however, it is sometimes inconvenient to use them when
processing chromatographic-spectroscopic data. In this section we will describe
these two preprocessing options and explain when their use is appropriate. After
introducing two elementary preprocessing options, a hands-on PCA exercise is
provided. Additional preprocessing options will be discussed after these two ele-
mentary transformations.
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4.4.1 MEAN CENTERING

The mean-centering data-preprocessing option is performed by calculating the average
data vector or “spectrum” of all n rows in a data set and subtracting it point by point
from each vector in the data set. It is slightly inconvenient to use when processing
chromatographic-spectroscopic data because it changes the origin of the model.
Despite the inconvenience, it is advisable to use mean centering under many cir-
cumstances prior to PCA. Graphically, mean centering corresponds to a shift in the
origin of a plot, as shown in Figure 4.3.

To use mean centering, it is necessary to substitute the mean-centered data matrix
A† into the SVD and in all subsequent calculations where A would normally be used
in conjunction with the U, S, or V from the principal component model.

(4.20)

The new model based on A† can be transformed back to the original matrix, A, by
simply adding the mean back into the model as shown in Equation 4.21.

A − = A†= USVT (4.21)

Mean centering changes the number of degrees of freedom in a principal com-
ponent model from k to k + 1. This affects the number of degrees of freedom used
in some statistical equations that are described later.

4.4.2 VARIANCE SCALING

Prior to using the variance-scaling preprocessing option, mean centering must first
be used. The combination of these two preprocessing options is often called

FIGURE 4.3 Graphical illustration showing the effect of mean centering on a bivariate
distribution of data points. (a) Original data. (b) Mean-centered data. The original x–y-axes
are shown as dashed lines.
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autoscaling. It is used to give equal weighting to all portions of the experimentally
measured data vectors by normalizing each of the m columns of variables so that
the sum of the squared values for each column equals 1. The resulting columns of
variables are said to be “scaled to unit variance.” Variance scaling is accomplished
by simply subtracting the mean and then dividing each column in A by the standard
deviation for that column. The pretreated data matrix A† is then used in the SVD
and in all subsequent calculations where A would normally be used in conjunction
with the U, S, or V from the principal component model.

(4.22)

(4.23)

(4.24)

Variance scaling is most useful when the magnitude of signals or the signal-to-
noise ratio varies considerably from variable to variable. When the measurement error
is nearly uniform from variable to variable, the use of variance scaling may be unwise.
Absorption spectra often meet this requirement (e.g., they have nearly uniform mea-
surement error over the wavelength range under study). Other kinds of data sets may
frequently not meet this requirement. For example, consider the case where data vectors
consist of trace element concentrations (in ppm) determined by inductively coupled
plasma spectroscopy (ICP) in diseased crab tissue samples. It is quite possible that the
variability in one element (for example, ppm Ca) could dominate the other variables
in the data set, such as ppm Sr or ppm Pb. In this example, variance scaling could be
used to reduce the significance of the Ca variable, thereby allowing PCA to give a
more balanced representation of the other variables in the data set.

The function in Example 4.4 can be used to autoscale a data matrix. The function
determines the size of the argument, its mean vector, and its standard deviation
vector. On the last line, a MATLAB programming “trick” is used to extend the mean
vector and standard deviation vector into matrices having the same number of rows
as the original argument prior to subtraction and division. The expression ones(r,1)
creates an r × 1 column vector of ones. When used as an index in the statement
mn(ones(r,1),:), it instructs MATLAB to replicate the mean vector r times to give
a matrix having the dimensions r × c.

MATLAB EXAMPLE 4.4: FUNCTION TO AUTOSCALE A MATRIX

function [y,mn,s]=autoscal(x);

% AUTOSCAL - Mean center and standardize columns of a matrix  

% [y,mn,s]=autoscal(x);
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% or

% [y]=autoscal(x);

[r,c]=size(x);

mn=mean(x);

s=std(x);

y=(x-mn(ones(1,r),:)) ./ s(ones(1,r),:);

4.4.3 BASELINE CORRECTION

In many spectroscopic techniques, it is not unusual to encounter baseline offsets
from spectrum to spectrum. If present, these kinds of effects can have a profound
effect on a PCA model by causing extra factors to appear. In some cases, the baseline
effect may consist of a simple offset; however, it is not uncommon to encounter
other kinds of baselines with a structure such as a gentle upward or downward
sloping line caused by instrument drift, or even a broad curved shape. For example,
in Raman emission spectroscopy a small amount of fluorescence background signals
can sometimes appear as broad, weak curves.

In the simplest kind of baseline correction, the spectra to be corrected must have
a region where there is zero signal. For example, in Figure 4.4, Raman emission
spectra are shown with an apparent valley at about 350 cm−1. Assuming there is no
Raman emission intensity in this region, it is possible to calculate the average signal
over this frequency region for each spectrum and subtract it from each frequency in
the respective spectrum, giving the corresponding baseline-corrected spectra on the
right-hand side of the figure.

Alternative background correction schemes can be incorporated for more com-
plicated situations. For example, if the background signal is curved and multiple
valleys are available in the spectrum, it may be possible to fit a polynomial function

FIGURE 4.4 Illustration of baseline correction of Raman emission spectra. (a) Original
spectra. (b) Baseline-corrected spectra.
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through multiple valleys. The resulting curved polynomial line is then subtracted
from the corresponding spectrum to be corrected. More sophisticated schemes for
background correction have been published [2–5].

4.4.4 SMOOTHING AND FILTERING

With smoothing, it is possible to improve the signal-to-noise ratio of a signal
recorded, for example, as a function of time or wavelength. Figure 4.5 shows a
graphical illustration of smoothing applied to noisy near-infrared spectra. A detailed

must be used when smoothing data. Strong smoothing gives better signal-to-noise
ratios than weak smoothing, but strong smoothing may adversely reduce the reso-
lution of the signal. For example, if a method that gives strong smoothing is used
on a spectrum with sharp peaks or shoulders, these will be smoothed in a manner
similar to noise.

The simplest method of smoothing is to calculate a running average for a narrow
window of points. The smoothed spectrum is generated by using the average value
from the window. This causes problems at the endpoints of the curve, and numerous
authors have described different methods for treating them. The most commonly
used type of smoothing is polynomial smoothing, also called Savitzky-Golay
smoothing, after the names of two authors of a paper describing the technique
published in 1964 [6].

Polynomial smoothing works by least-squares fitting of a smooth polynomial
function to the data in a sliding window of width w, where w is usually an odd
number. Smoothed points are generated by evaluating the polynomial function at its
midpoint. After the polynomial is evaluated to determine a smoothed point, the
window is moved to the right by dropping the oldest point from the window and
adding the newest point to the window. Another polynomial is fitted to the new
window, and its midpoint is estimated. This process is continued, one point at a

FIGURE 4.5 Illustration of polynomial smoothing on near-infrared spectra of water-methanol
mixtures. (a) Original spectra. (b) Smoothed spectra.

1300

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b)

A
bs

or
ba

nc
e

1400 1500
Wavelength, nm

1600 1700 1800 1300

0.1

0.2

0.3

0.4

0.5

0.6

A
bs

or
ba

nc
e

1400 1500
Wavelength, nm

1600 1700 1800

DK4712_C004.fm  Page 81  Wednesday, March 1, 2006  4:30 PM

© 2006 by Taylor & Francis Group, LLC

discussion of filtering and smoothing is presented in Chapter 10 of this book. Caution
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time, until the entire curve has been smoothed. The degree of smoothing is controlled
by varying the width of the window, w, and by changing the degree of the fitted
polynomial function. Increasing the width of the window gives stronger smoothing.
Increasing the degree of the polynomial, say from a quadratic to a quartic, allows
more complex curves to be fitted to the data.

Polynomial smoothing does not possess an ideal frequency-response function
and can potentially introduce distortions and artifacts in smoothed signals [7]. Other
methods of smoothing do not possess these shortcomings. A detailed discussion of

4.4.5 FIRST AND SECOND DERIVATIVES

Taking the derivative of a continuous function can be used to remove baseline offsets,
because the derivative of a constant is zero [8]. In practice, the derivative of a
digitized curve can be closely approximated by numerical methods to effectively
remove baseline offsets. The derivative transformation is linear, and curves produced
by taking the derivative retain the quantitative aspects of the original signal. The
most commonly used method is based on polynomial smoothing. As in polynomial
smoothing, a sliding window is used; however, the coefficients for the smoothing
operation produce the derivative of the polynomial function fitted to the data. As in
polynomial smoothing, the frequency-response function of these types of filters is
not ideal, and it is possible to introduce distortions and artifacts if the technique is
misused.

Figure 4.6 shows a graphical illustration of the effect of taking the first derivative
on the near-infrared spectra of water-methanol mixtures. In addition to removing
baseline offsets, the derivative also functions as a high-pass filter, narrowing and
sharpening peaks within the spectrum. Zero crossing points can be used to identify
the location of peaks in the original spectra. This process also removes a significant

FIGURE 4.6 Illustration of a numerical approximation of the first derivative on near-infrared
spectra of water-methanol mixtures. (a) Original spectra. (b) Derivative spectra.
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these important points is presented in Chapter 10.
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amount of signal, resulting in a lower signal-to-noise ratio in the derivative curve

4.4.6 NORMALIZATION

In some circumstances is it useful to normalize a series of signals such as spectra
or chromatograms prior to data analysis. For example, the intensity of Raman
emission spectra depends on the intensity of the laser light source used to measure
the spectra, and if there are any fluctuations in the intensity of the source during an
experiment, these will show up in the spectra as confounding factors in any attempts
to perform quantitative analysis. In cases such as these, each spectrum in the experi-
ment can be normalized to constant area, thus removing the effect of the fluctuating
signal. The simplest normalization technique is to simply set the sum of squares for
each spectrum (a row in A) to 1, i.e., each spectrum has unit length. This is exactly
the same operation described in Section 4.4.2, Variance Scaling, except the method
is applied to rows in the data matrix rather than columns. Many other normalization
schemes can be employed, depending on the needs dictated by the application. For
example, if a Raman emission band due to solvent alone can be found, then it may
be advantageous to normalize the height or area of this band instead of normalizing
the total area, thereby avoiding sensitivity to changes in concentration (see Figure 4.7).
Another common form of normalization is to normalize a mass spectrum by dividing
by the largest peak.

4.4.7 MULTIPLICATIVE SCATTER CORRECTION (MSC) AND 
STANDARD NORMAL VARIATE (SNV) TRANSFORMS

Two closely related methods — multiplicative scatter correction (MSC) [9] and
standard normal variate (SNV) transforms [10] — are discussed in this section. MSC

FIGURE 4.7 Illustration of normalization applied to Raman spectra. (a) Original spectra. (b)
Normalized spectra.
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(note the difference in plotting scales in Figure 4.6).
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was first reported in 1989 by Martens and Naes [9] as a method to correct differences
in baseline offsets and path length due to differences in particle-size distributions in
near-infrared reflectance spectra of powdered samples. A brief discussion of the source
of these two effects is presented, followed by a more detailed description of MSC and
SNV and an explanation of how they help compensate these kinds of effects.

In NIR reflectance measurements, there are two components of reflected light
that reach the detector: specular reflectance and diffuse reflectance. Specular reflec-
tance is light that is reflected from the surface of particles without being absorbed
or interacting with the sample. Diffuse reflectance is light that is reflected by the
sample after penetrating the sample particles, where some of the light is absorbed
by the chemical components present in the particles. Powdered samples with very
small uniform particles tend to pack very efficiently compared to samples with large,
irregularly shaped particles. Samples with small, efficiently packed particles give a
greater intensity of specular reflectance, and after transformation as log(1/reflec-
tance), the higher levels of specular reflectance appear as increased baseline offsets;
thus samples with smaller particle-size distributions tend to have larger baseline
offsets. Beam penetration is shallow in samples with small, efficiently packed par-
ticles; thus these kinds of samples tend to have shorter effective path lengths com-
pared to samples with larger irregularly shaped particles.

MSC attempts to compensate these two measurement artifacts by making a
simple linear regression of each spectrum, xi, against a reference spectrum, xr. The
mean spectrum of a set of training spectra or calibration spectra is usually used as
the reference.

(4.25)

The least-squares coefficients, β0 and β1 (shown in Equation 4.25) are first estimated
and then used to calculate the MSC-corrected spectrum, .

(4.26)

The MSC has been shown to work well in several empirical studies [9, 10],
which showed an improvement in the performance of multivariate calibrations and
a reduction in the number of factors in PCA. For example, NIR reflectance spectra

to differences in particles size from sample to sample, there are significantly different
baseline offsets. The same spectra are shown in Figure 4.8b after multiplicative
scatter correction. The different baseline offsets observed in Figure 4.8a are so large
that they mask important differences in the water content of these samples. These
differences are revealed in the water absorption band at 1940 nm after the baseline
offsets have been removed by MSC.

In the SNV transform, the mean of each spectrum is subtracted and the length
is normalized to 1. The mathematical similarity to MSC is shown in Equation 4.27,
with and , where the notation ||x|| represents the norm of x.

(4.27)

x xr i≈ +β β0 1

xi
*

x xi i
* = +β β0 1

β0 = −xi β1 1= / || ||xi

x xi i
* = +β β0 1
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of 20 powder samples of microcrystalline cellulose are shown in Figure 4.8a. Due
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The SNV transformation produces results similar to MSC in many cases, which
sometimes makes it difficult to choose between the two methods. In practice, it is
best to try both methods and select the preprocessing method that gives superior
performance. Notice, for example, the similarity of the results shown in Figure 4.8
and Figure 4.9. Notice how the abscissa (y-axis) changes after SNV processing. The
spectra are centered about the zero axis, which is a result of the mean subtraction.
Additionally, the magnitude of the scale is significantly different.

FIGURE 4.8 Illustration of multiplicative scatter correction (MSC). (a) NIR reflectance spectra
of 20 powdered samples of microcrystalline cellulose. (b) Same NIR reflectance spectra after
multiplicative scatter correction, revealing differences in moisture content.

FIGURE 4.9 Illustration of standard normal variate (SNV) preprocessing. (a) NIR reflectance
spectra of 20 powdered samples of microcrystalline cellulose. (b) Same NIR reflectance
spectra after SNV preprocessing, revealing differences in moisture content.
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4.5 PCA DATA EXPLORATION PROCEDURE

In the following example, MATLAB commands are used to perform PCA of NIR
spectra of water-methanol mixtures. Plots of the spectra and eigenvectors (loadings)
are shown in Figure 4.10. A total of 11 spectra are plotted in the top of the figure.
The upper spectrum at 1940 nm is pure water, the bottom spectrum is pure methanol,
and the nine spectra in between are mixtures of water and methanol in increments
of 10% v/v, e.g., 90, 80, 70%, and so on. The first eigenvector shown in Figure 4.10
has an appearance similar to the average of all 11 spectra. The second eigenvector
shows a peak going down at about 1940 nm (water) and a peak going up at about
2280 nm (methanol). This eigenvector is highly correlated with the methanol con-
centration and inversely correlated with the water concentration. The third and fourth
eigenvectors are much more difficult to analyze, but in general, they show derivative-
like features in locations where absorption bands give apparent band shifts.

MATLAB EXAMPLE 4.5: PCA PROCEDURE

% Load the data set into memory

load meohwat.mat

a=a';

c=c';

% Compute the PCA model & save four factors

[u,s,v]=svd(a);

u=u(:,1:4);

FIGURE 4.10 (a) Plots of NIR spectra of water-methanol mixtures. (b) Eigenvectors 1 (solid
line) and 2 (dashed line). (c) Eigenvectors 3 (solid line) and 4 (dashed line).
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s=s(1:4,1:4);

v=v(:,1:4);

% Make plots of the eigenvectors

figure(2); plot(w,a);

figure(1); plot(w,v);

figure(1); plot(w,v(:,1:2));

figure(1); plot(w,v(:,3:4));

% Make scatter plots of scores

figure(1);

lab_plot(u(:,1),u(:,2));

xlabel('Scores for PC 1'); ylabel('Scores for PC 2'); pause;

lab_plot(u(:,2),u(:,3));

xlabel('Scores for PC 2'); ylabel('Scores for PC 3'); pause;

lab_plot(u(:,3),u(:,4));

xlabel('Scores for PC 3'); ylabel('Scores for PC 4'); pause;

Each circle represents the location of a spectrum projected into the plane defined
by the corresponding pairs of principle component axes (a detailed discussion of
projection into subspaces is given in Section 4.7). The points are labeled consecu-
tively in order of increasing methanol concentration, where the label 1 represents
pure water, 2 represents 10% methanol, 3 represents 20% methanol, and so on up
to the point labeled 11, which represents pure methanol. In the plane defined by
PC1  and PC2, the points tend to lie on a slightly curved line. In the plane defined
by PC2 and PC3, the points lie on a curve that is approximately parabolic in shape.
In the plane defined by PC3 and PC4, the points lie on a curve having the shape of “α”

The curvature observed in the water-methanol score plots can be described well
by simple polynomial functions such as quadratic or cubic functions. The reason
for this behavior is the sensitivity of the NIR spectral region to hydrogen bonding.
The presence of hydrogen bonding increases the length of O-H bonds, thereby
perturbing the frequency of O-H vibration to shorter frequencies or longer wave-
lengths. Because it is possible for water and methanol molecules to participate in
multiple hydrogen bonds — both as proton donors and proton acceptors, as shown

mixtures of different hydrogen-bonded species, so that the underlying absorption
bands can be considered to be a composite of many different kinds of hydrogen-
bonded species, as shown in Figure 4.12 [13, 14]. Apparent band shifts in these
peaks are the result of changing equilibrium concentrations of the different species.
These shifting equilibrium mixtures are described by polynomial functions, which
are manifest in the score plots shown in Figure 4.11.

4.6 INFLUENCING FACTORS

Until now we have not said much about how to select the proper number of principal
components for a model. Recall that in the presence of random measurement error,
there will be l nonzero eigenvalues and eigenvectors for an n × m data matrix, where
l is the smaller of n and m, i.e., l = min(n,m), some of which must be deleted. We
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PCA score plots of the water-methanol mixture spectra are shown in Figure 4.11.

in Figure 4.12 [11–13] — these solutions can be considered to consist of equilibrium
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the location of a spectrum in a two-dimensional plane defined by the corresponding pair of PC axes. Points are
consecutively labeled in order of increasing methanol concentration, 1 = 0%, 2 = 10%, 3 = 20%, ….
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FIGURE 4.11 PCA score plots of the water-methanol mixtures shown in Figure 4.10. Each circle represents
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also mentioned in Section 4.3.4 that we expect our principal component models to have
nonzero eigenvalues and corresponding eigenvectors for each component represented
in a data matrix. We must now qualify this statement with several “except when” clauses.
These include clauses like “except when the spectra of the overlapping peaks are almost
identical,” “except when the peaks are almost completely overlapped,” “except when a
component’s signal has almost the same magnitude as the measurement error,” and
“except when matrix effects are occurring, such as a chemical interaction.” Will it be
possible to define what we mean by “except when” in these clauses? The answer is
yes; however, all of these effects work together in a complicated way to determine
whether or not the signal due to a component can be detected in a data matrix.

Before we can begin a discussion of our “except when” clauses and their compli-
cated interrelationships, it is important to have a thorough understanding of measure-
ment error and how it affects principal component models. This will enable us to turn
our attention to several statistical tests for determining the number of significant prin-
cipal components needed to model a data set. Having discussed how measurement error
effects principal component models, we will finally return to a discussion of our “except
when” clauses. We shall begin our discussion of measurement error by discussing the
meaning of variance and residual variance as it applies to principal component models.

4.6.1 VARIANCE AND RESIDUAL VARIANCE

The total variance in a data matrix A is the sum of the diagonal elements in ATA or
AAT (also called the trace of ATA or the trace of Z). This total sum of squares
represents the total amount of variability in the original data. The magnitude of the
eigenvalues is directly proportional to the amount of variation explained by a cor-
responding principal component. In fact, the sum of all of the eigenvalues is equal
to the trace of Z.

trace(Z) = λ1 + λ2 + … + λl (4.28)

FIGURE 4.12 Illustration of multiple overlapping absorption bands in the NIR spectrum of
water, ν1, represents the absorption band of nonhydrogen-bonded water (free O-H), whereas
ν1′, ν1″, and ν1″′ represent water in various hydrogen-bonded states.
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It can be shown that the scores for the first eigenvector and principal component
extract the maximum possible amount of variance from the original data matrix using
a linear factor [15]. In other words, the first principal component is a least-squares
result that minimizes the residual matrix. The second principal component extracts the
maximum amount of variance from whatever is left in the first residual matrix.

R1 = A − u1s1v1
T (4.29)

R2 = R1 − u2s2v2
T (4.30)

Rk = Rk−1 − ukskvk
T (4.31)

The variance explained by the jth principal component is simply the ratio of the
jth eigenvalue and the total variance in the original data matrix, e.g., the trace of Z.

(4.32)

The cumulative variance is the variance explained by a principal component
model constructed using factors 1 through j.

(4.33)

When random experimental error is present in a data set, the total variance can
be partitioned into two parts: the part due to statistically significant variation and
the part due to random fluctuations.

(4.34)

When the true number of factors, k, is known, the residual matrix, Rk, is a
good approximation of the random measurement errors, ε. Using the residual
variance, it is possible to calculate an estimate of the experimental error according
to Malinowski’s RE function [15].

(4.35)

where n and m are the numbers of rows and columns in A, respectively. If mean
centering is used, then (n − k − 1)(m − k − 1) should be used in the denominator
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of Equation 4.35 or Equation 4.36. It is possible for computer round-off errors
to accumulate in the smallest eigenvalues in these equations; therefore, it is more
accurate to calculate RE using the alternative formula given in Equation 4.36.

(4.36)

The plot shown in Figure 4.13 shows the results from analysis of the simulated

function in the following Example 4.6 was used to calculate and plot Malinowski’s RE.
Inspecting plots of RE as a function of the number of principal components is

a good method for determining the number of principal components in a data set.
Usually we observe a large decrease in RE as significant factors are added to the
principal component model. Once all of the statistically significant variance is
modeled, RE levels off to a nearly constant value and thereafter continues to decrease
only slightly (see Figure 4.13). Additional principal components model purely ran-
dom error. Including these factors in the principal component model reduces the
estimated error slightly. In Figure 4.13, we can see a substantial decrease in RE
when we go from one to two principal components. This is a strong indication that
the first two principal components are important. When additional principal com-
ponents are added to the model, we only see a slight decrease in RE. This provides
further evidence that only two principal components are needed to model statistically
significant variance. For the example shown in Figure 4.13, we correctly conclude
that two principal components are significant.

Another function for determining the number of significant principal components
is Malinowski’s empirical indicator function (IND) [15] is shown in Equation 4.37.

(4.37)

FIGURE 4.13 Malinowski’s RE function vs. the number of principal components included
in the principal component model for the simulated data set shown in Figure 4.1 with random
noise added (σ = 0.0005).
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data set in Figure 4.1 with normal random error added (σ = 0.0005, x = 0). The x = 0
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Malinowski and others have observed that the indicator function often reaches a
minimum value when the correct number of factors is used in a principal component
model. We finish this section by giving a MATLAB function in Example 4.6 for
calculating eigenvalues, variance, cumulative variance, Malinowski’s RE, and
Malinowski’s REV and F (described in Section 4.6.2). Note that the function uses the
SVD to determine the eigenvalues.

MATLAB EXAMPLE 4.6: FUNCTION FOR CALCULATING MALINOWSKI’S RE,
IND, AND REV FUNCTIONS

function [lambda,var,cum_var,err,rv,f]=re_anal(a);

% [lambda,var,cum_var,err,rv,f]=re_anal(a);

% Function re_anal calculates Malinowski's RE, REV, and other stats.

% for determining the number of factors to use for matrix A

% lambda: eigenvalues of a'*a

% var: variance described by the eigenvalues of a'*a

% cum_var: cumulative variance described by eigenvalues of a'*a

% err: Malinowski's RE

% rv: Malinowski's reduced error eigenvalues

% f: Malinowski's f-test

nfac=min(size(a)) - 1; % We'll determine stats for n-1 factors

% Allocate vectors for results

lambda = zeros(nfac,1);

var = zeros(nfac,1);

cum_var = zeros(nfac,1);

err = zeros(nfac,1);

rv = zeros(nfac,1);

f = zeros(nfac,1);

pr   = zeros(nfac,1);

% calculate degrees of freedom

[r,c]=size(a);

y=min(r,c);

x=max  (r,c);

s=svd  (a',0).^2;             % get singular values

Trace_of_a=sum(s);             % calc total sum of squares

lambda=s(1:nfac);              % get e'vals

var  =100.0*lambda/Trace_of_a; % calc pct. variance

ssq=0.0;

resid_ssq=Trace_of_a;

for i=1:nfac                   % loop to calc RE, cum_var, rv

ssq=ssq+s(i);

resid_ssq=resid_ssq-s(i);

err(i)=sqrt(resid_ssq/((r-i)*(c-i)));

cum_var(i)=100.0*ssq/Trace_of_a;

end  ;

DK4712_C004.fm  Page 92  Wednesday, March 1, 2006  4:30 PM

© 2006 by Taylor & Francis Group, LLC



Principal Component Analysis 93

nf=min(r,c);

for i=1:nf                    % loop to calc rev

rv(i)=s(i)/((r-i+1)*(c-i+1)); % calculate the vector of reduced eigenvalues

end  ;

% calculate F

for i=1:nfac

den=sum(rv(i+1:nf));

f(i)=(nf-i)*(rv(i)/den);

end;

rv(nf)=[];

4.6.2 DISTRIBUTION OF ERROR IN EIGENVALUES

In 1989, Malinowski observed that the magnitude of secondary eigenvalues (called
“error eigenvalues”) with pure random error are proportional to the degrees of
freedom used to determine the eigenvalue [16].

λj
o = N (m − j + 1)(n − j + 1) σ2 (4.38)

In Equation 4.38, n and m are the numbers of rows and columns in the original data
matrix, N is a proportionality constant, and σ is the standard deviation of the error in
the original data matrix. Malinowski proposed calculation of so-called “reduced error
eigenvalues,” which are directly proportional to the square of the measurement error, σ:

(4.39)

4.6.3 F-TEST FOR DETERMINING THE NUMBER OF FACTORS

A simple hypothesis test can be devised using the reduced eigenvalues to test for
the significance of a factor, j [17]

(4.40)

The F-test is used to determine the number of real factors in a data matrix by
starting with the next-to-smallest eigenvalue. The next-to-smallest eigenvalue is
tested for significance by comparing its variance to the variance of the remaining
eigenvalue. If the calculated F is less than the tabulated F at the desired significance
level (usually α = .05 or .01), then the eigenvalue is judged not significant. The
next-smallest eigenvalue is tested by comparing its variance to the variance of the
pool of nonsignificant eigenvalues. The process of adding eigenvalues to the set of
nonsignificant factors is repeated until the variance ratio of the jth eigenvalue exceeds
the tabulated F-value. This marks the division between the set of real and error vectors.
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In Example 4.6, the statistics in Table 4.1 have been determined for the simulated
chromatographic data set shown in Figure 4.1. Random noise (σ = 0.0005 absorbance
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TABLE 4.1
Results from Factor Analysis of Simulated Chromatographic Data

Trace = 47.890421 % % Cum.  IND Prob.
Factor Eigenvalue Variance Variance RE (×10−7)  REV F-Ratio Level

1 43.015138 89.8199 89.8199 0.04755 245.62 1.912 × 10−2 371 0.000
2 4.874733 10.1789 99.9989 0.00052 2.79 2.261 × 10−3 141987 0.000
3 0.000047 0.0001 99.9989 0.00050 2.86 2.260 × 10−8 1.43 0.238
4 0.000039 0.0001 99.9990 0.00050 2.95 1.955 × 10−8 1.25 0.271
5 0.000037 0.0001 99.9991 0.00049 3.05 1.936 × 10−8 1.24 0.272
6 0.000033 0.0001 99.9992 0.00048 3.15 1.831 × 10−8 1.18 0.284
7 0.000032 0.0001 99.9992 0.00047 3.27 1.844 × 10−8 1.19 0.281
8 0.000029 0.0001 99.9993 0.00046 3.39 1.779 × 10−8 1.16 0.289
9 0.000028 0.0001 99.9994 0.00046 3.51 1.810 × 10−8 1.18 0.284
10 0.000026 0.0001 99.9994 0.00045 3.65 1.735 × 10−8 1.14 0.293
11 0.000023 0.0000 99.9995 0.00044 3.81 1.676 × 10−8 1.10 0.301
12 0.000021 0.0000 99.9995 0.00043 3.98 1.608 × 10−8 1.06 0.311
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units,  = 0) was added to the simulated data. Working backwards from the bottom

principal component occurs at j = 2. The probability that the difference between
REV2 and the sum of the remaining eigenvalues is due to random error is given in
the column labeled “Prob. Level” in Table 4.1. The actual probability level at j = 2
was so small (ca. 1 × 10−7) that it was rounded to zero. This very low probability
level indicates that the difference between REV2 and the sum of the remaining
eigenvalues is highly significant. Selecting two principal components, we find the
estimated residual error is about 0.0005 absorbance units (AU) in very good agree-
ment with the actual random error added to this data matrix. The MATLAB code
shown in Example 4.7 was MATLAB used to calculate the REV values and F-ratios.

EXAMPLE 4.7: DETERMINING THE NUMBER OF SIGNIFICANT PRINCIPAL COMPO-

NENTS IN A DATA MATRIX

1. Using the MATLAB function called re_anal.m, calculate values for each
column shown in Table 4.1. Use the sample data file called “pca  _dat”.
Use the results to make and interpret plots of the eigenvalues and Mali-
nowski's RE and REV functions.

load pca_dat

[lm,vr,cu,er,rv,f]=re_anal(an);

format short e

[lm,vr,cu,er,rv,f]

% Plot e'vals

semilogy(lm,'o'); hold on; semilogy(lm); hold off;

title('Plot of eigenvalues');

% Plot REV

semilogy(rv,'o'); hold on; semilogy(rv); hold off;

title('Plot of Malinowski''s reduced eigenvalues');

% Plot RE

semilogy(er,'o'); hold on; semilogy(er); hold off;

title('Plot of Malinowski''s RE function');

2. Using the MATLAB svd function, calculate the row-mode and column-
mode eigenvectors, U and V, for the sample data file called ‘‘pca_dat”.
Make plots of the first four row-mode and column-mode eigenvectors. 

% Do svd, plot row-mode and column-mode eigenvectors

[u,s,v]=svd(an);

plot(u(:,1:4)); title('Column-mode eigenvectors');

xlabel('Retention time (s)'); ylabel('Absorbance');

pause % Hit return to continue

plot(wv,v(:,1:4)); title('Row-mode eigenvectors');

xlabel('Wavelength (nm)'); ylabel('Absorbance');

pause % Hit return to continue

x
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3. From the table and plots obtained in parts 1 and 2, the number of signif-
icant factors in the data set appears to be two, and the experimental error
in the data set is estimated to be 0.00052 using RE.

4.7 BASIS VECTORS

When the true intrinsic rank of a data matrix (the number of factors) is properly
determined, the corresponding eigenvectors form an orthonormal set of basis vectors
that span the space of the original data set. The coordinates of a vector a in an
m-dimensional space (for example, a 1 × m mixture spectrum measured at m wave-
lengths) can be expressed in a new coordinate system defined by a set of orthonormal
basis vectors (eigenvectors) in the lower-dimensional space. Figure 4.14 illustrates
this concept. The projection of a onto the plane defined by the basis vectors x and
y is given by a‡. To find the coordinates of any vector on a normalized basis vector,
we simply form the inner product. The new vector a‡, therefore, has the coordinates
a1 = aTx and a2 = aTy in the two-dimensional plane defined by x and y.

To find a new data vector’s coordinates in the subspace defined by the k basis
vectors in V, we simply take the inner product of that vector with the basis vectors.

t = aV (4.41)

In Equation 4.41 the row vector of scores, t, contains the coordinates of a new
spectrum a in the subspace defined by the k columns of V. Note that the pretreated
spectrum a must be used in Equation 4.41 if any preprocessing options were used
when the principal component model was computed.

Because experimental error is always present in a measured data matrix, the
corresponding row-mode eigenvectors (or eigenspectra) form an orthonormal set of
basis vectors that approximately span the row space of the original data set. Figure
4.14 illustrates this concept. The distance between the endpoints of a and a‡ is equal
to the variance in a not explained by x and y, that is, the residual variance.

FIGURE 4.14 Projection of a three-dimensional vector a onto a two-dimensional subspace
formed by the basis vectors x and y to form a‡.
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The percent cumulative variance explained by the principal component model can
be used to judge the quality of the approximation. For example, recall the data matrix

by a two-component model; therefore we judge the approximation to be a very good
one for this example. This means that each spectrum in 50-dimensional space can be
expressed as a point in a two-dimensional space while still preserving over 99.99%
of the information in the original data. This is one of the primary advantages of using
PCA. Complex multivariate measurements can be expressed in low-dimensional spaces
that are easier to interpret, often without any significant loss of information.

Clearly we cannot imagine a 50-dimensional space. It is possible, however, to
view the position of points relative to each other in a 50-dimensional space by
plotting them in the new coordinate system defined by the first two basis vectors in
V. All we have to do is use the first column of t as the x-axis plotting coordinate
and the second column of t as the y-axis plotting coordinate. An example of such a
plot is shown in Figure 4.15. The MATLAB plot(t(:,1),t(:,2),'o'); statement was
used to create the scatter plot in Figure 4.15. The elements of the column vector
t(:,1) are used as x-axis plotting coordinates, and the elements of the column
vector t(:,2) are used as the y-axis plotting coordinates.

As the first pure component begins to elute, the principal component scores
increase in Figure 4.15 along the axis labeled “pure component 1.” As the second
component begins to elute, the points shift way from the component 1 axis and
toward the component 2 axis. As the concentration of the second component
begins to decrease, the principal component scores decrease along the axis
labeled “pure component 2.” Points that lie between the two pure-component

FIGURE 4.15 Scatter plot of the principal component scores from the analysis of the HPLC-
UV/visible data set shown in Figure 4.1. The principal component axes are orthogonal,
whereas the pure-component axes are not. Distances from the origin along the pure-component
axes are proportional to concentration. Pure spectra lie on the pure-component axes. Mixture
spectra lie between the two pure-component axes. Dashed lines show the coordinates (e.g.,
concentrations) of one point on the pure-component axes.
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lengths. From Table 4.1, it can be seen that over 99.99% of the variance is explained
of two overlapped peaks in Figure 4.1 consisting of 50 spectra measured at 50 wave-
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axes represent mixture spectra obtained at moments in time when the two peaks
are overlapped.

4.7.1 CLUSTERING AND CLASSIFICATION WITH PCA SCORE PLOTS

An important application of PCA is classification and pattern recognition. This

idea behind this approach is that data vectors representing objects in a high-dimensional
space can be efficiently projected into a low-dimensional space by PCA and viewed
graphically as scatter plots of PC scores. Objects that are similar to each other will
tend to cluster in the score plots, whereas objects that are dissimilar will tend to be
far apart. By “efficient,” we mean the PCA model must capture a large fraction of
the variance in the data set, say 70% or more, in the first few principal components.

Examples illustrating the use of PCA for identification and classification are
given in Chapter 9, including classification of American Indian obsidian artifacts by
trace element analysis, identification of fuel spills by gas chromatography, identifi-
cation of recyclable plastics by Raman spectroscopy, and classification of bees by
gas chromatography of wax samples.

4.8 RESIDUAL SPECTRA

We have already hinted that the change of bases described above only works when
the new basis vectors span the space of the data matrix. For example, suppose the

So long as Beer’s law holds, the eigenvectors from the analysis of such a data set
should span the space of any mixture of acetophenone and benzophenone. This
means that over 99.9% of the variance in an unknown spectrum, au, should be
explained by the basis vectors.

There may be times when an orthogonal basis may not span the space of a
mixture spectrum. For example, suppose a mixture was contaminated with a sub-
stance like benzyl alcohol that has a UV/visible spectrum different from acetophenone
and benzophenone. In this case, the absorption signal due to all three components
will not be modeled by the two eigenvectors from the factor analysis of acetophenone
and benzophenone mixtures.

If the contamination is great enough, the total variance in an unknown spectrum
explained by the eigenvectors will be significantly less than 99.9%. This is easily
demonstrated by calculating and plotting an unknown sample’s residual spectrum
using k factors.

tu = auV (4.42)

ru = au − tuVT (4.43)

In Equation 4.43, ru is the sample’s residual vector or residual spectrum, au is the
pretreated spectrum, and the quantity tuVT is the unknown sample’s reproduced spec-
trum. The scores for the spectrum must be determined from Equation 4.42 using the
basis vectors V determined from a data set that does not contain the contamination.
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overlapping peaks in Figure 4.15 were actually acetophenone and benzophenone.

particular application of PCA is described in detail in Chapter 9. The fundamental
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As an example, the mixture spectra shown as solid lines in Figure 4.16 were
used as a “training set” to determine V. The residual spectra from the training set
are plotted in Figure 4.17 along with the contaminated mixture's residual spectrum.
The residual spectra from the training set all have small random deviations. They
appear as a solid black line about absorbance = 0 in Figure 4.17. The contaminated
spectrum has a larger residual spectrum, indicating that it contains a source of
variation not explained by the principal component model.

You can try this above analysis yourself using the simulated data shown in
Figure 4.16 and Figure 4.17 and the MATLAB program in Example 4.8. The
contaminated spectra are stored in the variable called au in the data file called
“residvar.mat”. The training spectra are saved in the variable called a.

FIGURE 4.16 Plot of simulated two-component mixture spectra (solid line) and a spectrum
contaminated with a third unknown component (dashed line).

FIGURE 4.17 Plot of residual spectra from the training set (solid line) and the residual
spectrum for the unknown spectrum (dashed line) shown in Figure 4.16.
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MATLAB EXAMPLE 4.8: COMPUTATION OF RESIDUAL SPECTRA

% Load residvar data set

load residvar.mat

whos

plot  (x,a,'-'); title('Training spectra');

% Calc PC model for training set

[u,s,v]=svd(a);

k=2; % use 2 princ. components

[u1  ,s1,v1]=trim(k,u,s,v);

% Calc and plot training set residual spectra

r=a-u1*s1*v1';

plot  (x,r,'-'); title('Training residaul spectra');

% Project unknowns into space of training set and calc residual spectra

unk_scores=au*v1; % Calc   unknown scores

r_unk=au-unk_scores*v1'; % Calc unknown residual spectra

plot(x,r_unk,'-'); title('Unknown residaul spectra');

4.8.1 RESIDUAL VARIANCE ANALYSIS

A sample can be classified by calculating the sum of the squares of the difference
between its measured spectrum vector and the same spectrum reproduced using a
principal component model. The residual variance, si

2, of a data vector i fitted to the
training set for class q indicates how similar the spectrum is to class q. For data vectors
from the training set, the residual variance of a sample is given by Equation 4.44.

(4.44)

In Equation 4.44, rij is the residual absorbance of the ith sample at the jth variable,
m is the number of wavelengths, and k is the number of principal components used
in constructing the principal component model. If mean correction is used, then the
denominator in Equation 4.44 should be changed to m − k − 1. For unknown data
vectors (vectors not used in the training set), Equation 4.45 is used to calculate the
residual variance, where rij is a residual absorbance datum for the ith sample’s
spectrum when fit to class q.

(4.45)

The notation, “class q” is used in case there happens to be more than one class. The
degrees of freedom in Equation 4.45 are unaffected by mean correction.
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The expected residual class variance for class q is calculated by using the residual
data vectors for all samples in the training set. The resulting residual matrix is used
to calculate the residual variance within class q. This value is an indication of how
“tight” a class cluster is in multidimensional space. It is calculated according to
Equation 4.46, where so

2 is the residual variance in class q and n is the number of
samples in class q.

(4.46)

The summations in Equation 4.46 are carried over all samples in class q and all
wavelengths in the residual spectra. Notice the definition for so

2 is the same as
Malinowski’s RE. The degrees of freedom in the denominator of Equation 4.46
should be changed to (n − k − 1)(m − k − 1) when mean correction is used.

If one assumes that the original data are normally distributed and the principal
component model is sufficient to describe the original data, then it can be shown
that the residuals will be normally distributed. In this case, the variance ratio in
Equation 4.47 can be calculated to test the null hypothesis H0: si

2 = so
2 against H1:

si
2 ≠ so

2. The null hypothesis is rejected at probability level α when the calculated
ratio is greater than the critical value of F. In our work using NIR spectra, we have
found that the degrees of freedom for the F-test shown in Equation 4.47 give
satisfactory performance. In other applications, different authors have suggested
different degrees of freedom for this test.

(4.47)

The terms 1 and n − k gives the degrees of freedom used for comparing the
calculated F-value of a single unknown spectrum with a tabulated F-value. The
quantity n − k is used when no mean correction is used. If mean correction is
used, then the quantity n − k − 1 should be substituted in Equation 4.47. The data
vectors are then classified according to the probability levels from the F-test.

In Example 4.9, the results from Example 4.8 are used to compute the residual

with a minor level of an impurity is shown in the first row. All samples in the training
set have small residual variances and F-ratios less than the critical value of
F = 4.105. The “unacceptable” unknown spectrum has a very large F-value, indi-
cating with a high degree of confidence that it is not a member of the parent
population represented by the training set.
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10 “unknown” spectra are shown in Table 4.2. The unknown spectrum contaminated
variance and F-ratios for the data set described in Figure 4.16. The F-values for the
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MATLAB EXAMPLE 4.9: RESIDUAL VARIANCE ANALYSIS

% Calc residual class variance

[n,m]=size(a);

class_so=sum(sum(r.^2))/((m-k)*(n-k))

r1=1/(m-k)*sum(r'.^2);

F1=r1/class_so;

[(1:n)' F1']

[nunks,nvars]=size(r_unk);

r2=(1/m)*sum(r_unk'.^2);

F2=r2/class_so;

[(1:nunks)' F2']

4.9 CONCLUSIONS

Principal component analysis is ideally suited for the analysis of bilinear data
matrices produced by hyphenated chromatographic-spectroscopic techniques. The
principle component models are easy to construct, even when large or complicated
data sets are analyzed. The basis vectors so produced provide the fundamental
starting point for subsequent computations. Additionally, PCA is well suited for
determining the number of chromatographic and spectroscopically unique compo-
nents in bilinear data matrices. For this task, it offers superior sensitivity because it
makes use of all available data points in a data matrix.

TABLE 4.2
Residual Variance Analysis Example

Sample F-Ratio

1 34.9456
2 0.8979
3 0.6670
4 0.9222
5 0.9133
6 0.8089
7 0.8397
8 0.7660
9 0.9602

10 3.4342

Note: The F-ratios have df = 1, 37. The tabulated
value of F(α = 0.05, 1, 37) = 4.105. The null
hypothesis is rejected at the 1.00 − 0.05 = 0.95
probability level for all F-ratios > 4.105.
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When one is provided with quantitative information for the target analyte, e.g.,
concentration, in a series of calibration samples, and when the respective instru-
mental responses have been measured, there are two central approaches to stating
the calibration model. These methods are often referred to as classical least squares
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and inverse least squares. Classical least squares implies that the spectral response
is the dependent variable, while the quantitative information for the target analyte
denotes the independent variable for a linear model. If spectral absorbencies are
measured, this would be Beer’s law. Inverse least squares involves the reverse. In
either approach, least squares has nothing to do with the form of the model. Least
squares is a method to determine model parameters for a specified model rela-
tionship. Thus, one should say that the model (model parameters) was obtained
using the method of least squares. This chapter will be based only on the inverse
least-squares representation of a calibration model, and the phrase inverse least
squares will not be used. It is interesting to note that other phrases have been used
to designate the model. For example, expressions such as “inverse regression” and
“reverse calibration” have been used to imply a classical least-squares model
description, and phrases like “ordinary least squares” and “forward calibration”
have been utilized to communicate an inverse least-squares-type model [1].

 

5.1 DATA SETS

 

Near-infrared (NIR) spectra of water-methanol mixtures are examined to demon-
strate the fundamental aspects of calibration. These spectra are used because they
present unique challenges to calibration. Another reference NIR data set is also
briefly evaluated. The reader should remember that the information presented is
generic and applies to all calibration situations, not just spectroscopic data. Addi-
tionally, for discussion purposes, the quantitative information for the target analyte
will be concentration. However, other chemical or physical properties can also be
modeled. Throughout this chapter, unless noted otherwise as in Sections 5.3 and
5.4, it will be assumed that the described models have had the intercept term
eliminated. The easiest way to accomplish this is to mean-center the data. 

 

5.1.1 N

 

EAR

 

 I

 

NFRARED

 

 S

 

PECTROSCOPY

 

NIR spectroscopy is a popular method for qualitative and quantitative analysis. It is
finding widespread use in many different industries for monitoring the identity and
quality of raw materials and finished products in the food, agricultural, polymer,
pharmaceutical, and organic chemical manufacturing industries.

Prior to the widespread availability of desktop computers and multivariate cal-
ibration software, the near-infrared spectral region (700 to 3000 nm) was considered
useless for most routine analytical analysis tasks because so many chemical com-
pounds give broad overlapping absorption bands in this region. Now NIR spectros-
copy is rapidly replacing many time-consuming conventional methods of analysis
such as the Karl Fisher moisture titration, the Kjeldahl nitrogen titration method for
determining total protein, and the American Society for Testing Materials (ASTM)
gasoline engine method for determining motor octane ratings of gasoline. These
applications would be impossible without chemometric methods like multivariate
calibration that can be used to “unmix” complicated patterns of broad overlapping
absorption bands observed in the information-rich NIR spectral region.
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5.1.2 F

 

UNDAMENTAL

 

 M

 

ODES

 

 

 

OF

 

 V

 

IBRATION

 

, O

 

VERTONES

 

,

 

AND

 

 C

 

OMBINATIONS

 

Absorption bands in the near infrared spectral region (700 to 3000 nm) are the result
of overtones or combinations of fundamental modes of vibration in the mid-infrared
range (4000 to 600 cm

 

−

 

1

 

). Correlation charts are available that show where certain
functional groups can be expected to give absorption in the near-infrared spectral region.

Consider as an example the fundamental stretching frequency of an OH bond
that occurs at a frequency of about 3600 cm

 

−

 

1

 

. The first, second, and third
overtones of this fundamental mode of vibration can be observed in the near-
infrared spectral region at about 7,200, 9,800, and 13,800 cm

 

−

 

1

 

, respectively.
Stringed musical instruments like a guitar offer a useful analogy. The first over-
tone of a guitar string vibrating at its fundamental tone will produce a tone one
octave higher, e.g., twice the frequency. The fundamental mode of vibration of
a molecule corresponds to a transition from the ground-state energy level 
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. The first, second,
and third overtones correspond to forbidden transitions from the ground state to
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 4, respectively. If the vibrating molecular bonds behaved
like perfect harmonic oscillators, then these energy levels would be equally
spaced. In fact, molecules are anharmonic oscillators, and the energy levels are
not perfectly spaced. Because of anharmonicity, the forbidden transitions can be
observed, although these transitions are 10 to 100 times weaker than the funda-
mental transition. Each overtone band becomes successively weaker. The third
overtone can only be observed for very strong fundamental bands, and the fourth
overtone is usually too weak to be observed.

Combination bands correspond to simultaneous transitions in two modes. For
example, a molecule that possesses a carbonyl (
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 1750 cm
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) and hydroxyl
(
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 3600 cm
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) functional group in close proximity to each other can show a
combination band at 
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1
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.

 

5.1.3 W
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Nine mixtures of methanol and water were prepared having concentrations of 10,
20, 30, …, 90% methanol by volume. The spectra of the nine mixtures plus the
spectrum of pure water and pure methanol were measured in a 0.5-mm flow cell
using an NIRSystems model 6500 NIR spectrophotometer. Spectra were recorded
from 1100 to 2500 nm in 2-nm increments, giving a total of 700 points per spectrum.
No attempt was made to thermostat the sample cell during the 1-hour measurement

 

5.1.4 S

 

OLVENT

 

 I

 

NTERACTIONS

 

Water and methanol can form strong hydrogen bonds in solutions. These kinds of
solvent–solvent interactions have a pronounced effect in the NIR spectral region. For
example, in pure methanol solutions it is possible to have dimers, trimers, and other
intermolecular hydrogen-bonded species in equilibrium. Equilibrium concentrations
of these species are very sensitive to impurity concentrations and temperature changes.
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The addition of water creates a larger range of possible intermolecular hydrogen-
bonded species. Calibration of such complicated two-component systems is difficult.

 

5.2 INTRODUCTION TO CALIBRATION

5.2.1 U

 

NIVARIATE

 

 C

 

ALIBRATION

 

The simplest form of a linear calibration model is , where 

 

y

 

i

 

 represents
the concentration of the 

 

i

 

th calibration sample, 

 

x

 

i

 

 denotes the corresponding instrument
reading, 

 

b

 

1

 

 symbolizes the calibration coefficient (slope of the fitted line), and 

 

e

 

i

 

signifies the error associated with the 

 

i

 

th calibration sample, assumed to be normal
distributed random, 

 

N

 

(0,1). A single instrument response, e.g., absorbance at a single
wavelength, is measured for each calibration sample. In matrix algebra notation, the
model is depicted on the left in Figure 5.2 and is expressed as
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(5.1)

 

FIGURE 5.1

 

NIR absorbance spectra of water–methanol mixtures.

 

FIGURE 5.2

 

Diagram of three different types of linear models with 

 

n 

 

standards. Left: the
simplest model has a slope and no intercept. The center model adds a nonzero intercept. The
right model is typically noted in the literature as the multiple linear regression (MLR) model
because it uses more than one response variable, and 
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 1) with an intercept term and
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 without an intercept term. This model is shown with a nonzero intercept.
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where 

 

y

 

, 

 

x

 

, and 

 

e

 

 are n 

 

×

 

 1 vectors for 

 

n

 

 calibration samples. It should be noted that
while other constituents can be present in the calibration samples, the selected
wavelength must be spectrally pure for the analyte, i.e., other constituents do not
respond at the wavelength. Additionally, matrix effects must be absent at the selected
wavelength, i.e., inter- and intramolecular interactions are not present.

Values in 

 

y

 

 and 

 

x

 

 are used to estimate the model parameter 

 

b

 

1

 

 by the least-
squares procedure. This least-squares estimate, , is computed by

(5.2)

In Equation 5.2, the symbol, , called “b-hat,” is used to emphasize its role as an
estimate of 

 

b

 

1

 

. The resulting calibration model is used to predict the analyte con-
centration for an unknown sample, , by

(5.3)

where 

 

x

 

unk

 

 represents the response for the unknown sample measured at the calibrated
wavelength. This kind of calibration is called univariate calibration because only
one response variable is used.

 

5.2.2 N

 

ONZERO

 

 I

 

NTERCEPTS

 

Equation 5.1 and Equation 5.3 assume that the instrument response provides a value
of zero when the analyte concentration is zero. In this respect, the above calibration
model forces the calibration line through the origin, i.e., when the instrument response
is zero, the estimated concentration must likewise equal zero. In such circumstances,
the instrument response is frequently set to zero by subtracting the blank sample
response from the calibration sample readings. The instrument response for the blank
is subject to errors, as are all the calibration measurements. Repeated measures of the
blank would give small, normally distributed, random fluctuations about zero. How-
ever, for many samples it is difficult if not impossible to obtain a blank sample that
matrix-matches the samples and does not contain the analyte.

An intercept of zero for a model can be obtained if 

 

y

 

 and 

 

x

 

 are mean-centered
to respective means before using Equation 5.1 through Equation 5.3. The concen-
tration estimate obtained from Equation 5.3 must then be unmean-centered. While
the calibration line for mean-centered 

 

y

 

 and 

 

x

 

 has an intercept of zero, inherently,
a nonzero intercept is generally involved. The nonzero intercept is removed by the
mean-centering process. Thus, mean-centering 

 

y

 

 and 

 

x

 

 to generate a zero intercept
is not the same as using the original data and constraining the model to have an
intercept of zero. 

In the absence of mean centering, it is possible to include a nonzero intercept,

 

b

 

0

 

, in a calibration model by expressing the model as

(5.4)

b̂1

ˆ ( )b1
1= −x x x yT T

b̂1
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ˆ ˆy x bunk unk= 1

y b x b ei i i= + +0 1

DK4712_C005.fm  Page 110  Tuesday, January 31, 2006  11:57 AM

© 2006 by Taylor & Francis Group, LLC



Calibration 111

In matrix notation, the model is written by augmenting the instrument response
vector, x, with a column of ones, producing the response matrix as shown in the

b0 and b1 are computed by

(5.5)

where  symbolizes the 2 × 1 vector of estimated regression coefficients. As with
the univariate model without an intercept, matrix effects must be absent, and the
selected wavelength must be spectrally pure for the analyte.

5.2.3 MULTIVARIATE CALIBRATION

Univariate calibration is specific to situations where the instrument response depends
only on the target analyte concentration. With multivariate calibration, model param-
eters can be estimated where responses depend on the target analyte in addition to
other chemical or physical variables and, hence, multivariate calibration corrects for
these interfering effects. For the ith calibration sample, the model with a nonzero
intercept can be written as

(5.6)

where xij denotes the response measured at the jth instrument response (wavelength).
In matrix notation, Equation 5.6 is illustrated on the right in Figure 5.2 for two
wavelengths and becomes

y = Xb + e (5.7)

where y and e are as before, X now has dimensions n × (m + 1) for m wavelengths
and a column of ones if an intercept term is to be used, and b increases dimensions
to (m + 1) × 1. If the y and X are mean centered, the intercept term is removed from
Equation 5.6 and Equation 5.7.

With multivariate calibration, wavelengths no longer have to be selective for only
the analyte, but can now respond to other chemical species in the samples. However,
the spectrum for the target analyte must be partially different from the spectra of all
other responding species. Additionally, a set of calibration standards must be selected
that are representative of the samples containing any interfering species. In other words,
interfering species must be present in the calibration set in variable amounts. Under the
above two conditions, it is possible to build a calibration model that compensates for
the interfering species in a least-squares sense. It should be noted that if the roles of
spectral responses and concentrations are reversed in Equation 5.7, as is often done in
introductory quantitative analysis courses with Beer’s law, then quantitative information
of all chemical and physical effects, i.e., anything causing a response at the measured
wavelengths, must be known and included in the model [1, 2]. Thus, there are distinct

ˆ ( )b X X X y= −T T1

b̂

y b x b x b x b ei i i ij j i= + + + + +0 1 1 2 2 ...
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advantages to expressing the calibration model as in Equation 5.7, with concentration
and spectral responses as the dependent and independent variables, respectively.

To obtain an estimate of the regression vector b by use of Equation 5.5, i.e., to
ensure that the inverse (XTX)−1 exists, the determinant of (XTX) must not be zero.
At a minimum, this means that it is necessary for n ≥ (m + 1) with an intercept term
and n ≥ m without an intercept term. Thus, complete spectra cannot be used, and
the user must select the wavelengths to be modeled (Section 5.5 discusses this
further). This type of model, requiring selected wavelengths to keep XTX nonsin-
gular, is often referred to as the multiple linear regression (MLR) model in the
literature. Even though wavelengths have been selected such that n ≥ (m + 1) with
an intercept term or n ≥ m without an intercept term, XTX may still be singular or
nearly singular, with the second situation being more common due to spectroscopic
noise. This is the spectral collinearity problem (spectral overlap or selectivity), and
concentration estimates can be seriously degraded. Thus, selection of specific wave-
lengths to be included in the model is critical to the performance of the model. In-
depth discussions on collinearity (spectral orthogonality) as well as methods for
diagnosing collinearity and the extent of involvement by each chemical species are
available in the literature [1, 3]. Sections 5.2.6 and 5.4 discuss some of these model
performance diagnostics and figure of merits. Methods to select proper wavelengths
are described in Section 5.5.

Generally, collinearity (near singularity) is not a problem with biased regression
techniques such as principal component regression (PCR), partial least squares
(PLS), ridge regression (RR), etc. Section 5.6 describes some of these biased methods
that do not require wavelengths to be selected in order to estimate the regression
vector in Equation 5.7. However, formation of models by these methods requires
determination of at least one metaparameter (regularization parameter), where the
metaparameter(s) is used to avoid the near singularity of X. Wavelength selection
techniques can also be used with these biased methods, but the requirement n ≥
(m + 1) or n ≥ m is not applicable.

As a final note, the model in Equation 5.7 can be expressed to include other
target analytes besides just one. In this situation, the model expands to Y = XB + E,
where Y is n × a for a analytes and B increases to m × a with a column of regression
coefficients for each analyte. A solution for the regression matrix is still obtained
by Equation 5.5, with Y and  replacing y and . When a model is built for
multiple analytes, compromise wavelengths are selected, in contrast to the analyte-
specific models expressed by Equation 5.7, which are based on selecting wave-
lengths pertinent to each target analyte.

5.2.4 CURVILINEAR CALIBRATION

When simple univariate or multivariate linear models are inadequate, higher-order
models can be pursued. For example, in the case of only one instrument response
(wavelength), Equation 5.8

(5.8)

B̂ b̂

y b x b x b ei i i i= + + +0 1
2

2
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describes a linear second-order model for a single instrument response. A second-
order curvilinear model can be handled as before, with b and X dimensionally
modified to account for the xi

2 term. Least squares is used to obtain estimates of the
model parameters, where b1 is typically designated the linear effect and b2 the
curvature effect. Higher-order models for the single instrument response can be
utilized. However, powers higher than three are not generally used because inter-
pretation of model parameters becomes difficult. A model of sufficiently high degree
can always be established to fit the data exactly. Hence, a chemist should always be
suspicious of high-order curvilinear models used to obtain a good fit. Such a model
will generally not be robust to future samples.

Models similar to Equation 5.8 can be defined for multiple instrument responses
(wavelengths). Model parameters for linear effects of each wavelength and respective
curvature effects would be incorporated. Additionally, model parameters for wave-
length combinations can be included.

Curvilinear regression should not be confused with the nonlinear regression
methods used to estimate model parameters expressed in a nonlinear form. For
example, the model parameters a and b in y = axb cannot be estimated by a linear

use in this case. Alternatively, a transformation to a linear model can sometimes be
used. Implementing a logarithmic transformation on yi = axi

b  produces the model
log yi = log a + blog xi, which can now be utilized with a linear least-squares
algorithm. The literature [4, 5] should be consulted for additional information on
linear transformations.

5.2.5 SELECTION OF CALIBRATION AND VALIDATION SAMPLES

Calibration samples must include representation for every responding chemical
species in a system under study. Spectral shifts and changes in instrument readings
for mixtures due to interactions between components, changes in pH, temperature,
ionic strength, and index of refraction are well known. The use of mixtures instead
of pure standards during calibration enables multivariate calibration methods to form
approximate linear models for such interactions over narrow assay working ranges,
thereby providing more precise results.

The calibration samples must cover a sufficiently broad range of composition
that a suitable change in measured response is instrumentally detectable. For simple
systems, it is usually possible to prepare mixtures according to the principles of
experimental design, where concentrations for all ingredients are varied over a suitable
range. This is necessary to ensure that the measured set of mixtures has exemplars
where different interactions between ingredients are present.

Often, calibration of natural products and materials is a desirable goal. In
these kinds of assays, it is usually not feasible to control the composition of
calibration and validation standards. Some well-known examples include the
determination of protein, starch, and moisture in whole-wheat kernels and the
determination of gasoline octane number by NIR spectroscopy. In cases such as
these, sets of randomly selected samples must be obtained and analyzed by
reference methods.
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Because it is more desirable to make interpolations rather than extrapolations
when making predictions from a calibration model, the range of concentrations in
the calibration standards should exceed the expected working range of the assay.
Calibration sample compositions should give a fairly uniform coverage across the
range of interest. The ASTM recommends the minimum calibration concentration
range of variation to be five times greater than the reference method of analysis
uncertainty. A wider range, say ten times or more, is highly advisable, especially
in light of the fact that the Association of Official Analytical Chemists (AOAC)
recommends that the minimum signal for the limit of quantitation (LOQ) in univariate
assays should be at least ten times the signal of the blank. However, if the range
is too large, deviations from linearity could begin to appear. The recommended
minimum number of calibration samples is 30 to 50, although this depends on the
complexity of the problem. A lengthy discussion regarding the repeatability of the
reference values and the use of multiple reference measurements can be found in
the literature [6].

Validation of a multivariate calibration model is a critical step that must take
place prior to widespread adoption and use of the calibration model for routine
assays or in production environments. Standards describing acceptable practices for
multivariate spectroscopic assays are beginning to emerge, most notably a standard
recently released by the ASTM [6]. The purpose of model validation is to determine
the reproducibility of a multivariate calibration, its bias against a known method or
accepted values, and its long-term ruggedness. In general, the properties described
above for the ideal calibration data set apply to validation standards as well, with
the following additional considerations. It is very important that validation sets do
not contain aliquots of samples used for calibration. The validation sample set must
form a truly independent set of samples. For samples having controlled composition,
these should be prepared separately from the calibration samples. Another equally
important point is that the composition of validation samples should be designed to
lie at points in between calibration points, so as to exercise the interpolating ability
of the calibration model. For randomly selected samples of complex materials or
natural products, this may not be possible.

Different validation data sets should be prepared to investigate every source of
expected variation in the response. For example, validation sets might be designed
to study short-term or long-term variation in instrument response, variation from
instrument to instrument, variation due to small changes in sample temperature, and
so on.

5.2.6 MEASUREMENT ERROR AND MEASURES OF PREDICTION ERROR

Because of measurement errors, the estimated parameters for calibration models
always show some small, random deviations, ei, from the “true values.” For the
calibration models presented in this chapter, it is assumed that the errors in yi are
small, random, uncorrelated, follow the normal distribution, and are greater than the
errors in xi. Note that this may not always be the case.

Practitioners of multivariate calibration typically use different strategies for
determining the level of prediction error for a model. Three figures of merit for
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estimating errors in yi are discussed in this section. They are (1) the root mean square
error of calibration (RMSEC), (2) the root mean square error of prediction (RMSEP),
also known as RMSEV for validation, and (3) the root mean square error of cross-
validation (RMSECV).

The RMSEC describes the degree of agreement between the calibration model
estimated concentration values for the calibration samples and the accepted true
values for the calibration samples used to obtain the model parameters in Equation
5.7 according to

(5.9)

Because estimation of model parameters, b0, b1, …, bm uses m + 1 degrees of
freedom, the remaining n − m − 1 degrees of freedom are used to estimate RMSEC.
If the intercept b0 is omitted from the calibration model, then the number of degrees
of freedom for RMSEC is n − m. If the data has been mean-centered, the degrees
of freedom remain n − m – 1. Typically, RMSEC provides overly optimistic estimates
of a calibration model’s predictive ability for samples measured in the future. This
is because a portion of the noise in the standards is inadvertently modeled by the
estimated parameters. A better estimate of the calibration model’s predictive ability
may be obtained by the method of cross-validation with the calibration samples or
from a separate set of validation samples.

To obtain the RMSEP, the validation samples prepared and measured indepen-
dently from the calibration samples are used. The number of validation samples, p,
should be large, so that the estimated prediction error accurately reflects all sources
of variability in the calibration method. The RMSEP is computed by

(5.10)

The cross-validation approach can also be used to estimate the predictive ability
of a calibration model. One method of cross-validation is leave-one-out cross-
validation (LOOCV). Leave-one-out cross-validation is performed by estimating n
calibration models, where each of the n calibration samples is left out one at a time
in turn. The resulting calibration models are then used to estimate the sample left
out, which acts as an independent validation sample and provides an independent
prediction of each yi value, , where the notation i indicates that the ith sample
was left out during model estimation. This process of leaving a sample out is repeated
until all of the calibration samples have been left out. The predictions  can be
used in Equation 5.10 to estimate the RMSECV. However, LOOCV has been shown
to determine models that are overfitting (too many parameters are included) [7, 8].
The same is true for v-fold cross-validation, where the calibrations set is split into
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v disjunct groups of approximately the same size and a group is left out on each
cycle to serve as an independent validation sample set. This deficiency can be
overcome if a Monte Carlo CV (MCCV) [7–9], also called leave-multiple-out CV
(LMOCV) [8] is used. With MCCV, the calibration set is split such that the number
of validation samples is greater than the number of calibration samples. An average
MCCV value is obtained from a large number of random splits. A variation of this
approach is to use repeated v-fold CV, where B cycles of v-fold CV are used with
different random splits into the v disjoint groups [10]. In summary, while many
authors prefer the LOOCV approach when small numbers of calibration samples
are used, the resulting RMSECV also tends to give an overly optimistic estimate of
a calibration model’s predictive ability.

5.3 A PRACTICAL CALIBRATION EXAMPLE

5.3.1 GRAPHICAL SURVEY OF NIR WATER–METHANOL DATA

Before any model is constructed, the spectra should be plotted. Since this is the data
used to build the models, a graphical survey of the spectra allows determination of
spectral quality. Example items to investigate include the signal-to-noise ratio across the
wavelengths, collinearity, background shifts, and any obvious abnormalities such as a
spectrum significantly different than the rest, suggesting the spectrum to be an outlier.

spectra and the first- and second-derivative spectra for the 11 samples, respectively. From
Figure 5.1, several observations can be made. There does not appear to be any obvious
abnormality. However, there is a definite trend in the baseline with increasing wavelength.
The first derivative appears to achieve some correction at the lower wavelengths, and
the second derivative presents visual correction for a complete spectrum. Thus, the best

FIGURE 5.3 Pure-component NIR spectra for water (---) and methanol (—).
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Pictured in Figure 5.1 are the spectra for the 11 water–methanol samples. Plotted in
Figure 5.3, Figure 5.4a, and Figure 5.4b are the water and methanol pure-component
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results may be gained from using the second-derivative spectra in the calibration model.
However, the signal-to-noise ratio degrades with successive derivatives.

Regardless of whether or not a derivative is used, proper wavelengths must be
determined. A graphical survey of the spectra can sometimes assist with this. Selected
wavelengths should offer good signal-to-noise ratios, be linear, and exhibit a large
amount of variability with respect to changes in composition. From Figure 5.1 and

lengths 2072 and 2274 nm appear satisfactory for methanol.

FIGURE 5.4 (a) First-derivative and (b) second-derivative spectra of the water–methanol
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mixtures in Figure 5.1.

Figure 5.3, wavelengths 1452 and 1932 nm seem appropriate for water, and wave-
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Now that some potentially reasonable wavelengths have been identified, several
models will be built and compared. These include assorted combinations of univari-
ate and multivariate models with and without intercept terms. For this section,
derivative spectra are not considered. It should be noted that results equal to the
inclusion of an intercept term could be obtained by mean centering.

For the remaining subsections of Section 5.3, the water–methanol data will be
considered split such that the 6 odd-numbered samples of the 11 denote the calibration
set and the remaining 5 even-numbered samples compose the validation set. In some
situations as noted, the calibration set consists of all 11 samples.

5.3.2 UNIVARIATE CALIBRATION

5.3.2.1 Without an Intercept Term

Listed in Table 5.1 and Table 5.2 are RMSEC and RMSEV values using only one
wavelength suggested for water and methanol, respectively. When an intercept
term is not included, prediction errors are clearly unacceptable. To uncover problems

TABLE 5.1
Water Results from Univariate Calibration of the Water– 
Methanol Mixture

Wavelength (intercept model) RMSEC (% water)a RMSEV (% water)a

1452 nm (no intercept)
1452 nm (with intercept)
1932 nm (no intercept)
1932 nm (with intercept)

10.85
0.53
4.98
3.95

8.59
0.45
4.17
2.62

a Values are for six calibration and five validation samples.

TABLE 5.2
Methanol Results from Univariate and Multivariate Calibration of the 
Water–Methanol Mixture

Wavelength (intercept model) RMSEC (% methanol)a RMSEV (% methanol)a

2072 nm (no intercept)
2072 nm (with intercept)
2274 nm (no intercept)
2274 nm (with intercept)
1452, 2274 nm (no intercept)
1452, 2274 nm (with intercept)
1452, 1932, 2072, 2274 nm (no intercept)
1452, 1932, 2072, 2274 nm (with intercept)

49.35
2.82

18.16
3.03
2.07
0.48
0.45
0.24

37.85
1.73

13.46
1.86
1.29
0.36
0.37
0.18

a Values are for six calibration and five validation samples.
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occurring with these univariate models, some graphical diagnostics should be
performed. Because there is only one wavelength being modeled, the first graphic
is to plot the calibration concentrations used in y against the measured responses
in x. Placed in this plot should also be the actual model calibration line. Such a

11 calibration samples. From this graphic, it is determined that the model does
not fit the data at all, and the pattern indicates that an offset is involved. This
result is seen again in the calibration residual plot displayed in Figure 5.5b, where
the estimated residuals  are plotted against corresponding  values for
the 11 calibration samples. The distinguishing pattern indicates that the intercept
term has been omitted from the model. While not obvious, there is an acute
curvature in the residual plot, denoting that some nonlinearity is involved due to
chemical interactions. Further discussion about trends in residual plots is presented
in Section 5.4.7. Another useful graphic is the plot of yi against  where the ideal
result consists of having all the plotted points fall on the line of equality (yi = ).

problems noted for Figure 5.5a and Figure 5.5b. The graphical description and
problems discussed for Figure 5.5 are also applicable to methanol at 2072 nm and
water at 1452 and 1932 nm. Similar plots to those shown in Figures 5.5b and
Figure 5.5c were also generated for the validation samples. The conclusions are
the same, but because the number of validation samples is small for this data set,
trends observed in the plots are not as easily discerned.

These simple one-wavelength calibration models with no intercept term are
severely limited. Spectral data is used from only one wavelength, which means
a lot of useful data points recorded by the instrument are thrown away. Nonzero
baseline offsets cannot be accommodated. Worst of all, because spectral data
from only one wavelength is used, absorbance signals from other constituents in
the mixtures can interfere with analysis. Some of the problems revealed for
models without an intercept term can be reduced when an intercept term is
incorporated.

5.3.2.2 With an Intercept Term

four models when a nonzero intercept is allowed in the model. Results significantly

the improvement. However, the residual plot in Figure 5.6b discloses that nonlin-
earity is now a dominating feature. Additionally, the large absorbance at zero percent
methanol shown in Figure 5.6a suggests that other constituents are present in the
mixture and have not been accounted for. Supplementary wavelengths are needed
to correct for the chemical interactions and spectral overlaps.

5.3.3 MULTIVARIATE CALIBRATION

As a first attempt to compensate for the presence of interfering substances in the
mixtures, the two wavelengths 1452 and 2274 nm were used to quantitate methanol.
Table 5.2 contains the methanol RMSEC and RMSEV results. A substantial

ˆ ˆe y yi i i= − ŷi

ŷi

ŷi
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Tabulated in Table 5.1 and Table 5.2 are the RMSEC and RMSEV values for the

plot is shown in Figure 5.5a for methanol using the 2274-nm wavelength and all

This plot is presented in Figure 5.5c for the calibration samples and reveals similar

improve. Plots provided in Figure 5.6 for methanol at 2274 nm further document
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improvement has occurred even without an intercept term compared with the one-
wavelength model without an intercept. The residual plots again show the nonlinear
pattern observed previously.

Models were formulated using the four wavelengths 1452, 1932, 2072, and 2274 nm.

FIGURE 5.5 Graphical displays for the methanol model at 2274 nm without an intercept
term (the model is constrained to go through the origin) using all 11 calibration samples. The
RMSEC is 15.96% methanol. (a) Actual calibration model (-) and measured values (*). (b)
Calibration residual plot. (c) A plot of estimated values against the actual values for the
calibration samples; the drawn line is the line of equality.
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Results listed in Table 5.2 disclose further improvements from the two-wavelength
situations. Using the plots shown in Figure 5.7, it is observed that more of the
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nonlinearity has been modeled with the extra wavelengths. Additionally, spectral
overlap has been corrected. By using more than one wavelength, the presence of
interfering constituents can be compensated. The difficult question is then deciding
which wavelengths are important. More information on this concern is presented in
Section 5.5.

5.4 STATISTICAL EVALUATION OF CALIBRATION 
MODELS OBTAINED BY LEAST SQUARES

Least squares is used to determine the model parameters for concentration prediction
of unknown samples. This is achieved by minimizing the usual sum of the squared
errors, . As stated before, the errors in y are assumed to be much
larger than the errors in X for these models. Because the regression parameters are
determined from measured data, measurement errors propagate into the estimated
coefficients of the regression vector  and the estimated values in . In fact, we
can only estimate the residuals, , in the y measurements, as shown in Equation
5.12 through Equation 5.14. Summarizing previous discussions and equations, the
model is defined in Equation 5.11 as

y = Xb + e (5.11)

The following equations are then used for computing the least-squares esti-
mates, , , and .

(5.12)

(5.13)

(5.14)

FIGURE 5.5 (Continued).
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5.4.1 HYPOTHESIS TESTING

A statistical hypothesis denotes a statement about one or more parameters of a popu-
lation distribution requiring verification. The null hypothesis, H0, designates the hypoth-
esis being tested. If the tested H0 is rejected, the alternative hypothesis, H1, must be
accepted. When testing the null hypothesis, acceptance or rejection errors are possible.
Rejecting the H0 when it is actually true results in a type I error. Likewise, accepting

FIGURE 5.6 Graphical displays for the methanol model at 2274 nm with a nonzero intercept
using all 11 calibration samples. The RMSEC is 2.37% methanol. (a) Actual calibration model
(-) and measured values (*). (b) Calibration residual plot. (c) A plot of estimated values against
the actual values for the calibration samples; the drawn line is the line of equality.
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H0 when it is false results in a type II error. The probability of making a type I error is
fixed by specifying the level of confidence (or significance), α. If α = 0.05, the prob-
ability of making a type I error translates to 0.05 (5%), and the probability of correct
acceptance of H0 becomes 1 − α, or 0.95 (95%). The probability of making a type II
error is β, and 1 − β denotes the probability of making a correct rejection. Keeping α
small helps reduce the type I error. However, as the probability of producing a type I
error becomes smaller, the probability of making a type II error increases, and vice versa.

5.4.2 PARTITIONING OF VARIANCE IN LEAST-SQUARES SOLUTIONS

All of the statistical figures of merit used for judging the quality of least-squares
fits are based upon the fundamental relationship shown in Equation 5.15, which
describes how the total sum of squares is partitioned into two parts: (1) the sum of
squares explained by the regression and (2) the residual sum of squares, where
is the mean concentration value for the calibration samples.

(5.15)

Each term in Equation 5.15 has associated with it a certain number of degrees
of freedom. The total sum of squares has n − 1 degrees of freedom because the

FIGURE 5.6 (Continued).
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mean  is subtracted. Estimation of the calibration model, excluding the intercept,
uses m degrees of freedom, one for every estimated parameter. The number of
degrees of freedom in the residual sum of squares is simply the number of degrees
of freedom remaining, n − m − 1. The residual sum of squares is used to compute
RMSEC, as shown previously in Equation 5.9, by dividing by the degrees of freedom
and taking the square root.

FIGURE 5.7 Graphical displays for the methanol model at 1452, 1932, 2072, and 2274 nm with
a nonzero intercept using all 11 calibration samples. The RMSEC is 0.16% methanol. (a) Cali-
bration residual plot. (b) A plot of estimated values against the actual values for the calibration
samples; the drawn line is the line of equality. (c) Validation residual plot after the 11 samples
were split to 6 calibration (odd-numbered samples) and 5 validation (even-numbered samples).
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5.4.3 INTERPRETING REGRESSION ANOVA TABLES

Standard statistical packages for computing models by least-squares regression typ-
ically perform an analysis of variance (ANOVA) based upon the relationship shown
in Equation 5.15 and report these results in a table. An example of a table is shown
in Table 5.3 for the water model computed by least squares at 1932 nm.

The two sums of squares on the right-hand side of Equation 5.15 are shown in
the table along with their degrees of freedom. The “mean square” is obtained by

FIGURE 5.7 (Continued).

TABLE 5.3
Summary Statistics for NIR Calibration of Water in Water-
Methanol Mixtures Using One Wavelength and a Nonzero 
Intercept

Source Sum of Squares df Mean Square F-Ratio

Regression 6937.44 1 6937.440 444
Residual     62.56 4     15.641 —

Variable Coefficient s.e. of Coeff. t-Ratio Probability

Constant −6.1712 3.12 −1.98     0.1189
1932 nm 40.3222 1.92 21.10 ≤ 0.0001

Note: ywater = b0 + A1932 nmb1; R2 = 99.1%, R2 (adjusted) = 98.9%; sy = 3.955 with
6 − 2 = 4 degrees of freedom.
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dividing the sum-of-squares term by its respective degrees of freedom. The estimate
of the error, sy, in the y-measurements (standard error of y) is estimated by

The null hypothesis tested with the F-ratio is a general hypothesis stating that the
true coefficients are all zero (note that b0 is not included). The F-ratio has an
F-distribution with dfregr = m and dfresid = n − m − 1 degrees of freedom in the
numerator and denominator, respectively,

and SSregr is the sum of squares explained by the regression model, and SSresid is the
residual sum of squares (see Equation 5.15). For sufficiently large F-ratios, we reject
the null hypothesis at confidence level α. This means that the variance explained by
the regression is too large for it to have happened by chance alone.

5.4.4 CONFIDENCE INTERVAL AND HYPOTHESIS TESTS FOR 
REGRESSION COEFFICIENTS

After calculating calibration coefficients, it is worthwhile to examine the errors
existing in  and establish confidence intervals. The standard error of each regres-
sion coefficient is computed according to

where  is the estimated variance of the least-squares regression coefficient
 provided by the ith diagonal element of . Interpretation of standard

errors in the coefficients can be facilitated by calculating t-ratios and confidence
intervals for the regression coefficients where

(5.16)
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However, many computer programs and practitioners often ignore the “simultaneous”
confidence intervals computed in Equation 5.16 and use instead a “one-at-a-time”
t-value for F as shown in the following equation

Generally, a regression coefficient is important when its standard error is small
compared to its magnitude. The t-ratio can be used to help judge the significance
of individual regression coefficients. Typically, when a t-value is less than 2.0 to
2.5, the coefficient is not especially useful for prediction of y-values. Specifically,
if a regression coefficient’s t-value is less than the critical value at tn−m−1, then we
should accept the null hypothesis, H0: bi = 0. This condition indicates that the
coefficient’s confidence interval includes a value of zero. The t-ratio can also be
thought of as the signal-to-noise ratio.

As a reminder from Section 5.4, the above discussion pertains to those situations
where errors in the variables (X) are not included. If errors in the variables are to
be integrated, then the literature [11–17] should be consulted.

5.4.5 PREDICTION CONFIDENCE INTERVALS

The 100%(1 − α) confidence interval for the model at x0 can be computed from

where x0 represents the estimated average of all possible sample aliquots with value
x0 for the predictors, i.e., let x0 be a selected value of x with the predicted mean value
of . The probability density, α, for the t-value is divided by two because the
confidence interval is a two-sided distribution. For example, the 95% confidence
interval would be obtained by selecting a critical value of t at α = 0.10. In this case
we can say, “There is a 95% probability that the true calibration line lies within this
interval.” The confidence interval for the model has a parabolic shape with a minimum

Prediction of an unknown sample is the primary motivation for developing a
calibration model and is easily accomplished by use of Equation 5.13. Often, stat-
isticians refer to this as forecasting. The 100%(1 − α) confidence interval for
prediction at x0 is given by

where x0 denotes a new set of observed measurements for which the response y0 is
yet unobserved. Note that the prediction interval is wider than the confidence interval
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at the mean values of x and y, as shown in Figure 5.8.
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for the regression model of the fitted values because the measurement error, e0, at
x0 is unknown. For predictions of this type we can say, “There is a 95% probability
that the true value, y0, lies within this interval.” For discussion of variance expressions

5.4.6 LEVERAGE AND INFLUENCE

The effect of individual cases (calibration samples) on a calibration model can be
large in certain circumstances. For example, there might be calibration samples that
are outliers, either in the y-value or in one or more x-values. Several statistical figures
of merit are presented in this section to identify influential cases.

The leverage, hi, of the ith calibration sample is the ith diagonal of the hat matrix,
H. The leverage is a measure of how far the ith calibration sample lies from the
other n − 1 calibration samples in X-space. The matrix H is called the hat matrix
because it is a projection matrix that projects the vector y into the space spanned
by the X matrix, thus producing y-hat. Notice the similarity between leverage and

H = X(XTX)−1XT

The leverage hi, signifying the ith diagonal element of H, takes on values from 0 to
1. Samples far from center of the x-values, , generally having higher leverage
values and are potentially the most influential.

FIGURE 5.8 Illustration of confidence intervals for the regression line and for predictions.
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the Mahalanobis distance described in Chapter 4.

when errors in the variables are to be included, see the literature [11–17].
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The concept of leverage in statistics is comparable to the physical model of a
lever. The fulcrum for the calibration line lies at , the center of the x-values.
Calibration samples close to the mean of the x-values tend to exert little force on
the slope of the calibration curve. Calibration samples farthest from the mean of the
x-values can put forth a greater force on the slope of the calibration curve, so that
their residuals are made as small as possible. Some authors recommend points with
a leverage exceeding 2m/n or 3m/n should be carefully scrutinized as possible
influential outliers.

One method for identifying influential cases is to examine plots of the residuals
. Here, the problem is that residuals for calibration samples near the mean

of the x-values have greater variance than residuals for cases at the extreme x-values.
A common method for solving this scaling problem is to standardize the residuals to
give the so-called studentized residuals, ri, defined as

Calibration samples having large studentized residuals should be carefully scruti-
nized as possible outliers.

Distance measures, such as Cook’s distance, combine the concept of leverage
and residuals to compute an overall measure of a calibration sample’s influence on
the calibration model. Cook’s distance is computed as

and follows approximately the F-distribution with m + 1 and n – m − 1 degrees of
freedom in the numerator and denominator, respectively. A large value for Cook’s
distance, e.g., greater than the appropriate critical value of F, indicates that the
corresponding calibration point exerts a large influence on the least-squares param-
eters and should be carefully scrutinized as a possible outlier.

5.4.7 MODEL DEPARTURES AND OUTLIERS

Assessment of model departures from model assumptions can be interpreted from
the residual plot. Additionally, as noted in the previous section, some outliers can
be identified in the residual plot. Sections 5.3.2 and 5.3.3 provided some brief
discussions on using the residual plot to diagnose model departures.

model are correct, a plot of residuals (computed by Equation 5.14) against the
estimated  values should show a horizontal band, as illustrated in Figure 5.9a. A plot
similar to Figure 5.9b indicates a dependence on the predicted value, suggesting that
numerical calculations are incorrect or an intercept term has been omitted from the
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Example residual plots are depicted in Figure 5.9. If all assumptions about the
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model. The pattern of residuals illustrated in Figure 5.9c implies that the variance
is not constant and increases with each increment of the predicted value. Thus,
instead of variance being homoscedastic, as assumed, the variance is instead,
heteroscedastic. Transformations or a weighted least-squares approach (or both) are
required. Figure 5.9d characterizes nonlinear trends existing in the data, indicating
that transformations or curvilinear calibration with inclusion of extra terms are
needed.

5.4.8 COEFFICIENT OF DETERMINATION AND MULTIPLE 
CORRELATION COEFFICIENT

The R2 statistic computed by

FIGURE 5.9 Possible residual plots with the estimated residual on the y-axis 
and the estimated concentration on the x-axis . Residuals can be located anywhere
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between the dashed lines. See Section 5.4.7 for discussion on patterns and implications.
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is the called the coefficient of determination and takes on values in the range from
0 to 1 (SStot and SSresid are defined in Equation 5.15). The magnitude of R2 provides
the proportion of total variation in y explained by the calibration model. When R2

is exactly 1, there is perfect correlation, and all residual errors are zero. When R2 is
exactly 0, the regression coefficients in  have no ability to predict y. The square
root is the multiple correlation coefficient.

The adjusted R2 calculated by the following equation

is more appropriate for multivariate calibration, where R2 is expected to increase as
new terms are added to the model, even when the new terms are random variables and
have no useful predictive ability. The adjusted R2 accounts for this effect to more
accurately indicate the effect of adding new variables to the regression. In the above
equation, SSx represents sum of squares, and dfx represents degrees of freedom as
defined in Equation 5.15. MSx represents the mean square, which is obtained by
dividing the sum of squares by the corresponding degrees of freedom.

5.4.9 SENSITIVITY AND LIMIT OF DETECTION

5.4.9.1 Sensitivity

For univariate calibration, the International Union of Pure and Applied Chemistry
(IUPAC) defines sensitivity as the slope of the calibration curve when the instrument
response is the dependent variable, i.e., y in Equation 5.4, and the independent
variable is concentration. This is also known as the calibration sensitivity, contrasted
with the analytical sensitivity, which is the calibration sensitivity divided by the
standard deviation of an instrumental response at a specified concentration [18].
Changing concentration to act as the dependent variable, as in Equation 5.4, shows
that the slope of this calibration curve, , is related to the inverse of the calibration
sensitivity. In either case, confidence intervals for concentration estimates are linked
to sensitivity [1, 19–22].

In the multivariate situation, the sensitivity figure of merit is a function of all
wavelengths involved in the regression model. It is commonly presented as equal to

 when the dependent variable is defined as concentration [22], where  defines
the Euclidean norm. Note that denotes the length of , thus models with high
sensitivity are characterized by regression vectors having short lengths. When instru-
mental responses are used as the dependent variables, sensitivity has been defined
as , where ki is the pure-component spectrum for the ith analyte at unit concen-
tration. A result of this is that the sensitivity value  can be expressed as the

on selectivity). Thus,  is representative of the effective sensitivity, i.e., the pure-
component spectrum sensitivity  scaled by the degree of spectral interferences
from the other sample constituents. If no interferences exist, the selectivity is 1, and
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product of ||k ||  and the selectivity for the analyte (see Section 5.4.10 for information
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5.4.9.2 Limit of Detection

Often, trace analysis must be preformed. Prior to transforming a measured signal to
concentration, it must be discerned whether or not the signal is significantly above
the background. There is some disagreement in the literature on how to define
“significantly above the background.” The terminology introduced by Currie [23]
will be used here.

5.4.9.2.1 Univariate Decision Limit
The decision limit corresponds to the critical level for a signal, xc, at which an
observed signal can be reliably distinguished from the background. If interferences
are absent and measurement errors for the blank and sample containing the analyte
follow normal distributions, then the distributions can be viewed as in Figure 5.10,
where  and  symbolize the bank and sample measurement means, respectively,
and sb and ss represent corresponding standard deviations. Distributions drawn in
Figure 5.10 are when sb = ss, which is usually true at trace levels. If xb and xs specify

FIGURE 5.10 Graphical representation of (a) decision limits with α = 0.0013, zα = 3.0, and
β = 0.5 and (b) detection limits with α = 0.0013, zα = 3.0, and β = 0.0013. (Reprinted from
Haswell, S.J., Ed., Practical Guide to Chemometrics, Marcel Dekker, New York, 1992. With
permission.)
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signals measured for the blank and sample, respectively, then in terms of hypothesis
testing, the null hypothesis becomes: “The analyte is not present” or “The measured
signal does not significantly differ from the blank” (H0: xs = xb). The alternative
hypothesis is: “The analyte is present” or “The measured signal is significantly
different than the blank” (H1: xs > xb). Accepting the alternative hypothesis when
the analyte is not present invokes a type I error (false positive) with probability α.
Accepting the null hypothesis when the analyte is present renders a type II error
(false negative) with probability β.

Acceptance or rejection of the null hypothesis is based on a set critical level for
the measured signal, yc, commonly expressed as

where kc specifies a numerical value governed by the risk accepted for a type I error.
Determining  and sb from many measurements implies suitable estimates of the
corresponding population values µb and σb. Therefore, zα can be used for kc (see

α = 0.0013, the critical z values corresponds to 3.00 for the 1 – α = 99.87% confidence
level. The decision limit becomes

(5.17)

With this risk level, a 0.13% chance exists that a sample without the analyte
would be interpreted as having the analyte present. Unfortunately, the chance of
making a type II error is then β = 0.50, expressing a risk of failing to detect the

In practice, only a limited number of measurements are made to compute  and
sb. The value for kc is then determined from the appropriate t value with the proper
degrees of freedom. Once xc has been estimated, it can be used in the calibration
model to obtain the corresponding concentration value yc.

5.4.9.2.2 Univariate Detection Limit
The detection limit, xd, represents the signal level that can be relied upon to imply
detection. To avoid the large β value observed with decision limits in the previous
section, a larger critical signal becomes necessary. The blank and sample signals
would have analogous statistical distributions, as noted in the previous section, but
the sample signal would be centered around a greater value for xd. Choosing xd such
that α = β = 0.0013 substantially reduces the probability of obtaining a measurement
below xc, as defined in Equation 5.17. Figure 5.10b illustrates the situation. The
signal level at which this occurs identifies the detection limit expressed by

(5.18)

x x k sc b c b= +

xb

x zc b b b b b= + = +µ σ µ σ3

xb

x xd c b b b= + = +3 6σ µ σ
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analyte 50% of the time. Figure 5.10a graphically shows the problem.

Chapter 3 for a discussion on z values). If the risk of a type I error is set to
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Thus, requiring a larger critical signal level considerably diminishes the chance of
making a type II error. Similar to the decision limit, appropriate t-values for the proper
degrees of freedom should be used if a small number of measurements is used. Sub-
stitution of xd into the calibration model will provide the detection limit concentration yd.

An alternative definition for detection limit prevalent in the literature substitutes
3.00 for the 6.00 in Equation 5.18. This formulates a decision limit of

. For this other definition, the probabilities of making type I or II
detection limit errors are modified to α = β = 0.067 for a 1 – α = 93.30% confidence
level. Thus, this definition runs a greater risk of making errors. A figure analogous

b b

Apparently, numerous definitions are possible for detection limit, with each defini-
tion depending on the designated level of confidence. For example, at the 95%
confidence level, α = 0.05, zα = 1.645, , and .
Therefore, reported detection limits should be accompanied by the level of signifi-
cance selected. In general, the greater the confidence level, the larger the detection
limit.

5.4.9.2.3 Determination Limit
The determination limit, xq, designates the signal level at which an acceptable
quantitative analysis can be made. A value of

is typically used. This is also known as the limit of quantitation (LOQ).

5.4.9.2.4 Multivariate Detection Limit
Various approaches have been used to define detection limit for the multivariate
situation [24]. The first definition was developed by Lorber [19]. This multivariate
definition is of limited use because it requires concentration knowledge of all ana-
lytes and interferences present in calibration samples or spectra of all pure compo-
nents in the calibration samples. However, the work does introduce the important
concept of net analyte signal (NAS) vector for multivariate systems. The NAS
representation has been extended to the more usual multivariate situations described
in this chapter [25–27], where the NAS is related to the regression vector b in
Equation 5.11. Mathematically,  and . Thus, the
norm of the NAS vector is the same as the effective sensitivity discussed in Section
5.4.9.1 A simple form of the concentration multivariate limit of detection (LOD)
can be expressed as , where ε denotes the vector of instrumental
noise values for the m wavelengths. The many proposed practical approaches to
multivariate detection limits are succinctly described in the literature [24].

5.4.10 INTERFERENCE EFFECTS AND SELECTIVITY

Interferences are common in chemical analysis. In general, interferences are classified
as physical, chemical, or spectral. Physical interferences are caused by the effects from
physical properties of the sample on the physical process involved in the analytical

xc b b= +µ σ1 5.

xc b b= +µ σ1 645. xd b b= +µ σ3 29.

xq b b= +µ σ10

b = NAS/ NAS|||| || / || ||NAS|| = 1 b

LOD 3= || |||| ||ε b
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measurements. Viscosity, surface tension, and vapor pressure of a sample solution are
physical properties that commonly cause interferences in atomic absorption and atomic
emission. Chemical interferences influence the analytical signal, and they result from
chemical interactions between the analyte and other substances present in the sample
as well as analyte interactions with the analyte (intermolecular and intramolecular
interactions are present). Spectral interferences are those that arise when a wavelength
is not completely selective for the analyte, and these are quite common in most
spectroscopic methods of analysis.

Physical and chemical effects can be combined for identification as sample matrix
effects. Matrix effects alter the slope of calibration curves, while spectral interferences
cause parallel shifts in the calibration curve. The water-methanol data set contains
matrix effects stemming from chemical interferences. As already noted in Section 5.2,
using the univariate calibration defined in Equation 5.4 requires an interference-free
wavelength. Going to multivariate models can correct for spectral interferences and
some matrix effects. The standard addition method described in Section 5.7 can be
used in some cases to correct for matrix effects. Severe matrix effects can cause
nonlinear responses requiring a nonlinear modeling method.

Selectivity describes the degree of spectral interferences, and several measures
have been proposed. Most definitions refer to situations where pure-component spectra

selectivity is defined as the sine of the angle between the pure-component spectrum
for the analyte and the space spanned by the pure-component spectra for all the
interfering species. Recently, equations have been presented to calculate selectivity for
an analyte in the absence of spectral knowledge of the analyte or interferences [25–27].
These approaches depend on computing the NAS, defined as the signal due only to
the analyte. Methods have been presented to compute selectivity values for N-way

5.5 VARIABLE SELECTION

As noted previously, the single most important question to be answered when using
least squares to form the multivariate regression model is: Which variables (wave-
lengths) should be included? It is tempting to include all variables known to affect or
are believed to affect the prediction properties; however, this may lead to suboptimal
models or, even worse, inclusion of highly correlated variables in the model. When
highly correlated variables are included in the model, computation of the inverse
(XTX)−1 becomes unstable, i.e., XTX is singular or nearly singular. Additionally, the
reader is reminded that for XTX to be nonsingular, n ≥ m + 1 for models with an
intercept and n ≥ m for models without an intercept, where m is the number of
wavelengths used in the model, i.e., full spectra have been measured at w wavelengths,
and m is the number of wavelengths in the model subset. Unless the true form of the
relationship between X and y is known, it is necessary to select appropriate variables
to develop a calibration model that gives an adequate and representative statistical
description for use in prediction.

Most approaches to variable selection are based on minimizing a prediction-error
criterion. In this case, it is important to provide a data set for validating (testing) the
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data sets (see Section 5.6.4 for the definition of N-way) [29, 30].

of the analyte and interferences are accessible [19–21, 28]. In these situations, the
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model with the final selected variables. For example, if the RMSEV (RMSEP) or
RMSECV is used as a criterion for evaluating selected variables and choosing the final
model, then an additional data set independent of the data sets used in evaluating the
selected variables is needed for a concluding test of the final model.

5.5.1 FORWARD SELECTION

In forward selection, the first variable (wavelength) selected is that variable xj that
minimizes the residual sum of squares, RSS, according to

where  is the corresponding least-squares regression coefficient. The variable
selected first, x1, is forced into all further subsets. New variables x2, x3, …, xm are
progressively added to the model, each variable being chosen because it minimizes
the residual sum of squares when added to those already selected. Various rules can
be used as stopping criteria [3, 5].

5.5.2 EFROYMSON’S STEPWISE REGRESSION ALGORITHM

There are two important problems with the simple forward-selection procedure
described above.

1. In general, the subset of m variables providing the smallest residual sum of
squares does not necessarily contain the subset of (m − 1) variables that
gives the smallest residual sum of squares for (m − 1) variables.

2. There is no guarantee that forward selection will find the best-fitting
subsets of any size except for m = 1 and m = w.

In order to address these two problems, a test is made to see if any of the previously
selected variables can be deleted without appreciably increasing the residual sum of
squares. The test is performed after each variable other than when the first is added to
the set of selected variables. Before introducing the complete algorithm, two different
types of steps are described, the variable-addition step and the variable-deletion step.

5.5.2.1 Variable-Addition Step

Let RSSm denote the residual sum of squares for a model with m variables and an
intercept term, b0. Suppose the smallest RSS that can be obtained by adding another
variable to the present set is RSSm+1. The calculated ratio R according to
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is compared with an “F-to-enter” value, say Fe. If R is greater than Fe, the variable
is added to the selected set.

5.5.2.2 Variable-Deletion Step

With m variables and a constant in the selected subset, let RSSm−1 be the smallest
RSS that can be obtained after deleting any variable from the previously selected
variables. The ratio computed by

is compared with an “F-to-delete (or drop)” value, say Fd. If R is less than Fd, the
variable is deleted from the selected variables set.

5.5.2.3 Convergence of Algorithm

The above two steps can be combined to form a complete algorithm. It can be proved
that when a successful addition step is followed by a successful deletion step, the
new RSS* will be less than the previous RSS and

The procedure stops when no further additions or deletions are possible that satisfy
the criteria. As each step is bounded below by the smallest RSS for any subset of m
variables, by ensuring that the RSS is reduced each time that a new subset of m
variables is found, convergence is guaranteed. A sufficient condition for convergence
is that Fd < Fe. As with forward selection, there is no guarantee that this algorithm
will locate the best-fitting subset, although it often performs better than forward
selection when some of the predictors are highly correlated.

5.5.3 BACKWARD ELIMINATION

In this procedure, we start with all w variables, including a constant if there is one,
in the selected set. Let RSSw be the corresponding residual sum of squares. A variable
is chosen for deletion that yields the smallest value of RSSw−1 after deletion. The
process continues until there is only one variable left, or until some stopping criterion
is satisfied. Note that:

• In some cases, the first variable deleted in backward elimination is the
first one inserted in forward selection.

• A backward-elimination analogue of the Efroymson procedure is possible.
• Both forward selection and backward elimination can fare arbitrarily

poorly in finding the best-fitting subsets.
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5.5.4 SEQUENTIAL-REPLACEMENT ALGORITHMS

Once two or more variables have been selected, it is determined whether any of those
variables can be replaced with another variable to generate a smaller RSS. With some
of these attempts, there will be no variable that yields a reduction in the RSS, in which
case the process moves on to identifying the next variable. Sometimes, variables that
have been replaced will return. The process continues until no further reduction is
possible by replacing any variable. Note that:

• The sequential-replacement algorithm can be obtained by taking the
forward-selection algorithm and applying a replacement procedure after
each new variable is added.

• Replacing two variables at a time substantially reduces the maximum
number of stationary subsets and means that there is a greater chance of
finding good subsets.

• Even if the best-fitting subset of a certain size is located, there is no way
of knowing whether it is indeed the best one.

5.5.5 ALL POSSIBLE SUBSETS

It is sometimes feasible to generate all possible subsets of variables, provided that the
number of predictor variables is not too large. After the complete search has been
carried out, a small number of the more promising subsets can be examined in greater
detail. The obvious disadvantage of generating all subsets is computation time. The
number of possible subsets of one or more variables out of w is (2w − 1). For example,
when w = 10, the total number of subsets is about 1000; however, when w = 20, the
total number of possible subsets is more than 1,000,000.

5.5.6 SIMULATED ANNEALING AND GENETIC ALGORITHM

Except for testing all possible combinations, the above methods of variable selection
primarily suffer from the fact that suboptimal subsets can result. Said another way,
the above methods can easily converge to a locally optimal combination of variables
and not result in the global subset. The methods of simulated annealing (SA) and
genetic algorithm (GA) are known to be global optimization methods and are appli-
cable to variable selection [31–33]. Both methods are stochastic-search heuristic
approaches and have been shown to perform equally well for wavelength selection
[34, 35]. For SA, the user is required to specify how many wavelengths are desired,
while with GA this is generally not necessary. The method of GA does mandate more
algorithm operational parameters to be set than does SA, and generalized SA (GSA)
needs even fewer [36].

5.5.7 RECOMMENDATIONS AND PRECAUTIONS

In general, if it is feasible to carry out an exhaustive search, then that is to be
recommended. As the sequential-replacement algorithm is fairly fast, it can always
be used first to provide an indication of the maximum size of the subset that is likely
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to be of interest for the exhaustive search, or it can be used as a starting point for
SA or GA. When it is not feasible to carry out the exhaustive search, the use of
random starts followed by sequential replacement, or two-at-a-time replacement,
can be used, though there can be no guarantee of finding the best-fitting subsets.
The methods of SA and GA are applicable as well.

In all cases, graphical or other methods should be used to access the adequacy
of the fit obtained. These examinations often uncover residual patterns that may
indicate the suitability of using a transformation, or some kind of weighting, or
adding extra variables such as quadratic or interaction terms. Unfortunately, infer-
ence becomes almost impossible if the total subset of available predictors is aug-
mented subjectively in this way.

A number of derogatory names have been used in the past to describe the practices
of subset selection, such as data grubbing, data mining, and even “torturing the data
until they confess.” Given a sufficiently exhaustive search, some apparent pattern can
always be found, even if all of the predictions have come from a random number
generator. The best subset for prediction may not be the one that gives the best fit to
the sample data. In general, a number of the better-fitting subsets should be retained
and examined in detail. If possible, an independent sample should be obtained to test
the adequacy of the prediction equation. Alternatively, the data set can be divided into
two parts; one part is used for model selection and calibration of parameters, and the
second part for testing the adequacy of the predictions.

5.6 BIASED METHODS OF CALIBRATION

Biased approaches to calibration do not mandate wavelength selection prior to
determining the calibration regression vector. Thus, these methods permit using more
wavelengths than calibration samples and offer a form of signal-averaging advantage
that can help cancel random errors in measured responses. Basically, the estimated
model coefficients are obtained by

(5.19)

where X+ designates a generalized inverse of X. The biased approaches essentially
differ in the computation of X+.

Diagnostic information can be obtained to determine whether the calibration model
provides an adequate fit to the standards, e.g., nonlinearity or other kinds of model
errors can be detected, or whether an unknown sample is adequately fitted by the
calibration model. A large lack of fit is usually due to background signals different
from those present in the calibration standards. This is what some people have called
the “false sample” problem. For example, suppose a calibration model was developed
for the spectroscopic determination of iron in dissolved carbon steel samples. This
model might be expected to provide a poor performance in the determination of iron
in stainless steel samples. In this case, a figure-of-merit calculated from the biased
model would detect the “false sample.”

b̂ X y= +
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Principal component regression (PCR), partial least squares (PLS), and ridge
regression (RR) are three of the most popular biased-calibration methods. These
methods have gained widespread acceptance. Industry implements routine analyt-
ical methods employing multivariate calibration methods because enhanced speed
and accuracy over other methods are typically obtained. Frequently, the methods
can be applied to mixtures without resorting to time-consuming chemical separation
using chromatography. While PCR, PLS, RR, and other methods do not require
wavelength selection, other metaparameters must be established. With PCR and
PLS, the number of basis vectors to be used in generating the model is the meta-
parameter to be determined. Other terms for this are the number of factors, latent
vectors, principal components, or basis vectors. The role of the metaparameter in
the case of PCR and PLS is to reduce the dimensionality of the regression space
and shrink the regression vector. The method of RR necessitates settling on a ridge-
parameter value for the metaparameter and also forces the model to use less of the
complete calibration space. As with variable selection (wavelength selection), it is
important to perform a validation (test) of the final optimized metaparameter uti-
lizing an independent data set not used in determining the final metaparameter value.

For the subsections of this section, variances and confidence intervals formulas
are not furnished. The literature [11–17] provides excellent discussions on this
subject. However, if only a rough estimate is needed, the equations previously
presented in Sections 5.4.4 and 5.4.5 are often adequate.

5.6.1 PRINCIPAL COMPONENT REGRESSION

matrix with n rows of mixture spectra recorded at m wavelengths, where each mixture
contains up to k constituents, can be expressed as a product of k vectors representing
concentrations and k vectors representing spectra for the pure constituents in the
mixtures, as shown in Equation 5.20.

X = YKT + E (5.20)

The concentration of the ith component in the mixture is specified by the ith column
of Y, and the ith row of K contains the pure-component spectrum for the ith component.

With principal component analysis, it is possible to build an empirical mathe-
matical model for the mean-centered data matrix X, as shown by

(5.21)

or , where the product UdSd represents the n × d matrix of principal
component scores, Vd denotes the m × d matrix of eigenvectors, and d symbolizes
the number of respective vectors used from the complete set available obtained by
the singular value decomposition (SVD) of X = USVT. In simple chemical systems,
the value of d is often equal to k, the number of constituents. See Chapter 4 for
additional information on the SVD.

X U S V Ed d d d= +T

X̂ U S Vd d d d= T
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The eigenvectors in Vd are also referred to as abstract factors, eigenspectra,
basis vectors, loading vectors, or latent vectors, indicating that while the vectors
form a basis set for the row space of X, physical interpretation of the vectors is
not very useful. The columns of Vd are mutually orthogonal and normalized. Often
the first eigenvector looks like the average spectrum for the calibration set. In
spectral analysis, sometimes positive or negative peaks can be observed in the
eigenvectors corresponding to overlapped or hidden bands in the calibration spec-
tra. The columns of Ud are also mutually orthogonal and normalized. They can be
used to form a set of column basis vectors for X.

For each independent source of variation in the data, a single principal compo-
nent (eigenvector) is expected in the model. For the NIR water-methanol data set,
one factor for each chemical species in the mixture is expected, including intermo-
lecular hydrogen-bonded species. The first column of scores (column in the product
US) and the first eigenvector (row in VT) denote the first factor. The first eigenvector
corresponds to the one with the largest eigenvalue. It can be shown that the first
factor explains the maximum amount of variation possible in the original data
(maximum in a least-squares sense). The second factor is the next-most-important
factor and corresponds to the second column of scores and the eigenvector associated
with the second-largest eigenvalue. It explains the maximum amount of variation
left in the original data matrix. Figure 5.11 shows a three-component principal
component model for the NIR spectra of the water-methanol mixtures characterizing
the similarities between Equations 5.20 and 5.21.

5.6.1.1 Basis Vectors

As described in Section 4.2.1, the V eigenvectors in Figure 5.11 can be thought of as
row basis vectors, since each row in the data matrix X can be expressed as a linear
combination (mixture) of the three eigenvectors. Similarly, the columns in U can be
thought of as column basis vectors. Each column in the data matrix X can be expressed
as a linear combination (mixture) of the columns in U.

The coordinates of a vector x in an m dimensional space, e.g., an m × 1 mixture
spectrum measured at m = 700 wavelengths, can be expressed in a new coordinate
system defined by a set of orthonormal basis vectors (eigenvectors) in the lower-
dimensional space. Clearly, we cannot imagine a 700-dimensional space. It is

FIGURE 5.11 Diagram of a three-factor principal component model for NIR spectra of
water–methanol mixtures.

=

X 3 = U 3S 3 ∗ V3
T
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possible, however, to view the position of points relative to each other in a 700-
dimensional space by plotting them in the new coordinate system defined by two
basis vectors from V. Using the first column of scores as x-axis plotting coordinates
and the second column of scores as the y-axis plotting coordinates is a good initial
plot. An example of such a plot using the NIR water–methanol data set is shown in
Figure 5.12, where the elements of column vector 2 from US are used as the y-axis
plotting coordinates and the elements of column vector 1 from US are used as the
x-axis plotting coordinates. Curvature in the plot arises because the concentration
of intermolecular hydrogen-bonded species is a nonlinear function of concentration.

5.6.1.2 Mathematical Procedures

Principal component regression is accomplished in two steps, a calibration step
and an unknown prediction step. In the calibration step, concentrations of the
constituent(s) to be quantitated in each calibration standard sample are assembled
into a matrix, y, and mean-centered. Spectra of standards are measured, assembled
into a matrix X, mean-centered, and then an SVD is performed. Calibration spectra
are projected onto the d principal components (basis vectors) retained and are used
to determine a vector of regression coefficients that can be then used to estimate
the concentration of the calibrated constituent(s).

5.6.1.2.1 Calibration Steps

1. Compute the projected calibration spectra:

FIGURE 5.12 Scatter plot of the principal component (PC) scores from the SVD analysis
of the water–methanol NIR mixture data.
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2. Compute a regression vector using the calibration samples:

3. Calibration prediction step:

Note that X can be used instead of , as  is based on only d basis vectors.

4. Estimate the RMSEC, where n is the number of calibration samples used:

Some users of PCR do not mean-center the X and y matrices first, in which case
the degrees of freedom become n – d not n – d – 1. Other users of PCR choose not
to subtract the number of factors, as this is an arbitrary constraint, and use n for no
mean centering or n – 1 with mean centering. The literature [37–39] should be
consulted on using effective rank instead of d. Unless noted otherwise, mean cen-
tering is used, and the degrees of freedom are n – d – 1 in this chapter.

5.6.1.2.2 Unknown Prediction Steps

1. Prediction step: Note that because the calibration mean-centered data is
used, concentration predictions obtained by Equation 5.22 must be un-
mean-centered if actual prediction values are to be reported.

(5.22)

2. Validation step: If concentrations of some of the unknowns are actually
known, i.e., pseudo-unknowns, they can be used to determine the RMSEP
(RMSEV):

where p is the number of pseudo-unknowns used in the validation.
If more than one analyte is to be modeled simultaneously, then y is expanded

to an n × a matrix Y, resulting in an m × a matrix of regression coefficients B, where
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each column is the regression vector for the 

 

a

 

th analyte. Unless individual models
are generated, the number of basis vectors used to form  is now a compromise for
all analytes.

 

5.6.1.3 Number of Basis Vectors

 

So far, the number of basis vectors that should be used in the calibration model has
not been discussed. It is standard practice during PCR calibration modeling to use
one principal component (PC), two PCs , three PCs, and so on. The error from this
prediction is used to calculate the RMSEP figure of merit. Plots of RMSEC and
RMSEP against the number of PCs used in the calibration model are used to
determine the optimum number of factors. Usually, a continuous decrease in RMSEC
is observed as more PCs are added into the calibration model; however, the predictive
performance of the calibration model often reaches a minimum RMSEP at the
optimum number of factors and begins to increase thereafter.

An alternative criterion that can be used is the RMSECV, as described in Section
5.2.6. A plot of RMSECV vs. the number of factors frequently shows a minimum
or levels off at the optimum number of factors. As a reminder from Section 5.2.6,
LOOCV commonly overfits, and MCCV is a better choice.

Common practice is to use only RMSEC, RMSEP, or RMSECV to assess the
optimum number of basis vectors. However, these diagnostics only evaluate the bias
of the model with respect to prediction error. As Figure 5.13 shows, there is a trade-
off of variance for prediction estimates with respect to bias. As more basis vectors
are utilized to generate the regression vector, the bias decreases at a sacrifice of a
variance increase.

A graphic that can be produced to better describe the actual situation is the
plot of  against , where  symbolizes the Euclidean vector norm

  

occurring at the bend, which reflects a harmonious model with the least amount
of compromise in the trade-off between minimization of the residual and regression
vector norms. The regression vector norm acts as an indicator of variance for the

 

FIGURE 5.13

 

A generic situation for model determination showing the bias/variance trade-
off with selection of the metaparameter.
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[40–46]. As Figure 5.14 discloses, an L-shaped curve results with the best model
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concentration estimates, and other measures of bias and variance can be utilized
[11–17, 45, 46]. Because of the L shape, the harmonious plot is sometimes referred
to as the L-curve. The foundation of using such a plot stems from Tikhonov
regularization, as described in Section 5.6.4.

Overfitting the PCR calibration model is easily accomplished by including too
many factors. For this reason, it is very important to use test data to judge the
performance of the calibration model. The test data set should be obtained from
standards or samples prepared independently from the calibration data set. These
test standards are treated as pseudo-unknown samples. In other words, the final PCR
calibration model is used to estimate the concentration of these test samples. Using
the harmonious approach noted in Figure 5.14 significantly reduces the chance of
obtaining an overfitted model.

It should be noted that other approaches to selecting basis vectors for PCR have
been proposed [47 and references therein]. The most popular approach includes
those basis vectors that are maximally correlated to y [48 and references therein].

5.6.1.4 Example PCR Results

Using the water–methanol data, PCR was performed with results graphically presented

RMSEP in Figure 5.15a, it is not obvious as to the proper number of basis vectors.
While the RMSEC increase from the three- to the four-factor model, respective
RMSEP values decrease. Using the calibration residual plot presented in Figure 5.15b
does not really assist in the decision. Regardless of the model, there still appears to
be some nonlinearity not modeled. This becomes especially obvious when the valida-

FIGURE 5.14 A generic plot of a variance indicator  against a bias measure .
The dots denote models with different metaparameters.

y − ŷ

b̂
Overfitting
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in Figure 5.15 and Figure 5.16. From the plot of only the bias criteria RMSEC and

tion residuals are inspected in Figure 5.15c. While the nonlinearity is not clearly
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observable with calibration residuals based only on six calibration samples, the pattern

with the four-wavelength data set.

basis vectors for the PCR model. The actual trade-off between improving the bias
by including another basis vector and the degradation to variance can be assessed.
Assisting the decision are the R2 values for the validation set, which are 0.99899, 0.99997,
0.99998, 0.99999, and 0.99995 for one-, two-, three-, four-, and, five-factor models,

FIGURE 5.15 PCR methanol: (a) RMSEC (ο) and RMSEP(*); (b) and (c) are calibration
and validation residuals, respectively, for (�) two, (*) three, and (ο) four PCs.
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becomes apparent when all 11 samples are used as the calibration set, as in Figure 5.7

The harmonious plot shown in Figure 5.16 aids in deciding on the number of
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respectively. Corresponding calibration values are 0.99901, 0.99996, 0.99999, 1.00000,
and 1.00000. Even though the improvements are all small, the small increase from the
three- to the four-factor models, coupled with the other information discussed, results in
a conclusion of three basis vectors as optimal. However, it is possible to argue that a
model based only on two basis vectors is better because the gain in bias from proceeding
to the three-factor model indicated by the RMSEC, RMSEP, and R2 validation values
may not be worth the corresponding increase in the variance indicator .

The reader is reminded that PCR with wavelength selection could provide better
results and is worth exploring. Similarly, using only a small, select set of wavelengths
such that MLR can be implemented may also prove to be better and should likewise
be investigated.

5.6.2 PARTIAL LEAST SQUARES

Partial least squares (PLS) was first developed by H. Wold in the field of econometrics
in the late 1960s. During the late 1970s, groups led by S. Wold and H. Martens
popularized use of the method for chemical applications. It should be noted that the
well-known conjugate gradient method reviewed by Hansen [42] is equivalent to
PLS [49, 50]. Two different methods are available, called PLS1 and PLS2. In PLS1,
separate calibration models are built for each column in Y. With PLS2, one calibration
model is built for all columns of Y simultaneously.

The statistical properties of PLS2 are still not well understood and may not even
be optimal for many calibration problems. The solution produced by PLS2 is depen-
dent on how its iterative computations are initialized. A usual practice is to initialize
PLS2 with the column from Y with the greatest correlation to X. Initialization with
other columns of Y produces different results.

FIGURE 5.15 (Continued)
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5.6.2.1 Mathematical Procedure

In PLS, the response matrix X is decomposed in a fashion similar to principal
component analysis, generating a matrix of scores, T, and loadings or factors, P.
(These vectors can also be referred to as basis vectors.) A similar analysis is per-
formed for Y, producing a matrix of scores, U, and loadings, Q.

X = TPT + E

Y = UQT + F

FIGURE 5.16 Harmonious PCR plot for methanol: (a)  against RMSEC (ο) and
RMSEP(*); (b)  against R2 for calibration (ο) and validation (*).
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The goal of PLS is to model all the constituents forming X and Y so that the
residuals for the X block, E, and the residuals for the Y block, F, are approximately
equal to zero. An inner relationship is also constructed that relates the scores of the
X block to the scores of the Y block.

U = TW

The above model is improved by developing the so-called inner relationship.
Because latent (basis) vectors are calculated for both blocks independently, they
may have only a weak relation to each other. The inner relation is improved by
exchanging the scores, T and U, in an iterative calculation. This allows information
from one block to be used to adjust the orientation of the latent vectors in the other
block, and vice versa. An explanation of the iterative method is available in the
literature [42, 51, 52]. Once the complete model is calculated, the above equations
can be combined to give a matrix of regression vectors, one for each component in Y:

(5.23)

Various descriptions of the PLS algorithm exist in the literature. Some of the
differences arise from the way normalization is used. In some descriptions, neither
the scores nor the loadings are normalized. In other descriptions, either the loadings
or scores may be normalized. These differences result in different expressions for
the PLS calculations; however, the estimated regression vectors for b should be the
same, except for differences in round-off error.

5.6.2.2 Number of Basis Vectors Selection

Similar to PCR, the number of basis vectors to use in Equation 5.23 must be
discerned. The same methods described in Section 5.6.1.3 are used with PLS too.

5.6.2.3 Comparison with PCR

The simultaneous use of information from X and Y makes PLS more complex than
PCR. However, it can allow PLS to develop better regression vectors, i.e., more
harmonious with respect to the bias/variance trade-off. Some authors also report that
PLS can sometime provide acceptable solutions for low-precision data where PCR
cannot. Other authors have reported that PLS has a greater tendency to overfit noisy
Y data compared to PCR. It is often reported in the literature that PLS is preferred
because it uses fewer factors than PCR and, hence, forms a more parsimonious
model. This is not the case, and the literature [38, 39, 43, 45, 53] should be consulted.

Even though problems exist, there may be situations where PLS2 is useful,
particularly when extra variables with a strong correlation to Y are available that
can be included in Y. For example, design variables or variables describing experi-
mental conditions can be included in Y. Inclusion of these design variables may
make it easier to interpret the final regression vectors, b.

ˆ ( )B P P P WQ= −T T1

ˆ ˆY XB=
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Personal experience has shown that PLS often provides lower RMSEC values than
PCR. The improvement in calibration performance must also manifest itself in pre-
dictions for independent samples. Therefore, a thorough evaluation of PCR versus PLS
in any calibration application must involve using a large external validation data set
with a comparison of RMSEPPCR and RMSEPPLS in conjunction with respective regres-
sion vector norms or other variance expressions.

5.6.3 A FEW OTHER CALIBRATION METHODS

Besides PCR and PLS, other approaches to obtaining an estimate for the model
coefficients in Equation 5.7 exist, and they are briefly mentioned here. Some of these
methods are ridge regression (RR) [54], generalized RR (GRR) [54, 55], continuum
regression (CR) [56], cyclic subspace regression (CSR) [57], and ridge variations
of PCR, PLS, etc. [43, 58, and references therein]. The methods of GRR, CR, and
CSR can generate the least-squares, PCR, and PLS models. Geometrical interrela-
tionships of CR and CSR have been expressed as well as describing modifications
to GRR to form PLS models [59].

These mentioned approaches in addition to PCR and PLS result in a regression
vector having a smaller length (smaller ) relative to the least-squares solution.
Each of these methods requires determination of a metaparameter(s). In the case of
RR and GRR, appropriate ridge parameters are necessary. An exponential value
is needed with CR. The method of CSR first projects X based on a set of basis
eigenvectors from V obtained through the SVD of X, and then a PLS1 algorithm is
used, which necessitates determining the number of PLS basis vectors to use from
the eigenvector-projected X. Recently, an approach was developed that first projects
X using a subset of PLS basis vector from the original X, and then an SVD is
performed on the PLS-projected X, requiring selection of how many basis eigen-
vectors to then use for the final model [60]. Other variations of projections with V
and PLS basis vectors combined with RR have been described [61–63], as well as
variations combining variable selection with RR [64].

While beyond the scope of this chapter, N-way modeling methods are being used
more widely in the literature [65]. The idea here is to use other dimensions of infor-
mation. For example, first-order data consists of only the spectroscopic order for a
spectrum or the chromatographic order for a chromatogram. Second-order data is that
formed by combing data from two first-order instruments. Variance expressions for

Using artificial neural networks to develop calibration models is also possible.
The reader is referred to the literature [68–70] for further information. Neural
networks are commonly utilized when the data set maintains a large degree of
nonlinearity. Additional multivariate approaches for nonlinear data are described in
the literature [71, 72].

5.6.3.1 Common Basis Vectors and a Generic Model

The approaches described or mentioned to obtain model coefficients in Equation 5.7
can be expressed using a common basis set. For example, the literature commonly

|| ||b
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N-way modeling have been derived [66, 67]. See Chapter 12 for more information.
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describes PCR and PLS as using different basis sets to span respective calibration
spaces. In reality, PCR and PLS regression vectors can be written as linear combi-
nations of a specified basis set. Using the V eigenvectors from the SVD of X results in

(5.24)

where β represent a vector of weights [43, 45, 59 and references therein], and
can be the PCR, PLS, RR, GRR, CR, CSR, etc. regression vector. An analogous
equation can be formed using the PLS basis set, as well as other basis sets. Because
values in β identify the importance of a basis vector direction, it is useful to
compare values obtained from different modeling procedures. That is, once regres-
sion vectors have been estimated by various modeling methods, the corresponding
weights for a specific basis set can be computed, thus allowing intermodel com-
parisons in that basis set. Because of Equation 5.24 and other equations for
respective basis sets, the concept of the most parsimonious model with respect to
models compared in different basis sets is not practical. A generic expression, as
in Equation 5.24, can be written based on filter values, further demonstrating the
interrelationships of different modeling methods [39, 42]. Summarizing, a goal of
multivariate calibration is then to find weight values for β, using a given basis set,
that are optimal with respect to specified criteria. The next section further discusses
this concept.

5.6.4 REGULARIZATION

Regularization is a term coined to describe processes that replace (XTX)−1 in Equation
5.12 or X+ in Equation 5.19 by a family of approximate inverses [73]. In the case
of multivariate calibration, the goal is to balance variance with bias, much like the
H-principle [74]. An analogy in image restoration is to seek a balance between noise
suppression and the loss of details in the restored image. Thus, the purpose of
regularization is to single out a useful and stable solution. The methods of PCR,
PLS, and those listed in Section 5.6.4 can all be classified as methods of regular-
ization. The most well-known form of regularization is Phillips-Tikhonov regular-
ization, usually referred to as Tikhonov regularization [75–78]. The approach is to
use a modified least-squares problem by defining a regularized solution b as the
minimizer of the following weighted combination of the residual norm model and
coefficient norm

(5.25)

for some matrix L and regularization parameter that controls the weight. A large
value for λ, and hence a large amount of regularization, favors a small-solution norm
at the cost of a large-residual norm; conversely, a small λ, and hence very little
regularization, has the opposite effect. When L is the identity matrix, the regular-
ization problem is said to be in standard form and RR results, the statisticians’ name

b̂ V= β

b̂

b Xb y Lbλ λ= − +( )argmin
2 2
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for Tikhonov regularization. However, it should be noted that in determining the
optimal RR value for λ, only prediction-error criteria, such as RMSEP or
RMSECV, are commonly used. A recent comparison study documents the impor-
tance of using a variance indicator such as  in addition to a prediction-error
criterion [46]. Other diagnostic measures could be included in the minimization
problem of Equation 5.25.

FIGURE 5.17 PCR (ο), PLS (*), and RR (�) harmonious plots for methanol: (a) RMSEC
and (b) RMSEP. The PCR and PLS2 factor models are in the lower right corner, with the RR
ridge value beginning at 0.0011 in the upper left corner for (a) and (b) and ending at 0.4731
for (a) and 0.1131 for (b) in the lower right corner in increments of 0.001. The RMSEC
values are with n – 1 degrees of freedom.
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Besides Tikhonov regularization, there are numerous other regularization methods
with properties appropriate to distinct problems [42, 53, 73]. For example, an iterated
form of Tikhonov regularization was proposed in 1955 [77]. Other situations include
using different norms instead of the Euclidean norm in Equation 5.25 to obtain
variable-selected models [53, 79, 80] and different basis sets such as wavelets [81].

5.6.5 EXAMPLE REGULARIZATION RESULTS

A regularization approach has been used to compare PLS, PCR, CR, CSR, RR, and
GRR [45]. Simplex optimization [82] was used for GRR and minimization of
Equation 5.25 in conjunction with Equation 5.24 using different basis sets. Plotted

identified as simplex in Figure 5.18 is also the curve obtained by RR and GRR.
Thus, from Figure 5.18, the PLS and PCR models are passed over in the simplex
optimization, and the models are converged to those of RR within round-off error.
Other harmonious graphics using different variance indicators from prediction-
variance equations (Equation 5.11 through Equation 5.17) are provided in the
literature [44, 46].

5.7 STANDARD ADDITION METHOD

In Sections 5.2.1 and 5.2.2, it was stated that the samples must be matrix-effect-free
for univariate models, e.g., inter- and intramolecular interactions must not be present.
The standard addition method can be used to correct sample matrix effects. It should
be noted that most descriptions of the standard addition method in the literature use
a model form, where the instrument response signifies the dependent variable, and

FIGURE 5.18 PCR (ο), PLS (*), and simplex ( ) harmonious plots for NIR analysis of
moisture in soy samples. The PCR and PLS1 factor models are in the lower right corner, and
the respective models are 8 and 7 factors in the upper left corner. The simplex models
converged to RR and GRR models. The RMSEC values are with n – 1 degrees of freedom.
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in Figure 5.17 and Figure 5.18 are the harmonious plots for two data sets. The curve
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concentration represents the independent variable. For consistency with the discussion
in this chapter, the reverse shall be used.

5.7.1 UNIVARIATE STANDARD ADDITION METHOD

Procedural steps encompass dividing the sample up into several equal-volume ali-
quots, adding increasing amounts of an analyte standard to all aliquots except one,
diluting each aliquot to the same volume, and measuring instrument responses. The
model implied by the standard addition method is

(5.26)

(5.27)

where yo denotes the analyte concentration in the aliquot with no standard addition,
yi symbolizes the total analyte concentration after the ith standard addition of the
analyte, x0 and xi signify the corresponding instrument responses, and b1 represents
the model coefficient. As with the univariate model of Section 5.2.1, zero concen-
tration of the analyte (and matrix) should evoke a zero response. Subtracting Equa-
tion 5.26 from Equation 5.27 results in ∆yi = ∆xib1, where ∆yi is the concentration
of the standard added on the ith addition, and similar meaning is given to ∆xi. In
matrix algebra, the model is expressed as ∆y = ∆xb1, which can be solved for the
regression coefficient as in Equation 5.2. Thus, plotting concentration of the standard
added against the change in signal will provide a calibration curve with a slope equal
to . The estimated slope is then used in Equation 5.26 to obtain an estimate of
the analyte concentration in the unknown sample.

An alternative approach is to write the model as

(5.28)

where vi expresses the volume of standard added in the ith addition, ys denotes the
corresponding analyte standard stock solution concentration, vT symbolizes the total
volume that all aliquots are diluted to, v0 and y0 represent the volume and analyte
concentration of the unknown sample, and xi designates the corresponding measured
response. Equation 5.28 can be rearranged to

(5.29)

revealing that a plot of the volume of standard added against the respective measured
response will produce a calibration curve with an intercept of –v0y0 /ys that can be
solved for the concentration of the analyte in the unknown sample. Using the notation

y x bo o= 1

y x bi i= 1
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of Equation 5.29, Equation 5.30 is derived for an analyte concentration estimate
based on only one standard addition (i = 1).

(5.30)

At best, this estimate is semiquantitative.
Approaches have been described for using standard additions without diluting

to a constant volume. Multiplying measured responses by a ratio of total to initial
volume accomplishes a correction for dilution. However, the matrix concentration
is also diluted by the additions, creating a nonlinear matrix effect that may or may
not be transformed into a linear effect by the volume correction. Kalivas [83]
demonstrated the critical importance of maintaining constant volume.

In summary, requirements for the univariate standard addition methods are that
(1) the response for the analyte should be zero when the concentration equals zero
(as well as for the matrix), (2) the response is a linear function of the analyte
concentration, (3) sample matrix effects are independent of the ratio of the analyte
and matrix, and perhaps most importantly, (4) a standard solution of only the analyte
is available for the additions.

5.7.2 MULTIVARIATE STANDARD ADDITION METHOD

The standard addition method has been generalized to correct for both spectral
interferences and matrix effects simultaneously [84, 85] as well as compensate for
instrument drift [86]. Original derivations of the generalization were with instrument
responses signifying the dependent variables and with constituent concentrations
representing the independent variables. For consistency with the discussion in this
chapter, the reverse shall be used. For an analyte in a multianalyte mixture, Equation
5.26 becomes , where y0 denotes the analyte concentration in the aliquot
with no standard addition and b symbolizes the respective column of B from
y0

T = x0
TB and Y = XB, where y0 represents the concentration vector of all responding

constituents that form x0, Y symbolizes total concentrations after respective standard
additions, and X designates the respective measurements. The B matrix (or respective
column b) is obtained from the corresponding difference equation ∆Y = ∆XB
(∆y = ∆Xb). Note that to obtain estimates of B or b, standard additions must be
made for all responding constituents that form x0. Additionally, wavelengths must
be selected, or a biased approach such as RR, PCR, PLS, etc. needs to be used (refer

[84], writing the model as x0
T = y0

TK and X = YK — with the difference being
∆X = ∆YK, where K denotes the a × m matrix of regression coefficients for a
analytes (responding constituents) at m wavelengths — does not require wavelengths
to be selected.

A standard addition method has been studied for use with second-order data
[87]. The specific application investigated was analysis of trichloroethylene in sam-
ples that have matrix effects caused by an interaction with chloroform.

y
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v x x
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to Sections 5.2.3 and 5.6). Alternatively, as expressed in the original derivations
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5.8 INTERNAL STANDARDS

In some instances, uncontrolled experimental factors during sample preparation, mea-
surement, or prediction procedures can cause undesired systematic changes in the
instrument response. Examples of such factors might include variation in extraction
efficiency or variation in the effective optical path length. In cases such as these, an
internal standard can be used to improve the calibration precision. An internal standard
is a substance added in constant amount to all samples. Calibration is obtained by
using the ratio of instrument readings to an instrument reading specific only to the
internal standard added. If the internal standard and analyte (as well as all other
responding constituents) respond proportionally to the random fluctuations, compen-
sation is possible because the ratios of the instrument readings are independent of the
fluctuations. If the two readings are influenced the same way by matrix effects, com-
pensation for these effects also transpires. The process is the same whether univariate
or multivariate calibration is being used. For either calibration approach, a measure-
ment variable (e.g., wavelength) must exist that is selective to only the internal standard.

An example of the use of an internal standard is the precision enhancement for
univariate quantitative chromatography based on peak area. With manual sample
injection, the reproducibility of volume size is not consistent. For this approach to
be successful, the internal standard peak must be well separated from the peaks of
any other sample constituent. Use of an internal standard can be avoided with an
autosampler.

In the case of multivariate calibration, an example consists of using KSCN as an
internal standard for analysis of serum with mid-IR spectra of dry films [88]. In this
study, KSCN was added to serum samples, and a small volume of a serum sample
was then spread on a glass slide and allowed to dry. The accuracy of this approach
suffers from the variation of sample volume and placement, causing nonreproducibility
of spectra. Thus, by using a ratio of the spectral measurements to an isolated band for
KSCN, the precision of the analysis improved.

5.9 PREPROCESSING TECHNIQUES

Preprocessing of instrument response data can be a critical step in the development
of successful multivariate calibration models. Oftentimes, selection of an appropriate
preprocessing technique can remove unwanted artifacts such as variable path lengths
or different amounts of scatter from optical reflectance measurements. Preprocessing
techniques can be applied to rows of the data matrix (by object) or columns (by
variable).

common) to remove baseline offsets and scatter. The method of multiplicative scatter
correction (MSC) works by regressing the spectra to be corrected against a reference
spectrum [89]. A simple linear regression model is used, giving a baseline-offset
correction and a multiplicative path-length correction. Often the mean spectrum of the
calibration data set is used as the reference. Orthogonal signal correction (OSC) is a
preprocessing technique designed to remove variance from the spectral data in X that
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One such pretreatment, mean centering, has already been introduced (see Section
5.2.2). Other preprocessing methods consist of using derivatives (first and second are
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is unrelated (orthogonal) to the chemical information in 

 

y

 

 [90]. The standard normal
variate (SNV) method is another preprocessing approach sometimes used [91] and has
an effect much like that of MSC. Using score plots, it was shown that with spectro-
scopic data contaminated with scatter, using the second derivative and MSC prepro-
cessing provided the best spectral reproducibility [92].

Deciding on the type of preprocessing to include is not always straightforward
and often requires comparison of modeling diagnostics between different prepro-

of the many preprocessing forms.

 

5.10 CALIBRATION STANDARDIZATION

 

After a calibration model has been built, situations can arise that may cause it to
become invalid. For example, instrumental drift, spectral shifts, and intensity changes
can invalidate a multivariate calibration model. These disturbances could be induced
by uncontrolled experimental factors such as dirt on fiber-optic probes, or even
maintenance events as simple as replacing a lamp in a spectrometer. Additionally,
it is often advantageous to develop calibration models on a single master instrument
and distribute it to many instruments in the field. Small differences in response from
instrument to instrument could also invalidate the multivariate calibration model in
such applications. In all of these situations, if the change in instrument response is
large enough, it may be necessary to recalibrate the model with fresh calibration
standards. Because recalibration can be lengthy and costly, alternative calibration
standardization (transfer) methods have been developed. There are three main
categories of calibration-transfer methods: (1) standardization of predicted values
(e.g., slope and bias correction), (2) standardization of instrument (spectral)
response, and (3) methods based on preprocessing techniques mentioned in Section
5.9. Overviews of these standardization methods are available in the literature [95–97
and references therein].

Most calibration-transfer methods require a small set of standards that must be
measured on the pair of instruments to be standardized. These calibration-transfer
standards may be a subset of calibration samples or other reference materials whose
spectra adequately span the spectral domain of the calibration model. Calibration
samples with high leverage or large influence are recommended by some authors as
good candidates for calibration transfer [98]. Alternatively, other authors recommend
selecting a few samples with the largest distance from each other [99]. A very small
number of calibration-transfer standards (three to five) can be used; however, a
larger number provides a better matching between the pair of instruments to be
standardized.

 

5.10.1 S

 

TANDARDIZATION
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To employ the simple slope-and-bias-correction method, a subset of calibration
standards is measured on both instruments. The calibration model from the primary
instrument is then used to predict the sample concentrations or properties of the
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measurements from the primary and the secondary instruments, giving predicted
values  and . The secondary instrument is the primary instrument at a later
time than when the original calibration model was built on another instrument. The
bias and slope correction factors are determined by simple linear regression of 
on , which is subsequently used to calculate the corrected estimates for the
secondary instrument, .

This method assumes that the differences between the primary and secondary
instruments follow a simple linear relationship. In fact, the differences may be much
more complex, in which case more-advanced methods like piecewise direct stan-
dardization (PDS) may be more useful.

5.10.2 STANDARDIZATION OF INSTRUMENT RESPONSE

The goal of methods that standardize instrument response is to find a function that
maps the response of the secondary instrument to match the response of the primary
instrument. This concept is used in the statistical analysis procedure known as
Procrustes analysis [97]. One such method for standardizing instrument response is
the piecewise direct standardization (PDS) method, first described in 1991 [98, 100].
PDS was designed to compensate for mismatches between spectroscopic instruments
due to small differences in optical alignment, gratings, light sources, detectors, etc.
The method has been demonstrated to work well in many NIR assays where PCR
or PLS calibration models are used with a small number of factors.

In the PDS algorithm, a small set of calibration-transfer samples are measured
on a primary instrument and a secondary instrument, producing spectral response
matrices  and . A permutation matrix F (Procrustes transfer matrix) is used
to map spectra measured on the secondary instrument so that they match the spectra
measured on the primary instrument.

The procedure for computing F employs numerous local regression models to
map narrow windows of responses at wavelengths, i − j to i + j, from the secondary
instrument, giving an estimate of the corrected secondary response at wavelength i.
At each wavelength i, a least-squares regression vector bi is computed for the window
of responses that bracket the point of interest, xi.

These regression vectors are then assembled to form the banded diagonal trans-
formation matrix, F, where p is the number of response values to be converted.

ŷP ŷS

ŷS

ŷP
ˆ ( )yS corr

ˆ ( ) ˆy yS Scorr bias slope= + ×

X1 X2

X X F1 2=

x i i1 2, = x b

F b b b b= diag T T T T( , , , , , )1 2 … …i p
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Either PLS or PCR can be used to compute bi at less than full rank by discarding
factors associated with noise. Because of the banded diagonal structure of the
transformation matrix used by PDS, localized multivariate differences in spectral
response between the primary and secondary instrument can be accommodated,
including intensity differences, wavelength shifts, and changes in spectral bandwidth.
The flexibility and power of the PDS method has made it one of the most popular
instrument standardization methods.

5.10.3 STANDARDIZATION WITH PREPROCESSING TECHNIQUES

The previously discussed standardization methods require that calibration-transfer
standards be measured on both instruments. There may be situations where transfer
standards are not available, or where it is impractical to measure them on both instru-
ments. In such cases, if the difference between the two instruments can be approxi-
mated by simple baseline offsets and path-length differences, preprocessing techniques
such as baseline correction, first derivatives, or MSC can be used to remove one or
more of these effects. In this approach, the desired preprocessing technique is applied
to the calibration data from the primary instrument before the calibration model is
developed. Prediction of samples from the primary or secondary instrument is accom-
plished simply by applying the identical preprocessing technique prior to prediction.

more detailed discussion. A few methods are briefly discussed next.
The preprocessing approach of mean centering has been shown to correct for much

for the spectral differences between the primary and secondary instruments [97, 101].
The mean-centering process can correct for baseline offsets, wavelength shifts, and
intensity changes [97]. Finite impulse response (FIR) filters can be used to achieve a
similar correction to that of MSC. However, because a moving window is used, greater
flexibility is offered, allowing for locally different baseline offsets and path-length
corrections [102, 103]. With FIR and MSC, there is a possibility that some chemical
information may be lost. In instrument-standardization applications of OSC, it is
assumed that baseline offsets, drift, and variation between different instruments is
unrelated to y and therefore is completely removed by OSC prior to calibration or
prediction [104, 105]. Several preprocessing methods for calibration transfer, including
derivatives, MSC, and OSC, are also compared in the literature [102, 103].

5.11 SOFTWARE

Almost all of the approaches described in this chapter are readily available from
commercial software packages. A short list includes the PLS_Toolbox from Eigen-
vector Research (note that PLS_Toolbox is not restricted to PLS, but also includes
all aspects of multivariate calibration as well as numerous calibration approaches),
Unscrambler from Camo, SIMCA from Umetrics, Infometrix maintains Pirouette,
Thermo Galactic has GRAMS, and DeLight is available from DSquared Develop-
ment. All of these software packages are considered to be user friendly. It should
be noted that there are also other good and user-friendly calibration software pack-
ages. The PLS_Toolbox is MATLAB-based, allowing easy adaptation to user-
specific problems. The Unscrambler package also maintains a MATLAB interface.
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An abundance of MATLAB routines are available from many independent Web
sites as well as tutorial Web sites, all of which are too numerous to mention here.
Additionally, most instrument companies supply software that performs many of the
calibration topics discussed in this chapter.
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6.1 INTRODUCTION

 

When collecting and analyzing real data, it often occurs that some observations are
different from the majority of the samples. More precisely, they deviate from the
model that is suggested by the major part of the data, or they do not satisfy the usual
assumptions. Such observations are called outliers. Sometimes they are simply the
result of transcription errors (e.g., a misplaced decimal point or the permutation of
two digits). Often the outlying observations are not incorrect but were made under
exceptional circumstances, or they might belong to another population (e.g., it may
have been the concentration of a different compound) and consequently they do not
fit the model well. It is very important to be able to detect these outliers. They can
then be used, for example, to pinpoint a change in the production process or in the
experimental conditions.

To find the outlying observations, two strategies can be followed. The first
approach is to apply a classical method, followed by the computation of several
diagnostics that are based on the resulting residuals. Consider, for example, the
Cook’s distance in regression. For each observation 

 

i

 

 

 

=

 

 1, …, 

 

n

 

, it is defined as

(6.1)

where  is the fitted value for observation 

 

j

 

 obtained by deleting the 

 

i

 

th obser-
vation from the data set, 
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 is the number of regression parameters, and 

 

s
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 is the

sion setting. This leave-one-out diagnostic thus measures the influence on all fitted
values when the 

 

i

 

th sample is removed. It explicitly uses a property of the classical
least-squares method for multiple linear regression (MLR), namely that it is very
sensitive to the presence of outliers. If the 

 

i

 

th sample is outlying, the parameter
estimates and the fitted values can change a lot if we remove it, hence 
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become large. This approach can work appropriately, but it has a very important
disadvantage. When outliers occur in groups (even small groups with only two
samples), the fit will not necessarily modify drastically when only one observation
at a time is removed. In this case, one should rely on diagnostics that measure the
influence on the fit when several items are deleted simultaneously. But this
becomes very time consuming, as we cannot know in advance how many outliers
are grouped.

In general, classical methods can be so strongly affected by outliers that the
resulting fitted model does not allow the detection of the deviating observations.
This is called the masking effect. Additionally, some good data points might even
show up as outliers, which is known as swamping.

A second strategy to detect outliers is to apply robust methods. The goal of
robust statistics is to find a fit that is similar to the fit we would have found without
the outliers. That solution then allows us to identify the outliers by their residuals
from that robust fit. From Frank Hampel [1], one of the founders of robust statistics,
we cite:

 

Outliers are a topic of constant concern in statistics.… The main aim (of robust
statistics) is to accomodate the outliers, that is, to play safe against their potential
dangers and to render their effects in the overall result harmless.… A second aim is
to identify outliers in order to learn from them (e.g., about their sources, or about a
better model). Identification can be achieved by looking at the residuals from robust
fits. In this context, it is much more important not to miss any potential outlier (which
may give rise to interesting discoveries) than to avoid casting any doubt on “good”
observations.… On the third and highest level, outliers are discussed and interpreted
in the full context of data analysis, making use not only of formal statistical proce-
dures but also of the background knowledge and general experience from applied
statistics and the subject-matter field, as well as the background of the particular
data set at hand.

 

In this chapter we describe robust procedures for the following problems:

Location and scale estimation (Section 6.2)
Location and covariance estimation in low dimensions (Section 6.3)
Linear regression in low dimensions (Section 6.4)
Location and covariance estimation in high dimensions: PCA (Section 6.5)
Linear regression in high dimensions: PCR and PLS (Sections 6.6 and 6.7)
Classification in low and high dimensions (Section 6.8)

Finally, Section 6.9 discusses software availability.

 

6.2 LOCATION AND SCALE ESTIMATION
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The location-and-scale model states that the 

 

n

 

 univariate observations 

 

x
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 are inde-
pendent and identically distributed (i.i.d.) with distribution function 
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where 
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 is known. Typically 
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 is the standard Gaussian distribution function 
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.
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We then want to find estimates for the center 

 

θ

 

 and the scale parameter 

 

σ

 

 (or for
the variance 

 

σ

 

2

 

). The classical estimates are the sample mean

and the standard deviation

The mean and the standard deviation are, however, very sensitive to aberrant
values. Consider the following example data [2], listed in Table 6.1, which depicts
the viscosity of an aircraft primer paint in 15 batches. From the raw data, it can be
seen that an upward shift in viscosity has occurred at batch 13, resulting in a higher
viscosity for batches 13 to 15. The mean of all 15 batches is , and the
standard deviation is 

 

s

 

 

 

=

 

 1.16. However, if we only consider the first 12 batches,

 

TABLE 6.1
Viscose Data Set and Standardized Residuals Obtained with 
Different Estimators of Location and Scale

 

Standardized Residual Based on

Mean
Stand. Dev.

Median
MAD
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Huber
MAD
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Batch Number Viscosity

 

1 33.75

 

−

 

0.27 0.14 0.04
2 33.05

 

−

 

0.88

 

−

 

1.25

 

−

 

1.35
3 34.00

 

−

 

0.06 0.63 0.54
4 33.81

 

−

 

0.22 0.26 0.16
5 33.46

 

−
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−

 

0.44

 

−

 

0.53
6 34.02

 

−

 

0.04 0.67 0.58
7 33.68

 

−
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−
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11 33.62
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0.12

 

−

 

0.22
12 33.00

 

−

 

0.92

 

−

 

1.35

 

−

 

1.44
13 36.11 1.77 4.82 4.72
14 35.99 1.66 4.58 4.49
15 36.53 2.13 5.65 5.56

 

Note

 

: Outlying batches with absolute standardized residual larger than 2.5 are
underlined.

 

a

 

Median Absolute Deviation

θ̂ = =
=

∑x
n

x
i

n

i

1

1

ˆ ( )σ = =
−

−
=

∑s
n

x x
i

n

i

1
1

1

2

x = .34 07

 

DK4712_C006.fm  Page 170  Thursday, March 16, 2006  3:37 PM

© 2006 by Taylor & Francis Group, LLC



 

Robust Calibration

 

171

 

the mean is 33.53 and 

 

s

 

 

 

=

 

 0.35. We thus see that the outlying batches 13 to 15 have
caused an upward shift of the mean and a serious increase of the scale estimate.

To detect outliers, we could use the rule that all observations outside the interval
 are suspicious under the normal assumption. Equivalently, we pinpoint

outliers as the batches whose absolute standardized residual exceeds 2.5.
However, with  and 

 

s

 

 

 

=

 

 1.16, none of the batches has such a large stan-

notice that the residual of each of the regular observations is negative. This is because
the mean  is larger than any of the first 12 samples.
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When robust estimates of 

 

θ

 

 and 

 

σ

 

 are used, the situation is much different. The most
popular robust estimator of location is the sample median, defined as the middle of
the ordered observations. If 

 

n

 

 is even, the median is defined as the average of the
two middlemost points. For the viscose data, the median is 33.68 which corresponds
to the viscosity of batch 7.

It is clear that the median can resist up to 50% outliers. More formally, it is said
that the median has a breakdown value of 50%. This is the minimum proportion of
observations that need to be replaced in the original data set to make the location
estimate (here, the median) arbitrarily large or small. The sample mean on the other
hand has a zero breakdown value, as one observation can pull the average toward

 

+∞

 

 or 

 

−∞

 

.
A simple robust estimator of 

 

σ

 

 is the median absolute deviation (MAD) given
by the median of all absolute distances from the sample median:

The constant 1.483 is a correction factor that makes the MAD unbiased at the
normal distribution. The MAD also has a 50% breakdown value and can be computed
explicitly. For the viscose data, we find MAD 

 

=

 

 0.50. If we compute the standardized
residuals based on the median and the MAD, we obtain for batches 13 to 15,
respectively, 4.82, 4.58, and 5.65 (see Table 6.1). Thus, all three are correctly
identified as being different from the other batches.
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Although the median is very robust, it is not a very efficient estimator for the Gaussian
model as it is primarily based on the ranks of the observations. A more efficient
location estimator is the (
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)-trimmed average, which is the average of the data set
except for the 
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 smallest and the 
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 largest observations. Its breakdown value is 
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and thus can be chosen as any value between 0% and 50% by an appropriate choice
of 
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. A disadvantage of the trimmed average is that it rejects a fixed percentage of
observations at each side of the distribution. This might be too large if they are not
all outlying, but even worse, this might be too small if 
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 is chosen too low.
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dardized residual (see Table 6.1), hence no outlying batches are detected. We also
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More-adaptive procedures can be obtained using M-estimators [3]. They are
defined implicitly as the solution of the equation

(6.2)

with ψ an odd, continuous, and monotone function. The denominator  is an initial
robust scale estimate such as the MAD. A solution to Equation 6.2 can be found by
the Newton-Raphson algorithm, starting from the initial location estimate

. From each , the next  is then computed by

Often, a single iteration step is sufficient, which yields the one-step M-estimator.
Both the fully iterated and the one-step M-estimator have a 50% breakdown value
if the ψ function is bounded. Huber proposed the function ψ (x) = min{b,max{−b,x}},
which is now named after him, where typically b = 1.5. For the viscose data, the
one-step Huber estimator yields , whereas the fully iterated one is hardly
distinguishable with . Again, the standardized residuals based on the
(fully iterated) Huber estimator and the MAD detect the correct outliers (last column

An alternative to the MAD is the Qn estimator [4], which attains a breakdown
value of 50%. The Qn estimator is defined as

(6.3)

with and . The notation (k) stands for the kth-order statis-
tic out of the  possible differences , and [z] stands for the largest
integer smaller or equal to z. This scale estimator is essentially the first quartile
of all pair-wise differences between two data points. The constant cn is a small-
sample correction factor, which makes Qn an unbiased estimator (note that cn only
depends on the sample size n, and that cn→1 for increasing n). As with the MAD,
the Qn can be computed explicitly, but it does not require an initial estimate of
location. A fast algorithm of O(n logn) time has been developed for its computa-
tion.

As for location, M-estimators of scale can be defined as the solution of an
implicit equation [3]. Then, again, an initial scale estimate is needed, for which
the MAD is usually taken. Simultaneous M-estimators of location and scale can
also be considered, but they have a smaller breakdown value, even in small
samples [5].
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Note that all of the mentioned estimators are location and scale equivariant. That
is, if we replace our data set X = {x1, …, xn} by aX + b = {ax1 + b, …, axn + b},
then a location estimator  and a scale estimator  must satisfy

6.3 LOCATION AND COVARIANCE ESTIMATION IN 
LOW DIMENSIONS

6.3.1 THE EMPIRICAL MEAN AND COVARIANCE MATRIX

In the multivariate location and scatter setting, we assume that the data are stored
in an n × p data matrix X = (x1, …, xn)T, with xi = (xi1, …, xip)T being the ith
observation. Hence n stands for the number of objects and p for the number of
variables. In this section we assume, in addition, that the data are low-dimensional.
Here, this means that p should at least be smaller than n/2 (or equivalently that
n > 2p). Based on the measurements X, we try to find good estimates for their center
µ and their scatter matrix Σ.

To illustrate the effect of outliers, consider the following simple example pre-
sented in Figure 6.1, which depicts the concentration of inorganic phosphorus and
organic phosphorus in the soil [6]. On this plot the classical tolerance ellipse is
superimposed, defined as the set of p-dimensional points x whose Mahalanobis
distance

(6.4)

FIGURE 6.1 Classical and robust tolerance ellipse of the phosphorus data set.
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equals , the square root of the 0.975 quantile of the chi-square distribution
with p = 2 degrees of freedom. In Equation 6.4, we use the classical estimates for
the location and shape of the data, which are the mean

and the empirical covariance matrix

of the xi. In general, the cutoff value  stems from the fact that the
squared Mahalanobis distances of normally distributed data are asymptotically χp

2

distributed. The distance MD(xi) should tell us how far away xi is from the center
of the cloud, relative to the size of the cloud. It is well known that this approach
suffers from the masking effect, as multiple outliers do not necessarily have a large

i

and even includes all the outliers.
Note that any p-dimensional vector µ and p × p positive-definite matrix Σ defines

a statistical distance:

(6.5)

From Equation 6.4 and Equation 6.5, it follows that .

6.3.2 THE ROBUST MCD ESTIMATOR

Contrary to the classical mean and covariance matrix, a robust method yields a
tolerance ellipse that captures the covariance structure of the majority of the data
points. In Figure 6.1, this robust tolerance ellipse is obtained by applying the highly
robust minimum covariance determinant (MCD) estimator of location and scatter
[7] to the data, yielding  and , and by plotting the points x whose robust
distance

(6.6)

is equal to . This robust tolerance ellipse is much narrower than the classical
one. Consequently, the outliers have a much larger robust distance and are recognized
as deviating from the majority.

The MCD method looks for the h > n/2 observations (out of n) whose classical
covariance matrix has the lowest possible determinant. The MCD estimate of
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MD(x ). Indeed, in Figure 6.1 we see that this tolerance ellipse is highly inflated
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location  is then the average of these h points, whereas the MCD estimate of
scatter  is their covariance matrix, multiplied with a consistency factor.

Based on the raw MCD estimates, a reweighing step can be added that increases
the finite-sample efficiency considerably. In general, we can weigh each xi

by , for instance by putting

The resulting one-step reweighed mean and covariance matrix are then defined as

The final robust distances  are then obtained by
inserting  and  into Equation 6.6.

The MCD estimates have a breakdown value of (n − h + 1)/n, hence the number
h determines the robustness of the estimator. Note that for a scatter matrix, break-
down means that its largest eigenvalue becomes arbitrarily large, or that its smallest
eigenvalue becomes arbitrarily close to zero. The MCD has its highest possible
breakdown value when h = [(n + p + 1)/2]. When a large proportion of contamination
is presumed, h should thus be chosen close to 0.5n. Otherwise, an intermediate value
for h, such as 0.75n, is recommended to obtain a higher finite-sample efficiency.

The robustness of a procedure can also be measured by means of its influence
function [8]. Robust estimators ideally have a bounded influence function, which
means that a small contamination at a certain point can only have a small effect on
the estimator. This is satisfied by the MCD estimator [9].

The MCD location and scatter estimates are affine equivariant, which means
that they behave properly under affine transformations of the data. That is, for a data
set X in IRp, the MCD estimates  satisfy

for all nonsingular p × p matrices A and vectors v ∈ IRp. The vector
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The computation of the MCD estimator is nontrivial and naively requires an
exhaustive investigation of all h-subsets out of n. In Rousseeuw and Van Driessen [10],
a fast algorithm is presented (FAST-MCD) that avoids such a complete enumeration.
The results of this algorithm are approximate estimates of the MCD minimization
problem. This means that although the h-subset with the lowest covariance determinant
may not be found, another h-subset whose covariance determinant is close to the
minimal one will be. In small dimensions p, the FAST-MCD algorithm often yields
the exact solution, but the approximation is rougher in higher dimensions. Note that
the MCD can only be computed if p < h; otherwise, the covariance matrix of any h-
subset has zero determinant. Since n/2 < h, we thus require that p < n/2. However,
detecting several outliers (or, equivalently, fitting the majority of the data) becomes
intrinsically tenuous when n/p is small. This is an instance of the “curse of dimen-
sionality.” To apply any method with 50% breakdown, it is recommended that n/p > 5.
For small n/p, it is preferable to use a method with lower breakdown value such as
the MCD with h ≈ 0.75n, for which the breakdown value is 25%.

Note that the univariate MCD estimator of location and scale reduces to the
mean and the standard deviation of the h-subset with lowest variance. It can be
computed exactly and swiftly by ordering the data points and considering all con-
tiguous h-subsets [6].

6.3.3 OTHER ROBUST ESTIMATORS OF LOCATION AND COVARIANCE

Many other affine equivariant and robust estimators of location and scatter have
been presented in the literature. The first such estimator was proposed independently
by Stahel [11] and Donoho [12] and investigated by Tyler [13] and Maronna and
Yohai [14]. Multivariate M-estimators [15] have a relatively low breakdown value
due to possible implosion of the estimated scatter matrix. Together with the MCD
estimator, Rousseeuw [16] introduced the minimum-volume ellipsoid. Davies [17]
also studied one-step M-estimators. Other classes of robust estimators of multivariate
location and scatter include S-estimators [6, 18], CM-estimators [19], τ-estimators
[20], MM-estimators [21], estimators based on multivariate ranks or signs [22],
depth-based estimators [23–26], methods based on projection pursuit [27], and many
others.

6.4 LINEAR REGRESSION IN LOW DIMENSIONS

6.4.1 LINEAR REGRESSION WITH ONE RESPONSE VARIABLE

6.4.1.1 The Multiple Linear Regression Model

The multiple linear regression model assumes that in addition to the p independent
x-variables, a response variable y is measured, which can be explained as an affine
combination of the x-variables (also called the regressors). More precisely, the model
says that for all observations (xi, yi) with i = 1, …, n, it holds that

(6.7)y x x i ni i p ip i
T

i i= + + + + = + + = , ,β β β ε β β ε0 1 1 0 1� …x
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where the errors εi are assumed to be independent and identically distributed with
zero mean and constant variance σ 2. The vector β = (β1,…, βp)T is called the slope,
and β0 the intercept. For regression without intercept, we require that β0 = 0. We
denote xi = (xi1,…, xip)T and θ = (β0, βT)T = (β0, β1,…, βp). Applying a regression
estimator to the data yields p + 1 regression coefficients. The residual ri of case i is
defined as the difference between the observed response yi and its estimated value:

6.4.1.2 The Classical Least-Squares Estimator

The classical least-squares method for multiple linear regression (MLR) to estimate
θ minimizes the sum of the squared residuals. Formally, this can be written as

This is a very popular method because it allows us to compute the regression
estimates explicitly as  (where the design matrix X is enlarged with
a column of ones for the intercept term and y = (y1 …, yn)T and, moreover, the least-
squares method is optimal if the errors are normally distributed.

However, MLR is extremely sensitive to regression outliers, which are the
observations that do not obey the linear pattern formed by the majority of the data.
This is illustrated in Figure 6.2 for simple regression (where there is only one
regressor x, or p = 1), which illustrates a Hertzsprung-Russell diagram of 47 stars.
The diagram plots the logarithm of the stars’ light intensity vs. the logarithm of their
surface temperature [6]. The four outlying observations are giant stars, and they

FIGURE 6.2 Stars regression data set with classical and robust fit.
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clearly deviate from the main sequence of stars. Also, the stars with labels 7, 9, and
14 seem to be outlying. The least-squares fit is added to this plot and clearly is
highly attracted by the giant stars.

In regression, we can distinguish between different types of outliers. Leverage
points are observations (xi, yi) whose xi are outlying, i.e., xi deviates from the majority
in x-space. We call such an observation (xi, yi) a good leverage point if (xi, yi) follows
the linear pattern of the majority. If, on the other hand, (xi, yi) does not follow this
linear pattern, we call it a bad leverage point, like the four giant stars and case 7 in

i

(xi, yi) deviates from the linear pattern is called a vertical outlier, like observation
9. A regression data set can thus have up to four types of points: regular observations,
vertical outliers, good leverage points, and bad leverage points. Leverage points
attract the least-squares solution toward them, so bad leverage points are often
masked in a classical regression analysis.

To detect regression outliers, we could look at the standardized residuals ri/s,
where s is an estimate of the scale of the error distribution σ. For MLR, an unbiased
estimate of σ 2 is given by . One often considers observations for
which |ri/s| exceeds the cutoff 2.5 to be regression outliers (because values gen-
erated by a Gaussian distribution are rarely larger than 2.5 σ), whereas the other

standardized MLR (or LS) residuals of all 47 points lie inside the tolerance band
between −2.5 and 2.5. There are two reasons why this plot hides (masks) the
outliers: the four leverage points in Figure 6.2 have attracted the MLR line so
much that they have small residuals ri from it; and the MLR scale estimate s
computed from all 47 points has become larger than the scale of the 43 points in
the main sequence.

In general, the MLR method tends to produce normal-looking residuals, even
when the data themselves behave badly.

6.4.1.3 The Robust LTS Estimator

In Figure 6.2, a robust regression fit is superimposed. The least-trimmed squares
estimator (LTS) proposed by Rousseeuw [7] is given by

(6.8)

where (r2)1:n ≤ (r2)2:n ≤ … ≤ (r2)n:n are the ordered squared residuals (note that the
residuals are first squared and then ordered). Because the criterion of Equation 6.8
does not count the largest squared residuals, it allows the LTS fit to steer clear of
outliers. The value h plays the same role as in the definition of the MCD estimator.
For h ≈ n/2, we find a breakdown value of 50%, whereas for larger h, we obtain
a breakdown value of (n − h + 1)/n [79]. A fast algorithm for the LTS estimator
(FAST-LTS) has been developed [28].
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Figure 6.2. An observation whose x  belongs to the majority in x-space, but where

observations are thought to obey the model. In Figure 6.3a, this strategy fails: the
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The LTS estimator is regression, scale, and affine equivariant. That is, for any
X = (x1, …, xn)T and y = (y1, …, yn)T, it holds that

for any vector v ∈ IRp, any constant c, and any nonsingular p × p matrix A. Again
. It implies that the estimate transforms correctly under affine

transformations of the x-variables and of the response variable y.

FIGURE 6.3 Standardized residuals of the stars data set, based on (a) classical MLR and
(b) robust LTS estimator.
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When using LTS regression, the scale of the errors σ can be estimated by

where ri are the residuals from the LTS fit, and ch,n makes  consistent and unbiased
at Gaussian error distributions [79]. We can then identify regression outliers by their
standardized LTS residuals
see the different outliers.

It should be stressed that LTS regression does not throw away a certain percentage
of the data. Instead, it finds a majority fit, which can then be used to detect the actual
outliers. The purpose is not to delete and forget the points outside the tolerance
band, but to study the residual plot in order to find out more about the data. For
instance, we notice the star 7 intermediate between the main sequence and the giants,
which might indicate that this star is evolving to its final stage.

In regression analysis, inference is very important. The LTS by itself is not suited
for inference because of its relatively low finite-sample efficiency. This can be
resolved by carrying out a reweighed least-squares step. To each observation i, one
assigns a weight wi based on its standardized LTS residual , e.g., by put-
ting  where w is a decreasing continuous function. A simpler way,
but still effective, is to put

Either way, the reweighed LTS fit is then defined by

(6.9)

which can be computed quickly. The result inherits the breakdown value, but is more
efficient and yields all the usual inferential output such as t-statistics, F-statistics,
an R2 statistic, and the corresponding p-values.

6.4.1.4 An Outlier Map

Residuals plots such as those in Figure 6.3 become even more important in multiple
regression with more than one regressor, as then we can no longer rely on a scatter
plot of the data. A diagnostic display can be constructed that does not solely expose
the regression outliers, i.e., the observations with large standardized residual, but
that also classifies the observations according their leverage [29]. Remember that
leverage points are those that are outlying in the space of the independent x-variables.
Hence, they can be detected by computing robust distances (Equation 6.6) based
on, for example, the MCD estimator that is applied on the x-variables.

shown in Figure 6.4b. It exposes the robust residuals vs. the robust
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. This yields Figure 6.3b, from which we clearly

For the artificial data of Figure 6.4a, the corresponding diagnostic plot is
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distances . Because this figure classifies the observations into sev-
eral types of points, it is also called an outlier map.

vertical outlier because it only has an outlying residual. Observation 14 is a good
leverage point; it has an outlying surface temperature, but it still follows the linear

FIGURE 6.4 (a) Artificial regression data and (b) their corresponding outlier map. (Adapted
from [82].)
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Figure 6.5 illustrates this outlier map on the stars data. We see that star 9 is a
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trend of the main sequence. Finally, the giant stars and star 7 are bad leverage points,
with both a large residual and a large robust distance.

Note that the most commonly used diagnostics to flag leverage points have
traditionally been the diagonal elements hii of the hat matrix H = X(XTX)−1XT. These
are equivalent to the Mahalanobis distances MD(xi) because of the monotone relation

Therefore, the hii are masked whenever the MD(xi) are. In particular, Cook’s distance
in Equation 6.1 can fail, as it can be rewritten as

6.4.1.5 Other Robust Regression Estimators

The earliest systematic theory of robust regression was based on M-estimators
[3, 30], given by

where ρ (t) = |t | yields least absolute values ( L1) regression as a special case. For
general ρ, one needs a robust  to make the M-estimator scale equivariant. This
either needs to be estimated in advance or estimated jointly with the regression
parameters. Unlike M-estimators, scale equivariance holds automatically for
R-estimators [31] and L-estimators [32] of regression.

FIGURE 6.5 Outlier map for the stars data set.
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The breakdown value of all regression M-, L-, and R-estimators is 0% because
of their vulnerability to bad leverage points. If leverage points cannot occur, as in
fixed-design studies, a positive breakdown value can be attained [33].

The next step was the development of generalized M-estimators (GM-estimators),
with the purpose of bounding the influence of outlying xi by giving them a small
weight. This is why GM-estimators are often called bounded-influence methods. A
survey is given in Hampel et al. [8]. Both M- and GM-estimators can be computed
by iteratively reweighed least squares or by the Newton-Raphson algorithm [34].
Unfortunately, the breakdown value of all GM-estimators goes down to zero for
increasing p, when there are more opportunities for outliers to occur.

In the special case of simple regression (p = 1) several earlier methods exist,
such as the Brown-Mood line, Tukey’s resistant line, and the Theil-Sen slope. These
methods are reviewed in Rousseeuw and Leroy [6] together with their breakdown
values.

For multiple regression, the least median of squares (LMS) of Rousseeuw [7]
and the LTS described previously were the first equivariant methods to attain a 50%
breakdown value. Their low finite-sample efficiency can be improved by carrying
out a one-step reweighed least-squares fit (Equation 6.9) afterward. Another
approach is to compute a one-step M-estimator starting from LMS or LTS, which
also maintains the breakdown value and yields the same efficiency as the corre-
sponding M-estimator. In order to combine these advantages with those of the
bounded-influence approach, it was later proposed to follow the LMS or LTS by a
one-step GM-estimator [35].

A different approach to improving on the efficiency of the LMS and the LTS is
to replace their objective functions by a more efficient scale estimator applied to the
residuals ri. This direction has led to the introduction of efficient positive-breakdown
regression methods, such as S-estimators [36], MM-estimators [37], CM-estimators
[38], and many others.

To extend the good properties of the median to regression, the notion of regres-
sion depth [39] and deepest regression [40, 41] was introduced and applied to several
problems in chemistry [42].

6.4.2 LINEAR REGRESSION WITH SEVERAL RESPONSE VARIABLES

6.4.2.1 The Multivariate Linear Regression Model

The regression model can be extended to the case where we have more than one
response variable. For p-variate predictors xi = (xi1, …, xip)T and q-variate responses
yi = (yi1, …, yiq)T, the multivariate (multiple) regression model is given by

(6.10)

where B is the p × q slope matrix, β0 is the q-dimensional intercept vector, and the
errors are i.i.d. with zero mean and with Cov(ε) = Σε, a positive definite matrix of
size q. Note that for q = 1, we obtain the multiple regression model (Equation 6.7).

y B xi
T

i i= + +β ε0
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On the other hand, putting p = 1 and xi = 1 yields the multivariate location and
scatter model. The least-squares solution can be written as

(6.11)

(6.12)

(6.13)

where

are the empirical mean and covariance matrix of the joint (x, y) variables.

6.4.2.2 The Robust MCD-Regression Estimator

Vertical outliers and bad leverage points highly influence the least-squares estimates
in multivariate regression, and they can make the results completely unreliable.
Therefore, robust alternatives have been developed.

In Rousseeuw et al. [43], it is proposed to use the MCD estimates for the center µ
and the scatter matrix Σ of the joint (x, y) variables in Equation 6.11 to Equation 6.13.
The resulting estimates are called MCD-regression estimates. They inherit the breakdown
value of the MCD estimator. To obtain a better efficiency, the reweighed MCD esti-
mates are used in Equation 6.11 to Equation 6.13 and followed by a regression
reweighing step. For any fit , denote the corresponding q-dimensional resid-
uals by . Then the residual distance of the ith case is defined as

(6.14)

Next, a weight can be assigned to every observation according to its residual
distance, e.g.,

(6.15)

The reweighed regression estimates are then obtained as the weighted least-
squares fit with weights wi. If the hard rejection rule is used as in Equation 6.15,
this means that the multivariate least-squares method is applied to the observations
with weight 1. The final residual distances are then given by Equation 6.14, where
the residuals and  are based on the reweighed regression estimates.
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6.4.2.3 An Example

To illustrate MCD-regression, we analyze a data set obtained from Shell’s polymer
laboratory in Ottignies, Belgium, by courtesy of Prof. Christian Ritter. The data set
consists of n = 217 observations, with p = 4 predictor variables and q = 3 response
variables. The predictor variables describe the chemical characteristics of a piece of
foam, whereas the response variables measure its physical properties such as tensile
strength. The physical properties of foam are determined by the chemical composi-
tion used in the production process. Therefore, multivariate regression is used to
establish a relationship between the chemical inputs and the resulting physical
properties of foam. After an initial exploratory study of the variables, a robust
multivariate MCD-regression was used. The breakdown value was set equal to 25%.

To detect leverage points and vertical outliers, the outlier map can be extended
to multivariate regression. Then the final robust distances of the residuals, ResDi,
(Equation 6.14) are plotted vs. the robust distances RD(xi) of the xi (Equation 6.6).
This yields the classification as given in Table 6.2.

110 lie far from both the horizontal cutoff line at  and the vertical
cutoff line at . These two observations can be classified as bad
leverage points. Several observations lie substantially above the horizontal cutoff
but not to the right of the vertical cutoff, which means that they are vertical outliers
(their residuals are outlying but their x-values are not).

6.5 PRINCIPAL COMPONENTS ANALYSIS

6.5.1 CLASSICAL PCA

Principal component analysis is a popular statistical method that tries to explain the
covariance structure of data by means of a small number of components. These
components are linear combinations of the original variables, and often allow for
an interpretation and a better understanding of the different sources of variation.
Because PCA is concerned with data reduction, it is widely used for the analysis of
high-dimensional data, which are frequently encountered in chemometrics. PCA is
then often the first step of the data analysis, followed by classification, cluster
analysis, or other multivariate techniques [44]. It is thus important to find those
principal components that contain most of the information.

TABLE 6.2
Overview of the Different Types of Observations 
Based on Their Robust Distance (RD) and Their 
Residual Distance (ResD)

Distances Small RD Large RD

Large ResD Vertical outlier Bad leverage point
Small ResD Regular observation Good leverage point

χ3 0 975
2 3 06, . = .

χ4 0 975
2 3 34, . = .
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Figure 6.6 shows the outlier map of the Shell foam data. Observations 215 and
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In the classical approach, the first principal component corresponds to the direc-
tion in which the projected observations have the largest variance. The second
component is then orthogonal to the first and again maximizes the variance of the
data points projected on it. Continuing in this way produces all the principal com-
ponents, which correspond to the eigenvectors of the empirical covariance matrix.
Unfortunately, both the classical variance (which is being maximized) and the
classical covariance matrix (which is being decomposed) are very sensitive to anom-
alous observations. Consequently, the first components are often attracted toward
outlying points and thus may not capture the variation of the regular observations.
Therefore, data reduction based on classical PCA (CPCA) becomes unreliable if
outliers are present in the data.

To illustrate this, let us consider a small artificial data set in p = 4 dimensions.
The Hawkins-Bradu-Kass data set [6] consist of n = 75 observations in which two
groups of outliers were created, labeled 1–10 and 11–14. The first two eigenvalues
explain already 98% of the total variation, so we select k = 2. If we project the data
on the plane spanned by the first two principal components, we obtain the CPCA

groups of outliers, but we see several other undesirable effects. We first observe that,
although the scores have zero mean, the regular data points lie far from zero. This
stems from the fact that the mean of the data points is a poor estimate of the true
center of the data in the presence of outliers. It is clearly shifted toward the outlying
group, and consequently the origin even falls outside the cloud of the regular data
points. On the plot we have also superimposed the 97.5% tolerance ellipse. We see
that the outliers 1–10 are within the tolerance ellipse, and thus do not stand out
based on their Mahalanobis distance. The ellipse has stretched itself to accommodate
these outliers.

FIGURE 6.6 Outlier map of robust residuals vs. robust distances of the carriers for the foam
data set [43].
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scores plot depicted in Figure 6.7a. In this figure we can clearly distinguish the two
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6.5.2 ROBUST PCA BASED ON A ROBUST COVARIANCE ESTIMATOR

The goal of robust PCA methods is to obtain principal components that are not
influenced much by outliers. A first group of methods is obtained by replacing the
classical covariance matrix with a robust covariance estimator, such as the reweighed
MCD estimator [45] (Section 6.3.2). Let us reconsider the Hawkins-Bradu-Kass data
in p = 4 dimensions. Robust PCA using the reweighed MCD estimator yields the
score plot in Figure 6.7b. We now see that the center is correctly estimated in the

FIGURE 6.7 Score plot and 97.5% tolerance ellipse of the Hawkins-Bradu-Kass data
obtained with (a) CPCA and (b) MCD [44].
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middle of the regular observations. The 97.5% tolerance ellipse nicely encloses these
points and excludes all of the 14 outliers.

Unfortunately, the use of these affine equivariant covariance estimators is limited
to small to moderate dimensions. To see why, let us again consider the MCD
estimator. As explained in Section 6.3.2, if p denotes the number of variables in our
data set, the MCD estimator can only be computed if p < h. Otherwise the covariance
matrix of any h-subset has zero determinant. Because h < n, the number of variables
p may never be larger than n. A second problem is the computation of these robust
estimators in high dimensions. Today’s fastest algorithms can handle up to about
100 dimensions, whereas there are fields like chemometrics that need to analyze
data with dimensions in the thousands. Moreover the accuracy of the algorithms
decreases with the dimension p, so it is recommended that small data sets not use
the MCD in more than 10 dimensions.

Note that classical PCA is not affine equivariant because it is sensitive to a
rescaling of the variables. But it is still orthogonally equivariant, which means that
the center and the principal components transform appropriately under rotations,
reflections, and translations of the data. More formally, it allows transformations
XA for any orthogonal matrix A (that satisfies A−1 = AT). Any robust PCA method
only has to be orthogonally equivariant.

6.5.3 ROBUST PCA BASED ON PROJECTION PURSUIT

A second and orthogonally equivariant approach to robust PCA uses projection
pursuit (PP) techniques. These methods maximize a robust measure of spread
to obtain consecutive directions on which the data points are projected. In
Hubert et al. [46], a projection pursuit (PP) algorithm is presented, based on
the ideas of Li and Chen [47] and Croux and Ruiz-Gazen [48]. The algorithm
is called RAPCA, which stands for reflection algorithm for principal compo-
nents analysis.

If p ≥ n, the RAPCA method starts by reducing the data space to the affine
subspace spanned by the n observations. This is done quickly and accurately by a
singular-value decomposition (SVD) of Xn,p. From here on, the subscripts to a matrix
serve to recall its size, e.g., Xn,p is an n × p matrix. Let  denote the mean-centered
data matrix. Standard SVD computes the eigenvectors of , which is a matrix
of size p × p. As the dimension p can be in the hundreds or thousands, this is
computationally expensive. The computational speed can be increased by computing
the eigenvectors v of , which is an n × n matrix. The transformed  vectors
then yield the eigenvectors of , whereas the eigenvalues remain the same. This
is known as the kernel version of the eigenvalue decomposition [49]. Note that this
singular-value decomposition is just an affine transformation of the data. It is not
used to retain only the first eigenvectors of the covariance matrix of X. This would
imply that classical PCA is performed, which is of course not robust. Here, the data
are merely represented in their own dimensionality . This step is
useful as soon as p > r. When p >> n we obtain a huge reduction. For spectral data,
e.g., n = 50, p = 1000, this reduces the 1000-dimensional original data set to one in
only 49 dimensions.

�X
T� �X X

� �XX
T T�X v

T� �X X
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The main step of the RAPCA algorithm is then to search for the direction in which
the projected observations have the largest robust scale. To measure the univariate
scale, the Qn estimator as defined in Equation 6.3 is used. Comparisons using other
scale estimators are presented in Croux and Ruiz-Gazen [50] and Cui et al. [51]. To
make the algorithm computationally feasible, the collection of directions to be inves-
tigated is restricted to all directions that pass through the L1-median and a data point.
The L1-median is a highly robust (50% breakdown value) and orthogonally equivariant
location estimator, also known as the spatial median. It is defined as the point θ, which
minimizes the sum of the distances to all observations, i.e.,

When the first direction, v1, has been found, the data are reflected such that the
first eigenvector is mapped onto the first basis vector. Then the data are projected
onto the orthogonal complement of the first eigenvector. This is simply done by
omitting the first component of each (reflected) point. Doing so, the dimension of
the projected data points can be reduced by 1 and, consequently, all the computations
do not need to be done in the full r-dimensional space.

The method can then be applied in the orthogonal complement to search for the
second eigenvector, and so on. It is not necessary to compute all eigenvectors, which
would be very time consuming for high p, and the computations can be stopped as
soon as the required number of components has been found.

Note that a PCA analysis often starts by prestandardizing the data to obtain
variables that all have the same spread. Otherwise, the variables with a large variance
compared with the others will dominate the first principal components. Standardizing
by the mean and the standard deviation of each variable yields a PCA analysis based
on the correlation matrix instead of the covariance matrix. We can also standardize
each variable j in a robust way, e.g., by first subtracting its median, med(x1j, …, xnj),
and then dividing by its robust scale estimate, Qn(x1j, …, xnj).

6.5.4 ROBUST PCA BASED ON PROJECTION PURSUIT 
AND THE MCD

Another approach to robust PCA has been proposed by Hubert et al. [52] and is
called ROBPCA. This method combines ideas of both projection pursuit and robust
covariance estimation. The projection pursuit part is used for the initial dimension
reduction. Some ideas based on the MCD estimator are then applied to this lower-
dimensional data space. Simulations have shown that this combined approach yields
more accurate estimates than the raw projection pursuit algorithm RAPCA. The
complete description of the ROBPCA method is quite involved, so here we will only
outline the main stages of the algorithm.

First, as in RAPCA, the data are preprocessed by reducing their data space to
the affine subspace spanned by the n observations. As a result, the data are repre-
sented using at most  variables without loss of information.

minimize
i

n

i

=
∑ −

1

x θ

n n p− = ,1 rank( )�X
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In the second step of the ROBPCA algorithm, a measure of outlyingness is
computed for each data point [11, 12]. This is obtained by projecting the high-
dimensional data points on many univariate directions d through two data points.
On every direction, the univariate MCD estimator of location  and scale
is computed on the projected points , and for every data point its
standardized distance to that center is measured. Finally, for each data point, its
largest distance over all of the directions is considered. This yields the outlyingness

Next, the covariance matrix  of the h data points with smallest outlyingness
is computed. The last stage of ROBPCA consist of projecting all of the data points
onto the k-dimensional subspace spanned by the k dominant eigenvectors of  and
then of computing their center and shape by means of the reweighed MCD estimator.
The eigenvectors of this scatter matrix then determine the robust principal compo-
nents, which can be collected in a loading matrix Pp,k with orthogonal columns. The
MCD location estimate  serves as a robust center.

Because the loadings are orthogonal, they determine a new coordinate system
in the k-dimensional subspace that they span. The k-dimensional scores of each data
point ti are computed as the coordinates of the projections of the robustly centered
xi onto this subspace, or equivalently

The orthogonal distance measures the distance between an observation xi and
its projection  in the k-dimensional PCA subspace:

(6.16)

(6.17)

Let Lk,k denote the diagonal matrix that contains the k eigenvalues lj of the MCD
scatter matrix, sorted from largest to smallest. Thus l1 ≥ l2 ≥ … ≥ lk. The score
distance of the ith sample measures the robust distance of its projection to the center
of all the projected observations. Hence, it is measured within the PCA subspace,
where due to the knowledge of the eigenvalues, we have information about the
covariance structure of the scores. Consequently, the score distance is defined as in
Equation 6.6:

(6.18)
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Moreover, the k robust principal components generate a p × p robust scatter matrix
 of rank k given by

(6.19)

Note that all results (the scores ti, the scores distances, the orthogonal distances,
and the scatter matrix ) depend on the number of components k. But to simplify
the notations, we do not explicitly add a subscript k.

We also mention the robust LTS-subspace estimator and its generalizations
[6, 53]. The idea behind these approaches consists in minimizing a robust scale of
the orthogonal distances, similar to the LTS estimator and S-estimators in regression.
Also, the orthogonalized Gnanadesikan-Kettenring estimator [54] is fast and robust,
but it is not orthogonally equivariant.

6.5.5 AN OUTLIER MAP

The result of the PCA analysis can be represented by means of a diagnostic plot or
outlier map [52]. As in regression, this figure highlights the outliers and classifies them
into several types. In general, an outlier is defined as an observation that does not obey
the pattern of the majority of the data. In the context of PCA, this means that an outlier
either lies far from the subspace spanned by the k eigenvectors, or that the projected
observation lies far from the bulk of the data within this subspace. This outlyingness
can be expressed by means of the orthogonal and the score distances. These two

Regular observations have a small orthogonal and a small score distance. When
samples have a large score distance but a small orthogonal distance, we call them
good leverage points. Observations 1 and 4 in Figure 6.8a can be classified into this
category. These observations lie close to the space spanned by the principal com-
ponents but far from the regular data. This implies that they are different from the
majority, but there is only a little loss of information when we replace them by their
fitted values in the PCA-subspace.

Orthogonal outliers have a large orthogonal distance, but a small score distance,
as, for example, case 5. They cannot be distinguished from the regular observations
once they are projected onto the PCA subspace, but they lie far from this subspace.
Consequently, it would be dangerous to replace that sample with its projected value,
as its outlyingness would not be visible anymore.

Bad leverage points, such as observations 2 and 3, have a large orthogonal
distance and a large score distance. They lie far outside the space spanned by the
principal components, and after projection they are far from the regular data points.
Their degree of outlyingness is high in both directions, and typically they have a
large influence on classical PCA, as the eigenvectors will be tilted toward them.

The outlier map displays the ODi vs. the SDi and, hence, classifies the observa-

distinguish the observations with a small and a large OD, and with a small and a
large SD. For the latter distances, we use the property that normally distributed data

xΣ̂

x p k k k k p
TΣ̂ = , , ,P L P

xΣ̂
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tions according to Table 6.3 and Figure 6.8b. On this plot, lines are drawn to

distances define four types of observations, as illustrated in Figure 6.8a.
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have normally distributed scores and, consequently, their squared Mahalanobis distances
have asymptotically a χk

2 distribution. Hence, we use as cutoff value . For
the orthogonal distances, the approach of Box [55] is followed. The squared orthogonal
distances can be approximated by a scaled χ2 distribution, which in its turn can be
approximated by a normal distribution using the Wilson-Hilferty transformation.

FIGURE 6.8 (a) Different types of outliers when a three-dimensional data set is projected
on a robust two-dimensional PCA subspace, with (b) the corresponding outlier map [44].
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The mean and variance of this normal distribution are then estimated by applying the
univariate MCD to the ODi

2/3. Observations that exceed the horizontal or the vertical
cutoff value are then classified as the PCA outliers.

6.5.6 SELECTING THE NUMBER OF PRINCIPAL COMPONENTS

To choose the optimal number of loadings kopt, there are many criteria. For a detailed

which exposes the eigenvalues in decreasing order. The index of the last component
before the plot flattens is then selected.

A more formal criterion considers the total variation that is explained by the
first k loadings and requires, for example, that

(6.20)

Note that this criterion cannot be used with ROBPCA, as the method does not yield
all of the p eigenvalues (as then it would become impossible to compute the MCD
estimator in the final stage of the algorithm). But we can apply it on the eigenvalues of
the covariance matrix of  that was constructed in the second stage of the algorithm.

One can also choose kopt as the smallest value for which

Another criterion that is based on the predictive ability of PCA is the predicted
sum of squares (PRESS) statistic. To compute the (cross validated) PRESS value at
a certain k, we remove the ith observation from the original data set (for i = 1, …, n),
estimate the center and the k loadings of the reduced data set, and then compute the
fitted value of the ith observation following Equation 6.16, now denoted as .
Finally, we set

(6.21)

TABLE 6.3
Overview of the Different Types of Observations 
Based on Their Score Distance (SD) and Their 
Orthogonal Distance (OD)

Distances Small SD Large SD

Large OD Orthogonal outlier Bad PCA-leverage point
Small OD Regular observation Good PCA-leverage point
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overview, see Joliffe [56]. A very popular graphical one is based on the scree plot,
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The value k for which the PRESSk is small enough is then considered as the optimal
number of components kopt. One could also apply formal F-type tests based on
successive PRESS values [57, 58].

However, the PRESSk statistic is not suitable for use with contaminated data
sets because it also includes the prediction error of the outliers. Even if the fitted
values are based on a robust PCA algorithm, their prediction error might increase
the PRESSk because they fit the model poorly. Consequently, the decision about the
optimal number of components kopt could be wrong.

To obtain a robust PRESS value, we can apply the following procedure. For
each PCA model under investigation (k = 1, …, kmax), the outliers are marked. As
discussed in Section 6.5.5, these are the observations that exceed the horizontal or
vertical cutoff value on the outlier map. Next, all the outliers are collected (over all k)
and removed from the sum in Equation 6.21. By doing this, the robust PRESSk value
is based on the same set of observations for each k. Moreover, fast methods to
compute x−1 have been developed [62].

6.5.7 AN EXAMPLE

We illustrate ROBPCA and the outlier map on a data set that consists of spectra of 180
ancient glass pieces over p = 750 wavelengths [59]. The measurements were performed
using a Jeol JSM 6300 scanning electron microscope equipped with an energy-
dispersive Si(Li) x-ray detection system. We first performed ROBPCA with default
value h = 0.75, n = 135. However, the outlier maps then revealed a large amount of
outliers. Therefore, we analyzed the data set a second time with h = 0.70, n = 126.
Three components are retained for CPCA and ROBPCA yielding a classical explanation
percentage of 99% and a robust explanation percentage (see Equation 6.20) of 96%.

plot in Figure 6.9a, we see that CPCA does not find large outliers. On the other
hand, the ROBPCA plot of Figure 6.9b clearly distinguishes two major groups in
the data, a smaller group of bad leverage points, a few orthogonal outliers, and the
isolated case 180 in between the two major groups. A high-breakdown method, such
as ROBPCA, treats the smaller group with cases 143–179 as one set of outliers.
Later, it turned out that the window of the detector system had been cleaned before
the last 38 spectra were measured. As a result of this, less radiation (x-rays) was
absorbed and more could be detected, resulting in higher x-ray intensities. The other
bad leverage points, 57–63 and 74–76, are samples with a large concentration of
calcic. The orthogonal outliers (22, 23, and 30) are borderline cases, although it
turned out that they have larger measurements at the wavelengths 215–245. This
might indicate a larger concentration of phosphor.

6.6 PRINCIPAL COMPONENT REGRESSION

6.6.1 CLASSICAL PCR

Principal component regression is typically used for linear regression models (Equa-
tion 6.7 or Equation 6.10), where the number of independent variables p is very
large or where the regressors are highly correlated (this is known as multicollinearity).
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The resulting outlier maps are shown in Figure 6.9. From the classical diagnostic
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An important application of PCR is multivariate calibration, whose goal is to predict
constituent concentrations of a material based on its spectrum. This spectrum can
be obtained via several techniques, including fluorescence spectrometry, near-infrared
spectrometry (NIR), nuclear magnetic resonance (NMR), ultraviolet spectrometry
(UV), energy-dispersive x-ray fluorescence spectrometry (ED-XRF), etc. Because a
spectrum typically ranges over a large number of wavelengths, it is a high-dimensional
vector with hundreds of components. The number of concentrations, on the other
hand, is usually limited to about five, at most.

FIGURE 6.9 Outlier map of the glass data set based on three principal components computed
with (a) CPCA and (b) ROBPCA [52].
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In the univariate approach, only one concentration at a time is modeled and
analyzed. The more general problem assumes that the number of response variables
q is larger than 1, which means that several concentrations are to be estimated
together. This model has the advantage that the covariance structure between the
concentrations is also taken into account, which is appropriate when the concentra-
tions are known to be strongly intercorrelated with each other. As argued in Martens
and Naes [60], the multivariate approach can also lead to better predictions if the
calibration data for one important concentration, say y1, are imprecise. When this
variable is highly correlated with some other constituents that are easier to measure
precisely, then a joint calibration may give better understanding of the calibration
data and better predictions for y1 than a separate univariate calibration for this analyte.
Moreover, the multivariate calibration can be very important to detect outlying
samples that would not be discovered by separate regressions. Here, we will write
down the formulas for the general multivariate setting (Equation 6.10) for which
q ≥ 1, but they can, of course, be simplified when q = 1.

The PCR method (and PLS, partial least squares, discussed in the Section 6.7)
assumes that the linear relation (Equation 6.10) between the x- and y-variables is in
fact a bilinear model that depends on scores t:

(6.22)

(6.23)

with  and  the mean of the x- and y-variables.
Consequently, classical PCR (CPCR) starts by mean-centering the data. Then, in order

to cope with the multicollinearity in the x-variables, the first k principal components of
Xn,p are computed. As outlined in Section 6.5.1, these loading vectors
are the k eigenvectors that correspond to the k dominant eigenvalues of the empirical
covariance matrix . Next, the k-dimensional scores of each data point
are computed as  In the final step, the centered response variables  are
regressed onto  using MLR. This yields parameter estimates
and fitted values . The unknown regression param-
eters in the model presented in Equation 6.10 are then estimated as

Finally, the covariance matrix of the errors can be estimated as the empirical
covariance matrix of the residuals

(6.24)
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with Sy and St being the empirical covariance matrices of the y- and the t-variables.
Note that Equation 6.24 follows from the fact that the fitted MLR values are
orthogonal to the MLR residuals.

6.6.2 ROBUST PCR

The robust PCR (RPCR) method proposed by Hubert and Verboven [61] combines

regression technique such as LTS regression (Section 6.4.1.3) or MCD regression
(Section 6.4.2.2). In the first stage of the algorithm, robust scores ti are obtained by
applying ROBPCA on the x-variables and retaining k components. In the second stage
of the RPCR method, the original response variables yi are regressed on the ti using
a robust regression method. Note that here a regression model with intercept is fitted:

(6.25)

with . If there is only one response variable (q = 1), the parameters in
Equation 6.25 can be estimated using the reweighed LTS estimator. If q > 1, the
MCD regression is performed. As explained in Section 6.4.2.2, it starts by computing
the reweighed MCD estimator on the (ti, yi) jointly, leading to a (k + q)-dimensional
location estimate  and a scatter estimate , which can be split
into a scatter estimate of the t-variables, the y-variables, and of the cross-covariance
between the ts and ys:

Robust parameter estimates are then obtained following Equation 6.11 to
Equation 6.13 as

(6.26)

(6.27)

(6.28)

Note the correspondence of Equation 6.28 with Equation 6.24. Next, a reweighing
step can be added based on the residual distances (Equation 6.14).

The regression parameters in the model depicted by Equation 6.10 are then
derived as:
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robust PCA for high-dimensional data (ROBPCA, see Section 6.5.4) with a robust
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Note that, as for the MCD estimator, the robustness of the RPCR algorithm
depends on the value of h, which is chosen in the ROBPCA algorithm and in the
LTS and MCD regression. Although it is not really necessary, it is recommended
that the same value be used in both steps.

classified as regular observations, PCA outliers, or regression outliers. This will be
illustrated in Section 6.6.4.

6.6.3 MODEL CALIBRATION AND VALIDATION

An important issue in PCR is the selection of the optimal number of principal
components kopt, for which several methods have been proposed. A popular approach
consists of minimizing the root mean squared error of cross-validation criterion
RMSECVk. For one response variable (q = 1), it equals

(6.29)

with  the predicted value for observation i, where i was left out of the data set
when performing the PCR method with k principal components. For multiple
y-variables, it is usually defined as

(6.30)

The goal of the RMSECVk statistic is twofold. It yields an estimate of the root
mean squared prediction error  when k components are used in the model,
whereas the curve of RMSECVk for k = 1, …, kmax is a popular graphical tool to
choose the optimal number of components.

As argued for the PRESS statistic (Equation 6.21) in PCA, this RMSECVk

statistic is also not suitable for use with contaminated data sets because it includes
the prediction error of the outliers. A robust RMSECV (R-RMSECV) measure can
be constructed in analogy with the robust PRESS value [61]. Roughly said, for each
PCR model under investigation (k = 1, …, kmax), the regression outliers are marked
and then removed from the sum in Equation 6.29 or Equation 6.30. By doing this,
the RMSECVk statistic is based on the same set of observations for each k. The
optimal number of components is then taken as the value kopt for which RMSECVk

is minimal or sufficiently small.
Once the optimal number of components kopt is chosen, the PCR model can be

validated by estimating the prediction error. A robust root mean squared error of
prediction (R-RMSEP) is obtained as in Equation 6.29 or Equation 6.30 by elimi-
nating the outliers found by applying RPCR with kopt components. It thus includes
all the regular observations for the model with kopt components, which is larger than
the set used to obtain RMSECVk. Hence, in general  will be different
from .
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Following the practice in Table 6.2, Table 6.3 and observations can now be
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The R-RMSECVk values are rather time consuming because, for every choice
of k, they require the whole RPCR procedure to be performed n times. Faster
algorithms for cross validation are described [80]. They avoid the complete recom-
putation of resampling methods, such as the MCD, when one observation is removed
from the data set. Alternatively, one could also compute a robust R2-value [61]. For
q = 1 it equals:

where ri,k is the ith residual obtained with a RPCR model with k components, and the
sum is taken over all regular observations for k = 1, …, kmax. The optimal number of
components kopt is then chosen as the smallest value k for which Rk

2 attains, e.g., 80%,
or the Rk

2 curve becomes nearly flat. This approach is fast because it avoids cross
validation by measuring the variance of the residuals instead of the prediction error.

6.6.4 AN EXAMPLE

To illustrate RPCR, we analyze the biscuit dough data set [63]. It contains 40 NIR
spectra of biscuit dough with measurements every 2 nm, from 1200 nm up to 2400
nm. The data are first scaled using a logarithmic transformation to eliminate drift
and background scatter. Originally the data set consisted of 700 variables, but the
ends were discarded because of the lower instrumental reliability. Then the first
differences were used to remove constants and sudden shifts. After this prepro-
cessing, we ended up with a data set of n = 40 observations in p = 600 dimensions.
The responses are the percentages of four constituents in the biscuit dough: y1 =
fat, y2 = flour, y3 = sucrose, and y4 = water. Because there is a significant correlation
among the responses, a multivariate regression is performed. The robust R-
RMSECVk curve plotted in Figure 6.10 suggests the selection of k = 2 components.

FIGURE 6.10 Robust R-RMSECVk curve for the biscuit dough data set [61].

R
r

y y
k

i i k

i i

2

2

2
1= −

−
∑

∑
,

( )

1 2 3 4 
0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

Principal component 

R-
RM

SE
CV

k

DK4712_C006.fm  Page 199  Thursday, March 16, 2006  3:37 PM

© 2006 by Taylor & Francis Group, LLC



200 Practical Guide to Chemometrics

Differences between CPCR and RPCR show up in the loading vectors and in
the calibration vectors. Figure 6.11 shows the second loading vector and the second
calibration vector for y3 (sucrose). For instance, we notice (between wavelengths
1390 and 1440) a large discrepancy in the C-H bend.

Next, we can construct outlier maps as in Sections 6.5.5 and 6.4.2.3. ROBPCA

leverage points, but there are some orthogonal outliers, the largest being 23, 7, and
20. The result of the regression step is shown in Figure 6.12b. It exposes the robust
distances of the residuals (or the standardized residuals if q = 1) vs. the score

FIGURE 6.11 Second loading vector and calibration vector of sucrose for the biscuit dough
data set, computed with (a) second loading of vector and (b) calibration vector of sucrose for
the biscuit dough data set, computed with CPCR and RPCR [61].
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yields the PCA outlier map displayed in Figure 6.12a. We see that there are no PCA
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distances, and thus identifies the outliers with respect to the model depicted in
Equation 6.25. RPCR shows that observation 21 has an extremely high residual
distance. Other vertical outliers are 23, 7, 20, and 24, whereas there are a few
borderline cases. In Hubert and Verboven [61], it is demonstrated that case 21 never
showed up as such a large outlier when performing four univariate calibrations. It
is only by using the full covariance structure of the residuals in Equation 6.14 that
this extreme data point is found.

FIGURE 6.12 (a) PCA outlier map when applying RPCR to the biscuit dough data set; (b)
corresponding regression outlier map [61].
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Finally, three-dimensional outlier maps can be made by combining the PCA and
the regression outlier maps, i.e., by plotting for each observation the triple (SDi,
ODi, ResDi). Figure 6.13 shows the result for the biscuit dough data. It is particularly
interesting to create such three-dimensional plots with interactive software packages
(such as MATLAB or S-PLUS) that allow you to rotate and spin the whole figure.

6.7 PARTIAL LEAST-SQUARES REGRESSION

6.7.1 CLASSICAL PLSR

Partial least-squares regression (PLSR) is similar to PCR. Its goal is to estimate
regression coefficients in a linear model with a large number of x-variables that are
highly correlated. In the first step of PCR, the scores were obtained by extracting
the main information present in the x-variables by performing a principal component
analysis on them without using any information about the y-variables. In contrast,
the PLSR scores are computed by maximizing a covariance criterion between the
x- and y-variables. Hence, the first stage of this technique already uses the responses.

More precisely, let  and  denote the mean-centered data matrices. The
normalized PLS weight vectors ra and qa (with ||ra|| = ||qa|| = 1) are then defined as
the vectors that maximize

(6.31)

FIGURE 6.13 Three-dimensional outlier map of the biscuit dough data set obtained 
with RPCR [61].
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for each a = 1, …, k, where  is the empirical cross-covariance matrix
between the x- and the y-variables. The elements of the scores  are then defined
as linear combinations of the mean-centered data: , or equiva-
lently  with Rp,k = (r1, …, rk).

The computation of the PLS weight vectors can be performed using the SIMPLS
algorithm [64]. The solution of the maximization problem in Equation 6.31 is found
by taking r1 and q1 as the first left and right singular eigenvectors of Sxy. The other
PLSR weight vectors ra and qa for a = 2, …, k are obtained by imposing an orthog-
onality constraint to the elements of the scores. If we require that  for
a ≠ b, a deflation of the cross-covariance matrix Sxy provides the solutions for the other
PLSR weight vectors. This deflation is carried out by first calculating the x-loading

(6.32)

with Sx the empirical covariance matrix of the x-variables. Next an orthonormal base
{v1, …, va} of {p1, …, pa} is constructed, and Sxy is deflated as

with S1
xy = Sxy. In general, the PLSR weight vectors ra and qa are obtained as the

left and right singular vector of Sa
xy.

6.7.2 ROBUST PLSR

A robust method, RSIMPLS, has been developed by Hubert and Vanden Branden
[65]. It starts by applying ROBPCA on the joint x- and y-variables to replace Sxy

and Sx by robust estimates, and then proceeds analogously to the SIMPLS algorithm.
More precisely, to obtain robust scores, ROBPCA is first applied on the joint x- and
y-variables Zn,m = (Xn,p, Yn,q) with m = p + q. Assume that we select k0 components.
This yields a robust estimate of the center of Z,  and, following
Equation 6.19, an estimate of its shape, , which can be split into

(6.33)

The cross-covariance matrix Σxy is then estimated by , and the PLS weight
vectors ra are computed as in the SIMPLS algorithm, but now starting with
instead of Sxy. In analogy with Equation 6.32, the x-loadings pj are defined
as . Then the deflation of the scatter matrix  is performed as
in SIMPLS. In each step, the robust scores are calculated as:

where  are the robustly centered observations.
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Next, a robust regression has to be applied of the yi against the ti. This could
again be done using the MCD regression method of Section 6.4.2.2, but a faster
approach goes as follows. The MCD regression method starts by applying the
reweighed MCD estimator on (t, y) to obtain robust estimates of their center µ
and scatter Σ. This reweighed MCD corresponds to the mean and the covariance
matrix of those observations that are considered not to be outlying in the (k + q)-
dimensional (t, y) space. To obtain the robust scores, ti, ROBPCA was first applied
to the (x, y)-variables, and hereby a k0-dimensional subspace K0 was obtained that
represented these (x, y)-variables well. Because the scores were then constructed
to summarize the most important information given in the x-variables, we might
expect that outliers with respect to this k0-dimensional subspace are often also
outlying in the (t, y) space. Hence, the center µ and the scatter Σ of the (t, y)-
variables can be estimated as the mean and covariance matrix of those (ti, yi)
whose corresponding (xi, yi) are not outlying to K0. It is those observations whose
score distance and orthogonal distance do not exceed the cutoff values on the
outlier map, as defined in Section 6.5.4.

Having identified the regular observations (xi, yi) with ROBPCA, we thus com-
pute the mean  and covariance  of the corresponding (ti, yi). Then, the method
proceeds as in the MCD-regression method. These estimates are plugged into Equa-
tion 6.26 to Equation 6.28, residual distances are computed as in Equation 6.14, and
a reweighed MLR is performed. This reweighing step has the advantage that it might
again include outlying observations from ROBPCA that are not regression outliers.

Note that when performing the ROBPCA method on Zn,m, we need to determine
k0, which should be a good approximation of the dimension of the space spanned
by the x- and y-variables. If k is known, k0 can be set as min(k, 10) + q. The number
k + q represents the sum of the number of x-loadings that give a good approximation
of the dimension of the x-variables and the number of response variables. The
maximal value kmax = 10 is included to ensure a good efficiency of the FAST-MCD
method in the last stage of ROBPCA, but it can be increased if enough observations
are available. Other ways to select k0 are discussed in Section 6.5.6. By doing this,
one should keep in mind that it is logical that k0 be larger than the number of
components k that will be retained in the regression step.

This RSIMPLS approach yields bounded-influence functions for the weight
vectors ra and qa and for the regression estimates [66]. Also, the breakdown value
is inherited from the MCD estimator. Model calibration and validation is similar to
the RPCR method and proceeds as in Section 6.6.3.

6.7.3 AN EXAMPLE

The robustness of RSIMPLS is illustrated on an octane data set [67] consisting
of NIR absorbance spectra over p = 226 wavelengths ranging from 1102 nm to
1552 nm, with measurements every 2 nm. For each of the n = 39 production
gasoline samples, the octane number y was measured, so q = 1. It is known that
the octane data set contains six outliers (25, 26, 36–39) to which alcohol was
added. From the R-RMSECV values [68], it follows that k = 2 components should
be retained.

µ̂ Σ̂
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The resulting outlier maps are shown in Figure 6.14. The robust PCA outlier
map is displayed in Figure 6.14a. Note that according to the model presented in
Equation 6.22, its score distance SDi is displayed on the horizontal axis for each
observation

FIGURE 6.14 PCA outlier map of the octane data set obtained with (a) RSIMPLS and
(b) SIMPLS. Regression outlier map obtained with (c) RSIMPLS and (d) SIMPLS.
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where  and  are derived in the regression step of the RSIMPLS algorithm. The

We immediately spot the six samples with added alcohol. The SIMPLS outlier
map is shown in Figure 6.14b. We see that this analysis only detects the outlying
spectrum 26, which does not even stick out much above the borderline. The robust
regression outlier map in Figure 6.14c shows that the outliers are good leverage
points, whereas SIMPLS in Figure 6.14d again reveals only case 26.

FIGURE 6.14 (Continued)
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vertical axis of Figure 6.14a shows the orthogonal distance of an observation to the t-space:
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6.8 CLASSIFICATION

6.8.1 CLASSIFICATION IN LOW DIMENSIONS

6.8.1.1 Classical and Robust Discriminant Rules

The goal of classification, also known as discriminant analysis or supervised learn-
ing, is to obtain rules that describe the separation between known groups of obser-
vations. Moreover, it allows the classification of new observations into one of the
groups. We denote the number of groups by l and assume that we can describe our
experiment in each population πj by a p-dimensional random variable Xj with dis-
tribution function (density) fj. We write pj for the membership probability, i.e., the
probability for an observation to come from πj.

The maximum-likelihood rule classifies an observation x ∈ IRp into πa if
ln(pafa(x)) is the maximum of the set {ln(pjfj(x)); j = 1, …, l}. If we assume that the
density fj for each group is Gaussian with mean µj and covariance matrix Σj, then it
can be seen that the maximum-likelihood rule is equivalent to maximizing the
discriminant scores dj

Q(x) with

(6.34)

That is, x is allocated to πa if da
Q(x) ≥ dj

Q

In practice, µj, Σj, and pj have to be estimated. Classical quadratic discriminant
analysis (CQDA) uses the group’s mean and empirical covariance matrix to estimate
µj and Σj. The membership probabilities are usually estimated by the relative fre-
quencies of the observations in each group, hence , where nj is the number
of observations in group j.

A robust quadratic discriminant analysis (RQDA) [70] is derived by using robust
estimators of µj, Σj, and pj. In particular, if the number of observations is sufficiently
large with respect to the dimension p, we can apply the reweighed MCD estimator of
location and scatter in each group (Section 6.3.2). As a by-product of this robust pro-
cedure, outliers (within each group) can be distinguished from the regular observations.
Finally, the membership probabilities can be robustly estimated as the relative
frequency of the regular observations in each group, yielding .

When all the covariance matrices are assumed to be equal, the quadratic scores
(Equation 6.34) can be simplified to

(6.35)

where Σ is the common covariance matrix. The resulting scores (Equation 6.35)
are linear in x, hence the maximum-likelihood rule belongs to the class of linear
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and Wichern [69]).
(x) for all j = 1, …, l (see, e.g., Johnson
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discriminant analysis. It is well known that if we have only two populations (l = 2)
with a common covariance structure, and if both groups have equal membership
probabilities, then this rule coincides with Fisher’s linear discriminant rule. Again,
the common covariance matrix can be estimated by means of the MCD estimator,
e.g., by pooling the MCD estimates in each group. Robust linear discriminant
analysis, based on the MCD estimator (or S-estimators), has been studied by several
authors [70–73].

6.8.1.2 Evaluating the Discriminant Rules

One also needs a tool to evaluate a discriminant rule, i.e., we need an estimate of
the associated probability of misclassification. To do this, we could apply the rule
to our observed data and count the (relative) frequencies of misclassified observa-
tions. However, it is well known that this yields an overly optimistic misclassification
error, as the same observations are used to determine and to evaluate the discriminant
rule. Another very popular approach is cross validation [74], which computes the
classification rule by leaving out one observation at a time and then looking to see
whether each observation is correctly classified or not. Because it makes little sense
to evaluate the discriminant rule on outlying observations, one could apply this
procedure by leaving out the nonoutliers one by one and counting the percentage
of misclassified ones. This approach is rather time consuming, especially with large
data sets. For the classical linear and quadratic discriminant rules, updating formulas
are available [75] that avoid the recomputation of the discriminant rule if one data
point is deleted. Because the computation of the MCD estimator is much more
complex and based on resampling, updating formulas can not be obtained exactly,
but approximate methods can be used [62].

A faster, well-known alternative for estimating the classification error consists
of splitting the observations randomly into (a) a training set that is then used to
compose the discriminant rule and (b) a validation set used to estimate the mis-
classification error. As pointed out by Lachenbruch [76] and others, such an
estimate is wasteful of data and does not evaluate the discriminant rule that will
be used in practice. With larger data sets, however, there is less loss of efficiency
when we use only part of the data set, and if the estimated classification error is
acceptable, then the final discriminant rule can still be constructed from the whole
data set. Because it can happen that this validation set also contains outlying
observations that should not be taken into account, we estimate the misclassifica-
tion probability MPj of group j by the proportion of nonoutliers from the validation
set that belong to group j and that are misclassified. An estimate of the overall
misclassification probability (MP) is then given by the weighted mean of the
misclassification probabilities of all the groups, with weights equal to the estimated
membership probabilities, i.e.,

(6.36)MP MP=
=

∑
j

l

j

R
jp

1

ˆ

DK4712_C006.fm  Page 208  Thursday, March 16, 2006  3:37 PM

© 2006 by Taylor & Francis Group, LLC



Robust Calibration 209

6.8.1.3 An Example

We obtained a data set containing the spectra of three different cultivars of the same
fruit (cantaloupe, Cucumis melo L. cantalupensis) from Colin Greensill (Faculty of
Engineering and Physical Systems, Central Queensland University, Rockhampton,
Australia). The cultivars (named D, M, and HA) had sizes 490, 106, and 500, and
all spectra were measured in 256 wavelengths. The data set thus contains 1096
observations and 256 variables.

and based on the ratio of the ordered eigenvalues and the largest one (λ2/λ1 =
0.045, λ3/λ1 = 0.018, λ4/λ1 = 0.006, λ5/λ1 < 0.0005), it was decided to retain four
principal components. We then randomly divided the data into a training set and
a validation set, containing 60% and 40% of the observations, respectively.
Because there was no prior knowledge of the covariance structure of the three
groups, the quadratic discriminant rule RQDR was applied. The membership
probabilities were estimated as the proportion of nonoutliers in each group of the
training set, yielding and and . The robust mis-
classification probabilities MPj were computed by only considering the “good”
observations from the validation set. To the training set, the classical quadratic
discriminant rule CQDR was also applied and evaluated using the same reduced
validation set. The results are presented in Table 6.4. The misclassifications for
the three groups are listed separately first. The fourth column MP shows the overall
misclassification probability as defined in Equation 6.36. We see that the overall
misclassification probability of CQDR is more than three times larger than the
misclassification of RQDR. The most remarkable difference is obtained for the
cultivar HA, which contains a large group of outlying observations.

This is clearly seen in the plot of the data projected onto the first two principal

marked with crosses, cultivar M with circles, and cultivar HA with diamonds. We
see that cultivar HA has a cluster of outliers that are far from the other observations.
As it turns out, these outliers were caused by a change in the illumination system.

For illustrative purposes, we have also applied the linear discriminant rule
(Equation 6.35) with a common covariance matrix Σ. In Figure 6.15a, we have super-
imposed the robust tolerance ellipses for each group. Figure 6.15b shows the same
data with the corresponding classical tolerance ellipses. Note how strongly the classical

TABLE 6.4
Misclassification Probabilities for RQDR and CQDR 
Applied to the Fruit Data Set

RQDR CQDR

MPD MPM MPHA MP MPD MPM MPHA MP

0.03 0.18 0.01 0.04 0.06 0.30 0.21 0.14

D

R
p̂ %,= 54 M

R
p̂ %= 10 HA

R
p %ˆ = 36
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components. Figure 6.15a shows the training data. In this figure, the cultivar D is

First, we applied a robust principal component analysis (RAPCA, see Section
6.5.3) to reduce the dimension of the data space. From the scree plot (not shown)
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covariance estimator of the common Σ is influenced by the outlying subgroup of
cultivar HA. The effect on the resulting classical linear discriminant rules is dramatic
for cultivar M. It appears that all of the observations are misclassified because they
would have to belong to a region that lies completely outside the boundary of this
figure. The robust discriminant analysis does a better job. The tolerance ellipses are
not affected by the outliers and the resulting discriminant lines split up the different
groups more accurately. The misclassification rates are 17% for cultivar D, 95% for
cultivar M, and 6% for cultivar HA, with an overall MP = 23%. The misclassification
rate of cultivar M remains very high. This is due to the intrinsic overlap between

FIGURE 6.15 (a) Robust tolerance ellipses for the fruit data with common covariance matrix;
(b) classical tolerance ellipses.
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the three groups and the fact that cultivar M has few data points compared with the
others. When we impose the constraint that all three groups are equally important
by setting the membership probabilities , we obtain a better classification
of cultivar M, with 46% of errors. But now the other groups have a worse classifi-
cation error (MPD = 30% and MPHA = 17%). The global MP equals 31%, which
is higher than with the discriminant analysis based on unequal membership
probabilities.

6.8.2 CLASSIFICATION IN HIGH DIMENSIONS

When data are high dimensional, the approach of the previous section can no longer
be applied because the MCD becomes uncomputable. In the previous example
(Section 6.8.1.3), this was solved by applying a dimension-reduction procedure
(PCA) on the whole set of observations. Instead, one can also apply a PCA method
on each group separately. This is the idea behind the SIMCA method (soft indepen-
dent modeling of class analogy) [77].

A robust variant of SIMCA can be obtained by applying a robust PCA method,
such as ROBPCA (Section 6.5.4), on each group [78]. For example, the number of
components in each group can be selected by cross validation, as explained in Section
6.5.6 and, hence, they need not be the same for each population. A classification
rule is found by combining the orthogonal distance (Equation 6.17) of a new
observation x to group πj, denoted as ODj(x), and its score distance (Equation 6.18)
within that group, yielding SDj(x). More precisely, let cj

v be the cutoff value for the

and let cj
h be the cutoff value for the score distances. Then we define the standardized

orthogonal distance as ODj(x)/cj
v and the standardized score distance as SDj(x)/cj

h.
Finally, the jth group distance equals

Observation x could then be allocated to πa if GDa(x) ≤ GDj(x) for all j = 1, …, l.
Alternative group distances have been considered as well [78].

6.9 SOFTWARE AVAILABILITY

MATLABTM functions for all of the procedures mentioned in this chapter are part
of LIBRA, Library for Robust Analysis [81], which can be downloaded from

Stand-alone programs carrying out FAST-MCD and FAST-LTS can be down-

The MCD is available in the packages S-PLUS and R as the built-in function
cov.mcd, and it has also been included in SAS Version 11 and SAS/IML Version 7.
These packages all provide the one-step reweighed MCD estimates. The LTS is

j
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orthogonal distances when applying ROBPCA to the j group (see Section 6.5.5),

http://www.wis.kuleuven.be/stat/robust.html.

loaded from the Web site http://www.agoras.ua.ac.be/, as well as MATLAB versions.

http://wis.kuleuven.be
http://www.agoras.ua.ac.be
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available in S-PLUS and R as the built-in function ltsreg and has also been incor-
porated in SAS Version 11 and SAS/IML Version 7.
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7.1 INTRODUCTION

 

The most prominent technique for investigating the kinetics of chemical processes in
solution is light-absorption spectroscopy. This includes IR (infrared), NIR (near-infrared),
CD, (circular dichroism) and above all, UV/Vis (ultraviolet/visible) spectroscopy. Absorp-
tion spectroscopy is used for slow reactions, where solutions are mixed manually and the
measurements are started after introduction of the solution into a cuvette in the instrument.
For fast reactions, stopped-flow or temperature-jump instruments are used, and even for
very fast reactions (pulse radiolysis, flash photolysis), light absorption is the most useful
technique. For these reasons, we develop the methodology presented in this chapter
specifically for the analysis of absorption measurements. Many aspects of these methods
apply straightforwardly to other techniques. For instance, a series of NMR (nuclear
magnetic resonance) spectra can be analyzed in essentially identical ways as long as there
are no fast equilibria such as protonation equilibria involved. Similarly, data from emission
spectroscopy can be employed. Also, in cases where individual concentrations of some
or all reacting components are observed directly (e.g., chromatography), the methods are
virtually identical. Generally, the methods can be applied to all measured data as long as
the signals are linearly dependent on individual concentrations [1–4].

This chapter deals with multivariate data sets. In the present context, this means that
complete spectra are observed as a function of reaction time, e.g., with a diode-array
detector. As we will demonstrate, the more commonly performed single-wavelength
measurements can be regarded as a special case of multiwavelength measurements.

The chapter begins with a short introduction to the appropriate mathematical
handling of multiwavelength absorption data sets. We demonstrate how matrix
notation can be used very efficiently to describe the data sets acquired in such
investigations. Subsequently, we discuss in detail the two core aspects of the model-
based fitting of kinetic data:

1.

 

Modeling the concentration profiles of the reacting components

 

. We first
discuss simple reaction mechanisms. By this we mean mechanisms for
which there are analytical solutions for the sets of differential equations.
Later we turn our attention to the modeling of reaction mechanisms of
virtually any complexity. In the last section, we look at extensions to the
basic modeling methods in an effort to analyze measurements that were
recorded under nonideal conditions, such as at varying temperature or pH.

2.

 

Methods for nonlinear least-squares fitting

 

, with a demonstration of how
these can be applied to the analysis of kinetic data.

We illustrate the theoretical concepts in a few selected computer programs and
then apply them to realistic examples. MATLAB

 

TM

 

 [5] is the programming language
of choice for most chemometricians. The MATLAB code provided in the examples
is intended to encourage and guide readers to write their own programs for their
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specific tasks. Excel is much more readily available than MATLAB, and many quite
sophisticated analyses can be performed in Excel. A few examples demonstrate how
Excel can be used to tackle problems that are beyond the everyday tasks performed
by most scientists. For methods that are clearly beyond the capabilities of Excel, it
is possible to write Visual Basic programs of any complexity and link them to a
spreadsheet. As an example, routines for the singular-value decomposition (SVD)
are readily available on the Internet [6].

In this chapter, we describe the methods required for the model-based analysis
of multivariate measurements of chemical reactions. This comprises reactions of
essentially any complexity in solution, but it does not include the investigation of
gas-phase reactions, for example in flames or in the atmosphere, which involve
hundreds or even thousands of steps [7–12].

 

7.2 MULTIVARIATE DATA, BEER-LAMBERT’S LAW, 
MATRIX NOTATION

 

To maximize the readability of mathematical texts, it is helpful to differentiate
matrices, vectors, scalars, and indices by typographic conventions. In this chapter,
matrices are denoted in boldface capital characters (

 

M

 

), vectors in boldface lower-
case (

 

v

 

), and scalars in lowercase italic characters (

 

s

 

). For indices, lowercase char-
acters are used (j). The symbol “t” indicates matrix and vector transposition (

 

M

 

t

 

).
Chemical species are given in uppercase italic characters (

 

A

 

).
Beer-Lambert’s law states that the total absorption, 

 

y

 

l

 

, of a solution at one
particular wavelength, 

 

l

 

, is the sum over all contributions of dissolved absorbing
species, 

 

A

 

, 

 

B

 

, …, 

 

Z

 

, with molar absorptivities 

 

e

 

A

 

,

 

l

 

, 

 

e

 

B

 

,

 

l

 

, …, 

 

e

 

Z

 

,

 

l

 

.

 

y

 

l

 

 = [

 

A

 

]

 

e

 

A

 

,

 

l

 

 

 

+

 

 [

 

B

 

]

 

e

 

B,

 

l

 

 

 

+

 

 … 

 

+

 

 [

 

Z

 

]

 

e

 

Z,

 

l

 

(7.1)

If complete spectra are measured as a function of time, Equation 7.1 can be written
for each spectrum at each wavelength. Such a large collection of equations is very
unwieldy, and it is crucial to recognize that the structure of such a system of equations
allows the application of the very elegant matrix notation shown in Equation 7.2.

(7.2)

 

Y

 

 is a matrix that consists of all the individual measurements. The absorption spectra,
measured at 

 

n

 

l

 

 wavelengths, form 

 

n

 

l

 

-dimensional vectors, which are arranged as
rows of 

 

Y

 

. Thus, if 

 

nt

 

 spectra are measured at 

 

nt

 

 reaction times, 

 

Y

 

 contains 

 

nt

 

 rows
of 

 

n

 

l

 

 elements; it is an 

 

nt

 

 

 

×

 

 

 

n

 

l

 

 matrix. As the structures of Beer-Lambert’s law and
the mathematical law for matrix multiplication are essentially identical, this matrix

 

Y

 

 can be written as a product of two matrices 

 

C

 

 and 

 

A

 

, where 

 

C

 

 contains as columns
the concentration profiles of the absorbing species. If there are 

 

nc

 

 absorbing species,

 

C

 

 has 

 

nc

 

 columns, each one containing 

 

nt

 

 elements, the concentrations of the species
at the 

 

nt

 

 reaction times. Similarly, the matrix 

 

A

 

 contains, in 

 

nc

 

 rows, the molar

nt
nc

× nc
Y C A nt R+=

nl nl nl
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absorptivities of the absorbing species, measured at 

 

n

 

l

 

 wavelengths; these are the

 

e

 

X

 

,

 

l

 

 values of Equation 7.1.
Due to imperfections in any real measurements, the product 

 

C

 

 

 

×

 

 

 

A

 

 does not
exactly result in 

 

Y

 

. The difference is a matrix 

 

R

 

 of residuals. Note that 

 

C

 

 

 

×

 

 

 

A

 

 and

 

R

 

 have the same dimensions as 

 

Y

 

. The task of the analysis is to find the best matrices

 

C

 

 and 

 

A

 

 for a given measured 

 

Y

 

. We start with the calculation of the matrix 

 

C

 

 for
simple reaction mechanisms. The computation of 

 

C

 

 is the core of any fitting program.
We will return to the computation of 

 

C

 

 for complex mechanisms toward the end of
this chapter.

 

7.3 CALCULATION OF THE CONCENTRATION 
PROFILES: CASE I, SIMPLE MECHANISMS

 

There is a limited number of reaction mechanisms for which there are explicit
formulae to calculate the concentrations of the reacting species as a function of time.
This set includes all reaction mechanisms that contain only first-order reactions, as
well as a very few mechanisms with second-order reactions [1, 3, 13]. A few
examples for such mechanisms are given in Equation 7.3.

(7.3)

Any chemical reaction mechanism is described by a set of ordinary differential
equations (ODEs). For the reactions in Equation 7.3, the ODEs are

(7.4)

where we use the notation for the derivative of [

 

A

 

] with respect to time, 

Integration of the ODEs results in the concentration profiles for all reacting
species as a function of the reaction time. The explicit solutions for the examples
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shown here are given in Equation 7.5, which lists the equations for each example.
Note that in examples (a) to (c), the integrated form of the equation is only given
for 

 

A

 

. The equations for the concentration(s) of the remaining species can be cal-
culated from the mass balance or closure principle (e.g., in the first example [

 

B

 

] 

 

=

 

[

 

A

 

]

 

0

 

 

 

−

 

 [

 

A

 

], where [

 

A

 

]

 

0

 

 is the concentration of 

 

A

 

 at time zero). In example (d), the
integrated form is given for species 

 

A 

 

and 

 

B

 

. Again, the concentration of species 

 

C

 

can be determined from the mass balance principle.

(7.5)

Modeling and visualization of a reaction 

 

A B 

 

requires only a few lines of

profiles, as seen in Figure 7.1. Of course this task can equally well be performed in
Excel.

 

FIGURE 7.1

 

Concentration profiles for a reaction 

 

A B 

 

(

 



 

 

 

A

 

, 

 

…

 

 

 

B

 

 ) as calculated
by MATLAB Example 7.1.
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MATLAB Example 7.1

% A -> B

t=[0:50]'; % time vector (column vector)

A_0=1e-3; % initial concentration of A

k=.05; % rate constant

C(:,1)=A_0*exp(-k*t); % [A]

C(:,2)=A_0-C(:,1); % [B] (Closure)

plot(t,C); % plotting C vs t

Solutions for the integration of ODEs such as those given in Equation 7.5 are not
always readily available. For nonspecialists, it is difficult to determine whether there is
an explicit solution at all. MATLAB’s symbolic toolbox provides a very convenient means
of producing the results and also of testing for explicit solutions of ordinary differential
equations, e.g., for the reaction 2A B, as seen in MATLAB Example 7.2. (Note
that MATLAB’s symbolic toolbox demands lowercase characters for species names.)

MATLAB Example 7.2

% 2A -> B, explicit solution

d=dsolve('Da=-2*k1*a^2','Db=k1*a^2','a(0)=a_0',' b(0)=0');

pretty(simplify(d.a))

                                                              a_0

---------------

                                                   2 k1 t a_0 + 1

In a section 7.5, we will demonstrate how to deal with more complex mechanisms
for which the ODEs cannot be integrated analytically.

7.4 MODEL-BASED NONLINEAR FITTING

Model-based fitting of measured data can be a rather complex process, particularly if
there are many parameters to be fitted to many data points. Multivariate measurements
can produce very large data matrices, especially if spectra are acquired at many
wavelengths. Such data sets may require many parameters for a quantitative descrip-
tion. It is crucial to deal with such large numbers of parameters in efficient ways, and
we will describe how this can be done. Large quantities of data are no longer a problem
on modern computers, since inexpensive computer memory is easily accessible.

As mentioned previously, the task of model-based data fitting for a given matrix Y
is to determine the best rate constants defining the matrix C, as well as the best molar
absorptivities collected in the matrix A. The quality of the fit is represented by the matrix
of residuals, R = Y − C × A. Assuming white noise, i.e., normally distributed noise of
constant standard deviation, the sum of the squares, ssq, of all elements ri,j is statistically
the “best” measure to be minimized. This is generally called a least-squares fit.

(7.6)
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(An adaptation using weighted least squares is discussed in a later section for the
analysis of data sets with nonwhite noise.) The least-squares fit is obtained by
minimizing the sum of squares, ssq, as a function of the measurement, Y, the chemical
model (rate law), and the parameters, i.e., the rate constants, k, and the molar
absorptivities, A.

ssq = f (Y, model, parameters) (7.7)

It is important to stress here that for the present discussion we do not vary the
model; rather, we determine the best parameters for a given model. The determination
of the correct model is a task that is significantly more difficult. One possible
approach is to fit the complete set of possible models and select the best one defined
by statistical criteria and chemical intuition. Because there is usually no obvious
limit to the number of potential models, this task is rather daunting. As described

powerful tool to support the process of finding the correct model.
We confidently stated at the very beginning of this chapter that we would deal

with multivariate data. The high dimensionality makes graphical representation
difficult or impossible, as our minds are restricted to visualization of data in three
dimensions. For this reason, we initiate the discussion with monovariate examples,
i.e., kinetics measured at only one wavelength. As we will see, the appropriate
generalization to many wavelengths is straightforward.

In order to gain a good understanding of the different aspects of the task of
parameter fitting, we will start with a simple but illustrative example. We will use
the first-order reaction A B, as shown in MATLAB Example 7.1 and also

The measurement is rather noisy. The magnitude of noise is not relevant, but it
is easier to graphically discern the difference between original and fitted data.

FIGURE 7.2 First-order (A B) kinetic single-wavelength experiment (…) and the
result of a least-squares fit ().
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in Figure 7.1. The kinetics is followed at a single wavelength, as shown in Figure 7.2.

in Chapter 11, Multivariate Curve Resolution, model-free analyses can be a very
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In Appendix 7.1 at the end of this chapter, a MATLAB function (data_ab) is given
that generates this absorbance data set.

Because this is a single-wavelength experiment, the matrices A, Y, and R collapse
into column vectors a, y, and r, and Equation 7.2 is reduced to Equation 7.8.

(7.8)

For this example there are three parameters only, the rate constant k, which defines
the matrix C of the concentration profiles, and the molar absorptivities eA,l and eB,l
for the components A and B, which form the two elements of the vector a.

First, we assume that the molar absorptivities of A and B at the appropriate wave-
length l have been determined independently and are known (eA,l = 100 M−1cm−1,
eB,l = 400 M−1cm−1); then, the only parameter to be optimized is k. In accordance
with Equation 7.6 and Equation 7.8, for any value of k we can calculate a matrix C
— and subsequently the quality of the fit via the sum of squares, ssq — by multiplying
the matrix C with the known vector a, subtracting the result from y, and adding up
the squared elements of the vector of differences (residuals), r. Figure 7.3 shows a
plot of the logarithm of ssq vs. k. The optimal value for the rate constant that
minimizes ssq is obviously around k = 0.05 s−1.

In a second, more realistic thought experiment, we assume to know the molar
absorptivity eA,l of species A only, and thus have to fit eB,l and k. The equivalent ssq
analysis as above leads to a surface in a three-dimensional space when we plot ssq
vs. k and eB,l
of the function defining ssq, or in other words, the bottom of the valley (at k ≅ 0.05 s−1

FIGURE 7.3 Logarithm of the square sum ssq of the residual vector r as a function of the
rate constant k.
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. This is illustrated in Figure 7.4. Again, the task is to find the minimum
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and eB,l ≅ 400 M−1cm−1). In the first example, there was only one parameter (k) to
be optimized; in the second, there are two (k and eA,l).

Even more realistically, all three parameters k, eA,l, and eB,l are unknown (e.g.,
a solution of pure A cannot be made, as it immediately starts reacting to form B).
It is impossible to represent graphically the relationship between ssq and the three
parameters; it is a hypersurface in a four-dimensional space and beyond our imag-
ination. Nevertheless, as we will see soon, there is a minimum for one particular set
of parameters.

It is probably clear by now that highly multivariate measurements need special
attention, as there are many parameters that need to be fitted, i.e., the rate constants
and all molar absorptivities at all wavelengths. We will come back to this apparently
daunting task.

There are many different methods for the task of fitting any number of parameters
to a given measurement [14–16]. We can put them into two groups: (a) the direct
methods, where the sum of squares is optimized directly, e.g., finding the minimum,
similar to the example in Figure 7.4, and (b) the Newton-Gauss methods, where the
residuals in r or R themselves are used to guide the iterative process toward the
minimum.

7.4.1 DIRECT METHODS, SIMPLEX

the subsequent “manual” location of the optimum is straightforward. However, it
requires a great deal of computation time and, more importantly, the direct input of
an operator. Additionally, such a method is restricted to only one or two parameters.

Very useful and, thus, heavily used is the simplex algorithm, which is concep-
tually a very simple method. It is reasonably fast for a modest number of parameters;
further, it is very robust and reliable. However, for high-dimensional tasks, i.e., with
many parameters, the simplex algorithm becomes extremely slow.

FIGURE 7.4 Square sum ssq of the residuals r as a function of two parameters k and eB,l.
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Graphs of the kind shown in Figure 7.3 and Figure 7.4 are simple to produce and
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A simplex is a multidimensional geometrical object with n + 1 vertices in an
n-dimensional space. In two dimensions (two parameters), the simplex is a tri-
angle, in three dimensions (three parameters) it becomes a tetrahedron, etc. At
first, the functional values (ssq) at all corners of the simplex have to be deter-
mined. Assuming we are searching for the minimum of a function, the highest
value of the corners has to be determined. Next, this worst one is discarded and
a new simplex is constructed by reflecting the old simplex at the face opposite
the worst corner. Importantly, only one new value has to be determined for the
new simplex. The new simplex is treated in the same way: the worst vertex is
determined and the simplex reflected until there is no more significant change in
the functional value.

The process is represented in Figure 7.5. In the initial simplex, the worst value
is 14, and the simplex has to be reflected at the opposite face (8,9,11), marked in
gray. A new functional value of 7 is determined in the new simplex. The next move
would be the reflection at the face (8,9,7), reflecting the corner with value 11.
Advanced simplex algorithms include constant adaptation of the size of the simplex
[17]. Overly large simplices will not follow the fine structure of the surface and will
only result in approximate minima; simplices that are too small will move very
slowly. In the example here, we are searching for the minimum, but the process is
obviously easily adapted for maximization.

The simplex algorithm works well for a reasonably low number of parameters.
Naturally, it is not possible to give a precise and useful maximal number; 10 could
be a reasonable estimate. Multivariate data with hundreds of unknown molar
absorptivities cannot be fitted without further substantial improvement of the
algorithm.

In MATLAB Example 7.3a and 7.3b we give the code for a simplex optimization
of the first-order kinetic example discussed above. Refer to the MATLAB manuals
for details on the simplex function fminsearch. Note that all three parameters k, eA,l,
and eB,l are fitted. The minimal ssq is reached at k = 0.048 s−1, eA,l = 106.9 M−1cm−1, and
eB,l = 400.6 M−1cm−1.

MATLAB Example 7.3b employs the function that calculates ssq (and also
C). It is repeatedly used by the simplex routine called in MATLAB Example 7.3a.

their fit.

FIGURE 7.5 Principle of the simplex minimization with three parameters.
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In Figure 7.2 we have already seen a plot of the experimental data together with
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MATLAB Example 7.3a
% simplex fitting of k, eps_A and eps_B to the kinetic model A -> B

[t,y]=data_ab;  % get absorbance data

A_0=1e-3;  % initial concentration of A

par0=[0.1;200;600]; % start parameter vector 
                                 % [k0;eps_A0;eps_B0]

par=fminsearch('rcalc_ab1',par0,[],A_0,t,y) % simplex call

[ssq,C]=rcalc_ab1(par,A_0,t,y); % calculate ssq and C with final parameters

y_calc=C*par(2:3); % determine y_calc from C, eps_A and eps_B

plot(t,y,'.',t,y_calc,'-'); % plot y and y_calc vs t

MATLAB Example 7.3b
function [ssq,C]=rcalc_ab1(par,A_0,t,y)

C(:,1)=A_0*exp(-par(1)*t);  % concentrations of species A

C(:,2)=A_0-C(:,1);  % concentrations of B

r=y-C*par(2:3);  % residuals

ssq=sum(r.*r);  % sum of squares

7.4.2 NONLINEAR FITTING USING EXCEL’S SOLVER

Fitting tasks of a modest complexity, like the one just discussed, can straightfor-
wardly be performed in Excel using the Solver tool provided as an Add-In method.
The Solver tool does not seem to be very well known, even in the scientific
community, and therefore we will briefly discuss its application based on the
example above. As with MATLAB, we assume familiarity with the basics of
Excel.

B (from row 10 downward) contain the given measurements, the vectors t and y,
respectively. Columns C and D contain the concentration profiles [A] and [B],
respectively. The equations used to calculate these values in the Excel language
are indicated. The rate constant is defined in cell B2, and the molar absorptivities
in the cells B3:B4. Next, a vector ycalc is calculated in column E. Similarly, the
residuals and their squares are given in the next two columns. Finally, the sum
over all these squares, ssq, is given in cell B6. The task is to modify the parameters,
the contents of the cells B2:B4, until ssq is minimal. It is a good exercise to try
to do this manually. Excel provides the Solver for this task. The operator has to
(a) define the Target Cell, in this case, cell B6 containing ssq; (b) make sure the
Minimize button is chosen; and (c) define the Changing Cells, in this case, the
cells containing the variable parameters, B2:B4. Click Solve and in no time the
result is found. As with any iterative fitting algorithm, it is important that the initial
guesses for the parameters be reasonable, otherwise the minimum might not be
found. These initial guesses are entered into the cells B2:B4, and they are subse-
quently refined by the Solver to yield the result shown in Figure 7.6. For further
information on Excel’s Solver, we refer the reader to some relevant publications
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Figure 7.6 displays the essential parts of the spreadsheet. The columns A and

on this topic [18–21].
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7.4.3 LINEAR AND NONLINEAR PARAMETERS

As stated in the introduction (Section 7.1), this chapter is about the analysis of
multivariate data in kinetics, i.e., measurements at many wavelengths. Compared
with univariate data this has two important consequences: (a) there is much more
data to be analyzed and (b) there are many more parameters to be fitted.

Consider a reaction scheme with nk reactions (rate constants), involving nc
absorbing components. Measurements are done using a diode-array spectrophotometer
where nt spectra are taken at nl wavelengths. Thus, we are dealing with nt × nl
individual absorption measurements. The number of parameters to be fitted is
nk + nc × nl (the number of rate constants plus the number of molar absorptivities).
Let us look at an example for the reaction scheme A→B→C, with 100 spectra
measured at 1024 wavelengths. The number of data points is 1.024 × 105 and, more
importantly, the number of parameters is 3074 (2 + 3 × 1024). There is no doubt
that “something” needs to be done to reduce this large number, as no fitting method
can efficiently deal with that many parameters.

There are two fundamentally different kinds of parameters: a small number of
rate constants, which are nonlinear parameters, and the large number of molar
absorptivities, which are linear parameters. Fortunately, we can exploit this situation
of having to deal with two different sets of parameters.

FIGURE 7.6 Using Excel’s Solver for nonlinear fitting of a first-order reaction A B.
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The rate constants (together with the model and initial concentrations) define
the matrix C of concentration profiles. Earlier, we have shown how C can be
computed for simple reactions schemes. For any particular matrix C we can
calculate the best set of molar absorptivities A. Note that, during the fitting, this
will not be the correct, final version of A, as it is only based on an intermediate
matrix C, which itself is based on an intermediate set of rate constants (k). Note
also that the calculation of A is a linear least-squares estimate; its calculation is
explicit, i.e., noniterative.

A = C+ Y or
A = (CtC)−1 CtY or (7.9)

A = C\Y (MATLAB notation)

C+ is the so-called pseudoinverse of C. It can be computed as C+ = (CtC)−1 Ct.
However, MATLAB provides a numerically superior method for the calculation of
A by means of the back-slash operator (\). Refer to the MATLAB manuals for details.
The important point is that we are now in a position to write the residual matrix R,
and thus ssq, as a function of the rate constants k only:

R = Y − CA = Y − CC+Y = f (Y, model, k) (7.10)

The absolutely essential difference between Equation 7.10 and Equation 7.7
is that now there is only a very small number of parameters to be fitted iteratively.
To go back to the example above, we have reduced the number of parameters
from 3074 to 2 (nk). This number is well within the limits of the simplex
algorithm. For the example of the consecutive reaction mechanism mentioned
above, we give the function that calculates ssq in MATLAB Example 7.4b. It is
repeatedly used by the simplex routine fminsearch called in MATLAB Example 7.4a.
A minimum in ssq is found for k1 = 2.998 × 10−3 s−1 and k2 = 1.501 × 10−3 s−1.
As before, a MATLAB function (data_abc) that generates the absorbance data
used for fitting is given in the Appendix at the end of this chapter. It is interesting
to note that the calculated best rate constants are very close to the “true” ones
used to generate the data. Generally, multivariate data are much better and more
robust at defining parameters compared with univariate (one wavelength) mea-
surements.

MATLAB Example 7.4a
% simplex fitting to the kinetic model A -> B -> C

[t,Y]=data_abc;      % get absorbance data

A_0=1e-3; % initial concentration of A

k0=[0.005; 0.001];    % start parameter vector

[k,ssq]=fminsearch('rcalc_abc1',k0,[],A_0,t,Y)       % simplex call
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MATLAB Example 7.4b
function ssq=rcalc_abc1(k,A_0,t,Y)

C(:,1)=A_0*exp(-k(1)*t);   % concentrations of species A

C(:,2)=A_0*k(1)/(k(2)-k(1))*(exp(-k(1)*t)-exp(-k(2)*t)); % conc. of B

C(:,3)=A_0-C(:,1)-C(:,2);   % concentrations of C

A=C\Y; % elimination of linear parameters

R=Y-C*A; % residuals

ssq=sum(sum((R.*R)));   % sum of squares

To analyze other mechanisms, all we need to do is to replace the few lines that
calculate the matrix C. The computation of A, R, and ssq are independent of the
chemical model, and generalized software can be written for the fitting task.

In two later sections, we will deal with numerical integration, which is required
to solve the differential equations for complex mechanisms. Before that, we will
describe nonlinear fitting algorithms that are significantly more powerful and faster
than the direct-search simplex algorithm used by the MATLAB function fminsearch.
Of course, the principle of separating linear (A) and nonlinear parameters (k) will
still be applied.

7.4.4 NEWTON-GAUSS-LEVENBERG/MARQUARDT (NGL/M)

In contrast to methods where the sum of squares, ssq, is minimized directly, the
NGL/M type of algorithm requires the complete vector or matrix of residuals to
drive the iterative refinement toward the minimum. As before, we start from an initial
guess for the rate constants, k0. Now, the parameter vector is continuously improved
by the addition of the appropriate (“best”) parameter shift vector ∆k. The shift vector
is calculated in a more sophisticated way that is based on the derivatives of the
residuals with respect to the parameters.

We could define the matrix of residuals, R, as a function of the measurements,
Y, and the parameters, k and A. However, as previously shown, it is highly recom-
mended if not mandatory to define R as a function of the nonlinear parameters only.
The linear parameters, A, are dealt with separately, as shown in Equation 7.9 and
Equation 7.10.

At each cycle of the iterative process a new parameter shift vector, δ k, is
calculated. To derive the formulae for the iterative refinement of k, we develop R
as a function of k (starting from k = k0) into a Taylor series expansion. For sufficiently
small δ k, the residuals, R(k + δ k), can be approximated by a Taylor series expansion.

(7.11)

We neglect all but the first two terms in the expansion. This leaves us with an
approximation that is not very accurate; however, it is easy to deal with, as it is a
linear equation. Algorithms that include additional higher terms in the Taylor expan-
sion often result in fewer iterations but require longer computation times due to the
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increased complexity. Dropping the higher-order terms from the Taylor series expan-
sion gives the following equation.

(7.12)

The matrix of partial derivatives, ∂R(k)/∂k, is called the Jacobian, J. We can
rearrange this equation in the following way:

R(k) = −J × δ k + R(k + δk) (7.13)

The matrix of residuals, R(k), is known, and the Jacobian, J, is determined as
shown later in this section. The task is to calculate the δ k that minimizes the new
residuals, R(k + δ k). Note that the structure of Equation 7.13 is identical to that of
Equation 7.2, and the minimization problem can be solved explicitly by simple linear
regression, equivalent to the calculation of the molar absorptivity spectra A (A = C+ × Y)
as outlined in Equation 7.9.

δk = −J+ × R(k) (7.14)

The Taylor series expansion is an approximation, and therefore the shift vector
δ k is an approximation as well. However, the new parameter vector k + δk will
generally be better than the preceding k. Thus, an iterative process should always
move toward the optimal rate constants. As the iterative fitting procedure progresses,
the shifts, δ k, and the residual sum of squares, ssq, usually decrease continuously.
The relative change in ssq is often used as a convergence criterion. For example,
the iterative procedure can be terminated when the relative change in ssq falls below
a preset value m, typically m = 10−4.

(7.15)

At this stage, we need to discuss the actual task of calculating the Jacobian matrix
J. It is always possible to approximate J numerically by the method of finite differences.
In the limit as ∆ki approaches zero, the derivative of R with respect to ki is given by
Equation 7.16. For sufficiently small ∆ki, the approximation can be very good.

(7.16)

Here, (k + ∆ki) represents the original parameter vector k to whose ith element, ∆k1,
is added. A separate calculation must be performed for each element of k. In other
words, the derivatives with respect to the elements in k must be calculated one at a
time. It is probably most instructive to study the MATLAB code in MATLAB Box
7.5b, where this procedure is defined precisely.
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A few additional remarks with respect to the calculation of the Jacobian matrix

 

J

 

 are in order here. For reaction mechanisms that have explicit solutions to the set
of differential equations, it is always possible to define the derivatives 

 

∂

 

C

 

/

 

∂

 

k

 

explicitly. In such cases, the Jacobian 

 

J

 

 can be calculated in explicit equations, and
time-consuming finite-difference approximations are not required. The equations are
rather complex, although implementation in MATLAB is straightforward. More
information on this topic can be found in the literature [22]. The calculation of
numerical derivatives is always possible, and for mechanisms that require numerical
integration it is the only option.

The Jacobian matrix, 

 

J

 

, is the derivative of a matrix with respect to a vector.
Further discussion of its structure and the computation of its pseudoinverse are
warranted. The most straightforward way to organize 

 

J

 

 is in a three-dimensional
array: the derivative of 

 

R

 

 with respect to one particular parameter 

 

k

 

i

 

 is a matrix of
the same dimensions as 
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 itself. The collection of all these 

 

nk

 

 derivatives with
respect to all of the 
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 parameters can be arranged in a three-dimensional array of
dimensions 
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, with the individual matrices 
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i

 

 written slicewise
“behind” each other, as illustrated in Figure 7.7.

Organizing 

 

J

 

 in a three-dimensional array is elegant, but it does not fit well into
the standard routines of MATLAB for matrix manipulation. There is no command
for the calculation of the pseudoinverse 

 

J

 

+

 

 of such a three-dimensional array. There
are several ways around this problem; one of them is discussed in the following. The
matrices 
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) as well as each matrix 

 

∂

 

R

 

/

 

∂

 

k

 

i

 

 are vectorized, i.e.,
unfolded into long column vectors 
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). The 

 

nk

 

 vectorized partial
derivatives then form the columns of the matricized Jacobian 

 

J

 

. The structure of the
resulting analogue to Equation 7.13 can be represented graphically in Equation 7.17.

(7.17)
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Because J now possesses a well-defined matrix structure, the solution to δk can
be written without any difficulty.

δk = −J+ × r(k) (7.18)

Or, using the MATLAB “\” notation for the pseudoinverse:

δk = −J\r(k)  (7.19)

It is important to recall at this point that k comprises only the nonlinear param-
eters, i.e., the rate constants. The linear parameters, i.e., the elements of the matrix
A containing the molar absorptivities, are solved in a separate linear regression step,
as described earlier in Equation 7.9 and Equation 7.10.

The basic structure of the iterative Newton-Gauss method is given in Scheme 7.1.
The convergence of the Newton-Gauss algorithm in the vicinity of the minimum is
usually excellent (quadratic). However, if starting guesses are poorly chosen, the shift
vector, δ k, as calculated by Equation 7.18, can point in a wrong direction or the step
size can be too long. The result is an increased ssq, divergence, and a usually
quick and dramatic crash of the program. Marquardt [23], based on ideas by
Levenberg [24], suggested a very elegant and efficient method to manage the problems
associated with divergence.

The pseudoinverse for the calculation of the shift vector has been computed tradi-
tionally as J+ = −(JtJ)−1Jt. Adding a certain number, the Marquardt parameter mp, to the
diagonal elements of the square matrix JtJ prior to its inversion has two consequences:
(a) it shortens the shift vector δk and (b) it turns its direction toward the direction of
steepest descent. The larger the Marquardt parameter, the greater is the effect.

δ k = − (JtJ + mp × I)−1 Jt × r(k) (7.20)

SCHEME 7.1 Flow diagram of a very basic Newton-Gauss algorithm.
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where I is the identity matrix of the appropriate size. If we want to use the MATLAB
backslash notation, ∆k = −J \ r(k0), we get the same effect by appending a diagonal
matrix containing the Marquardt parameter to the lower end of J. This is visualized
in Figure 7.8.

As the number of rows in J and elements in r(k) must be the same, we must
also append the same number of nk zeros to the end of the vector r(k). It might be
a useful exercise for the reader to verify the equivalence of the two approaches.

Depending on the improvement of the sum of squares, ssq, the Marquardt param-
eter, mp, is reduced or augmented. There are no general rules on how exactly this
should be done in detail; it depends on the specific case. If required, the initial value
for the Marquardt parameter has to be chosen sensibly as well; the original suggestion
was to use the value of the largest diagonal element of JtJ. In MATLAB Example
7.5b, if mp is required we just set it initially to 1. Usually convergence occurs with
no Marquardt parameter at all; in the programming MATLAB Example 7.5b, it is thus
initialized as zero.

The simplex and similar algorithms do not deliver standard errors for the param-
eters. A particularly dangerous feature of the simplex algorithm is the possibility of
inadvertently fitting completely irrelevant parameters. The immediate result of the fit
gives no indication about the relevance of the fitted parameters (i.e., the kinetic model).
This also applies to the Solver algorithm offered by Excel, although appropriate
procedures have been suggested as macros in Excel to provide statistical analysis of
the results [18]. The NGL/M algorithm allows a direct error analysis on the fitted
parameters. In fact, for normally distributed noise, the relevant information is obtained
during the calculation of δ k. According to statistics textbooks [16], the standard error
ski in the fitted nonlinear parameters ki can be approximated from the expression

(7.21)

FIGURE 7.8 Appending the Marquardt parameter mp to the Jacobian J.
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where dii is the ith diagonal element of the inverted Hessian matrix (JtJ)−1 (without
the Marquardt parameter added) and sy represents the standard deviation of the
measurement error in Y.

(7.22)

The denominator represents the degree of freedom, ν, and is defined as the number
of experimental values (elements of Y), minus the number of optimized nonlinear
(k) and linear (A) parameters.

v = nt × nl − nk − nc × nl (7.23)

This method of estimating the errors ski in the parameters, ki, is based on ideal
behavior, e.g., perfect initial concentrations, disturbed only by white noise in the
measurement. Experience shows that the estimated errors tend to be smaller than
those determined by statistical analysis of several measurements fitted individually.

We are now in a position to write a MATLAB program based on the Newton-
Gauss-Levenberg/Marquardt algorithm. Scheme 7.2 represents a flow diagram. We
will apply this NGL/M algorithm to the same data set of a consecutive reaction
scheme A→B→C that was previously subjected to a simplex optimization in
Section 7.4.1. Naturally, the results must be the same within error limits. In
MATLAB Example 7.5c a function is given that computes the residuals that are
repeatedly required by the NGL/M routine, given in MATLAB Example 7.5b, and
which in turn is called by the main program shown in MATLAB Example 7.5a.

SCHEME 7.2 The Newton-Gauss-Levenberg/Marquardt (NGL/M) algorithm.
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Note that the standard errors in the rate constants (k1 = 2.996 ± 0.005 × 10−3 s−1

and k2 = 1.501 ± 0.002 × 10−3 s−1) are delivered in addition to the standard deviation
(sY = 9.991 × 10−3) in Y. The ability to directly estimate errors in the calculated
parameters is a distinct advantage of the NGL/M fitting procedure. Furthermore,
even for this relatively simple example, the computation times are already faster
than using a simplex by a factor of five. This difference dramatically increases
with increasing complexity of the kinetic model.

MATLAB Example 7.5a
% ngl/m fitting to the kinetic model A -> B -> C

[t,Y]=data_abc; % get absorbance data

A_0=1e-3; % initial concentration of species A

k0=[0.005;0.001]; % start parameter vector

[k,ssq,C,A,J]=nglm('rcalc_abc2',k0,A_0,t,Y);   % call ngl/m

k  % display k

ssq    % ssq

sig_y=sqrt(ssq/(prod(size(Y))-length(k)-(prod(size(A)))))% sigma_y

sig_k=sig_y*sqrt(diag(inv(J'*J)))  % sigma_par

MATLAB Example 7.5b
function [k,ssq,C,A,J]=nglm(fname,k0,A_0,t,Y)

ssq_old=1e50;

mp=0;

mu=1e-4; % convergence limit

delta=1e-6; % step size for numerical diff

k=k0;

while 1

   [r0,C,A]=feval(fname,k,A_0,t,Y); % call calculation of 
                                     % residuals

   ssq=sum(r0.*r0);

   conv_crit=(ssq_old-ssq)/ssq_old;

   if abs(conv_crit) <= mu  % ssq_old=ssq, minimum  
                                     % reached !

      if mp==0

         break  % if Marquardt par zero, stop

      else  % otherwise

mp=0; % set it to 0, another iteration

r0_old=r0;

      end

   elseif conv_crit > mu  % convergence !

      mp=mp/3;

      ssq_old=ssq;

      r0_old=r0;

      for i=1:length(k)

         k(i)=(1+delta)*k(i);

         r=feval(fname,k,A_0,t,Y); % slice wise numerical

         J(:,i)=(r-r0)/(delta*k(i));% differentiation to

         k(i)=k(i)/(1+delta); % form the Jacobian

      end
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   elseif conv_crit < -mu % divergence !

      if mp==0

         mp=1; % use Marquardt parameter

      else

         mp=mp*5;

      end

      k=k-delta_k; % and take shifts back

   end

   J_mp=[J;mp*eye(length(k))]; % augment Jacobian matrix

   r0_mp=[r0_old;zeros(size(k))];     % augment residual vector

  delta_k=-J_mp\r0_mp;             % calculate parameter shifts

   k=k+delta_k;                          % add parameter shifts

end

MATLAB Example 7.5c
function [r,C,A]=rcalc_abc2(k,A_0,t,Y)

C(:,1)=A_0*exp(-k(1)*t); % concentrations of species A

C(:,2)=A_0*k(1)/(k(2)-k(1))*(exp(-k(1)*t)-exp(-k(2)*t)); % conc. 
                                                         % of B

C(:,3)=A_0-C(:,1)-C(:,2); % concentrations of C

A=C\Y; % calculation of linear parameters

R=Y-C*A; % residuals

r=R(:);  % vectorizing the residual matrix R

Beer-Lambert’s law in its matrix notation C × A = Y. The individual plots represent
the corresponding matrices of the matrix product.

Some care has to be taken in assessing the results if the chemical model consists
of several first-order reactions. In such cases there is no unique relationship between
observed exponential curves and mechanistic rate constants [25, 26]. In our example,
the mechanism A B C, an equivalent solution with the same minimal
sum of squares, ssq, can be obtained by swapping k1 and k2 (i.e., at k1 = 1.501 ± 0.002
× 10−3 s−1 and k2 = 2.996 ± 0.005 × 10−3 s−1). This phenomenon is also known as the
“slow-fast” ambiguity. The iterative procedure will converge to one of the two solu-
tions, depending on the initial guesses for the rate constants. This can easily be verified
by the reader. Fortunately, results with interchanged rate constants often lead to mean-
ingless (e.g., negative) or unreasonable molar absorptivity spectra for compound B.
Simple chemical reasoning and intuition usually allows the resolution of the ambiguity.

7.4.5 NONWHITE NOISE

The actual noise distribution in Y is often unknown, but generally a normal distri-
bution is assumed. White noise signifies that all experimental standard deviations,
si,j, of all individual measurements, yi,j, are the same and uncorrelated. The least-
squares criterion applied to the residuals delivers the most likely parameters only
under the condition of so-called white noise. However, even if this prerequisite is
not fulfilled, it is usually still useful to perform the least-squares fit. This makes it
the most commonly applied method for data fitting.

k1 → k2 →
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If the standard deviations si,j for all elements of the matrix Y are known or can be
estimated, it makes sense to use this information in the data analysis. Instead of the sum
of squares as defined in Equation 7.6, it is the sum over all appropriately weighted and
squared residuals that is minimized. This is known as chi-square fitting [15, 16].

(7.24)

If all si,j are the same (white noise), the calculated parameters of the c2 fit
will be the same as for least-squares fitting. If the si,j are not constant across the
data set, the least-squares fit will overemphasize those parts of the data with high
noise.

In absorption spectrometry, si,j is usually fairly constant, and c2 fitting has no
advantages. Typical examples of data with nonconstant and known standard devia-
tions are encountered in emission spectroscopy, particularly if photon counting
techniques are employed, which are used for the analysis of very fast luminescence
decays [27]. In such cases, measurement errors follow a Poisson distribution instead

FIGURE 7.9 Reaction A→B→C. Results of the data-fitting procedure visualized in terms of
Beer-Lambert’s law in its matrix notation C × A = Y.

0
C

A

Y

4000

Concentration (10−4M) Wavelength (nm)
0 5 10

3000

2000

1000 B

A

CTi
m

e (
s)

Ti
m

e (
s)

300 350 400 450 500 550 600

Wavelength (nm)
450300 350 400 500 550 600

4000

3000

2000

1000

0

A
bs

or
pt

iv
ity

 (M
−1

cm
−1

)

B
A

C

1500

1000

500

0

χ
σ

λ
2

11

2

=










==
∑∑ ri j

i jj

n

i

nt
,

,

DK4712_C007.fm  Page 238  Tuesday, January 31, 2006  12:04 PM

© 2006 by Taylor & Francis Group, LLC



Kinetic Modeling of Multivariate Measurements with Nonlinear Regression 239

of a Gaussian or normal distribution, and the standard deviation of the measured
emission intensity is a function of the intensity itself [16].

(7.25)

The higher the intensity, the higher is the standard deviation. At zero intensity, the
standard deviation is zero as well.

Follow we discuss the implementation of the c2 analysis in an Excel spreadsheet.
It deals with the emission decay of a solution with two emitters of slightly different
lifetimes. Measurements are done at one wavelength only. Column C of the Excel
spreadsheet shown in Figure 7.10 contains the estimated standard deviation si for
each intensity reading yi; according to Equation 7.25, the standard deviation is simply
the square root of the intensity. Column D contains the calculated intensity as the
sum of two exponential decays.

yi = amp1 ⋅ e−ti /τ1 + amp2 ⋅ e−ti/τ2 (7.26)

Note that in this context, lifetimes t are used instead of rate constants k; the
relationship between the two is t = 1/k. Column F contains the squared weighted
residuals (ri/si)2, as indicated in Figure 7.10. The sum over all its elements, c2, is
put into cell B6, and its value is minimized as shown in the Solver window.

FIGURE 7.10 c2 fitting with Excel’s Solver.

σ i j i jy, ,=

=E11∧2

=SUM(F11:F110)

=$B$2∗EXP(-A11/$B$1)+$B$4∗EXP(-A11/$B$3)

=((B11-D11)/C11)
=SQRT(B11)
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The parameters to be fitted are in cells B1:B4 and represent the two lifetimes t1 and
t2 as well as the corresponding amplitudes amp1 and amp2.

Figure 7.11 shows the results of the c2 fit in Figure 7.11a and the normal least-
squares fit in Figure 7.11b. The noisy lines represent the residuals from the analysis.
The nonweighted residuals in Figure 7.11b clearly show a noise level increasing

2

generally closer to their true values.

FIGURE 7.11 (a) c2 and (b) least-squares fit of emission spectroscopic data.
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The implementation in a MATLAB program is straightforward; e.g., MATLAB
Box 7.5c needs to be amended in the following way.

R=Y-C*A_hat;   % residual matrix R

Chi=R./SigmaY;   % division by sigma_y

r=Chi(:);   % vectorizing the residual matrix R

Of course the matrix SigmaY needs to be passed into the functions as an additional
parameter.

Another advantage in knowing the standard deviations of the measurements is that
we can determine if a fit is sufficiently good. As a rule of thumb, this is achieved if
c2 ≅ ν, where ν is the degree of freedom, which has earlier been defined in Equation
7.23. With c2 ≅ 72.5 and ν = 96 (100 − 2 − 2), this condition is clearly satisfied for

2

likely with the model. If c2 is too small, most likely the sij have been overestimated.
So far we have shown how multivariate absorbance data can be fitted to Beer-

Lambert’s law on the basis of an underlying kinetic model. The process of nonlinear
parameter fitting is essentially the same for any kinetic model. The crucial step of the
analysis is the translation of the chemical model into the kinetic rate law, i.e., the set of
ODEs, and their subsequent integration to derive the corresponding concentration profiles.

7.5 CALCULATION OF THE CONCENTRATION 
PROFILES: CASE II, COMPLEX MECHANISMS

In Section 7.3, we gave the explicit formulae for the calculation of the concentra-
tion profiles for a small set of simple reaction mechanisms. Often there is no such
explicit solution, or its derivation is rather demanding. In such instances, numerical
integration of the set of differential equations needs to be carried out. We start
with a simple example:

(7.27)

The analytical formula for the calculation of the concentration profiles for A and
B for the above model is fairly complex, involving the tan and atan functions

TABLE 7.1
Results of the c 2 Analysis of Emission 
Spectroscopic Data

True Values c 2 Least Squares

t1 (s-1)          1 0.9992 0.9976
amp1 10,000 10,012 10,048
t2 (s-1)      0.2 0.2009 0.2013
amp2 40,000 39,768 39,749

2A B
k

k

+

−

� ⇀��↽ ���
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our example spreadsheet in Figure 7.10. If c  is too big, something is wrong, most
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(according to MATLAB’s symbolic toolbox). However, knowing the rate law and
concentrations at any time, one can calculate the derivatives of the concentrations
of 

 

A

 

 and 

 

B

 

 at this time numerically.

(7.28)

Euler’s method [15, 28] represented in Figure 7.12 is the simplest way to perform
this task. Because of its simplicity it is ideally suited to demonstrate the general
principles of the numerical integration of ordinary differential equations.

Starting at time 
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; the derivatives and
are calculated according to Equation 7.28. This allows the computation of new
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, for the species 
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(7.29)

These new concentrations in turn allow the determination of new derivatives and
thus another set of concentrations [

 

A

 

]

 

2

 

 and [

 

B

 

]

 

2 

 

after the second time interval 

 

t

 

2

 

 – 

 

t

 

1

 

.
As shown in Figure 7.12, this procedure is simply repeated until the desired final
reaction time is reached.

With Euler’s simple method, very small time intervals must be chosen to achieve
reasonably accurate profiles. This is the major drawback of this method and there
are many better methods available. Among them, algorithms of the Runge-Kutta
type [15, 28, 29] are frequently used in chemical kinetics [3]. In the following
subsection we explain how a fourth-order Runge-Kutta method can be incorporated
into a spreadsheet and used to solve nonstiff ODEs.
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The fourth order Runge-Kutta method is the workhorse for the numerical integration
of ODEs. Elaborate routines with automatic step-size control are available in
MATLAB. We will show their usage in several examples later.

 

FIGURE 7.12

 

Euler’s method for numerical integration.
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First, without explaining the details [15], we will develop an Excel spreadsheet
for the numerical integration of the reaction mechanism , as seen in

concentrations and derivatives per step. This appears to be a serious disadvantage,
but as it turns out, significantly larger step sizes can be taken for the same accuracy,
and the overall computation times are much shorter. We will comment on the choice
of appropriate step sizes after this description.

We explain the computations for the first time interval ∆t (cell E5) between
t0 = 0 and t1 = 1, representative of all following intervals. Starting from the initial
concentrations [A]t 0 and [B]t0 (cells B5 and C5), the concentrations [A]t1 and [B]t1

(cells B6 and C6) can be computed in the following way:

1. Calculate the derivatives of the concentrations at t0:

In the Excel language, for A, this translates into = −2*$B$1*B5^2+2*
$B$2*C5, as indicated in Figure 7.13. Note, in the figure we only give
the cell formulae for the computations of component A; those for B are
written in an analogous way.

2. Calculate approximate concentrations at intermediate time point t = t0 + ∆t/2:

Again, the Excel formula for component A is given in Figure 7.13.

3. Calculate the derivatives at intermediate time point t = t0 + ∆t/2:

4. Calculate another set of concentrations at the intermediate time point
t = t0 + ∆t/2, based on the concentrations at t0 but using the derivatives

1 and :
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Figure 7.13. The fourth-order Runge-Kutta method requires four evaluations of
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FIGURE 7.13 Excel spreadsheet for the numerical integration of the rate law for the reaction using fourth-order
Runge-Kutta equations.
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5. Compute another set of derivatives at the intermediate time point t = t0 + ∆t/2:

6. Next, the concentrations at time t1 after the complete time interval ∆t =
t1 − t0 are computed based on the concentrations at time t0 and the
derivatives at time t = t0 + ∆t/2:

7. Computation of the derivatives at time t1:

8. Finally, the new concentrations after the full time interval ∆t = t1 − t0 are
computed as:

These concentrations are put as the next elements into cells B6 and C6 and
provide the new start concentrations to repeat steps 1 through 8 for the
next time interval ∆t (cell E6) between t1 = 1 and t2 = 2.

For fast computation, the determination of the best step size (interval) is crucial.
Steps that are too small result in correct concentrations at the expense of long
computation times. On the other hand, intervals that are too big save computation
time but result in poor approximation. The best intervals lead to the fastest compu-
tation of concentration profiles within the predefined error limits. The ideal step size
is not constant during the reaction and thus needs to be adjusted continuously.

One particular class of ordinary differential equation solvers (ODE-solvers)
handles stiff ODEs and these are widely known as stiff solvers. In our context, a
system of ODEs sometimes becomes stiff if it comprises very fast and also very
slow steps or relatively high and low concentrations. A typical example would be
an oscillating reaction. Here, a highly sophisticated step-size control is required to
achieve a reasonable compromise between accuracy and computation time. It is well
outside the scope of this chapter to expand on the intricacies of modern numerical
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Figure 7.14 displays the resulting concentration profiles for species A and B.
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integration routines. MATLAB provides an excellent selection of routines for this
task. For further reading, consult the relevant literature and the MATLAB manuals
[15, 28, 29].

7.5.2 INTERESTING KINETIC EXAMPLES

Next, we will look into various kinetic examples of increasing complexity and
determine solely concentration profiles (C). This can be seen as kinetic simulation,
since the calculations are all based on known sets of rate constants. Naturally, in an
iterative fitting process of absorbance, data on these parameters would be varied
until the sum of the squared residuals between measured absorbances (Y) and Beer-
Lambert’s model (C × A) is at its minimum.

7.5.2.1 Autocatalysis

Processes are called autocatalytic if the products of a reaction accelerate their own
formation. An extreme example would be a chemical explosion. In this case, it is
usually not a chemical product that directly accelerates the reaction; rather, it is the
heat generated by the reaction. The more heat produced, the faster is the reaction;
and the faster the reaction, the more heat that is produced, etc.

A very basic autocatalytic reaction scheme is presented in Equation 7.30.

(7.30)

FIGURE 7.14 Concentration profiles for a reaction ( A, … B) as modeled in
Excel using a fourth-order Runge-Kutta for numerical integration.
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Starting with component A, there is a relatively slow first reaction to form the
product B. The development of component B opens another path for its formation
in the second reaction, which is of the order two. Therefore, the higher the concentration
of B, the faster is the decomposition of A to form more B.

(7.31)

Figure 7.15 shows the calculated corresponding concentration profiles using the
rate constants k1 = 10−4 s−1 and k2 = 1 M−1s−1 for initial concentrations [A]0 = 1 M
and [B]0 = 0 M. We used MATLAB’s Runge–Kutta-type ODE-solver ode45. In
MATLAB Example 7.6b, the function is given that generates the differential equa-
tions. It is repeatedly called by the ODE-solver in MATLAB Example 7.6a.

MATLAB Example 7.6a
% autocatalysis

% A --> B

% A + B --> 2 B

c0=[1;0]; % initial conc of A and B

k=[1e-4;1]; % rate constants k1 and k2

[t,C]=ode45('ode_autocat',20,c0,[],k); call ode-solver
plot(t,C) % plotting C vs t

FIGURE 7.15 Concentration profiles for the autocatalytic reaction A B; A + B
 2B.
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MATLAB Example 7.6b

function c_dot=ode_autocat(t,c,flag,k)

% A --> B

% A + B --> 2 B

c_dot(1,1)=-k(1)*c(1)-k(2)*c(1)*c(2);             % A_dot

c_dot(2,1)= k(1)*c(1)+k(2)*c(1)*c(2);            % B_tot

7.5.2.2 Zeroth-Order Reaction

Zeroth-order reactions do not really exist; they are always macroscopically observed
reactions only where the rate of the reaction is independent of the concentrations of
the reactants. Formally, the ODE is:

(7.32)

A simple mechanism that mimics a zeroth-order reaction is the catalytic trans-
formation of A to C. A reacts with the catalyst Cat to form an intermediate activated
complex B. B in turn reacts further to form the product C, releasing the catalyst,
which in turn continues reacting with A.

(7.33)

The total concentration of catalyst is much smaller than the concentrations of
the reactants or products. Note that, in real systems, the reactions are reversible and
usually there are more intermediates, but for the present purpose this minimal
reaction mechanism is sufficient.

(7.34)

The production of C is governed by the amount of intermediate B, which is constant
over an extended period of time. As long as there is an excess of A with respect to
the catalyst, essentially all of the catalyst exists as complex, and thus this concen-
tration is constant. The crucial differential equation is the last one; it is a zeroth-
order reaction as long as [B] is constant.
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The kinetic profiles displayed in Figure 7.16 have been integrated numerically
with MATLAB’s stiff solver ode15s using the rate constants k1 = 1000 M−1s−1, k2 =
100 s−1 for the initial concentrations [A]0 = 1 M, [Cat]0 = 10−4 M, and [B]0 = [C]0 =
0 M. For this model, the standard Runge-Kutta routine is far too slow and thus useless.
In MATLAB Example 7.7b, the function is given that generates the differential equa-
tions. It is repeatedly called by the ODE-solver in MATLAB Example 7.7a.

MATLAB Example 7.7a

% 0th order kinetics

% A + Cat --> B

% B --> C + Cat

c0=[1;1e-4;0;0]; % initial conc of A, Cat, B and C

k=[1000;100]; % rate constants k1 and k2

[t,C] = ode15s('ode_zero_order',200,c0,[],k); % call ode-solver

plot(t,C) % plotting C vs t

MATLAB Example 7.7b

function c_dot=ode_zero_order(t,c,flag,k)

% 0th order kinetics

% A + Cat --> B

% B --> C + Cat

c_dot(1,1)=-k(1)*c(1)*c(2); % A_dot

c_dot(2,1)=-k(1)*c(1)*c(2)+k(2)*c(3); % Cat_dot

c_dot(3,1)= k(1)*c(1)*c(2)-k(2)*c(3); % B_dot

c_dot(4,1)= k(2)*c(3); % C_dot

FIGURE 7.16 Concentration profiles for the reaction A + Cat B; B C + Cat.
The reaction is zeroth order for about 100 s.
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7.5.2.3 Lotka-Volterra (Sheep and Wolves)

This example is not chemically relevant, but is all the more exciting. It models the
dynamics of a population of predators and preys in a closed system. Consider an
island with a population of sheep and wolves. In the first “reaction,” the sheep are
breeding. Note that there is an unlimited supply of grass and that this reaction could
go on forever. But there is the second “reaction,” where wolves eat sheep and breed
themselves. To complete the system, wolves have to die a natural death.

(7.35)

The following differential equations have to be solved:

(7.36)

The kinetic population profiles displayed in Figure 7.17 have been obtained by
numerical integration using MATLAB’s Runge-Kutta solver ode45 with the rate
constants k1 = 2, k2 = 5, k3 = 6 for the initial populations [sheep]0 = 2, [wolf]0 = 2.
For simplicity, we ignore the units. In MATLAB Example 7.8b, the function is given
that generates the differential equations. It is repeatedly called by the ODE-solver
in MATLAB Example 7.8a.

FIGURE 7.17 Lotka-Volterra’s predator and prey “kinetics.”
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MATLAB Example 7.8a

% lotka volterra

% sheep --> 2 sheep

% wolf + sheep --> 2 wolves

% wolf --> dead wolf

c0=[2;2]; % initial 'conc' of sheep and wolves

k=[2;5;6]; % rate constants k1, k2 and k3

[t,C] = ode45('ode_lotka_volterra',10,c0,[],k); 
                    %call ode-solver

plot(t,C) % plotting C vs t

MATLAB Example 7.8b

function c_dot=ode_lotka_volterra(t,c,flag,k)

% lotka volterra

% sheep --> 2 sheep

% wolf + sheep --> 2 wolves

% wolf --> dead wolf

c_dot(1,1)=k(1)*c(1)-k(2)*c(1)*c(2); % sheep_dot

c_dot(2,1)=k(2)*c(1)*c(2)-k(3)*c(2); % wolf_dot

Surprisingly, the dynamics of such a population is completely cyclic. All prop-
erties of the cycle depend on the initial populations and the “rate constants.” The
“reaction” sheep 2 sheep contradicts the law of conservation of mass and,
thus, cannot directly represent reality. However, as we will see in the next example,
oscillating reactions do exist.

7.5.2.4 The Belousov-Zhabotinsky (BZ) Reaction

Chemical mechanisms for real oscillating reactions are very complex and are not
understood in every detail. Nevertheless, there are approximate mechanisms that
correctly represent several main aspects of real reactions. Often, not all physical
laws are strictly obeyed, e.g., the law of conservation of mass.

The Belousov-Zhabotinsky (BZ) reaction involves the oxidation of an organic
species such as malonic acid (MA) by an acidified aqueous bromate solution in the
presence of a metal ion catalyst such as the Ce(III)/Ce(IV) couple. At excess [MA], the
stoichiometry of the net reaction is

(7.37)

A short induction period is typically followed by an oscillatory phase visible by an
alternating color of the aqueous solution due to the different oxidation states of the

k1 →

2 3 2 2
3 2 2

BrO CH COOH H BrCH COOcatalyst− ++ +  →( ) ( HH CO H O)
2 2 2

3 4+ +

DK4712_C007.fm  Page 251  Tuesday, January 31, 2006  12:04 PM

© 2006 by Taylor & Francis Group, LLC



252 Practical Guide to Chemometrics

metal catalyst. Addition of a colorful redox indicator, such as the FeII/III(phen)3

couple, results in more dramatic color changes. Typically, several hundred oscilla-
tions with a periodicity of approximately a minute gradually die out within a couple
of hours, and the system slowly drifts toward its equilibrium state.

In an effort to understand the BZ system, Field, Körös, and Noyes developed
the so-called FKN mechanism [30]. From this, Field and Noyes later derived the
Oregonator model [31], an especially convenient kinetic model to match individual
experimental observations and predict experimental conditions under which oscil-
lations might arise.

(7.38)

Mox represents the metal ion catalyst in its oxidized form. Br− and BrO3
− are not

protonated at pH ≈ 0.
It is important to stress that this model is based on an empirical rate law that

clearly does not comprise elementary processes, as is obvious from the unbalanced
equations. Nonetheless, the five reactions in the model provide the means to kinet-
ically describe the four essential stages of the BZ reaction [32]:

1. Formation of HBrO2

2. Autocatalytic formation of HBrO2

3. Consumption of HBrO2

4. Oxidation of malonic acid (MA)

rate constants k1 = 1.28 M−1s−1, k2 = 33.6 M−1s−1, k3 = 2.4 × 106 M−1s−1, k4 = 3 × 103

M−1s−1, k5 = 1 M−1s−1 for [H]+ = 0.8 M at the initial concentrations [BrO3
−]0 = 0.063 M,

[Ce(IV)]0 = 0.002 M (= [Mox]0), and [MA]0 = 0.275 M [3, 32]. We applied again
MATLAB’s stiff solver ode15s. Note that for this example, MATLAB’s default
relative and absolute error tolerances (RelTol and AbsTol) for solving ODEs have to
be adjusted to increase numerical precision.

For this example, we do not give the MATLAB code for the differential equa-
tions. The code can be fairly complex and, thus, its development is prone to error.
The problem is even more critical in the spreadsheet application where several cells
need to be rewritten for a new mechanism. We will address this problem later when
we discuss the possibility of automatic generation of computer code based on
traditional chemical equations.
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For the calculation of the kinetic profiles displayed in Figure 7.18, we used the
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7.6 CALCULATION OF THE CONCENTRATION 
PROFILES: CASE III, VERY COMPLEX MECHANISMS

For most academic investigations, reaction conditions are kept under as much control
as possible. Solutions are thermostatted and buffered, and investigations are carried
out in an excess of an inert salt. This is done to keep temperature, pH, and ionic
strength constant. In industrial situations, it is often not possible, nor is it necessarily
desirable, to control conditions. Temperature fluctuations within safe limits are not
necessarily detrimental and the addition of external buffer or salt is out of the
question.

A few developments have been published recently that attempt to incorporate
such experimental “inconsistencies” into the numerical analysis of the measurements
[33–35]. The central formula, the set of differential equations that needs to be
integrated, can be written in a very general way.

(7.39)

The differential of the matrix of concentrations with respect to time, , is a function
of the matrix of concentrations, C, and both depend on the chemical model with its
vector of parameters, in our case the rate constants, k. To accommodate experimental
inconsistencies, such as the ones mentioned above, we need to adjust this set of
equations appropriately.

Let us start with variable temperature. Rate constants are influenced by temper-
ature, T, and the numerical solutions of the differential equations will be affected.
We can write

(7.40)

FIGURE 7.18 The BZ reaction as represented by the Oregonator model. Calculated concen-
tration profiles for HBrO2 () and BrO3

− (…) toward the thermodynamic equilibrium. Note
the different ordinates for [HBrO2] and [BrO3

−].
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There are two models that quantitatively describe the relationship between tem-
perature and rate constants, the Arrhenius theory and the Eyring theory [2, 3].
Engineers prefer the Arrhenius equation because it is slightly simpler, while kineti-
cists prefer the Eyring equation because its parameters (entropy and enthalpy of
activation, ∆S≠ and ∆H≠, respectively) can be interpreted more directly. Here, we
will use Eyring’s equation.

(7.41)

where R is the gas constant, and kB and h are Boltzmann’s and Planck’s constants,
respectively.

Whenever the ODE-solver calls for the calculation of the differential equations,
the actual values for the rate constants have to be inserted into the appropriate
equations. Obviously, the temperature has to be recorded during the measurement.

Figure 7.19 compares the concentration profiles for the simple reaction A→B at
constant and increasing temperature. The concentration profiles for the isothermal

reaction is based on the activation parameters DS≠ =−5 J mol−1 K−1 and
∆H≠ = 80 kJ mol−1 and a temperature gradient from 5 to 55˚C over the same time
interval. According to Eyring’s equation (Equation 7.41), this leads to rate constants
k(T) between 0.003 s−1 (t = 0 s, T = 5°C) and 0.691 s−1 (t = 50 s, T = 55°C).

There are clear advantages and also clear disadvantages in this new approach
for the analysis of nonisothermal measurements [33]. Now there are two new para-
meters, ∆S≠ and ∆H≠, for each rate constant, i.e., there are twice as many parameters
to be fitted. Naturally, this can lead to difficulties if not all of them are well defined.
Another problem lies in the fact that molar absorptivity spectra of the species can
show significant temperature dependencies. Advantages include the fact that, in

FIGURE 7.19 Concentration profiles for a first-order reaction A→B ( A, … B) at constant
(thin lines) and increasing (thick lines) temperature.
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reaction are the same as in Figure 7.1 and MATLAB Example 7.1. The nonisothermal
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principle, everything is determined by only one measurement. Thus, long and time-
consuming investigations on the temperature dependence of a reaction are no longer
required. It is also possible to accelerate a reaction by increasing the temperature
with progress of the reaction, thus reaching the end in a shorter time. This has
similarities to a temperature program in gas chromatography.

On a similar theme, changes in pH or ionic strength, I, during the reaction have
an effect on the rates by influencing the concentrations or activities of the reacting
species.

(7.42)

Again, it is beyond the scope of this chapter to describe in any detail how these
effects are modeled quantitatively or how the results are incorporated into the set
of differential equations. In particular, pH equilibria can be very complex, and
specific additional iterative routines are required to resolve coupled protonation
equilibria quantitatively [35].

Two examples must suffice:

(7.43)

The protonation equilibrium between ammonia and the ammonium ion is shifted to
the right as a result of coordination of unprotonated ammonia to copper. The drop
in pH decelerates the complexation reaction, as there is comparatively less free
ammonia available. Such protonation equilibria are much more complex if multi-
dentate ligands (bases) are involved, but the effect is generally similar: a drop in pH
is the immediate result of coordination, and this drop increases the protonation of
the ligand and thus decreases its reactivity toward the metal ion.

Similarly, consider the reaction:

(7.44)

Depending on total concentrations, a dramatic change in the ionic strength results
from the formation of a neutral complex from a metal cation and ligand anions.

Traditionally, it was necessary to maintain constant pH and ionic strength in
order to quantitatively model and analyze such reactions. Methods for the analysis
of the above nonideal data sets have been published [34, 35].

7.7 RELATED ISSUES

This chapter is far from being a comprehensive introduction to the analysis of kinetic
data of any kind acquired by any technique. There are many additional issues that
could be discussed in detail. In the following subsections, we touch a few of them.
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7.7.1 MEASUREMENT TECHNIQUES

So far we have concentrated on spectroscopic measurements related to electronic
transitions in molecules; this includes absorption and emission spectroscopy in the
UV/Vis region of the electromagnetic spectrum. Due to the almost universal avail-
ability of appropriate and inexpensive instruments in any laboratory, these happen
to be the most commonly used techniques for the investigation of kinetics. Absorp-
tion and emission spectrometers feature good linear signals over useful ranges of
concentrations, ease of thermostatting, and, very importantly, the availability of
cuvettes and many solvents. Several alternative techniques such as CD, IR, ESR
(electron spin resonance), NMR, etc. provide some but not all of these advantages.
For example, CD instruments are relatively expensive, while aqueous solutions are
difficult to investigate by IR techniques unless ATR (attenuated total reflection)
techniques [36] are applied. From the point of view of data analysis as discussed in
this chapter, the main requirement is a linear relationship between concentration and
signal. Any of the spectroscopic techniques mentioned here can be directly analyzed
by the presented methods with the notable exception of NMR spectroscopy if the
investigated equilibria are fast on the NMR time scale, e.g., protonation equilibria
or fast ligand exchange processes.

7.7.2 MODEL PARSER

Another aspect of a very different nature also merits attention. For complex
reaction schemes, it can be very cumbersome to write the appropriate set of
differential equations and their translation into computer code. As an example,
consider the task of coding the set of differential equations for the Belousov-

more importantly, those mistakes can be difficult to detect. For any user-friendly
software, it is imperative to have an automatic equation parser that compiles the
conventionally written kinetic model into the correct computer code of the appro-
priate language [37–39].

7.7.3 FLOW REACTORS

Academic kinetic investigations are generally performed in stationary solutions,
typically in a cuvette. Continuous reactors are much more common in industrial
situations. Using fiber-optic probes, absorption spectroscopy is routinely performed
in flow reactors. The flow of reagents into a reactor or of a reaction mixture out of
a reactor is also quantitatively modeled by appropriately modifying the set of
differential equations. Refer to the engineering literature for details that are beyond

7.7.4 GLOBALIZATION OF THE ANALYSIS

A very important recent development in kinetics (and other fields of data analysis)
is the globalization of the analysis of several measurements taken under different
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Zhabotinsky reaction (see Section 7.5.2.4). It is too easy to make mistakes and,

the scope of this chapter [40].



Kinetic Modeling of Multivariate Measurements with Nonlinear Regression 257

conditions [38, 39, 41]. In kinetics, such different conditions include different initial
concentrations of the reacting species, as well as different temperature, pressure,
pH, etc. For the investigation of complex reaction mechanisms, it is often not feasible
to find conditions that allow the analysis of the complete mechanism in one single
measurement. Thus a series of measurements has to be acquired, each measured
under different conditions. Global analysis of the complete set of measurements is
clearly the most appropriate method.

Again, it might be easiest to consider an example:

(7.45)

The reaction scheme in Equation 7.45 represents the complex formation reaction
between a metal ion M and three equivalents of a bidentate ligand L (e.g., ethylene-
diamine) to form an octahedral complex ML3.

It is possible to single out the first reaction by working with an excess of metal.
This will not prevent the formation of some ML2 and even ML3, but it will keep it
minimal and thus allow the independent determination of k1. The accurate determi-
nation of k2 and k3 is more challenging, as they cannot be determined independently.
The reaction of a 1:2 ratio of metal to ligand will result in relatively well-defined
k2, while 1:3 conditions will define k3 relatively well. But all three reactions occur
simultaneously in any of these situations. The principle of global analysis is to avoid
the difficulties encountered when trying to separate individual reactions. Instead,
several measurements are analyzed together, the only requirement being that each
reaction be well defined in at least one measurement. Small side reactions that occur
in each individual measurement are poorly defined on one measurement but are well
defined in another.

7.7.5 SOFT-MODELING METHODS

Model-based nonlinear least-squares fitting is not the only method for the analysis
of multiwavelength kinetics. Such data sets can be analyzed by so-called model-free
or soft-modeling methods. These methods do not rely on a chemical model, but only
on simple physical restrictions such as positiveness for concentrations and molar

book. They can be a powerful alternative to hard-modeling methods described in
this chapter. In particular, this is the case where there is no functional relationship
that can describe the data quantitatively. These methods can also be invaluable aids
in the development of the correct kinetic model that should be used to analyze the
data by hard-modeling techniques.
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absorptivities. Soft-modeling methods are discussed in detail in Chapter 11 of this
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Soft-modeling methods tend to be significantly less robust compared with hard-
modeling analyses. This is fairly obvious, as the restrictions are much less stringent
than a preset chemical model. However, hard-modeling methods only describe the
modeled part of the measurements and cannot easily deal with instrumental incon-
sistencies or additional side reactions that are not included in the model. Recent
developments are aimed at combining the strengths of the two modeling approaches,
adding robustness through the narrow guiding principle of a chemical model while
still allowing external inconsistencies [42, 43].

7.7.6 OTHER METHODS

Direct search methods such as the simplex algorithm and the NGL/M methods
comprise the majority of fitting methods used in science. Nevertheless, there
are many alternatives that we have not discussed. Notably, the algorithms
offered by Solver in Excel include Newton and conjugate gradient methods.
An interesting class of methods is based on prior factor analysis of the data
matrix Y. They provide advantages if certain inconsistencies, such as baseline
shifts are corrupting the data [44]. In certain other cases, they allow the
independent fitting of individual parameters in complex reaction mechanisms
[45]. Particular properties of the exponential function allow completely different
methods of analysis [46].

APPENDIX 

data_ab

function [t,y]=data_ab

% absorbance data generation for A -> B

t=[0:50]'; % reaction times

A_0=1e-3; % initial concentration of A

k=.05; % rate constant

% calculating C

C(:,1)=A_0*exp(-k.*t); % concentrations of A

C(:,2)=A_0-C(:,1); % concentrations of B

a=[100;400]; % molar abs at one wavelength only

y=C*a; % applying Beer's law to generate y

randn('seed',0); % fixed start for random number generator

r=1e-2*randn(size(y)); % normally distributed noise

y=y+r; % of standard deviation 0.01
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data_abc
function [t,Y]=data_abc

% absorbance data generation for A -> B -> C

t=[0:25:4000]'; % reaction times

w=[300:(600-300)/(1024-1):600];% 1024 wavelengths

k=[.003 .0015]; % rate constants

A_0=1e-3; % initial concentration of A

C(:,1)=A_0*exp(-k(1)*t);                    % concentrations of species A

C(:,2)=A_0*k(1)/(k(2)-k(1))*(exp(-k(1)*t)-exp (-k(2)*t)); % conc. of B

C(:,3)=A_0-C(:,1)-C(:,2); % concentrations of C

A(1,:)=1.0e3*exp(-((w-450).^2)/((60^2)/(log(2)*4))) + ...

      0.5e3*exp(-((w-270).^2)/((100^2)/(log(2)*4))); % molar spectrum of A

A(2,:)=1.5e3*exp(-((w-400).^2)/((70^2)/(log(2)*4))) + ...

      0.3e3*exp(-((w-250).^2)/((150^2)/(log(2)*4))); % molar spectrum of B

A(3,:)=0.8e3*exp(-((w-500).^2)/((80^2)/(log(2)*4))) + ...

       0.4e3*exp(-((w-250).^2)/((200^2)/(log(2)*4))); % molar spectrum of C

Y=C*A; % applying Beer's law to generate Y

randn('seed',0); % fixed start for random number generator

R=1e-2*randn(size(Y));   % normally distributed noise

Y=Y+R;            % of standard deviation 0.01
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8.1 INTRODUCTION

 

The design of experiments (DOE) is part of response-surface modeling (RSM)
methodology. The purpose of experimental designs is to deliver as much informa-
tion as possible with a minimum of experimental or financial effort. This infor-
mation is then employed in the construction of sensible models of the objects
under investigation.

This chapter is intended to describe the basic methods applied in the construction
of experimental designs. An essential part of this chapter is the examination of a
formal approach to investigating a research problem according to the “black box”
principle and the factor spaces related to it.

Most of the approaches are illustrated with examples. We also illustrate how
experimental designs can serve to develop calibration sample sets — a widely applied
method in chemometrics, especially multivariate calibration.
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8.2 RESPONSE-SURFACE MODELING
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 RSM

 

One can divide RSM into three major areas: the design of experiments, model fitting,
and process or product optimization. One of the major origins of this area of
statistical modeling is the classical paper of Box and Wilson [1].

Suppose for example, one wishes to optimize the yield of a batch chemical
reaction by adjusting the operating conditions, which include the reaction tempera-
ture and the concentration of one of the reagents. The principles of 

 

experimental
design

 

 describe how to plan and conduct experiments at different combinations of
temperature and reagent concentration to obtain the maximum amount of information
(a response surface) in the fewest number of experiments. When properly designed
experiments are utilized, the principles of response-surface modeling can then be
used to fit a statistical model to the measured response surface. In this example, the
response surface is yield as a function of temperature and reagent concentration.
Once a statistically adequate model is obtained, it can be used to find the set of
optimum operating conditions that produce the greatest yield.

As a general approach in RSM, one uses the “black box” principle (see
Figure 8.1a). According to this principle, any technological process can be
characterized by its input variables, 

 

x
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,; the output or response variables,
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; and the noise variables, 
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. One then considers two ways
of performing an experiment, active or passive. There are several important pre-
sumptions for active experiments:

• The set of the noise variables, in comparison with the input variables, is
assumed to have insignificant influence on the process.

• During an active experiment, the experimenter is presumed to be able to

 

control 

 

the values of 

 

x

 

i

 

, with negligibly small error, when compared with
the range of the variation of each of the input variables. (“To control”
here means to be able to set a desirable value of each of the input variables
and to be able maintain this value until the necessary measurement of the
process output or response variable(s) has been performed.)

• The experimenter is presumed to be able to measure the output variables,
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s

 

 again with negligibly small error, when compared with the
range of their variation.

 

FIGURE 8.1

 

The “black box” principle.
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The active-experiment approach is usually applicable in laboratory conditions.
In fact, this is the major area of application of the methods of the experimental
design. In the case where the experimenter is not able to control the input variables,
one deals with a passive experiment. In this case, the experimenter is presumed able
to measure, with negligible error, the values of the input variables (or factors) as
well as the values of the output variables, i.e., the responses. In this case, it is also
possible for the principles of experimental design to be applied [2]. Passive exper-
iments are common in process analysis where the user has little or no control over
the process variables under investigation.

It is assumed that the summation of the noise variables over each of the 

 

s

 

responses can be represented by one variable 
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i
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 1,
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. Without any loss of
generality, we assume that values of the error variables are distributed normally
having variance 

 

σ

 

2

 

 and mean zero, 
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). Based on these assumptions, one

Now the measurable response variable, 
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, can be represented as:

 

y

 

i

 

 

 

=

 

 

 

η

 

i

 

 

 

+

 

 

 

ε

 

i

 

(8.1)

where 
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i

 

 is the real but unknown value of the response and 
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i

 

 is the value of the
random error associated with 
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. The response function is:
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(8.2)

It is a general assumption in RSM that, within the operational region (the area
of feasible operating conditions), the function 

 

η

 

 is continuous and differentiable.
Let 
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T

 

 represent the vector of some particular feasible operating
condition, e.g., a point in the operational region. It is known that we can expand 

 

η

 

around 
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0

 

 in a Taylor series:

(8.3)

By making the following substitutions
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can represent the “black box” principle in a slightly different way (see Figure 8.1b).
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Equation 8.3 takes on a familiar polynomial form of the type:

(8.5)

The coefficients 

 

β

 

i

 

 in Equation 8.5 describe the behavior of the function 

 

η

 

 near
the point 

 

x

 

0

 

. If one is able to estimate values for 

 

β

 

i

 

, then a model that describes the
object can be built. The problem here is that, according to Equation 8.1, we can
only have indirect measurements of the real values of 

 

η

 

, hence we are unable to
calculate the real coefficients 

 

�

 

 of the model described by Equation 8.5. Instead,
we can only calculate their estimates, . Also, since the Taylor series is infinite, we
must decide how many and which terms in Equation 8.5 should be used.

The typical form of the regression model is

(8.6)

Considering Equation 8.3, Equation 8.6 receives its widely used form,

(8.7)

where is the predicted value of the 

 

j

 

th response at an arbitrary point 

 

x, 
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 is the
number of the regression coefficients, 
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i

 

 is the estimate of the 

 

i

 

th regression coeffi-
cient, and 

 

f

 

i

 

(

 

x

 

) is the 

 

i

 

th regression function.
The method of response-surface modeling provides a framework for addressing

the above problems and provides accurate estimates of the real coefficients, 

 

�

 

. The
basic steps of RSM methodology are

1. Choose an appropriate response function, 

 

η

 

.
2. Choose appropriate factors, 

 

x, 

 

having a significant effect on the response

 

.

 

3. Choose the structure of the regression model — a subset of terms from
Equation 8.5.

4. Design the experiment.
5. Perform the measurements specified by the experimental design.
6. Build the model and calculate estimates of the regression coefficients, .
7. Perform a statistical analysis of the model to prove that it describes

adequately the dependence of the measured response on the controlled
factors.

8. Use the model to find optimal operating conditions of the process under
investigation. This is done by application of a numerical optimization
algorithm using the model as the function to be optimized.

9. Check in practice whether the predicted optimal operating conditions
actually deliver the optimal (better in some sense) values of the response.
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8.2.2 FACTOR SPACES

8.2.2.1 Process Factor Spaces

We next define the concepts of the operating region, O, and experimental region, E
(see Figure 8.2). The operating region is the set of all theoretically possible operating
conditions for the input variables, x. For example, in a chemical reactor, the upper
and lower bounds of the operating conditions for temperature might be dictated by
the reaction mixture’s boiling point and freezing point. The reactor simply cannot
be operated above the boiling point or below the freezing point. Usually there is
only a rough idea about where the boundaries of O are actually situated. The
experimental region E is the area of experimental conditions where investigations
of the process take place. We define E by assigning some boundary values to each
of the input variables. The boundaries of E can be independent of actual values of
the factors or they can be defined by some function of x.

All possible operating conditions are represented as combinations of the values
of the input variables. Each particular combination x = {x1, x2, …, xm} is represented
as a point in a Descartes coordinate system. It is important that each point included
in E must be feasible. This includes the points positioned in the interior and also on
the boundaries of E, which represent extreme operating conditions, those typically
positioned at the edges or corners of E.

process variables and mixture variables. Process variables are mutually independent,
thus we can change the value of each of them without any effect on the values of
the others. Typical examples for process variables are temperature, speed of stirring,
heating time, or amount of reagent. Examples of process factor spaces are shown

It would be convenient if all of the calculations related to the values of the
process variables could be performed using their natural values or natural scales;
for instance, the temperature might be varied between 100 and 400°C and the speed

FIGURE 8.2 Two-dimensional factor space showing experimental region, E, and operating
region, O.
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The input variables shown in Figure 8.1 can be divided into two main groups,

in Figure 8.2 and Figure 8.3.
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between 1 and 3 rpm. Unfortunately, this is not recommended because, practically
speaking, most calculations are sensitive to the scale or magnitude of the numbers
used. This is why we apply a simple transformation of the process variables. Each
variable is coded to have values within the range [−1, 1]. The transformation formula
is shown in Equation 8.8

(8.8)

where is the natural value of the ith variable, is its mean, and p is the number
of process variables. Factor transformation or factor coding is illustrated graphically
in Figure 8.4 for two-dimensional and three-dimensional process factor spaces.

After completing the response-surface modeling process described here, the
inverse transformation can be used to obtain the original values of the variables.

(8.9)

8.2.2.2 Mixture Factor Spaces

Quite frequently, and especially in research problems arising in chemistry and
chemistry-related areas, an important type of factor variables is encountered, and
these are called “mixture variables.” Apart from the usual properties that are common

FIGURE 8.3 One-dimensional factor space in natural variables.

FIGURE 8.4 Two- and three-dimensional factor spaces in coded variables.
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to all factors considered in the “black box” approach (see Figure 8.1), mixture
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variables have some additional features. The most commonly encountered are those
involving constraints imposed on the values of two or more variables, as shown in
Equation 8.10 and Equation 8.11

(8.10)

subject to

(8.11)

The constraints shown in Equation 8.10 and Equation 8.11 are a consequence
of the nature of mixture problems. In the example illustrated by these equations,
each variable represents the relative proportion of a particular ingredient in a mixture
blended from q components. For example, a mixture of three components, where
the first component makes up 25% of the total, the second component makes up
15% of the total, and the third component makes up 60% of the total, is said to be
a ternary mixture. The respective values of the mixture variables are x1 = 0.15, x2 = 0.25,
x3 = 0.60, giving x1 + x2 + x3 = 1. Depending on the number of mixture variables,
the mixture could be binary, ternary, quaternary, etc.

For a mixture with q variables (i.e., q components), the mixture factor space is

the respective Euclidean space. Figure 8.5 illustrates the case of a binary mixture.
The constraint described by Equation 8.11 holds for points A, B, and C; however,
only point B and all points on the heavy line in Figure 8.5 are points from the
mixture space satisfying the conditions described by the constraints in Equation 8.10
as well.

Figure 8.6 illustrates the relationship between Euclidean and mixture-factor
space for three variables. Here, we see that the set of the mixture points lying on

FIGURE 8.5 Relationship between the barycentric and Descartes coordinate systems, two-
dimensional example.
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a subspace of the respective q-variables in Euclidean space. In Figure 8.5, Figure 8.6,
and Figure 8.7, we see the relationship between the mixture coordinate system and
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the patterned plane inside the cube follows the constraints described by
Equation 8.11. Figure 8.7 shows the point with coordinates x1 = 0.15, x2 = 0.25,
x3 = 0.60 in a simplex coordinate system (a) and its position in the corresponding
Descartes coordinate system (b). The geometric figure in which the points lie in a
barycentric coordinate system is called a “simplex.” The name originates from the fact
that any q-dimensional simplex is the simplest convex q-dimensional figure.

Systematic work on experimental designs in the area of mixture experiments
was originated by Henry Scheffé, [3, 4]. Cornell provides an extensive reference on
the subject [5].

FIGURE 8.6 Relationship between the barycentric and Descartes coordinate systems, three-
dimensional example.

FIGURE 8.7 Coordinates of the point x = [x1 = 0.25, x2 = 0.15, x3 = 0.60] in a mixture factor
space. The position of the point is shown in barycentric (a) and Descartes (b) coordinate
systems.
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8.2.2.3 Simplex-Lattice Designs

The first designs for mixture experiments were described by Scheffé [3] in the form
of a grid or lattice of points uniformly distributed on the simplex. They are called
“{q, v} simplex-lattice designs.” The notation {q, v} implies a simplex lattice for q
components used to construct a mixture polynomial of degree v. The term “mixture
polynomial” is introduced to distinguish it from the polynomials applicable for
mutually independent or process variables, which are described later in our discus-
sion of factorial designs (section 8.4). In this way, we distinguish “mixture polyno-
mials” from classical polynomials.

As seen in Equation 8.10, there is a linear dependence between the input
variables or controlled factors that create a nonunique solution for the regression
coefficients if calculated by the usual polynomials. To avoid this problem, Scheffé [3]
introduced the canonical form of the polynomials. By simple transformation of the
terms of the standard polynomial, one obtains the respective canonical forms. The
most commonly used mixture polynomials are as follows:

Linear:

(8.12)

Quadratic:

(8.13)

Full cubic:

(8.14)

Special cubic:

(8.15)

The simplex-lattice type of experimental design for these models consists of
points having coordinates that are combinations of the vth proportions of the
variables:

(8.16)
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As an example, the design {q = 3, v = 2} for three mixture variables and a
quadratic (v = 2) model consists of all possible combinations of the values:

(8.17)

The corresponding design consists of the points having the coordinates:

We can quickly verify that all combinations of the values listed in Equation 8.17
are subject to the constraint shown in Equation 8.10. The design constructed in this
manner is shown in Figure 8.8b.

FIGURE 8.8 Examples of simplex lattices for (a) linear, (b) quadratic, (c) full cubic, and (d)
special cubic models.
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8.2.2.3.1 Advantages of the Simplex-Lattice Designs
Simplex-lattice designs historically were the first designs intended to help in the
research of mixtures. They are simple to construct and there are simple formulas to
calculate the regression coefficients using a conventional hand calculator. Further-
more, the regression coefficients are easy to interpret. For example, the values of bi

in the models described by Equation 8.12 through Equation 8.15 represent the effect
of the individual components (input variables) on the magnitude of the response,
where xi = 1, xj = 0, j = 1, q, i ≠ j. The magnitude of the bi coefficients thus gives
an estimate of the relative importance of the individual components on the outcome
(i.e., response) of the experiment. Unfortunately, interpretation of the higher-order
coefficients, namely βij, βijl, δij, is not so straightforward. Each of these coefficients
is influenced by several factors.

The simplex-lattice designs are composite designs. Usually, at the beginning of
a research project, the experimenter does not know the correct order of the model
that best describes the relationship between the input factors and the response. If a
model is chosen with too high of an order when the true model is of a lower order,
then overfitting combined with an unnecessarily large number of experiments is the
likely outcome. By using composite designs, the experimenter can start with a model
of low order, possibly even a linear model, which is the lowest possible order. If the
resulting model does not appear to be inadequate, it is possible to simply add new
observations to the existing ones and fit a higher-order model, giving new regression
coefficients. For example, in the case of a three-factor mixture problem, one can

are performed, the model described by Equation 8.12 can be used to calculate the
regression coefficients. If an excessive lack of fit is observed, additional measure-
ments can be added at the points [0.5, 0.5 0.0], [0.5, 0.0, 0.5], and [0.0, 0.5, 0.5],
giving a second-order lattice, {3,2}, shown in Figure 8.8b. The augmented experi-
mental data can then be used to fit a model of the type described by Equation 8.13.
If the resulting model is still not satisfactory, another measurement at [1/3, 1/3, 1/3]
can be added to construct the special cubic model described by Equation 8.15.
Unfortunately, the composite feature of the simplex-lattice designs does not continue
to higher orders beyond the special cubic order. For example, in order to get a full cubic
design from special cubic design, the measurements at the three points of the type {0.5,
0.5, 0} must be discarded and replaced with another six of the type {1/3, 2/3, 0,}.

Another advantage of simplex-lattice designs having special cubic order or lower
order is that they are D-optimal. Namely, they have the maximum value of the
determinant of the information matrix in the case of mixtures, XTX. Another common
advantage of simplex-lattice designs is the possibility of generating component
contour plots showing the behavior of the model in a three-dimensional space.

8.2.2.3.2 Disadvantages of the Simplex-Lattice Designs
The simplex-lattice designs are applicable only for problems where the condition

0 ≤ xi ≤ 1, i = 1,…, q (8.18)

holds. This means that each of the components has to be varied between 0 and 100%.
These designs assume that it is possible to prepare “mixtures” where one or more
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start with the first-order {3,1} design shown in Figure 8.8a. After the measurements
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of the components are not included (i.e., having 0% concentrations). This may not
be practical for some particular investigations. Additionally, phase changes (e.g.,
solid–liquid) must not occur during the variation of the components. All mixtures
must be homogeneous.

8.2.2.3.3 Simplex-Lattice Designs, Example
Suppose we wish to construct an experimental design for a mixture consisting of
four components and model it with a cubic polynomial model, as described by
Equation 8.14. Our task is to construct a {4,3} simplex-lattice design with q = 4
and v = 3. The proportions of each of the components are calculated by
Equation 8.16, giving the following values:

xi = 0, 1/3, 2/3, 3/3 ≈ (0, 0.333, 0.666,1)

The design matrix consists of all permutations of these proportions. The structure
of the regression model will be

proportions 1 and 0. Rows 5 to 16 include all combinations of (0.666, 0.333, and 0),
and rows 17 to 20 include all combinations of (0.333, 0.333, 0.333, and 0). The far
right column represents the values where the measurements of the responses should
be recorded. The subscripts are added for convenience and denote the numbers of
the factors having values different from zero. The values for the responses could be
single measurements or mean values of several replicates.

8.2.2.4 Simplex-Centroid Designs

One of the major shortcomings of simplex-lattice designs is that they include blends
that consist of only v components, where v is the order of the model. For example,
if one intends to explore a five-component system, applying a second-order model
would only give mixtures of up to two components in a {5, 2} simplex-lattice design.
No mixtures of the type {1/3,1/3,1/3, 0, 0}, {1/4,1/4,1/4,1/4, 0}, or {1/5,1/5,1/5,1/5, 1/5, 0}, appear

design. In this case, no point of the type {1/3,1/3,1/3}appears. The lack of measurements
at blends consisting of a higher number of components decreases chances that the
model will describe high-order interactions or sharp changes in the response surface.
To improve the distribution of the points within the simplex space, Scheffé [4]
introduced simplex-centroid designs. These designs are constructed of points where

ŷ x x x x x x x= + + + + + +1β β β β β β β
1 2 2 3 3 4 4 12 12 13 13 14 14

++ + +

+ − +

β β β

δ δ

23 23 24 24 34 34

12 1 2 1 2 13 1

x x x

x x x x x( ) xx x x

x x x x x x x x

3 1 3

14 1 4 1 4 23 2 3 2 3 2

( )

( ) ( )

−

+ − + − +δ δ δ
44 2 4 2 4

34 3 4 3 4 123 1 2 3 12

x x x x

x x x x x x x

( )

( )

−

+ − + +δ δ δ
44 1 2 4 134 1 3 4 234 2 3 4
x x x x x x x x x+ +δ δ

DK4712_C008.fm  Page 275  Saturday, March 4, 2006  1:59 PM

© 2006 by Taylor & Francis Group, LLC

Rows 1 to 4 in Table 8.1 represent all of the possible combinations of the

in this design. Figure 8.8b illustrates the same principle for a {3, 2} simplex-lattice
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the nonzero compounds in the blends are of equal proportions. For example, the
design for a four-component system consists of:

1. All blends with one nonzero compound, i.e., the vertices of the simplex,
xi = 1, xj = 0, i ≠ j, j = 1,q

2. All blends with two nonzero compounds, i.e., xi = xj = 1/2, xl = 0, l ≠ i,
l ≠ j, l = 1, q

3. All blends with three nonzero compounds, i.e., xi = xj = xl = 1/3, xl = 0,
l ≠ i, l ≠ j, l ≠ k, l = 1,q

4. One blend where all of the four compounds are presented in equal pro-
portions, i.e., x1 = x2 = x3 = x4 = 1/4.

The points of this type of design are positioned at the vertices, the center of the
edges of the simplex, the centroids of the planes of the simplex, and the centroid of
the simplex. To generalize the notation, we can consider the vertices of the simplex
[1, 0, …, 0] as centroids of a zero-dimensional plane, the points at the edges
[1/2,1/2,0,…, 0] as centroids of one-dimensional planes, the points of the type
[1/3,1/3,1/3,0,…, 0] as centroids of two-dimensional planes, the points of the type
[1/4,1/4,1/4,1/4,0,…, 0] as centroids of three-dimensional planes, and so on. The

TABLE 8.1
Four-Component Simplex-Lattice Mixture Design 
for a Cubic Polynomial Model

Proportions of the Mixture Components Response
No. x1 x2 x3 x4 y

1 1 0 0 0 y1

2 0 1 0 0 y2

3 0 0 1 0 y3

4 0 0 0 1 y4

5 0.666 0.333 0 0 y112

6 0.666 0 0.333 0 y113

7 0.666 0 0 0.333 y114

8 0.333 0.666 0 0 y122

9 0.333 0 0.666 0 y133

10 0.333 0 0 0.666 y144

11 0 0.666 0.333 0 y223

12 0 0.666 0 0.333 y224

13 0 0.333 0.666 0 y233

14 0 0.333 0 0.666 y244

15 0 0 0.666 0.333 y334

16 0 0 0.333 0.666 y344

17 0.333 0.333 0.333 0 y123

18 0.333 0.333 0 0.333 y124

19 0.333 0 0.333 0.333 y134

20 0 0.333 0.333 0.333 y234
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simplex-centroid designs, unlike the simplex lattices, are not model dependent. For
each number of components there is only one design. Hence, provided with the
number of the components, q, one can calculate the number of the points in a
simplex-centroid design from the formula in Equation 8.19

(8.19)

where the quantity is the well-known binomial coefficient and represents the number

of the centroids on the r − 1 dimensional planes. Thus  is the number of

the centroids on r − 1 = 1 − 1 = 0-dimensional planes,  is the number

of the centroids on r − 1 = 2 − 1 = 1-dimensional planes, and so on. It is easiest if

one thinks of r simply as the number of the nonzero components included in the

centroid.

The common structure of the regression model applicable to all simplex-centroid
designs is shown in Equation 8.20.

(8.20)

For example, the model for q = 4 is:

(8.21)

8.2.2.4.1 Advantages of Simplex-Centroid Designs
There are two important advantages of the simplex-centroid type of design. Firstly,
simplex-centroid designs are D-optimal, which means that they have the maximum
value of the determinant of the information matrix. Secondly, simplex-centroid
designs can be extended to include new variables. For instance, one can perform
the experiments specified by the simplex-centroid design for q = 4 variables and
increase the complexity of the problem at a later time by adding more components,
for example q = 6. The resulting measurements can be used to augment the old
design matrix.

8.2.2.4.2 Disadvantages of Simplex-Centroid Designs
The major disadvantage of simplex-centroid designs is that only one type of model
can be applied, namely a model having the structure shown in Equation 8.20.
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8.2.2.4.3 Simplex-Centroid Design, Example
Suppose we wish to investigate the influence of four aliphatic compounds, designated
x1, x2, x3, and x4, on the “colloidal stability” of lithium lubricants. The general aim
is to search for blends having a minimum quantity of expensive 12-hydroxystearic
acid without decreasing the quality of the lubricant. It is possible to investigate the
full range from 0 to 100% for each of the components. Additionally, the research
team is interested in investigating blends having two, three, and four components.
Based on these criteria, it is decided that a four-component simplex-centroid design
should be used. The experimental design and the measured response values are
shown in Table 8.2.

The structure of the regression model is shown in Equation 8.21. After calcu-
lating the regression coefficients, the resulting regression model is obtained:

The model lack-of-fit was estimated from six additional measurements, shown
below at points not included in the original design, where y represents the measured
response and represents the model estimated response.

TABLE 8.2
Experimental Design for Lithium Lubricant 
Study

Blend Proportions
Colloid

Stability (%)
No. x1 x2 x3 x4 y

1 1 0 0 0 y1 = 11.30
2 0 1 0 0 y2 = 9.970
3 0 0 1 0 y3 = 9.060
4 0 0 0 1 y4 = 7.960
5 0.5 0.5 0 0 y12 = 8.540
6 0.5 0 0.5 0 y13 = 5.900
7 0.5 0 0 0.5 y14 = 8.500
8 0 0.5 0.5 0 y23 = 12.660
9 0 0.5 0 0.5 y24 = 6.210
10 0 0 0.5 0.5 y34 = 11.000
11 0.333 0.333 0.333 0 y123 = 8.260
12 0.333 0.333 0 0.333 y124 = 7.950
13 0.333 0 0.333 0.333 y134 = 7.100
14 0 0.333 0.333 0.333 y234 = 8.470
15 0.25 0.24 0.25 0.25 y1234 = 7.665
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From these six additional experiments, the estimated value of the residual variance
or model lack-of-fit is:

To estimate the variance of error in the measurements, an additional Nε = 4
measurements were performed at one point in the simplex, giving

with degrees of freedom νε = 4 − 1 = 3. An F-test can be used to compare the model
lack-of-fit with the measurement variance, giving the following F-ratio:

The critical value of the F-statistic is F(6,3,0.95) = 8.94. Comparing the calculated
value of F with the critical value F = 1.633 < F(6,3,0.95) = 8.94, we conclude that there
is no evidence for lack of model adequacy; hence, the model is statistically accept-
able. Having produced an acceptable regression model, we can generate a grid of
points within the simplex using some satisfactory small step, say δ = 0.01, to
calculate the predicted value of the response at each point in the grid. The best
mixture is the point that satisfies the initial requirements, i.e., the point having
a high response (percent colloid stability) at a low quantity of the expensive
ingredient.

8.2.2.5 Constrained Mixture Spaces

It is not uncommon for mixtures having zero amount of one ore more of the
components to be of little or no practical use. For example, consider a study aimed

No. x1 x2 x3 x4 y

1 0.666 0.333 0 0   8.70   8.99 −0.29 0.0841
2 0.333 0.666 0 0   8.65   8.54 0.11 0.0121
3 0 0.666 0.333 0 12.75 12.45 0.30 0.09
4 0 0.333 0.666 1 12.01 12.14 −0.13 0.0169
5 0 0 0.666 0.333 11.10 10.89 0.21 0.0441
6 0 0 0.333 0.666 10.40 10.52 −0.12 0.0144
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at determining the proportions of cement, sand, and water giving a concrete mixture
of maximal strength. Obviously, it is not practical to study mixtures consisting of
100% water, or 50% water and 50% sand; hence, we must define some subregion
in the mixture space where some sensible experiments can be performed and mean-
ingful responses obtained. In cases such as these, we define new constraints in
addition to the constraints imposed by Equation 8.10 and Equation 8.11:

(8.22)

There are some special but quite widespread cases where only lower or upper
bounds are imposed. For the case where only lower bounds define the subregion,
Equation 8.22 becomes

ai ≤ xi ≤ 1, i = 1, q. (8.23)

which is illustrated graphically in Figure 8.9.
The shaded subregion shown in Figure 8.9 also has the shape of a simplex. To

avoid the inconvenience of working with lower bounds, we transform the coordinates
of the points in the subregion to achieve lower bounds equal to 0 and upper bounds
equal to 1. The original input variables of the mixture design can be transformed
into pseudocomponents by using the following formula:

(8.24)

FIGURE 8.9 Constrained region of three mixture variables with lower bounds only.
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where

(8.25)

is the sum of the lower bounds. By employing this approach, all of the methods
applicable for analysis of unconstrained mixture problems can be used. To perform
the measurements, we need to have the original values of the input variables (or
components). To reconstruct the design in the original coordinates from the
pseudocomponents, the inverse transformation described in Equation 8.26 is used:

xi = ai + (1 − A)zi (8.26)

The case where only upper bounds are applied is a bit more complicated, namely

0 ≤ xi ≤ bi, i = 1, q. (8.27)

Typical examples of the subregion defined only by upper bounds are shown in
Figure 8.10. The shape of the subregion is an inverted simplex. The planes and edges
of the subregion cross the corresponding planes and edges of the original simplex.
In the case shown in Figure 8.10a, the entire subregion lies within the unconstrained
simplex. It is possible, however, to have a case such as the one shown in Figure 8.10b,
where part of the inverted simplex determined by the upper bounds lies outside the
original one. As a result, the feasible region, i.e., the area where the measurements
are possible, does not have simplex shape. Only in the cases where the feasible region
has the shape of an inverted simplex can we apply the methods applicable to an
unconstrained simplex, as described previously. When the entire subrange lies within
the unconstrained simplex, we can use a pseudocomponent transformation with slight
modifications due to the fact that the sides of the inverted simplex are not parallel to

FIGURE 8.10 Constrained region in three-component mixtures. (a) The feasible region (bold
lines) shaped as inverted simplex lies entirely within the original simplex. (b) Part of the
inverted simplex lies outside the feasible region (bold lines) and has irregular shape.
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the sides of the original simplex. The transformation formula applicable for upper-
bound constraints is suggested by Crosier [6] and shown in Equation 8.28

(8.28)

where

(8.29)

The inverse transformation is obvious from Equation 8.28.
There are simple formulas to determine the shape of the subregion in the case

of upper bounds. In general, the feasible region will be an inverted simplex that lies
entirely within the original one if and only if

(8.30)

An example showing a constrained mixture region with lower bounds and upper
bounds is illustrated in Figure 8.11. We see that for this particular case, the following
constraints apply:

0.1 ≤ x1 ≤ 0.6
0.2 ≤ x2 ≤ 0.45

0.15 ≤ x3 ≤ 0.65

FIGURE 8.11 Constrained mixture region with upper and lower bounds.
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In addition to these commonly encountered constraints, there are also multi-
component constraints,

ai ≤ α1ix1 + α2i x2 + … + αqixq ≤ bi,i = 1,… (8.31)

where α1,i, …, αqi are known coefficients. These types of constraints can be presented
alone or in combination with the constraints mentioned above to define even more-
complicated subregions.

8.2.2.6 Mixture�Process Factor Spaces

The research problems examined so far have involved process or mixture variables

problem where both types of variables are present, namely n = p + q. The problem
where both process and mixture variables are taken into consideration was formu-
lated for the first time by Scheffé [4]. The mixture–process factor space is a cross
product of the mixture and process factor spaces. Each vector x = [x1, x3, …, xq,
xq+1, …, xq+p=n] consists of q coordinates, for which the conditions described in
Equation 8.10, Equation 8.11, and Equation 8.22 hold. The remaining coordinates
represent the values of process variables. The usual practice is to use transformed
or coded values of the process variables rather then the natural ones (see Equation

Symmetric experimental designs for mixture+process factor spaces are the cross
products of symmetric designs for process variables and mixture variables.
Figure 8.12 shows an experimental design in mixture+process factor space for a
model where both types of variables are of the first order. In both of the examples
shown in Figure 8.12, the process variables are described by a two-level full factorial

FIGURE 8.12 Two different presentations of a 12-point design for three mixture variables
and two process variables. (a) The three-point {3,1} simplex-lattice design is constructed at
the position of each of the 22 points of two-level full factorial design. (b) The 22 full factorial
design is repeated at the position of each point of the {3,1} simplex-lattice design. The way
of representation is related to the order chosen for the variables.
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only, hence n = p or n = q (see Figure 8.11). These are special cases of the general

8.8 and Section 8.2.2.1).
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design (FFD). The design for the mixture variables is a simplex lattice of type {3,1}.

represent the same mixture+process factor space.
A much more complicated example for a mixture–process space is shown in

Figure 8.13, where an incomplete cubic simplex-lattice design is combined with a
33 full factorial experimental design. The matrix of the design for Figure 8.13 is

One can also combine the process-variable factor space with a constrained

from three mixture variables with lower and upper bounds and one process
variable.

The presence of both mutually dependent (mixture) and independent (process)
variables calls for a new type of regression model that can accommodate these
peculiarities. The models, which serve quite satisfactorily, are combined canonical
models. They are derived from the usual polynomials by a transformation on the
mixture-related terms. To construct these types of models, one must keep in mind
some simple rules: these models do not have an intercept term, and for second-order
models, only the terms corresponding to the process variables can be squared. Also,
despite the external similarity to the polynomials for process variables only, it is not
possible to make any conclusions about the importance of the terms by inspecting
the values of the regression coefficients. Because the process variables depend on
one another, the coefficients are correlated. Basically, the regression model for
mixture and process variables can be divided into three main parts: mixture terms,
process terms, and mixture–process interaction terms that describe the interaction
between both types of variables. To clearly understand these kinds of models, the
order of the mixture and process parts of the model must be specified. Below are
listed some widely used structures of combined canonical models. The number of
the mixture variables is designated by q, the number of the process variables is
designated by p, and the total number of variables is n = q + p.

FIGURE 8.13 Mixture+process factor space for incomplete cubic simplex-lattice design
combined with a 33 full factorial design.
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shown in Table 8.3.

The two different representations of the design in Figure 8.12 are identical and

mixture space. Figure 8.14 shows an example of the combined space constructed
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Linear (first order) for both mixture and process variables:

(8.32)

Second order for both mixture and process variables:

(8.33)

TABLE 8.3
Mixture+Process Design Constructed from a Full Factorial 33 Design and 
Incomplete {3,3} Lattice

No. x1 x2 x3 x4 x5 No. x1 x2 x3 x4 x5

1 0.00 0.00 1.00 −1.00 −1.00 33 0.50 0.00 0.50   0.00 0.00
2 1.00 0.00 0.00 −1.00 −1.00 34 0.50 0.50 0.00   0.00 0.00
3 0.00 1.00 0.00 −1.00 −1.00 35 0.33 0.33 0.33   0.00 0.00
4 0.00 0.50 0.50 −1.00 −1.00 36 0.00 0.00 1.00   1.00 0.00
5 0.50 0.00 0.50 −1.00 −1.00 37 1.00 0.00 0.00   1.00 0.00
6 0.50 0.50 0.00 −1.00 −1.00 38 0.00 1.00 0.00   1.00 0.00
7 0.33 0.33 0.33 −1.00 −1.00 39 0.00 0.50 0.50   1.00 0.00
8 0.00 0.00 1.00   0.00 −1.00 40 0.50 0.00 0.50   1.00 0.00
9 1.00 0.00 0.00   0.00 −1.00 41 0.50 0.50 0.00   1.00 0.00
10 0.00 1.00 0.00   0.00 −1.00 42 0.33 0.33 0.33   1.00 0.00
11 0.00 0.50 0.50   0.00 −1.00 43 0.00 0.00 1.00 −1.00 1.00
12 0.50 0.00 0.50   0.00 −1.00 44 1.00 0.00 0.00 −1.00 1.00
13 0.50 0.50 0.00   0.00 −1.00 45 0.00 1.00 0.00 −1.00 1.00
14 0.33 0.33 0.33   0.00 −1.00 46 0.00 0.50 0.50 −1.00 1.00
15 0.00 0.00 1.00   1.00 −1.00 47 0.50 0.00 0.50 −1.00 1.00
16 1.00 0.00 0.00   1.00 −1.00 48 0.50 0.50 0.00 −1.00 1.00
17 0.00 1.00 0.00   1.00 −1.00 49 0.33 0.33 0.33 −1.00 1.00
18 0.00 0.50 0.50   1.00 −1.00 50 0.00 0.00 1.00   0.00 1.00
19 0.50 0.00 0.50   1.00 −1.00 51 1.00 0.00 0.00   0.00 1.00
20 0.50 0.50 0.00   1.00 −1.00 52 0.00 1.00 0.00   0.00 1.00
21 0.33 0.33 0.33   1.00 −1.00 53 0.00 0.50 0.50   0.00 1.00
22 0.00 0.00 1.00 −1.00   0.00 54 0.50 0.00 0.50   0.00 1.00
23 1.00 0.00 0.00 −1.00   0.00 55 0.50 0.50 0.00   0.00 1.00
24 0.00 1.00 0.00 −1.00   0.00 56 0.33 0.33 0.33   0.00 1.00
25 0.00 0.50 0.50 −1.00   0.00 57 0.00 0.00 1.00   1.00 1.00
26 0.50 0.00 0.50 −1.00   0.00 58 1.00 0.00 0.00   1.00 1.00
27 0.50 0.50 0.00 −1.00   0.00 59 0.00 1.00 0.00   1.00 1.00
28 0.33 0.33 0.33 −1.00   0.00 60 0.00 0.50 0.50   1.00 1.00
29 0.00 0.00 1.00   0.00   0.00 61 0.50 0.00 0.50   1.00 1.00
30 1.00 0.00 0.00   0.00   0.00 62 0.50 0.50 0.00   1.00 1.00
31 0.00 1.00 0.00   0.00   0.00 63 0.33 0.33 0.33   1.00 1.00
32 0.00 0.50 0.50   0.00   0.00 — — — — — —
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Linear for the mixture and second order for the process variables, which includes
mixture–process interactions:

(8.34)

Linear for both mixture and mixture–process interactions:

(8.35)

8.2.3 SOME REGRESSION-ANALYSIS-RELATED NOTATION

At this point, it is helpful to introduce some notation that will be used to further
describe experimental designs and response-surface modeling. As was described
earlier, all possible operating conditions are represented as combinations of the values
of the input variables. Each particular combination is a point in the operating region
of a process and is called a treatment. These sets of points can be denoted in matrix form

FIGURE 8.14 Combined mixture+process factor space (the shaded area) constructed from
three mixture variables x1,x2,x3 and one process variable x4.
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where XNxn is called the design matrix, N is the number of treatments, and n is the
number of the factors under consideration. High levels and low levels of a controlled
factor are typically coded as values of xi = +1 and xi = −1, respectively. As previously
noted, the coded factor levels are related to the experimental measurement scale by
a transformation function. An important matrix closely related to the design matrix
is the extended design matrix F, which describes the relationship between the coded
factor levels and the experimental measurement scale. This matrix plays an important
role in the calculations discussed below.

Given a design matrix, X, the next step is to construct the extended design matrix F.
The general structure of any polynomial of k coefficients is

(8.36)

The entries of F are constructed from the terms of the regression model, hence

(8.37)

The exact structure of each of the functions f1(x),…,  fk(x) depends on the transfor-
mation or factor coding used. For example, the F matrix for a three-level full factorial
design for two process variables and a second-order model is shown in Table 8.4.

TABLE 8.4
Structure of the Extended Design Matrix F for a Second-
Order Model with Two Process Variables

f1 æ 1 f2 æ x1 f3 æ x2 f4 æ x1x2 f5 æ x1
2 f6 æ x2

2

1 −1 −1   1 1 1
1   0 −1   0 0 0
1   1 −1 −1 1 1
1 −1 0   0 1 1
1   0 0   0 0 0
1   1 0   0 1 1
1 −1 1 −1 1 1
1   0 1   0 0 0
1   1 1   1 1 1
Note: Here N = 9, m = r = 2, k = 6. The structure of the regression model 
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The least-squares solution to fitting the regression model is

(8.38)

Here bk is the k-dimensional vector of the regression coefficients, y is the vector of
the measured response values, and F is the extended design matrix. The matrix
product FTF is called the information matrix, and its inverse is called the dispersion
matrix. Because the inverse of the information matrix is included in Equation 8.38,
its properties play a crucial role in the calculation of the regression coefficients. For
instance, if the inverse of FTF does not exist (if it is singular), it will be impossible
to calculate the coefficients of the regression model. If FTF is ill-conditioned (the
information matrix is nearly singular), the inverse matrix can be calculated, but the
values of the regression coefficients may be subject to such large errors that they
are completely wrong. Because the information matrix depends entirely on the entries
of X, it is very important to consider exactly which points of the factor space should
be included in the design matrix, X. No matter how good the performance of
the measurement technique and the accuracy of the measured response in the vector
y, the incorrect choice of the design matrix X, and thus F and FTF, can compromise
all of the experimental efforts.

Common sense dictates, therefore, that if it is possible to corrupt the results by
choosing the wrong design matrix, then the choice of a better one will improve the
quality of the calculations. Following the same logic, if we can improve the calcu-
lation of regression coefficients just by manipulating the experimental design matrix,
then we can make further improvements by selecting a design with the maximum
information (the best information matrix) using the minimum number of the points
in X (i.e., with the fewest number of measurements). This is the topic of the next
section of this chapter.

8.3 ONE-VARIABLE-AT-A-TIME VS. OPTIMAL DESIGN

The method of changing one variable at a time to investigate the outcome of an
experiment probably dates back to the beginnings of systematic scientific research.
The idea is fairly simple. We often need to investigate the influence of several factors.
To simplify control and interpretation of the results, we choose to vary only one of
the factors by keeping the rest of them at constant values. The method is illustrated

8.3.1 BIVARIATE (MULTIVARIATE) EXAMPLE

Suppose the goal of the experimenter is to apply the one-variable-at-a-time approach
to explore the influence of two factors, x1 and x2, on the response, y, to find its
maximum. The experimenter intends to perform a set of measurements over x1 by
keeping the other factor, x2, at a constant level until some decrease in the response

applies the same approach to factor x2 by starting at the best result.

b F F F y
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in Figure 8.15 and in the following example.

function is observed (see Figure 8.16). After a decrease is noted, the experimenter
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Figure 8.16 illustrates a contour plot showing the shape of the true (but unknown)
response surface. After the first step along x1, the experimenter finds a decrease in
the function at point b; hence, point a is the best one at the moment. By starting
from the best point (noted as a) and changing the value of x2, the experimenter finds
another decrease in the value of the response at point c. The natural conclusion from
applying this approach is that the first point a = [−1.0, 1.0] is the best one. However,
it is clear from the figure that if the experimenter had changed both factors simul-
taneously, point d would have been discovered to have a higher value of the response
compared with point a. The advantages and disadvantages of the one-variable-at-a-
time approach are summarized in the next two subsections.

FIGURE 8.15 Illustration of the one-variable-at-a-time approach.

FIGURE 8.16 The one-variable-at-a-time approach applied to a two-factor problem.
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8.3.2 ADVANTAGES OF THE ONE-VARIABLE-AT-A-TIME APPROACH

• Easy to perform
• Simple data organization
• Graphical presentation of results
• No need for previous mathematical and statistical knowledge
• Minimal need of complex calculations

8.3.3 DISADVANTAGES

• Poor statistical value of the model fitted to the collected data
• Unnecessarily large number of experiments required
• Significant possibility of missing the extremum when used in optimization

studies

8.4 SYMMETRIC OPTIMAL DESIGNS

8.4.1 TWO-LEVEL FULL FACTORIAL DESIGNS

c, and d, are positioned symmetrically within the experimental region. If we suppose
that the region E is constrained in the following manner

−1.0 ≤ x1 ≤ −0.2

−1.0 ≤ x1 ≤ −0.2

then these four points construct what is known as a two-level, two-factor full factorial
design. The purpose of these types of experimental designs is to give the experi-
menter an opportunity to explore the influence of all combinations of the factors.
An experimental design organized by combining all possible values of the factors,
giving sm permutations, is called a full factorial design. Here s designates the number
of the levels at each factor, and m represents the number of factors.

of points in a two-level, three-factor full factorial design is 23 = 8. A good tutorial
giving basic information about the two-level full factorial design, including an
important variation, the fractional factorial design, and information about some basic
optimization techniques can be found in the literature [7].

8.4.1.1 Advantages of Factorial Designs

• Simple formulae for calculating regression coefficients
• A classical tool for estimating the mutual significance of multiple factors
• A useful tool for factor screening
• The number of points can be reduced considerably in fractional designs
• Under many conditions, fulfills most of the important optimality criteria,

i.e., D-, G-, A-optimality, orthogonality, and rotatability
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The coordinates of the points of the same design are given in Table 8.5. The number

Returning to the example of Figure 8.16, we see that the four points, namely a, b,

Figure 8.17 shows an example of a three-factor, two-level full factorial design.
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8.4.1.2 Disadvantages of Factorial Designs

• Applicable only for linear polynomial models
• Large numbers of treatments or experiments required

8.4.2 THREE OR MORE LEVELS IN FULL FACTORIAL DESIGNS

By extending the approach used in two-level full factorial designs, we can obtain
experimental designs that are suitable for polynomial models of second order or
higher. A design that is applicable to second-order polynomials is the three-level

factorial design.

FIGURE 8.17 Two-level, three-factor full factorial design.

TABLE 8.5
Two-Level, Three-Factor Full 
Factorial Design

No. x1 x2 x3

1 −1 −1 −1
2 1 −1 −1
3 −1 1 −1
4 1 1 −1
5 −1 −1 1
6 1 −1 1
7 −1 1 1
8 1 1 1

x1

x2

x3
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full factorial design. Figure 8.18 shows an example of a three-level, three-factor full
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The required number of points in a three-level full factorial design is N = 3m.
In the case of n = 3 factors, we must perform 27 experiments, as seen in Table 8.6.
For four factors, 81 experiments are required. Inspection of the three-level design
reveals that it also includes a two-level design. This means that the three-level full
factorial design is also a composite design. It can be constructed by augmenting a
two-level design with additional points, thereby saving the time and expense of
replacing the measurements already performed.

In practice, augmentation can be performed after the experimenter has completed
a full factorial design and found a linear model to be inadequate. A possible reason
is that the true response function may be second order. Instead of starting a com-
pletely new set of experiments, we can use the results of the previous design and
perform an additional set of measurements at points having one or more zero
coordinates. All of the data collected can be used to fit a second-order model.

FIGURE 8.18 Three-level, three-factor full factorial design.

TABLE 8.6
Three-Level, Three-Factor Full Factorial Design

No. x1 x2 x3 No. x1 x2 x3 No. x1 x2 x3

1 −1 −1 −1 10 −1 −1 0 19 −1 −1 1
2 0 −1 −1 11 0 −1 0 20 0 −1 1
3 1 −1 −1 12 1 −1 0 21 1 −1 1
4 −1 0 −1 13 −1 0 0 22 −1 0 1
5 0 0 −1 14 0 0 0 23 0 0 1
6 1 0 −1 15 1 0 0 24 1 0 1
7 −1 1 −1 16 −1 1 0 25 −1 1 1
8 0 1 −1 17 0 1 0 26 0 1 1
9 1 1 −1 18 1 1 0 27 1 1 1

x2

x1

x3
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We can use the same approach to expand the design and obtain a data set applicable
for polynomials of third order. The respective full factorial design is constructed by
combining all of the factors at five levels, giving a total of N = 5n, or N = 25 for
n = 2, N = 125 for n = 3, N = 625 for n = 4, etc. It is apparent that the number of
the experiments grows geometrically with the number of factors, and there are not
many applications where the performance of 625 experiments to explore four factors
is reasonable.

8.4.3 CENTRAL COMPOSITE DESIGNS

In the previous sections we found that a second-order full factorial design requires
an enormous number of measurements. Box and Wilson showed it is possible to
have a more economical design while at the same time retaining the useful symmet-
rical structure of a full factorial design [1].

Figure 8.19 shows an example of two such designs, called central composite
designs (CCD), for two variables (Figure 8.19a) and three variables (Figure 8.19b).
The idea of central composite designs is to augment a two-level full factorial design
by adding so-called axial or star points (see Figure 8.19) and some number of
replicate measurements at the center. Each of the star points has coordinates of 0
except those corresponding to the jth factor, j = 1, n, where the respective coordinates
are equal to ±α. An example of a three-factor central composite design is given in

n
c

where nc represents the number of the center points.
Central composite designs can be augmented in a sequential manner as well. It

is possible to start the investigation by using a full factorial design. After concluding
that a linear model is inadequate, one can continue the same investigation by adding
additional measurements at the star points and in the center. The choice of the values
for α and nc is very important for the characteristics of the resulting design. Generally,
the value of α is in the range from 1.0 to , depending on the experimental and

FIGURE 8.19 Central composite designs (CCD) for (a) two factors, where , and (b)
three factors.
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Table 8.7. The number of points for the central composite design is N = 2  + 2n + n ,
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operational regions. The initial idea for the choice of α and nc was to ensure a
diagonal structure in the information matrix, FTF. Because of the lack of computing
facilities in the 1950s, it was necessary to give the investigator the ability to easily
calculate the regression coefficients by hand. Later, as inexpensive, powerful com-
puters became available, values for α and nc were selected to obtain the maximum
value of the det (FTF) for the region covered by the design. Another consideration
in the choice of the values for α and nc is to ensure the so-called rotatability property
of the experimental design. By spacing all the points at an equal distance from the
center, a rotatable design is obtained that gives each point equal leverage in the
estimation of the regression coefficients.

8.5 THE TAGUCHI EXPERIMENTAL DESIGN 
APPROACH

During the 1980s, the name of the Japanese engineer Genichi Taguchi became
synonymous with “quality.” He developed an approach for designing processes that
produce high-quality products despite the variations in the process variables. Such
processes are called robust because they are insensitive to noise in the processes.
The approach was applied with huge success in companies such as AT&T Bell Labs,
Ford Motor Co., Xerox, etc. The simplicity of the approach made these methods
extremely popular and, in fact, stimulated the development of a new production
philosophy.

The idea behind this methodology is to apply a technique of experimental design
with the goal of finding levels of the controlled factors that make the process robust
to the presence of noise factors, which are uncontrolled. The controlled factors are
process variables that are adjusted during the normal operation of a process. The noise
factors are present in combination with controlled factors and have a significant
influence on the response or quality of the product. Noise factors are either impossible

TABLE 8.7
Three-Factor Central Composite Design 
with Axial Values α and Four Center Points

No. x1 x2 x3 No. x1 x2 x3

1 −1 −1 −1 10 a 0 0
2 1 −1 −1 11 0 -a 0
3 −1 1 −1 12 0 a 0
4 1 1 −1 13 0 0 -a
5 −1 −1 1 14 0 0 a
6 1 −1 1 15 0 0 0
7 −1 1 1 16 0 0 0
8 1 1 1 17 0 0 0
9 -a 0 0 18 0 0 0
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or not economically feasible to control at some constant level. Table 8.8 shows some
examples of controlled variables and noise variables.

In Taguchi methods, we define the quality of the product in terms of the deviation
of some response parameter from its target or desirable value. The concept of quality
and the idea behind the Taguchi philosophy is illustrated with the example shown

Suppose a hypothetical pharmaceutical company produces tablets of type A,
where the important characteristic is the amount of active ingredient present in the
tablet. We can imagine an unacceptable process illustrated in Figure 8.20c, where
there will be some tablets produced having amounts of the active ingredient below
and above the specifications for acceptable tablets. In Figure 8.20a, we see a process
that is acceptable according the formal requirements (all of the tablets are within
specifications), but there are risks that some small portion of tablets may fall outside
the specification in the future. A very high-quality process is shown in Figure 8.20b,
where most of the values are concentrated around the target and the risk of producing
unacceptable product is very low.

The risks involved in using the process of the type shown in Figure 8.20a are
illustrated in the following example. Suppose the products being produced are bolts
and nuts. If bolts are produced that are close to the upper acceptance limit (large
diameter) and the nuts are produced close to the low limit (small diameter), then
the nut simply will not fit on the bolt because its internal diameter will be too small.
The opposite situation is possible as well, where the nut has too large an internal
diameter compared to the bolt. In this case, the bolt will fit, but it will be too loose
to serve as a reliable fastener. The situations described here are a problem for
customers, but there are also potential problems for the producer. For the process
shown in Figure 8.20a, it is statistically likely that a small number of the products
will fall outside the acceptance limits but not be included in the sample used for
quality testing and release by the producer. Depending on the sample size, there
may also be a significant likelihood that some of these unacceptable products will

TABLE 8.8
Examples of Controlled and Noise Variables

Application Controlled Variables Noise Variables

A cake Amount of sugar, starch, and 
other ingredients

Oven temperature, baking time, 
fat content of the milk

Gasoline Ingredients in the blend, other 
processing conditions

Type of driver, driving conditions, 
changes in engine type

Tobacco product Ingredient and 
concentrations, other 
processing conditions

Moisture conditions, storage 
conditions

Large-scale chemical 
process

Processing conditions, 
including the nominal 
temperature

Deviations from the nominal 
temperature, deviations from 
other processing conditions
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FIGURE 8.20 The concept of quality illustrated with different distributions of some important quality characteristic:
(a) a process that produces mostly acceptable product, (b) an “ideal” process, (c) an unacceptable process, with a
significant portion of the product outside the acceptable limits.
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be in the sample used by the customer for acceptance quality testing, causing the
entire shipment to be rejected. The tools developed by Taguchi are intended to help
the producers keep their processes running so that the quality of their products is

To apply the Taguchi approach, we must define two sets of variables: controlled
variables and noise variables. The controlled variables are process variables that can
be adjusted or controlled to influence the quality of the products produced by the
process. Noise variables represent those factors that are uncontrollable in normal
process operating conditions. A study must be conducted to define the range of
variability encountered during normal plant conditions for each of the controlled
variables and the noise variables. These values of the variables are coded in the
range [−1, 1].

To illustrate the idea of a Taguchi design, suppose that there are two controllable
variables c1 and c2 and three noise factors n1, n2, n3. Here, Taguchi suggests the use
of an orthogonal design, so we construct two full factorial designs, one for each of
the two groups of factors. The resulting experimental design is illustrated in
Table 8.9. The levels of the controlled factors forming the so-called inner array are
shown in the first two columns labeled c1 and c2. The full factorial design of the
noise factors forming the “outer array” is shown in the upper three rows of the table.
Each point of the outer array is represented as a column with three entries. The inner
array has four rows (two-level, two-factor full factorial design), and the outer array
has eight columns (two-level, three-factor full factorial design).

In this way, there are 32 defined experimental conditions. At each set of condi-
tions, the response under investigation is measured. In Table 8.9, the results of the
measurements are designated by yij, i = 1,4, j  =1,8. Once the measurements are
performed, the signal-to-noise ratio (SNR) at each of the points in the inner array
(the rows of Table 8.9) is calculated. The combination of levels of the controlled
variables that correspond to the highest value of the SNR represents the most robust
production conditions within the range of noise factors investigated. For instance,
if SNR3 = max{SNR1, SNR2, SNR3, SNR4}, then the most robust condition for the
process corresponds to the levels of the controlled factors equal to c1 = −1 and c2 = 1.

TABLE 8.9
Taguchi Design for Two Controlled Factors and Three 
Noise Factors

n3 −1 1 −1 1 −1 1 −1 1
n2 −1 −1 1 1 −1 −1 1 1

c1 c2\n1 −1 −1 −1 −1 1 1 1 1

−1 −1 y11 y12 y13 y14 y15 y16 y17 y18 SNR1

1 −1 y21 y22 y23 y24 y25 y26 y27 y28 SNR2

−1 1 y31 y31 y31 y31 y31 y31 y31 y31 SNR3

1 1 y41 y41 y41 y41 y41 y41 y41 y41 SNR4
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There are three formulas for SNR suggested by Taguchi:

1. Smaller is better: In situations where the target quality value has to be
kept close to zero, the formula is

(8.39)

2. Larger is better: In the situations where the target quality value has to be
as large as possible, the formula is

(8.40)

3. The mean (target) is best: This formula is applicable for the example

(8.41)

    where

(8.42)

The main literature sources for Taguchi methods are his original books [8–10].
A comprehensive study on the use of experimental design as a tool for quality
control, including Taguchi methods, can be found in the literature [11]. A good
starting point for Taguchi methods and response-surface methodology can also be
found in the literature [12].

8.6 NONSYMMETRIC OPTIMAL DESIGNS

8.6.1 OPTIMALITY CRITERIA

Like a sailboat, an experimental design has many characteristics whose relative impor-
tance differs in different circumstances. In choosing a sailboat, the relative importance
of the characteristics such as size, speed, sea-worthiness, and comfort will depend
greatly on whether we plan to sail on the local pond, undertake a trans-Atlantic voyage,
or complete America’s Cup contest [1].

Box and Draper [13] give a list of desired properties for experimental designs.
A good experimental design should:

• Generate a satisfactory distribution of information throughout the region
of interest, R

• Ensure that the fitted values at x, are as close as possible to the true
values at x, η(x)
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• Ensure a good ability to detect model lack of fit
• Allow transformations to be estimated
• Allow experiments to be performed in blocks
• Allow designs of increasing order to be built up sequentially
• Provide an internal estimate of error
• Be insensitive to wild observations and violations of the usual assumptions

of normal distributions
• Require a minimum number of experimental points
• Provide simple data patterns that allow visual evaluation
• Ensure simplicity of calculations
• Behave well when errors occur in the settings of the predictor variables,

the xs
• Not require an impractically large number of predictor variable levels
• Provide a check of the “constancy of variance” assumption

It is obvious that this extensive list of features cannot be adequately satisfied
with one design. It is possible, however, to choose a design that fits to the needs of
the experimenter and will deliver the necessary comfort or performance.

8.6.2 OPTIMAL VS. EQUALLY DISTANCED DESIGNS

In this section we will look at the confidence interval of the predicted value, . As
we know, the goal of regression analysis is to build a model that minimizes

(8.43)

thus enabling us to find an estimate of the response value that is as close as possible
to the measured one. In regression analysis, the value of is actually an estimate
of the true (but unknown) value of the response, ηi. To answer the question, “How
close is the estimate to the response ηi?” we calculate a confidence interval in the
region around at the point x0 by using the formula in Equation 8.44

(8.44)

or equivalently

(8.45)

where Sε is the measurement error in y and tv,1−α is Student’s t-statistic at ν degrees
of freedom and probability level α. The product is
known as a variance of the prediction at point x0. The width of the confidence interval

ŷ
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is a measure of how close the values of are to ηi. As can be seen in Equation 8.45,
the distance between these two points depends on the extended design matrix, F. If
we wish to make the value of |tv,1-α[ f(x0)T(F−1F)−1f(x0)]| smaller, which will in turn
make the difference smaller, an obvious approach is to manipulate
the entries of matrix F and, therefore, the design points in X. To illustrate the solution
to this problem, we begin by exploring the dependence of y on x and fit the
model , which can be used to predict y at values of x where no measurements
have been made. To conduct the analysis, we choose an experimental region, E,
subject to the constraints:

E (8.46)

and some appropriate step size over which to vary x. Choosing a step size s = 0.4

sured values of the response, y. The next step is to fit the model illustrated by the
line passing through the points and calculate its prediction confidence interval by
Equation 8.44 or Equation 8.45, as shown in Figure 8.21.

After examination of Equation 8.45, it is easy to see that the width of the
confidence interval depends on three quantities:

Estimate of the measurement error, Sε
Critical value of the Student statistic, t
Variance of the prediction ,

The estimate of the measurement error, Sε, is determined by the measurement
process itself and cannot be changed. The critical value of t is also fixed for any
selected probability level. Thus, to minimize the width of the confidence interval, it
is clear that the only option is to look for some way to minimize of the value of

FIGURE 8.21 Influence of the confidence interval on the error of the prediction.
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gives six measurements, as shown in Figure 8.15. These points represent the mea-
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. This value depends on the design matrix, so it seems that if we choose
better design points for the measurements, we might get a smaller confidence interval
and, consequently, a model with better predictive ability.

It is well known that the D-optimal design for one factor and a linear model
consists of points positioned at x* = −1 and x* = +1, with an equal number of
observations at each of these two design points. In this particular example, the six
measurements can be divided into two groups of three measurements, one group at
each of the limits. The nonoptimal design matrix is

XT = [−1.0, − 0.6, − 0.2, + 0.2, + 0.6, + 1.0]

whereas the D-optimal design matrix is:

X*T = [−1.0, −1.0, −1.0, +1.0, +1.0, +1.0]

The confidence interval constructed using the D-optimal interval shown in
Figure 8.22 is narrower than the confidence interval constructed using the nonoptimal
design, giving a reduced range, , for the prediction of y.

This example shows that it is possible to improve the prediction ability of a
model just by rearranging the points where the measurements are made. We replaced
the “traditional stepwise” approach to experimental design by concentrating all of
the design points at both ends of the experimental region.

We can go further in improving the quality of the model. It was mentioned that
the D-optimal design requires equal number of measurements at –1 and +1; however,
we have made no mention about the total number of points. In fact, it is possible to
reduce the number of measurement to four or even to two without loss of prediction
ability. Because it is always useful to have extra degrees of freedom to avoid
overfitting and for estimating residual variance, it is apparent that four measurements,
two at −1.0 and two at +1, will give the best solution.

FIGURE 8.22 Comparison of the confidence intervals obtained by use of a nonoptimal design
(- - -) and a D-optimal design (---).
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8.6.3 DESIGN OPTIMALITY AND DESIGN EFFICIENCY CRITERIA

As described in the previous section, the list of desirable properties for experimental
designs is quite long and even controversial. It is impossible to find a design that
satisfies all of them. Thus, the experimenter must define precisely his or her goals
and resources and choose a satisfactory design. As a more formal quantitative
measure of the properties of experimental designs, we might choose optimality
criteria. In the search for the most convenient design, we use these criteria to find
a proper design that is most suitable for our needs and resources. The list of the
optimality criteria is long and continues to increase. There are several criteria that
are in wider use, generally because of the considerable amount of theoretical and
practical work done with them. In the following subsections, some brief descriptions
are given for some of the better known optimality criteria.

A realizable experimental design is a set of N measurements that are to be
performed by the experimenter. Each of these measurements is represented by a
point in factor space. Hereafter, if it is not mentioned explicitly, the terms point and
measurement will be synonymous. One designates this set by a matrix XN×n, having
N rows and n columns. Each row represents one measurement, which is supposed
to be performed at the conditions described by the values of the corresponding row.
Each column corresponds to one of the controllable variables that are adjusted during
the experiment. The set S = {X} is a subset of X, i.e., the general set of all points,
hence

S{X} � X (8.47)

We define the set XN{S} as the subset of N points, namely SN{XN×n} � XN{S}.
The one set, XN{S}, that satisfies the stated optimality criteria will be referred as
the optimal design.

XN(S) (8.48)

In other words, having the general set of all points X, we have to find some subset
of N points giving the experimental design, SN{XN×n}. In fact, there may be more
than one such N-point subset. All of these N-point subsets form the set, XN{S},
which is the set of all subsets. Hence, the task is to find a member of XN{S}, denoted
as , that satisfies the stated optimality criteria.

Based on one or more optimality criteria, we define an optimality function. The
search for the optimal design then becomes a numerical optimization problem.
Unfortunately, the search is performed in a space of high dimension using an
optimality function that is not usually differentiable. Because of these complications,
an iterative process is needed to find an optimal design, and convergence can
sometimes be slow. The iterative process can be terminated when the change from
one step to the next is sufficiently small; however, we would also like to have some
idea how close the selected design is from the best possible design. For some design
criteria, the theoretically best values have been derived. A measure of the discrepancy
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between some optimal design, X*
N×m, and the theoretically best design, ξ*, is the

difference between the value of its optimality criterion and the corresponding the-
oretically best value.

The design efficiency is a measure of the difference between the optimality of
the locally optimal design and the theoretically proven globally optimal design. The
values for the efficiency fall in the range [0, 1], where values closer to 1 represent
designs closer to the corresponding theoretical maximum.

8.6.3.1 Design Measures

Suppose we wish to obtain a design XN with N ≥ k. If all of the points, xi, are
different, then the relative weight of each point is 1/N, denoted by ψi = 1/N, i = 1,
N. Applying the concept of relative weights, we obtain the following more general
notation for an experimental design, where the design is characterized by its points
and their relative weights.

(8.49)

It is possible for some of the design points, xi ⊂ {XN}, i = 1, …, N, to coincide,
in which case the number of distinct points will be L < N. The respective design
will be designated as shown in Equation 8.50.

(8.50)

Some points will have weights ψi = 2/N, 3/N, i = 1,…, L and so on, which means
that these points will appear twice, three times, etc. in the set of the design points.

Going further, we can extend the definition of weights ψi so that each denotes
a fractional number of measurements that appear at a particular point. It is obvious
from practical considerations that the number of measurements should be an integer.
For example, at a particular point we can perform two or three measurements, but
not 2.45 measurements. Nevertheless, by assuming that the number of measurements
can be a noninteger quantity, Kiefer and Wolfowitz in their celebrated work [14]
introduced a continuous design measure. This function, ξ, is assumed to be conti-
nuous across the factor space. The locations in the factor space where ξ receives a
nonzero value are the points of the experimental design. These points are known as
design support points. Hence Equation 8.49 becomes:

(8.51)

Using this approach, we can describe any experimental design by the function
ξ(ψ), called the design measure or probability measure. This function is differentiable;
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thus we can apply conventional techniques to search for its extrema and find the
theoretical maximum value for a given design criterion. The value of ψi represents the
ideal number of fractional measurements at the ith point, which in turn gives the ideal
experimental design. By rounding the fractional numbers to integer values, we can
find an approximate design that is not as good but is realizable in practice.

Probably the most important theoretical result from optimal design theory is the
general-equivalence theorem [14, 15], which states the following three equivalent
assertions:

1. The design ξ* that maximizes the determinant of the information matrix,
det M(ξ*)

2. minimizes the maximum of the appropriately rescaled variance of the
estimated response function ,

3. which is also equal to k, the number of regression coefficients in the
response function,

There are several practical results from the equivalence of these three assertions.
By using assertions 1 and 3, we can estimate whether some design is D-optimal or
not simply by comparing the value of the maximum variance of prediction to the
number of the regression coefficients. The theorem also establishes the equivalence
between two design optimality criteria, the maximum determinant (D-optimality),
and the minimal maximum variance of the prediction (G-optimality); hence, we can
search for D-optimal designs by using the procedure for G-optimal designs, which
is much easier. In fact, this approach is the basis of most of the search procedures
for producing realizable D-optimal designs, i.e., those having an integer number of
measurements. The equivalence between assertions 2 and 3 makes it easy to deter-
mine how far some G-optimal design lies from the theoretical maximum.

8.6.3.2 D-Optimality and D-Efficiency

An experimental design with extended design matrix F* is referred to as D-optimal
if its information matrix fulfills the condition:

(8.52)

The determinant of the information matrix of the D-optimal design has a max-
imum value among all possible designs. Based on this criterion, the design with
information matrix M* is better than the design with information matrix M if the
following condition holds:

det(M*) > det(M). (8.53)

The D-optimal design minimizes the volume of the confidence ellipsoid of the
regression coefficients. This means that the regression coefficients obtained from
D-optimal designs are determined with the highest possible precision.
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D-efficiency is defined using Equation 8.54

(8.54)

where detMξ designates the theoretically proven maximum determinant of the
respective continuous D-optimal design. It is important to mention that the design
with information matrix Mξ depends only on the corresponding factor space and the
regression model. No other restrictions (i.e., the number of points, required integer
numbers of measurements) are imposed. Continuous experimental designs are hypo-
thetical experimental designs where a noninteger number of replicates per experi-
mental point are permitted. These designs have theoretical value only and are listed
in specialized reference catalogs [31]. In Equation 8.54, the design having informa-
tion matrix M could be any design in the same factor space and regression model.
Typical examples are a design having exactly N = k + 5 measurements or a design
that is supposed to consist of measurements on particular levels of the variables.

8.6.3.3 G-Optimality and G-Efficiency

An experimental design with an information matrix M* is G-optimal if the following
condition holds,

(8.55)

where d(M) = f T(x)(M)−1f(x) designates the variance of the prediction at point x, ℑ
is the set of all designs under consideration, and ℵ is the general set of points
defining the factor space. Using some experimental design and this expression, we
can estimate the variance of prediction at any point in the factor space. This value
is a measure of how close a prediction at an arbitrary point x would be to the true
value of the response. This value depends only on the information matrix and the
coordinates of the particular point. In fact, the full measure of the prediction ability
at x also depends on the error of the measurement and the distribution of the repeated
measurements at the point x.

Considering some experimental design, X1, we can calculate the maximum vari-
ance d1 over all factor space. Also, we can calculate the maximum variance d2 over
the same factor space by using another design, X2. The design that gives smaller
variance (say d2 < d1) is said to be the design that minimizes the variance of the
prediction where it is maximal. Taking into account that the prediction accuracy at the
point with maximum variance is the worst one, the G-optimal design (here design X2)
ensures the maximum prediction accuracy at the worst (in terms of prediction) point.

To calculate the G-efficiency we use the formula in Equation 8.56

(8.56)
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where designates the maximum value of the variance of the prediction
calculated by using the extended design matrix, F. The formula comes directly from
the second and third assertions of the general-equivalence theorem.

8.6.3.4 A-Optimality

A-optimal designs minimize the variance of the regression coefficients. Some design,
M*, is said to be A-optimal if it fulfills the following condition.

(8.57)

The term tr(M)−1 designates the trace of the dispersion matrix. Because the
diagonal elements of M−1 present the variances of the regression coefficients, the
trace (e.g., their sum) is a measure of the overall variance of the regression coeffi-
cients. The minimization of this measure ensures better precision in the estimation
of the regression coefficients.

8.6.3.5 E-Optimality

A criterion that is closely related to D-optimality is E-optimality. The D-optimality
criterion minimizes the volume of the confidence ellipsoid of the regression coeffi-
cients. Hence, it minimizes the overall uncertainty in the estimation of the regression
coefficients. The E-optimality criterion minimizes the length of the longest axis of the
same confidence ellipsoid. It minimizes the uncertainty of the regression coefficient
that has the worst estimate (highest variance).

An experimental design is referred to as an E-optimal design when the following
condition holds,

(8.58)

where by R we designate the rank of the dispersion matrix. A design is E-optimal
if it minimizes the maximum eigenvalue of the dispersion matrix. The name of the
criterion originates from the first letter of the word “eigenvalue.” The eigenvalues
of the dispersion matrix are proportional to the main axes of the confidence ellipsoid.

8.7 ALGORITHMS FOR THE SEARCH OF REALIZABLE 
OPTIMAL EXPERIMENTAL DESIGNS

The theory of D-optimal designs is the most extensively developed, and as a con-
sequence there is quite a long list of works devoted to the construction of practical
and realizable D-optimal designs. Good sources describing algorithms for the con-
struction of exact D-optimal designs can be found in the literature [16, 17]. Before
describing algorithms for finding D-optimal designs, we first define some nomen-
clature. Hereafter, by XN, we denote a matrix of N rows and n columns. Each row

max[ ( )]
ℵ

d F

tr tr( ) min[ ( ) ]*M M− −=1 1

X

max ( ) min max [( ) ], ,*
i

i
i

i i Rδ δM M− −  = =1 1 1
x

…

DK4712_C008.fm  Page 306  Saturday, March 4, 2006  1:59 PM

© 2006 by Taylor & Francis Group, LLC



Response-Surface Modeling and Experimental Design 307

designates an experimental point. Each of these points could be in process, mixture,
or process+mixture factor spaces. By FN, we denote the extended design matrix,
constructed by using a regression model.

(8.59)

Also, we use SL to denote a set of L experimental points in the same factor space,
called candidate points. The set of candidate points will be used as a source of points
that might possibly be included in the experimental design, XN. The information
matrix of the N-point design, XN, will be denoted as above by MN = FTF, where MN

is the information matrix for some model (Equation 8.59). By the following formula,
we denote the variance of the prediction at point xj.

By the following formula we denote the covariance between xi and xj,

where the symbol (⋅)(i). denotes the result obtained at the ith iteration.

8.7.1 EXACT (OR N-POINT) D-OPTIMAL DESIGNS

8.7.1.1 Fedorov’s Algorithm

The algorithm for finding D-optimal designs proposed by Fedorov [18] simulta-
neously adds and drops a pair of points that result in the maximum increase in the
determinant of the information matrix. The algorithm starts with some nonsingular
design, XN. Here, “nonsingular” implies the existence of M−1. During the ith iteration,
some point, say Xj ∈ {XN}, is excluded from the set of the design points and a
different point, x ∈ {S}, is added to XN in such a way that the resulting increase of
the det MN is maximal. The following ratio of determinants can be used to derive
an expression for finding the point that gives the maximum increase,

(8.60)

where the so-called “Fedorov’s delta function” ∆i is

(8.61)

ˆ ( )y f
i

i

k

=
=

∑ x
1

d j N
i

j
T

N
T i

N
i

j
x X f x F F f x, ( ) ( )( ) ( ) ( )( ) = ( )−1

d i j N
i

i
T

N
T i

N
i

j
x x X f x F F f x, , ( ) ( )( ) ( ) ( )( ) = ( )−1

det

det
( , )

( )

( )

M

M
N
i

N
i i j

+

+
= +

1

1
1 ∆ x x

∆
i i j N

i
N
id X d d( , ) , ,( ) ( )x x x x X= − ( )



 + − ( )



 − xx x x x, , , , ,( ) ( ) ( )X d X d X

N
i

j N
i

j N
i( ) ( ) + ( )2

DK4712_C008.fm  Page 307  Saturday, March 4, 2006  1:59 PM

© 2006 by Taylor & Francis Group, LLC



308 Practical Guide to Chemometrics

which can be rewritten as

(8.62)

To achieve the steepest descent, we choose a pair of points x* and xi in such a
way as to satisfy Equation 8.63.

(8.63)

To find a pair of points x* and xi fulfilling the condition described in Equation 8.63,
we conduct an exhaustive search of all possible combinations of x* (additions) and
xi (deletions). This point-selection procedure proceeds iteratively and terminates
when the increase in the determinant between two subsequent iterations becomes
sufficiently small.

The method of exchanging points between the design XN and the set of candidates
SL is the reason why algorithms based on this idea are called “point exchange
algorithms.” The basic idea of point-exchange algorithms can be briefly described
as follows: given some design, XN, find one or more points that belong to the set of
candidate points, replacing points in XN. The act of replacement or addition is
successful if the optimization criterion is satisfied, e.g., if the determinant rises.

8.7.1.2 Wynn-Mitchell and van Schalkwyk Algorithms

In cases of multifactor (m > 4,5) problems, Fedorov’s algorithm can become
extremely slow. To avoid this shortcoming while retaining some of the useful prop-
erties of this approach, two approximations of the original algorithm have been
proposed. Both are intended to maximize the delta function by applying fewer
calculations.

The first modification to be presented is an algorithm known as the Wynn-
Mitchell method. The algorithm was developed by T. Mitchell [19] and was based
on the theoretical works of H. Wynn [21, 22]. In this algorithm, at the ith iteration,
a point x ∈ {SL} maximizing the first bracketed term of Equation 8.62 is added to
the design. Then a point xj ∈ {XN} maximizing the second term of Equation 8.62
is removed from the design. In this way the maximization of the function in Equation
8.62 is divided into two separate steps that reduce the number of calculations needed.
The algorithm of van Schalkwyk [23] is similar; however, it adds a point that
maximizes the first term of Equation 8.61 and removes a point, xj, that maximizes
the second term. Both algorithms are considerably faster than Fedorov’s algorithm
and, thus, they can be effectively applied to larger problems. The trade-off, however,
is decreased efficiency. Neither algorithm follows the steepest descent of the delta
function, instead simply performing a kind of one-variable-at-a-time optimization.

8.7.1.3 DETMAX Algorithm

In 1974 Mitchell published the DETMAX algorithm [19], which, with slight
improvement, becomes one of the most effective algorithms described to date.
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DETMAX is, in fact, an improved version of the Wynn-Mitchell algorithm. Instead
of adding points one at a time, the initial N-point design is augmented with K points.
From the resulting (N + K)-point design, a group of K points is selected for exclusion,
thus returning back to an N-point design. The augmentation/exclusion process is
called “excursions of length K.” The algorithm starts with excursions having K = 1.
After reaching optimality, the length of the excursion is increased by 1, and so on.
The algorithm stops when the algorithm reaches Kmax. A value of Kmax = 6 was
recommended for discrete factor spaces.

8.7.1.4 The MD Galil and Kiefer’s Algorithm

Despite its high efficiency, DETMAX has one major shortcoming. To perform the
excursions, we need to calculate the value of the variance of the prediction at each
iteration.

(8.64)

It can be seen that Equation 8.64 requires calculation of the inverse of the
information matrix, an operation that can become the time-limiting factor, even for
problems of moderate size. Galil and Kiefer [20] proposed a more effective algorithm
by making slight improvements to Mitchell’s DETMAX method [19]. They managed
to speed it up by replacing the following computationally slow operations with faster
updating formulas:

• Construct F
• Calculate FTF
• Calculate (FTF)−1

• Calculate det(FTF) and d

For updating the values of the inverse matrix, the determinant, and the variances
of prediction, they used the following formulas:

(8.65)
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The resulting increase in speed is sufficient to allow the algorithm to be run
several times, starting from different initial designs, and delivering better results.

8.7.2 SEQUENTIAL D-OPTIMAL DESIGNS

All of the experimental designs mentioned here can be classified as exact designs.
These designs have different useful features and one common disadvantage: their
properties depend on the number of points. For example, if some design is D-optimal
for N points, one cannot expect that after the removal of two points the design having
N − 2 points will be D-optimal as well. This peculiarity has clear practical implica-
tions. Suppose the experimenter obtains an N-point D-optimal design. During the
course of the experimental work, after N − 2 experiments have been performed, the
experimenter runs out of some necessary raw materials. By switching batches or
suppliers of the raw material, the remaining two measurements will often introduce
additional uncontrolled variability. The use of the reduced set of N − 2 measurements,
even if N > k and the number of the degrees of freedom is high enough, will probably
affect the quality of the regression model.

To illustrate the loss of an important feature, recall a full factorial design. It was
said that full factorial designs have one very useful feature: we can calculate the
regression coefficients just by using a calculator. This is possible because of the
diagonal structure of the information matrix, [FTF]. However, the removal of just
one of the points of the design will disturb its diagonal structure. Similarly, the
removal of just one of the measurements from a D-optimal design will make the
design no longer D-optimal. Hence, we must be very careful when using exact (or
N-point) experimental designs to ensure that all of the necessary resources are
available.

The method of sequential quasi-D-optimal designs was developed to avoid these
shortcomings of D-optimal designs [21, 24]. The idea behind this methodology is
to give the experimenter the freedom to choose the number of the measurements
and to be able to stop at any time during the course of the experimental work.

These designs have a structure that is schematically outlined in Figure 8.23. They
are constructed of two blocks, noted here as Block A and Block B, where the number

FIGURE 8.23 Schematic representation of a sequential design.
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of points in Block A and Block B are denoted as NA and NB, respectively. The points in
Block A are selected to make up a D-optimal exact experimental design, where NA = k;
thus, Block A is an optimal experimental design constructed of the minimum possible
number of points. If we complete this design, we will be assured that the information
matrix is not singular and we will be able to build a model. In practice, it is not advisable
to build a regression model with zero degrees of freedom (ν = NA − k = 0).

The first step in the construction of sequential D-optimal designs is to find the

points of Block A. The design matrix of this design is denoted as , and the

information matrix is denoted by MN = . The next step is to find a design

having an information matrix such that and 

. The design maximizes the determinant among all designs

having NA+1 points. This procedure is repeated in an iterative fashion. Starting with

the design , we find another design, , using the same procedure. We

continue this process to obtain a sequence of designs

where is obtained from by adding a point that maximizes the determi-
nant of its information matrix. The practical value of these designs comes from the
fact that the experimenter can choose any one of them because all of them are quasi
D-optimal. To go from one to another design means simply to perform one more
experiment. If the experimenter for some reason decides not to perform the next
experiment, he or she will have already obtained a quasi D-optimal design.

We have already noted that the experimenter can choose the number of exper-
iments in sequential D-optimal designs. The only limitation is that the minimum
number of experiments should be larger than or equal to NA. In practice, the actual
number of measurements is determined by the availability of resources, e.g., time,
materials, etc. In fact, with this approach, we can choose the number of measure-
ments that provides a predetermined prediction accuracy for our model. This is
illustrated in the following example.

8.7.2.1 Example

D-optimal experimental design for two mutually independent process variables. The
design is optimal for a second-order polynomial having the following structure:

The points numbered 1 through 10 form the so-called Block A. The rest of the
points, numbered 11 through 22, form Block B. In Table 8.10, we can find a total
of 13 different designs having 10, 11, …, 22 points. We can start the experiments
by using the points in Block A, i.e., the first design with 10 points. After that, we
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This example (see Vuchkov [25]) illustrates a method for choosing the number of
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perform sequentially any number of the measurements specified by the entries in
points 11, 12, etc.

In the fourth column of this table, we find the estimates of the maximum variance
of prediction, calculated for each of the designs. For instance, the value d = 1.4 is
the maximum variance of prediction for the design consisting of points 1 to 7,
whereas the value d = 0.4446 corresponds to the design consisting of points 1 to
14. The confidence interval for the predicted value of the response is given by

(8.68)

where sε is the standard deviation of the observation error estimated at ν + 1
replicates, tν,(1−α) is the value of Student’s t-statistic at ν degrees of freedom and
confidence level α, and d(x) is the variance of the prediction at point x. If point x
is chosen such that d(x) is at its maximum, then the right-hand side of the inequality
in Equation 8.68 becomes the upper bound of the prediction error that can be
achieved with the design.

TABLE 8.10
Sequential D-Optimal Experimental 
Design for Two Process Variables and a 
Second-Order Polynomial

No. x1 x2

max d (F)
s y (%)

  1 1 1 — 12.2
  2 1 −1 — 13.7
  3 −1 1 — 7.2
  4 −1 −1 — 10.7
  5 0 0 — 7.65
  6 0 1 — 9.2
  7 1 0 1.400 12.3
  8 0 −1 1.250 13.8
  9 −1 0 0.806 6.65
10 1 1 0.805 9.7
11 1 −1 0.795 14.6
12 −1 1 0.794 9.7
13 −1 −1 0.529 11.35
14 0 0 0.446 10.0
15 1 −1 0.438 16.0
16 −1 −1 0.438 10.2
17 1 1 0.426 11.5
18 −1 1 0.425 —
19 1 0 0.396 —
20 0 −1 0.350 —
21 −1 0 0.342 —
22 0 1 0.285 —

| ˆ( ) | ( )
,

y t s d
v

x x x− ( ) ≤ −η α ε1
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Suppose that we wish to achieve error µ,

(8.69)

which means that we must perform measurements until

(8.70)

The quantity on the right-hand side of Equation 8.70 depends on the measurement
error. If the value of sε is large, then we will have to perform huge number of
measurements to offset this by the value of d(x). On the other hand, if the measure-
ment error is small, we will be assured of obtaining good predictions, even with a
small number of measurements.

The data in this example represent an investigation of ammonia production in
the presence of a particular catalyst. The measured yield in percent is shown in the

than µ = ±1.5% in an example, where the standard deviation (measurement error)
is sε

2 = 1.05 estimated with 11 measurements, i.e., with degrees of freedom ν = 10.
The critical value of Student’s t-statistic is found to be t10,0.95 = 2.228. At N = 16
experiments, we check to see if the desired level of accuracy is achieved and obtain

=1.51 > 1.5. At N = 16 experiments, we obtain 
=1.48 < 1.5; therefore, we can stop at N = 17 and be assured that, 95% of the time,
we will achieve a prediction error not worse than ±1.5%, which is considerably
smaller than the range of the variation in the response value.

8.7.3 SEQUENTIAL COMPOSITE D-OPTIMAL DESIGNS

A major shortcoming of the optimal experimental designs discussed so far is that
we must assume a particular form for the regression model and then construct an
appropriate design for the model. From a practical point of view, this means that
the choice of the correct form of the model must be made at a stage in the experi-
mental investigation when we possess little information about the model. In this
case, the experimenter has to employ knowledge acquired in previous studies or
from surveys of the literature, and then proffer an educated guess at the structure of
the model. At the end of the investigation we can decide whether or not this
assumption was correct. In cases where the preliminary choice of the model was
wrong, the experimenter must select a new experimental design for a different
functional form of the regression model, throw out the data collected so far, and
conduct a new investigation. The only benefit from the initial and not quite successful
investigation is the knowledge that the previously assumed model was found to be
incorrect and that a higher-order model is probably necessary.

There is an important class of experimental design that largely avoids these kinds
of problems and offers the experimenter the possibility of using the same data in the
context of two different models. An example of these types of designs is the central
composite design mentioned in Section 8.4.3. They have many useful features, but
like all other symmetrical designs, we must perform all of the experiments in the list.
If we fail to perform just one of them, the design will lose its desirable properties.
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To avoid these kinds of problems, some new experimental designs have been
proposed [26, 27]. Called optimal composite sequential designs (OCSD), these designs
are an extension of optimal sequential designs (OSD) in that they are optimal for more
than one type of model. The structure of a typical OCSD is shown in Figure 8.24.

Unlike OSDs, OCSDs are constructed of three blocks, denoted here as Blocks
A, B, and C. Suppose that the design shown in Figure 8.24 were constructed to be
optimal for some models M1 and M2 having coefficients numbers k1 and k2, respec-
tively, where k2 > k1. Block A is constructed as an exact D-optimal design for model
M1, where NA = k1. The extended design matrix of this design is . To construct
the second part of the OCSD, namely Block B, we assume that the number of points
in the design is the minimum required for model M2, and thus the design for M2 is
embedded in the design for M1. The extended design matrix for the second model
is then , where NB = k2 − k1. As a result, the design for the second model
consists of k2 = NA + NB points, the minimum number of points required for model
M2. The procedure for obtaining the points in Block B is the same as for Block A.
The only difference is that we have to leave unchanged the points in Block A and
manipulate only the points in Block B. The next step is to generate the sequential
part of the design, shown in Block C. Here we can apply two approaches:

1. Search for sequential designs that are optimal for model M2. In this case
we apply the same procedure as described for OSD.

2. Search for sequential designs that are optimal for both models M1 and
M2. In this case we switch alternatively between the two models. Point
number NA + NB + 1 applies to model M1, and the next point in the sequence
with number NA + NB + 2 applies to M2.

Whichever approach is adopted for the construction of the sequential designs, at
each stage we are able build two types of regression models, based on the structure
of M1 or M2.

The design is constructed to be quasi D-optimal for two models. Model M1 is a

FIGURE 8.24 Schematic representation of an optimal sequential composite design.
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The following example shows a typical OCSD for two factors (see Table 8.11).
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second-order polynomial as shown in Equation 8.71 and model M2 is an incomplete
third-order polynomial as shown in Equation 8.72.

(8.71)

(8.72)

The number of the regression coefficients for the two models is k1 = 6 and k2 = 9,
respectively. Thus Block A consists of six points (see rows 1 to 6 in Table 8.11),
and Block B has 3 = 9 − 6 points (rows 7 to 9). The remainder of the points (rows
10 to 16) represent Block C, the sequential part of the design.

This design is used in the same manner as the previously described optimal sequen-
tial designs, except that now it is possible to use either of the models described in
Equation 8.71 and Equation 8.72. We start the investigation by performing experiments
1 to 6. After that, we continue with experiments 7 to 9. Once we have completed more
than k1 experiments, it becomes possible to build a model with structure M1. For
example, if the model built over points 1 to 8 appeared to be inadequate, we could
continue the experimental work by adding additional measurements according to the
list in Table 8.11. Once we have completed more than k2 experiments, we can build a

TABLE 8.11
Optimal Sequential Composite Design for 
Two Process Variables and Two Polynomial 
Models: M1, Full Second-Order Model; and 
M2, Incomplete Third-Order Model

No. x1 x2 max d(M1) max d(M2)

1 −1 −1 — —
2 1 –1 — —
3 1 0 — —
4 −1 1 — —
5 0 1 — —
6 1 1 2.750 —
7 −0.5 −0.5 1.358 —
8 −0.5 0.5 1.358 7.531
9 0 0.5 1.318 1.668
10 −1 0.5 0.893 1.342
11 0.5 −1 0.847 1.284
12 −0.5 −1 0.795 0.996
13 −1 −0.5 0.795 0.905
14 0.5 0.5 0.766 0.785
15 1 1 0.653 0.754
16 −0.5 1 0.625 0.689
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model with structure M2. At the same time, we will have accumulated enough experi-
ments to reapply M1 and to check whether the new measurements have yielded a better
model, M1. Starting from point 10, we can apply both of the model structures. From point
10 onward, we can apply the rules previously discussed for choosing the number of
measurements needed to achieve a desired level of accuracy. If we are constructing a
model based on M1, then it is important to use the values for the maximum variance of

2

8.8 OFF-THE-SHELF SOFTWARE AND CATALOGS OF 
DESIGNS OF EXPERIMENTS

8.8.1 OFF-THE-SHELF SOFTWARE PACKAGES

There are many software packages that offer varying degrees of support for the
construction of optimal experimental designs.

8.8.1.1 MATLAB

MATLABTM is a product of MathWorks, Inc. Detailed information can be found on

soft-sys.matlab. Procedures for the construction of experimental designs are included
in MATLAB’s Statistics Toolbox, which is not included in the base package and
must be purchased separately. With this package, it is possible to construct full
factorial designs by using the functions fullfact and ff2n. In fact, the function that
generates classical full factorial designs is ff2n. By using it, one can construct two-
level n-factor designs. The function fullfact, despite its name, is in fact a combi-
natorial function that generates all permutations of n variables, each taken at 1, …, r
levels. For example, constructing a design of two factors, where the first one is
varied at four levels and the second one at three levels, is equivalent to generating
a permutation of two variables, where the first is varied at four levels and the second
at three. The respective MATLAB command is

>> D=fullfact([4 3])

and the result is:

>> D =

1 1

2 1

3 1

4 1

1 2

2 2

3 2

4 2

1 3

2 3

3 3

4 3
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prediction given in column 4 of Table 8.11. Alternatively, we use column 5 for model M .

the Web site http://www.mathworks.com, and there is also a newsgroup at comp.

http://www.mathworks.com
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The next task is to transform the values 1 to 4 and 1 to 3 into coded variables,
obtaining the levels [−1, −0.33333, +0.33333, +1] for the first variable and [−1, 0, 1]
for the second one.

In MATLAB, there is no straightforward way to generate fractional factorial
designs. The Hadamard transform function can be used instead, which generates n
× n Hn Hadamard matrices [28]. These matrices have an important feature, in that
the columns are pairwise orthogonal, which makes them easy to use as an experi-
mental design for n − 1 variables. The Hadamard matrices produced by MATLAB
are normalized, which means that all of the entries of the first column are equal to
1, and only the remaining n − 1 columns can be treated as variables. Actually, each
matrix Hn produced by MATLAB is equivalent to a design

where Fn is the extended design matrix for n − 1 variables, n experiments, and a
linear model. Another peculiarity is that only Hadamard matrices Hn exist where the
order is n = 1, n = 2, or n = 4t, where t is a positive integer. Thus one can generate
fractional factorial designs for only r =1, 2 and r = 4t − 1 variables.

In the MATLAB Statistics Toolbox, there are two functions for generating exact
D-optimal designs, cordexch and rowexch. Both procedures are equivalent from
the user’s point of view. To use them, one must specify the number of variables, the
number of the experiments, and the type of the desired regression model. Four
different model choices are provided:
Linear:

(8.73)

Interaction:

(8.74)

Quadratic:

(8.75)
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Pure quadratic:

(8.76)

The output of the function is the design matrix XN. A typical session for the
construction of an exact D-optimal design for n = 3 variables, N = 10 points, and a
quadratic model (Equation 8.75) is shown below:

>> Xn=rowexch(3,10,'q')

>> Xn =

0 −1 −1

0 0 −1

1 1 1

1 1 −1

0 −1 1

1 −1 0

−1 1 −1

−1 −1 0

−1 1 1

0 1 0

It is important to note that it is unlikely that the algorithm will generate symmetrical
designs (FFD, CCD, etc.), because the algorithms for exact optimal designs do not always
converge to the best design. They start with some initial, usually a randomly generated,
design and iteratively improve it. Because the search for exact experimental design
operates in a highly complicated space, the results from run to run can differ from each
other in terms of the obtained optimality (e.g., the value of the determinant for
D-optimality). When using these methods, it is advisable to run the procedure several
times and use only the best of the generated designs. This can be accomplished in
MATLAB with a simple script for calculating the determinant of the design. The script
should take the output of cordexch and rowexch (say Xn) and construct the respective
extended design matrix, FN, using the same structure as the model (here quadratic) and
calculate the determinant of the information matrix. After calculating this figure of merit
for each generated design, it is a simple matter to choose the one that has highest value.

An example of a MATLAB session (three process variables, 10 experiments,
quadratic model [see Equation 8.75]) follows:

>> Xn=rowexch(3,10,'q');

>> Fn=x2fx(Xn,'q');

>> det(Fn’*Fn)

>> ans = 1048576

Our experience with cordexch and rowexch reveals that the algorithm behaves quite
well, and it is usually sufficient to perform approximately 10 to 20 runs to achieve the
best design. With increasing numbers of the factors, more runs will be required.

There is also a useful function called daugment that is used to construct augmented
experimental designs. The idea is similar to the approach used for the construction of
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Block B for optimal composite sequential designs, discussed earlier. The only differ-
ence is that the initial design (equivalent to Block A) and the augmentation (equivalent
to Block B), as discussed in Section 8.7.3 about OCSD, are for one and the same type
of model. The rationale here is to use some data (e.g., a previously performed exper-
imental design of N1 points) and to enrich it by adding some additional, say N2,
experiments. As a result, we will obtain a design of N1 + N2 experiments just by
performing the new N2 experiments. There is one important precaution to be mentioned
here. Before augmenting the original set of experimental data with a new set, it is
extremely important for the experimenter to make sure that all of the conditions used
for measuring the two sets of experiments are identical. For example, a new or repaired
instrument, new materials, or even a new (more/less experienced) technician could
cause some shift in the results not related to the process under investigation.

8.8.1.2 Design Expert

®

is a typical off-the-shelf software package. The software is designed to guide the
experimenter through all of the steps in response-surface modeling up to the numer-
ical (also graphically supported) optimization of the response function. Apart from
the rich choice of experimental designs available, DX6 calculates the regression
model along with a comprehensive table of ANOVA results. The package also has
good graphical tools, especially for contour plots for both Descartes and barycentric
(including constrained) coordinate systems.

The DX6 program generates most of the symmetric designs, Taguchi orthogonal
designs, and exact D-optimal designs for process, mixture, and process+mixture com-
bined spaces. DX6 can also handle constrained mixtures. It can also produce the
respective two- and three-dimensional-contour Descartes and mixture plots. There is
considerable flexibility provided in model construction and their modification.

The package also includes a multiresponse optimization function, based on a
desirability function [12] that reflects the desirable ranges or target values for each
response. The desirable ranges are from 0 to 1 (least to most desirable, respectively).
One can also define the importance of the different responses and the program can
produce and graphically represent the optimum of the desirability function.

The main shortcoming of the program is that the experimenter is unable to import
measured response values and their corresponding (probably nonoptimal, but exist-
ing and already performed) experimental designs. This problem can be circumvented
by using the clipboard (copy/paste functions in Microsoft® Windows). Practically
speaking, the user is expected to use only the experimental designs provided by the
package. Another drawback is that the user cannot access the graphical and optimi-
zation facilities by entering regression coefficients calculated with another program
(e.g., Microsoft Excel or MATLAB).

8.8.1.3 Other Packages

Other packages offer tools for constructing experimental designs, including the DOE
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Design Expert  version 6 (DX6) offered by Stat-Ease, Inc., (http://www.statease.com)

add-in of Statistica, http://www.statsoft.com/; SPSS, http://www.spss.com; Minitab,
http://www.minitab.com; MultiSimplex, http://www.multisimplex.com; MODDE,

http://www.statease.com
http://www.statsoft.com
http://www.spss.com
http://www.minitab.com
http://www.multisimplex.com
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8.8.2 CATALOGS OF EXPERIMENTAL DESIGNS

The best software packages can be quite expensive, but they provide the user with
flexibility and convenience. Still, the user is expected to have some computer and
programming skills, depending on the particular package, and the user must have
some knowledge in the construction of optimal designs. However, in some particular

sible to use design of experiment (DOE) software.
As an alternative to DOE software, it is possible to use published tables or

catalogs of experimental designs. The formalization of a technological process with
inputs, outputs, and noise variables, as presented at the beginning of this chapter,
provides a framework for generalization that makes it possible to apply the principles
of experimental design to many different kinds of problems. Catalogs of optimal
experimental designs (COED) can be found in the literature [29], which include
tables of previously generated experimental designs. A typical design taken from a

is an optimal composite for the following two models:

(8.77)

(8.78)

In the note to Table 8.12, we find the basic information for the design, including
the number of variables and the number of regression coefficients for the two models.
The total number of points in the design (here 28) is determined by the value of k2,
the number of coefficients in the larger model. As mentioned previously, the exper-
imenter is supposed to perform at least k1 experiments to be able to estimate the
coefficients of a model of the type shown in Equation 8.77 and at least k2 for a
model of the type shown in Equation 8.78. After the 10th and the 14th point, we
see two thinner lines, which emphasize these boundaries.

This design was generated by using a grid constructed in the mixture+process factor
space. Each point of this grid was a combination of [0, 0.5, 1, 0.212, 0.788, −1, 1],
subject to the restriction for the mixture coordinates. The two columns at the
right contain the values of the maximum prediction variance. These values can be used
to determine the number of experiments needed to provide the desired level of prediction
accuracy. This approach was described earlier in this chapter. In addition to catalogs with
OCSD, there are also catalogs of OSD [30] and exact optimal designs (EOD) [31].

ŷ b x b x x b x
i i

i

q

ij i j

j

q r

i

q

ij i
= + +

= <

+

=

+ −

∑ ∑∑
1 11

1 1

2

ii q

q r

= +

+

∑
1
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catalog is shown in Table 8.12 [29]. This is a D-optimal composite sequential design

applications of experimental design (see Section 8.9 below), it is sometimes impos-

(see Section 8.7.3) for three mixture variables and one process variable. The design

from Umetrics, Inc., http://www.umetrics.com/; and SAS/QC and JMP, which are
products of the SAS Institute Inc., http://www.sas.com.

http://www.umetrics.com
http://www.sas.com
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8.9 EXAMPLE: THE APPLICATION OF DOE IN 
MULTIVARIATE CALIBRATION

8.9.1 CONSTRUCTION OF A CALIBRATION SAMPLE SET

One of the key areas in which experimental design is used in analytical chemistry
is in the development of spectroscopic calibration models. Clearly, when the number
of factors (chemical components) is small, the task is trivial, but it is also common

TABLE 8.12
Optimal Composite Sequential Design for Three 
Mixture Variables and One Process Variable, 
Optimal for Models Having Structures in 
Equations 8.77 and 8.78

No 4.1. (3.1), q = 3, r = 1, K1 = 10, K2 = 14, T = 0.5,
U = 0.212, V= 0.788, W = 0.333

No. x1  x2   x3    x4
 Max. d′ Max. d′

1 0    1     0      1 — —
2 0    1     0    –1 — —
3 0    0     1    –1 — —
4 T   0     T     0 — —
5 1    0     0     1 — —
6 1    0    0    –1 — —
7 0    T    T    0 — —
8 0    0     1     1 — —
9 W  W   W –1 — —
10 T    T    0     0 1.834 —

11 V    0    U    1 1.722 —
12 0     V    U    1 1.515 —
13 0     U   V    1 1.497 —
14 V    U    0    0 1.422 8.590

15 U    0    V  –1 1.418 3.482
16 U    V    0     0 1.375 2.708
17 T    T    0   –1 0.996 1.868
18 V    0    U   –1 0.971 1.563
19 W   W   W   0 0.970 1.508
20 U    0     V    1 0.962 1.476
21 0     V    U  –1 0.937 1.315
22 0     U    V  –1 0.934 1.125
23 U    V    0   1 0.753 1.125
24 V    U    0   1 0.728 0.886
25 0     0    1     0 0.667 0.759
26 0     1    0   –1 0.667 0.759
27 1     0    0   −1 0.531 0.684
28 W   W   W   1 0.530 0.665
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to encounter applications that have many different components. These can include
active components, inactive additives, dyes, etc., and the concentration levels of
these components can vary widely. In such cases, the method of experimental design
can be used to determine the optimum set of standards required to prepare calibration
models. One of the difficulties in developing a new calibration model is that the
mixtures must be within an appropriate range for the instrumental measurement
method. Using mixtures that are too concentrated gives rise to a nonlinear response
(e.g., in UV spectroscopy, for peaks that no longer obey Beer’s Law) and, as such,
the samples must be diluted. Conversely, using mixtures that are too dilute will cause
a loss in the signal-to-noise ratio, and hence introduce unnecessary noise into the
model. Given these constraints, it is possible to use the method of experimental
design with some reference spectra to build up a simulated calibration set with
proposed standards that are in the correct range for the chosen analytical measure-
ment method, without the need to perform any preliminary experiments. These
simulated calibration data can be used to build calibration models using PLS, etc.
to test that there is sufficient variability in the calibration set to be useful for modeling
purposes. The net result of this approach is that the user can very quickly develop
a calibration model and test it prior to performing any actual experiments, which
thus maximizes productivity and reduces waste. A further advantage of the approach
described here is that one can perform some screening to discover inactive or
nonabsorbing components in the mixtures. The combination of screening, DOE, and
simulation of calibration mixture spectra proposed here can significantly reduce the
resources required for performing the actual measurements.

To illustrate the use of experimental designs in an analytical chemistry applica-
tion, we will examine a problem taken from the agrochemical industry. The problem
under investigation was to develop a robust calibration model for several commercial
products based on UV spectral measurements. By the term “robust model,” we
assume that the model will be able to give acceptable predictions even if there is
some moderate variation in the controlled and uncontrolled variables.

The successful construction of any calibration model depends to a great extent on
the set of calibration points. Considering the components of the products as indepen-
dent factors, we can construct the respective factor space in the terms discussed earlier

within this factor space, and the best distribution of these points will be achieved by
employing the experimental-design approach. Provided that the number of significant
factors and that the type of the required regression model are known, we should be
able to construct a successful experimental design. To implement the calibration design
and perform the necessary measurements, we also need to know the boundaries of the
factor space. The following discussion is directed toward these points.

8.9.1.1 Identifying of the Number of Significant Factors

In this example, 12 products, P1 to P12, were to be considered, each consisting of
one to nine components, coded here as C1 to C9. The list of products, their ingre-

of commercial confidentiality, we omitted the actual names of the products and
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dients (components), and the amount of each are listed in Table 8.13. For reasons

in this chapter (see Section 8.2.2). The calibration set will consist of points distributed
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ingredients and slightly changed the amount of the ingredients in each product.
These changes will not affect the generality of the approach described here.

respective concentrations of the solutions used to measure the pure-component

large absorption values in the wavelength range of interest will have considerable
influence on the calibration model. Conversely, inactive components that have very
weak absorption values in the wavelength range of interest will have a weak influence
on the model while introducing some additional noise.

The level of UV absorption was used as a screening tool to divide the components

nents having strong UV absorption signals in the range from 250 to 360 nm and
inactive components having weak or insignificant UV absorption signals in this range.

Removing the UV-inactive components reduced the number of the components
to be considered from nine to five. The products and their corresponding UV-active

TABLE 8.13
List of Products under Consideration and the 
Respective Quantities of the Components 
Included in Each Product

P1 P2 P3 P4

C6 100 C6 200 C6 200 C6 200
C9 50 C7 0.5 C7 0.5 C7 0.5
C7 2 C1 35 C1 35 C1 35
C1 24 C8 116.7 C8 117 C8 116.7
C8 80 C2 0.25 C2 0.25 C2 0.25
C2 0.4 C3 2.5 C3 2.5 C3 5
C3 2 C5 5 C5 1 C5 10
C5 10  — — — — — —

P5 P6 P7 P8

C6 120 C6 200 C6 120 C6 100
C9 80 ó ó C9 80 C7 0.5
C7 0.5 ó ó C7 0.5 C1 10
C1 35 ó ó C1 10 C2 0.5
C8 117 ó ó C2 0.5 C3 1
C2 0.25 ó ó C3 2.5 C5 10
C3 2.5 ó ó C4 40 C4 40
C5 10  —  — — — — —

P9 P10 P11 P12

C6 8.77 C9 200 C9 200 C6 7.93
C9 8.77 C2 0.6 C2 0.6 C9 7.93
C7 0.07 C4 12.5 C4 150 C7 0.128
C4 4.6 — — — — C4 4.2
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spectra are shown in Table 8.14. It is reasonable to assume that components having

Figure 8.25 shows the pure-component UV spectra of all nine components. The

into two sets, active (Figure 8.26) and inactive (Figure 8.27), with the active compo-
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formulation is also shown.
Examining Table 8.15, we observe that products P6, P10, and P11 have only

one UV-active component; P9 and P12 have three UV-active components; P3, P4,
P5, P7, and P8 have four UV-active components; and P1 and P2 have five UV-active
components. Thus four types of experimental designs are needed for 1, 3, 4, and 5
independent (process) variables.

FIGURE 8.25 UV spectra of all nine pure components.

TABLE 8.14
Concentration of Components C1 to C9 
Used to Measure Pure-Component Spectra

Concentration No. Concentration, ppm

C1     10
C2     10
C3     10
C4     10
C5   100
C6   100
C7     10
C8       5
C9 1000
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components are listed in Table 8.15. The number of components present in each
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8.9.1.2 Identifying the Type of the Regression Model

As the goal is to build a calibration model based on spectral data, we assume that
Beer-Lambert’s law is valid,

(8.79)

FIGURE 8.26 Spectra of the UV-active components.

FIGURE 8.27 Spectra of the UV-inactive components.
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where l is the sample cell path length, εi is the extinction coefficient, and ci is the
concentration of the ith component at the wth wavelength. Noting the theoretical
linear nature of the response described in Equation 8.79, we assume that a linear
polynomial model for p independent variables will be adequate; thus, the model
selected for our experimental designs has the following structure

(8.80)

where pj, j = 1, 12 represents the number of the jth product, e.g., p1 = 5, p = 4, etc. As
previously noted, the products fall into one of four categories depending on the number
of UV-active components. Thus, four different types of models are needed, one each
for one, three, four, and five process variables. Respectively, the number of regression
coefficients will be k1 = 2, k2 = 4, k3 = 5, and k4 = 6. The minimum number of points
in the designs for each of these models will be determined by the corresponding number
of regression coefficients.

Having the number and the type of the variables (components) and the type of
the regression model required, we can begin the task of constructing the appropriate
experimental designs. In this project it was decided to use exact D-optimal designs
having Ni = ki + 5 points. The number of the points selected provides sufficient
degrees of freedom to calculate the regression coefficients. The resulting D-optimal

TABLE 8.15
The “Reduced” Product Formulations 
after the Removal of the UV-Inactive 

P1 P2 P3 P4

1 C1 1 C1 1 C1 1 C1
2 C5 2 C2 2 C5 2 C5
3 C6 3 C5 3 C6 3 C6
4 C7 4 C6 4 C7 4 C7
5 C9 5 C7 ó ó —

P5 P6 P7 P8

1 C1 1 C9 1 C1 1 C1
2 C5 ó 2 C6 2 C5
3 C6 ó 3 C7 3 C6
4 C7 ó 4 C9 4 C7

P9 P10 P11 P12

1 C6 1 C9 1 C9 1 C6
2 C7 2 C7
3 C9 — — — — 3 C9

ˆ , ,y b b x j
j o i i

i

pj

= + =
=

∑ 1 12
1
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designs are shown in Table 8.16.

Components Shown in Figure 8.27
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8.9.1.3 Defining the Bounds of the Factor Space

The coded values for the two levels of the controlled factors in these designs are +1 and
–1, which represent the upper and lower boundaries for each variable. To implement the
designs, we transform these two levels into the real values. By finding the lower and
upper boundaries of the variables for each product, the four generic designs (in coded
values) will be transformed to 12 calibration sets (in real values), one for each product.

To define the boundaries, we assume that the models should be valid over a
working range of up to ±10% of each component’s target value in the formulated
products. Considering each of the product formulations individually, we calculate
the bounds using Equation 8.81,

(8.81)

where pi
* designates the target value of the ith component, and, xi

min and xi
max are

the lower and upper bounds, respectively. For example, if the target value of the
ith factor is xi

c = 200, the respective boundaries will be xi
min = 0.9 × 200 = 180

and xi
max = 1.1 × 200 = 220. The general formula for the transformation from

coded to natural (real) variables and vice versa is

TABLE 8.16
Catalog of Four Exact D-Optimal Experimental 
Designs for the Spectroscopic Calibration Problem

ξ1(1,8) ξ2(3,9) ξ3(4,10) ξ4(5,11)

x1
c x1

c,     x2
c,  x3

c x1
c,   x2

c,  x3
c, x4

c   x1
c,  x2

c,  x3
c,  x4

c,  x5
c

−1   1,   –1, −1 −1,   –1, –1, –1   1,     1,  −1,  −1, −1
−1 −1,   –1,   1 −1,     1, –1,   1   1,   –1,    1,  –1,   1
−1 −1,   –1, –1 −1,   −1, –1, –1   1,     1,    1,    1, −1
−1 −1,     1, –1 −1,     1,   1,   1 −1,     1,    1,    1,   1
  1 −1,     1,   1 −1,   −1,  1,   1   1,   −1,  −1,  –1,  1
  1   1,    1, –1   1,     1,  1, –1 −1,   −1,  −1,    1, −1
  1   1,     1,  1   1,   −1, –1,  1 −1,     1,   1,   –1,   1
  1   1,   –1,  1   1,     1,   1, −1   1,   −1,   1,     1, −1

—   1,   −1,  1   1,     1, –1,  1   1,     1, –1,     1,   1
— —   1,   −1,   1,  1 −1,     1, –1,  –1, −1
— — — −1,   –1,   1,  –1, −1

Note: The numbers in parentheses at the top of the table represent,
respectively, the number of variables and the number of measurements.
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For the example given here, the formula becomes:

The reverse transformation is obvious.
The process of translating the coded values to real values is illustrated in detail

for the construction of the calibration set for product P1. The target values for each
component in product P1 are shown in Table 8.17, with UV-inactive components
shown as shaded rows.

By taking the entries of Table 8.17 as the target values, we calculate the respective
upper and lower bounds for each component. The results are shown in Table 8.18.

Now, using the correspondence between the real and coded upper and lower

and replace the coded entries with the real ones. The set of the calibration points in
coded and real values, constructed using design ξ4 (5,11) (5 variables, 11 measure-

TABLE 8.17
List of Components Included in 
Product P1, with UV-Inactive
Components Shaded

Component Quantity
C6 100
C9 50
C7 2
C1 24
C8 80
C2 0.4
C3 2
C5 10

TABLE 8.18
Translation of Coded Factor Levels to 
Real Experimental Levels for Product P1

Component

Lower Bound Upper Bound

Real Coded Real Coded

C6   90 −1  110 1
C9   45 −1    55 1
C7   1.8 −1   2.2 1
C1 21.6 −1 26.4 1
C5      9 −1    11 1

− =
−
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= −
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= −
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220 200
180 200
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bounds shown in Table 8.18, we can choose the appropriate design from Table 8.16

ments), is shown in Table 8.19.
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8.9.1.4 Estimating Extinction Coefficients

Using the formulations of the calibration set listed in Table 8.19 and the pure-
component spectra measured earlier, we can generate a set of simulated calibration
spectra without performing any experimental work and investigate some important
properties of the calibration set. The first step is to estimate the matrix of extinction
coefficients, E, using the pure-component spectra. Assuming the path length, l = 1,
the ith pure-component spectrum can be represented by

(8.82)

where Ai is the vector of measured absorbances for the ith component at concentra-
tion ci

*, and εi is the respective vector of extinction coefficients. Solving for the
vector of extinction coefficients, εI, gives Equation 8.83.

(8.83)

The matrix of extinction coefficients for the components of product P1 can be
assembled by arranging the vectors of extinction coefficients into the rows of

. The matrix of concentrations, C, for the subset of active
species in product P1 is given in the right-hand side of Table 8.19, or in matrix form,
C = [C1, C5, C6, C7, C9]. According to the Beer-Lambert law in Equation 8.79, the
product of these two matrices gives the matrix of simulated mixture spectra, A, for
the calibration set, where the path length, l, is assumed equal to 1.

(8.84)

TABLE 8.19
Translated Experimental Design for Product 
P1

C6 C9 C7 C1 C5

1,     1,   −1,   −1, –1 110 55 1.8 21.6 9
1,   –1,     1,   –1,   1 110 45 2.2 21.6 11
1,     1,     1,     1,  –1 110 55 2.2 26.4 9

−1,   1,     1,     1,  1 90 55 2.2 26.4 11
1,   −1,  −1,    –1,   1 110 45 1.8 21.6 11

−1, −1,  −1,     1, –1 90 45 1.8 26.4 9
−1,   1,    1,   –1,  1 90 55 2.2 21.6 11
1,   −1,    1,     1, –1 110 45 2.2 26.4 9
1,     1,   –1,    1,   1 110 55 1.8 26.4 11

–1,   1,   −1,  –1, –1 90 55 1.8 21.6 9
−1, –1, 1,   –1, –1 90 45 2.2 21.6 9

A c i mi i i t= =ε * , ,1

εi
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i
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*
, ,1

E
P1 1 5 6 7 9

= [ , , , , ]ε ε ε ε ε

A CE=

DK4712_C008.fm  Page 329  Saturday, March 4, 2006  1:59 PM

© 2006 by Taylor & Francis Group, LLC

Figure 8.28 shows the predicted calibration spectra listed in Table 8.19 for product P1.
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For calibration work in the UV range, spectra should have a maximum absor-
bance less than 1 for Beer’s law to be obeyed and to obtain good linear response.
Clearly, since this condition does not hold for the simulated calibration spectra shown
in Figure 8.28, a simple dilution of the calibration samples should be performed
before measuring their UV spectra. This is applicable to any sample type, as the
dilution only affects the analysis method and not the final result.

8.9.2 IMPROVING QUALITY FROM HISTORICAL DATA

As was mentioned previously, in process analytical applications we are usually
limited in how we do experiments and collect data. Sometimes we are not able to
adjust the controlled factors of a process according to the principles of experi-
mental design because it would cause production of product that fails to meet
quality standards. In such cases, the only option is to measure the process and
deal with the data as received. Experiments performed in this manner are called
passive experiments. The values of the measured variables change according to
normal variation in the production process. This can cause correlation in the
measurements, which in turn can affect the numerical stability of fitting regression
models. In cases where it is desirable to achieve on-line or at-line control with a
regression model derived from measurements of the process, a procedure is needed
to avoid making unnecessary measurements and improve the accuracy of the
resulting models.

As a practical example, we consider data provided by BP Amoco from their
naphtha processing plant in Saltend, Hull, U.K. Briefly, naphtha is a mixture of
hydrocarbons and aromatics. The most important components in the feedstock are
naphthalenes and aromatics. Periodically, samples are collected. The near-infrared
(NIR) spectra of these samples are measured, and the amount of naphthalenes and

FIGURE 8.28 Predicted calibration spectra for product P1.
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aromatics is measured by gas chromatography (GC). A calibration model is

thalene and aromatic content are used to control the process. Here the goal is to
replace costly, time-consuming off-line GC measurements with rapid, on-line NIR
measurements. It is possible to collect hundreds or even thousands of NIR spectra
at relatively low cost, while it would be cost prohibitive to perform GC analysis on
each one. By analysis of the design matrix, X, which can be cheaply and quickly
measured, we can select a small subset of samples for GC analysis that will give an
optimal design, thus minimizing the time and expense of performing GC analysis
while maximizing the information we gather as well as the performance of the
regression model that we will build from these measurements.

Once the initial model is developed and placed on-line, a large historical database
of measurements and predictions can be accumulated. If the process or the measure-
ment instrument drifts over time, the usual practice is to recalibrate the NIR model
periodically by collecting new plant samples and performing NIR and GC measure-
ments. To avoid performing costly GC analysis on a large set of samples during
normal process operation, some method of using the inexpensive NIR data is needed
to select the most informative samples for off-line GC analysis. The resulting historical
data can be used in this way to augment the original experimental design with
maximum information and minimum effort. As a side effect, better performance of
the calibration model could be expected.

Following commonly accepted terminology, X represents an N × m data matrix
of NIR spectra with N rows (samples) measured at m variables. The predicted value

 of the response (naphthalene content or aromatic content) yi, i = 1, …, N
can be estimated using some appropriate form of a regression model,

(8.85)

By applying regression analysis, a k × 1 vector of the regression coefficients, b,
is calculated using the formula in Equation 8.86.

(8.86)

Using the notation of experimental design, F represents the extended design matrix,
where the elements of its k × 1 row-vectors, f, are known functions of x. The matrix
(FTF) is the Fisher information matrix and its inverse, (FTF)−1, is the dispersion
matrix of the regression coefficients.

As previously noted, in a typical process analytical application, the measured
data set might consist of spectral data recorded at a number of wavelengths much
higher than the number of samples. The rank, R, of the measured matrix of spectra
will be equal to or smaller than the number of the samples N. This causes rank
deficiency in X, and the direct calculation of a regression or calibration model by
use of the matrix inverse using Equation 8.85 and Equation 8.86 is problematic.

ˆ ,y i N
i

= 1…

ˆ ( ), , ,y b f i Ni j j

j
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= =
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DK4712_C008.fm  Page 331  Saturday, March 4, 2006  1:59 PM

© 2006 by Taylor & Francis Group, LLC

constructed using PCR or PLS (see Chapter 6), and the predicted values of naph-
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This problem can be solved using the multivariate calibration approach of
principal component regression (PCR) or partial least squares (PLS), described in

component scores, S, consisting of the vectors [s1, s2, …, sR], and loadings, P,
consisting of the eigenvectors [p1, p2,…, pR] of X [32]. During the process of
principal component analysis, we retain an appropriate number of principal compo-
nents (latent variables), i.e., those that describe statistically significant variation of
the data. By deleting eigenvectors and scores associated with undesirable noise, a
new matrix, X′, is calculated

(8.87)

so that the rank deficiency problem is resolved.
At the core of this approach is the improvement of the condition number of the

data matrix, X. The condition number of a matrix, cond(X), is the ratio of the largest
and smallest eigenvalue of X. It takes on values from 1 to +infinity, and can be used
as a measure of the numerical stability with which the inverse of X can be computed.
Values in the range from 1 to 1000 usually indicate that the matrix inverse calculation
will be very stable. In the limit, as the smallest eigenvalue of X goes to zero, cond(X)
tends toward infinity, indicating that matrix X is singular, i.e., it has a determinant
equal to zero, in which case the corresponding regression problem is rank deficient
and the inverse of X does not exist. When the condition number of X is extremely
large, the matrix X is close to being singular, which means computation of its inverse
will be numerically unstable. In PCA and PCR, the rank-deficiency problem is solved
by transforming the original variable space into PCA space and deleting principal
components corresponding to the smallest, closest to zero, eigenvalues. The result
is that the condition number of the new matrix X′ is better (lower) than the condition
number of the original matrix, X.

(8.88)

Finally, we turn to the problem of selecting the best experimental design, i.e.,
a subset of samples for passive experiments, as was outlined in the naphtha example.
To construct an optimal design that is robust against ill conditioning of the design
matrix, X, we use the E-optimality criterion. A design is E-optimal if it minimizes
the maximum eigenvalue of the dispersion matrix, M−1 = (FTF)−1. The name of the
criterion originates from the first letter of the word “eigenvalue.”

(8.89)

where δi[X] represents the eigenvalues of X, and R designates the rank of the
dispersion matrix.
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Chapter 6. In PCR, the matrix of spectra is decomposed into a matrix of principal
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By minimizing the maximum eigenvalue of the information matrix, M, we will
be assured that M will be invertible. This would be impossible if the design matrix
X and, subsequently, the information matrix M were ill conditioned. A variant of
the previously mentioned E-optimality criterion is shown in Equation 8.90,

(8.90)

which can be simplified to become  

(8.91)

Instead of minimizing the maximum eigenvalue of M−1 = (FTF)−1, an algorithm
can be constructed to maximize the minimum singular value of F, i.e., maximize
the condition number of F. To search for the E-optimal subset, it is possible to
develop an algorithm based on the method of DETMAX [19] or the update method
of Galil and Kiefer’s MD algorithm [20]. Instead of using the D-optimality criterion
(maximizing the determinant of the information matrix), we use the E-optimality
criterion (maximizing the minimum singular value of F).

To conduct a search for the E-optimal design directly to the NIR data, we need
a methodology that is robust with respect to correlation between the variables
(wavelengths). As previously noted, by using the principal component scores, it is
possible to use the E-optimal approach to reduce the number of samples and mini-
mize the number of time-consuming GC measurements while also improving the
quality of the calibration model.

8.9.2.1 Improving the Numerical Stability of the Data Set

To compare the selection of E-optimal subsets with a complete data set, an E-
optimal subset of ten points was generated. The respective condition numbers,

We see that the condition numbers of the E-optimal subsets are lower and are
more stable than the condition number for the whole set. We also observe that at
six or more latent variables, the condition number of the complete set increases
much more rapidly than the condition numbers of the E-optimal subsets. Calcu-
lation of regression coefficients at six or more latent variables may be considerably
more stable by using the E-optimal subset of 10 points compared with the whole
set of 102 points.

subset consisting of 30 points compared with the complete data set. We see
that the condition number of the E-optimal subset tends to increase, following
the pattern of the complete set, but because of reduced collinearity, its level
is lower.

max ( ) min max ( ) , , ,*
i

i
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i
i
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based on 1 to 10 latent variables, were calculated and are shown in Figure 8.29.

Figure 8.30 shows the behavior of the condition number of an E-optimal
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8.9.2.2 Prediction Ability

To minimize the number of costly GC measurements and obtain better prediction
of the naphthalene and aromatic content of the process feedstock, NIR calibration
models were used for prediction. The usual practice was followed by building an
initial model using a data set acquired over a limited period of time. To keep the
model up to date, a campaign for collecting new data was periodically organized,
and a new model was built to replace the old one. A typical example of a data set

filled circles indicate an E-optimal subset of ten points. The complete set consists

FIGURE 8.29 Effect of using of a ten-point E-optimal subset during the latent-variable
extraction.

FIGURE 8.30 Effect of using of a 30-point E-optimal subset during the latent-variable
extraction.
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is shown in Figure 8.31. The same autoscaled data is shown in Figure 8.32, where
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of 102 samples, measured over a 1-year period. Each point represents an NIR
spectrum measured at 1299 wavelengths. The points in the figure represent the
spectra projected into a three-dimensional space constructed by the first three prin-
cipal components. Reference values were measured by gas chromatography to deter-
mine the quantities of naphthalenes and aromatics present in each. More information
about the data set can be found in the literature [2].

FIGURE 8.31 Illustration of an experimental region covered by a set of 102 NIR spectra
projected into a three-dimensional space formed by the first three principal components.

FIGURE 8.32 The autoscaled data shown in Figure 8.31 with the E-optimal subset shown
(filled circles).
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The predictive ability of the model built using the E-optimal calibration subset
was compared with randomly selected subsets. For this purpose, the Cp statistic was
used to estimate the predictive ability of a model after its expansion by adding new
parameters

where represents the predicted value of the response at the ith sample using a
PCR or PLS model with p latent variables, yi represents the measured value, N is
the number of objects in the calibration set, and p is the number of the parameters
in the model including β0.

Direct comparison using a figure of merit for calibration error between a model
built using an E-optimal subset and a model built using the complete set is impossible
because of the different number of points in both sets. To ensure an objective com-
parison between the E-optimal model, we chose ten random sets of N = 10 points and
computed the average Cp. Comparing these values with the Cp values for the E-optimal
set in Table 8.20, it can be seen that E-optimal calibrations are in most cases close to
or better (i.e., lower) than the average Cp values of the random sets.

In addition, ten calibration sets of 92 points each were selected, and the respective
Cp values were averaged. The results are shown in the last two columns of Table 8.20.

TABLE 8.20
Comparison of Cp Values for Ten-Point E-Optimal Calibrations 
with Calibrations of Ten Randomly Selected Points

No. Latent
Variables

Cp for 
E-Optimal 10-Point

Calibration Set

Average Cp for
Random 10-Point
Calibration Sets

Average Cp for 
92-Point

Calibration Sets

y1 y2 y1 y2 y1 y2

1 391.06 46.89 153.83 48.59 4680.73 5703.43
2 248.42 33.35 65.58 25.03 2231.24 3807.26
3 43.24 13.56 28.41 15.90 447.84 813.96
4 29.04 13.17 21.27 15.45 138.79 460.05
5 19.23 10.31 11.84 10.72 41.76 136.69
6 16.14 9.65 13.00 10.37 31.74 44.42
7 15.63 12.59 20.09 12.02 24.84 31.79
8 15.35 12.12 21.89 11.91 21.15 30.43
9 16.00 16.00 16.00 16.00 16.00 16.00

Note: Average Cp results for two components, y1 and y2, are shown.
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Here we see that after selecting the proper number of the latent variables
(approximately five to seven), the value of Cp remains higher despite the fact that
the calibration set is nine times larger than the calibration set generated using the
E-optimal approach. The poorer predictive ability of this calibration set might be
due to the existence of clusters of samples. The existence of points that are close to
each other is equivalent to giving a higher relative weight to this group of points
compared with the others. This increased weight might shift the calibration curve
without a good statistical reason.

8.10 CONCLUSION

In this chapter, a brief outline of methods for constructing experimental designs was
presented. Throughout this chapter we have attempted to highlight the important
connection between response-surface methodology (RSM) and the design of exper-
iments (DOE). Basic information was presented about the most commonly used
types of experimental design, as well as some information about a few novel types
of experimental design, such as sequential composite designs. We also reviewed
some of the basic software packages equipped to deal with experimental designs.

In several cases, we highlighted theoretical discussions with supporting examples
taken from the field of chemistry and process analytical chemistry. In particular, a simple
calibration example using UV spectroscopy was selected to provide the reader with a
familiar point of reference. In this way, the topics of experimental design and response-
surface methodology were presented in a fashion that should help the nonexpert see
the benefits of this approach prior to implementation. For the user who is unfamiliar
with DOE methods, we hope our approach has provided a useful introduction.
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9.1 INTRODUCTION

 

For most of the 20th century, chemistry has been a data-poor discipline, relying on
well-thought-out hypotheses and carefully planned experiments to develop solutions
to real-world problems. With the advent of sophisticated instrumentation commonly
under computer control, chemistry is slowly evolving into a data-rich field, thereby
opening up the possibility of data-driven research. According to Lavine and Workman
[1, 2], this, in turn, has led to a new approach for solving scientific problems: (1)
measure a phenomenon or chemical process using instrumentation that generates
data inexpensively, (2) analyze the multivariate data, (3) iterate if necessary, (4)
create and test the model, and (5) develop fundamental multivariate understanding
of the process or phenomenon. The new approach does not involve a thought ritual;
rather, it is a method involving many inexpensive measurements, possibly a few
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simulations, and multivariate analysis. It constitutes a true paradigm shift, since
multiple experiments and data analysis are used as a vehicle to examine the world
from a multivariate perspective. Mathematics is not used for modeling 

 

per se

 

, but
more for discovery, and it is thus a data microscope to sort, probe, and look for
hidden relationships in data.

This new approach, which more thoroughly explores the implications of data so
that hypotheses are developed with a greater awareness of reality, often produces
large quantities of data. To analyze these larger data sets, analytical chemists have
turned to pattern-recognition methods because of the advantageous attributes of these
procedures [3, 4]. First, methods are available that seek relationships that provide
definitions of similarity or dissimilarity between diverse groups of data, thereby
revealing common properties among the objects in a data set. Second, a large number
of features can be studied simultaneously. Third, techniques are available for selecting
important features from a large set of measurements, thereby allowing studies to be
performed on systems where the exact relationships are not fully understood. Exam-
ples of pattern-recognition methods that have been used by analytical chemists for
multivariate data analysis include neural networks, discriminant analysis, clustering,
and principal component analysis.

Pattern-recognition methods were originally designed to solve the class member-
ship problem. In a typical pattern-recognition study, samples are classified according
to a specific property by using measurements that are indirectly related to the
property of interest. An empirical relationship or classification rule is developed
from a set of samples for which the property of interest and the measurements are
known. The classification rule is then used to predict the property of samples that
are not part of the original training set. Developing a classification rule from spec-
troscopic or chromatographic data may be desirable for several reasons, including
the identification of the source of pollutants [5, 6], detection of odorants [7, 8],
presence or absence of disease in a patient from which a sample has been taken
[9, 10], and food quality testing [11, 12], to name a few.

The set of samples for which the property of interest and measurements are
known is called the training set, whereas the set of measurements that describe each
sample in the data set is called a pattern. The determination of the property of interest
by assigning a sample to its respective class is called recognition, hence the term
“pattern recognition.”

For pattern-recognition analysis, each sample (e.g., individual test object or
aliquot of material) is represented by a data vector x 
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where 

 

x

 

j

 

 is the value of the 

 

j

 

th descriptor or measurement variable (e.g., absorbance
of sample at a specific wavelength). Such a vector can be considered as a point in
a high-dimensional measurement space. The Euclidean distance between a pair of
points in the measurement space is inversely related to the degree of similarity
between the objects. Points representing objects from one class tend to cluster in a
limited region of the measurement space separate from the others. Pattern recognition
is a set of numerical methods for assessing the structure of the data space. The data
structure is defined as the overall relation of each object to every other object in the
data set.
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Pattern recognition has its origins in the field of image and signal processing.
The first study to appear in the chemical literature on pattern recognition was
published in 1969 and involved the interpretation of low-resolution mass spectral
data using the linear learning machine [13]. Modern computers now enable these
techniques to be applied routinely to a wide variety of chemical problems such as
chemical fingerprinting [14–16], spectral data interpretation [17–19], molecular
structure-biological activity correlations [20–22], and cancer classification from
microarray data [23–25]. Over the past 2 decades, numerous books and review
articles on this subject have been published [26–35].

In this chapter, the three major subdivisions of pattern-recognition methodology
are discussed: (1) mapping and display, (2) clustering, and (3) classification. The
procedures that must be implemented to apply pattern-recognition methods are also
enumerated. Specific emphasis is placed on the application of these techniques to
problems in biological and environmental analyses.

 

9.2 DATA PREPROCESSING

 

The first step in any pattern-recognition study is to convert the raw data into
computer-compatible form. Normally, the raw data are arranged in the form of a
table, a data matrix:

(9.1)

The rows of the matrix represent the observations, and the columns are the values
of the descriptors. In other words, each row is a data or pattern vector, and the
components of the data vector are physically measurable quantities called descrip-
tors. It is essential that descriptors encode the same information for all samples in
the data set. If variable 5 is the area of a gas chromatographic (GC) peak for phenol
in sample 1, it must also be the area of the GC peak for phenol in samples 2, 3, etc.
Hence, peak matching is crucial when chromatograms or spectra are translated into
data vectors.

The next step involves scaling. The objective is to enhance the signal-to-noise
ratio of the data. In the applications discussed herein, two scaling techniques have
been used: normalization and autoscaling. The procedures that should be used for
a given data set, however, are highly dependent upon the nature of the problem.
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Normalization involves setting the sum of the components of each pattern vector
equal to some arbitrary constant. For chromatographic data, this constant usually equals
100, so each peak is usually expressed as a fraction of the total integrated peak area.
In mass spectrometry, the peak with the largest intensity is assigned a value of 100,
and the intensities of the other peaks are expressed as percentages of this fragment
peak. In near-infrared and vibrational spectroscopy, the data vectors are normalized
to unit length. This is accomplished by dividing each vector by the square root of the
sum of the squares of the components composing the vector. Normalization compen-
sates for variation in the data due to differences in the sample size or optical path
length. However, normalization can also introduce dependence between variables that
could have an effect on the results of the investigation. Thus, one must take into account
both of these factors when deciding whether or not to normalize data [36].

Autoscaling involves standardizing the measurement variables so that each descrip-
tor or measurement has a mean of zero and a standard deviation of unity, that is,

(9.2)

where is the mean and 

 

s

 

i

 

, orig

 

 is the standard deviation of the original measure-
ment variable. If autoscaling is not applied, the larger-valued descriptors tend to
dominate the analysis. Autoscaling removes inadvertent weighting of the variables
that would otherwise occur. Thus, each variable has an equal weight in the analysis.
Autoscaling affects the spread of the data, placing the data points inside a hypercube.
However, it does not affect the relative distribution of the data points in the high-
dimensional measurement space.

 

9.3 MAPPING AND DISPLAY

 

Physical scientists often use graphical methods to study data. If there are only two
or three measurements per sample, the data can be displayed as a graph or plot. By
examining the plot, a scientist can search for similarities and dissimilarities among
samples, find natural clusters, and even gain information about the overall structure
of the data set. If there are 

 

n

 

 measurements per sample (

 

n

 

 

 

>

 

 3), a two- or three-
dimensional representation of the measurement space is needed to visualize the
relative position of the data points in 

 

n

 

-space. This representation must accurately
reflect the structure of the data. One such approach is using a mapping and display
technique called principal component analysis (PCA) [37, 38]. A detailed treatment

of pattern recognition are summarized here.
Principal component analysis is the most widely used multivariate analysis

technique in science and engineering. It is a method for transforming the original
measurement variables into new, uncorrelated variables called principal components.
Each principal component is a linear combination of the original measurement
variables. Using this procedure, a set of orthogonal axes that represents the direction
of greatest variance in the data is found. (Variance is defined as the degree to which
the data are spread in the 

 

n

 

-dimensional measurement space.) Usually, only two or
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three principal components are necessary to explain a significant fraction of the
information present in multivariate data. Hence, principal component analysis can
be applied to multivariate data for dimensionality reduction, to identify outliers, to
display data structure, and to classify samples.

Dimensionality reduction or data compression is possible with principal com-
ponent analysis because of correlations between measurement variables. Consider
Figure 9.1, which shows a plot of 15 samples in a two-dimensional space. The
coordinate axes of this measurement space are defined by the variables 

 

x

 

1

 

 and 

 

x

 

2

 

.
Both 

 

x

 

1

 

 and 

 

x

 

2

 

 are correlated, since fixing the value of 

 

x

 

1

 

 limits the range of values
possible for 

 

x

 

2

 

. If 

 

x

 

1

 

 and 

 

x

 

2

 

 were uncorrelated, the enclosed rectangle shown in
Figure 9.1 would be completely filled by the data points. Because of this correlative
relationship, the data points occupy only a fraction of the measurement space.

Information can be defined as the scatter of points in a measurement space.
Correlations between measurement variables decrease the scatter and subsequently
the information content of the space [39] because the data points are restricted to a
small region of the measurement space because of correlations among the measure-
ment variables. If the measurement variables are highly correlated, the data points

matrix is an object, and each column is a measurement variable. Here 
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3

 

 is perfectly
correlated with 

 

x

 

1

 

 and 

 

x

 

2

 

, since 

 

x

 

3

 

 (third column) equals 

 

x

 

1

 

 (first column) plus 

 

x

 

2

 

(second column). Hence, the seven data points lie in a plane (or two-dimensional
subspace), even though each point has three measurements associated with it.
Because 

 

x

 

3

 

 is a redundant variable, it does not contribute any additional information,
which is why the data points lie in two dimensions, not three dimensions.

 

FIGURE 9.1

 

Fifteen samples projected onto a two-dimensional data space. Because 

 

x

 

1

 

 and

 

x

 

2

 

 are correlated, the data points are restricted to a small region of the measurement space
defined by the vertices A–D of the rectangle. (Adapted from Mandel, J., 

 

NBS J. Res

 

., 190
(6), 465–476, 1985. With permission.)
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Variables that contain redundant information are said to be collinear. High
collinearity between variables is a strong indication that a new coordinate system
can be found that is better at conveying the information present in the data than one
defined by the original measurement variables. The new coordinate system for
displaying the data is based on variance. (The scatter of the data points in the
measurement space is a direct measure of the data’s variance.) The principal com-
ponents of the data define the variance-based axes of this new coordinate system.
The first principal component is formed by determining the direction of largest
variation in the original measurement space of the data and modeling it with a line
fitted by linear least squares (see Figure 9.3) that passes through the center of the
data. The second largest principal component lies in the direction of next largest

 

FIGURE 9.2

 

In the case of strongly correlated measurement variables, the data points may
even reside in a subspace of the original measurement space. (Adapted from Brereton, R.G.,
Ed., 

 

Multivariate Pattern Recognition in Chemometrics

 

, Elsevier Science Publishers, Amster-
dam, 1992. With permission.)

 

FIGURE 9.3

 

Principal component axes defining a new set of basis vectors for the measure-
ment space defined by the variables X, Y, and Z. The third principal component describes
only noise in the data. (From Brown, S., 

 

Appl. Spectrosc.

 

, 49 (12), 14A–30A, 1995. With
permission.)
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variation. It passes through the center of the data and is orthogonal to the first
principal component. The third largest principal component lies in the direction of
next largest variation. It also passes through the center of the data; it is orthogonal
to the first and second principal component, and so forth. Each principal component
describes a different source of information because each defines a different direction
of scatter or variance in the data. The orthogonality constraint imposed by the
mathematics of principal component analysis also ensures that each variance-based
axis is independent.

A measure of the amount of information conveyed by each principal component
is the variance of the data explained by it, which is expressed in terms of its eigenvalue.
For this reason, principal components are arranged in order of decreasing eigenvalues.
The most informative or largest principal component is the first, and the least infor-
mative or smallest is the last. The amount of information contained in a principal
component relative to the original measurement variables, i.e., the fraction of the total
cumulative variance explained by the principal component, is equal to the eigenvalue
of the principal component divided by the sum of all the eigenvalues. The maximum
number of principal components that can be extracted from the data is the smaller of
either the number of samples or the number of variables in the data set, as this number
defines the largest possible number of independent axes in the data.

If the data are collected with due care, one would expect that only the larger
principal components would convey information about clustering, since most of the
information in the data should be about the effect of interest. However, the situation
is not always so straightforward as implied. Each principal component describes some
amount of signal and some amount of noise in the data because of accidental correlation
between signal and noise. The larger principal components contain information pri-
marily about signal, whereas the smaller principal components describe primarily
noise. By discarding the smaller principal components, noise is discarded, but so is a
small amount of signal. However, the gain in signal to noise usually more than
compensates for the biased representation of the data that occurs when plotting only
its largest principal components. The approach of describing a data set in terms of
important and unimportant variation is known as soft modeling in latent variables [40].

Principal component analysis takes advantage of the fact that a large amount of
data generated in scientific studies has a great deal of redundancy and therefore a
great deal of collinearity. Because the measurement variables are correlated, 800-
point spectra do not require 800 independent orthogonal axes to define the position
of a sample point in the measurement space. Using principal component analysis,
the original measurement variables that constitute a correlated-axes system can be
converted into an orthogonal-axes system, which dramatically reduces the dimen-
sionality of the data, since only a few independent axes are needed to describe the
data. Spectra of a set of samples often lie in a subspace of the original measurement
space, and a plot of the two or three largest principal components of the data can
help one to visualize the relative position of the spectra in this subspace.

Another approach for solving the problem of representing data points in an

 

n

 

-dimensional measurement space involves using an iterative technique known as
the Kohonen neural network [41, 42] or self-organizing map (SOM). A Kohonen
neural network consists of a layer of neurons arranged in a two-dimensional grid or
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plane. Each neuron is represented by a weight, which is a vector of the same
dimension as the input signal. The input is passed to each neuron in the network,
and the neuron whose weight vector is closest to the input signal is declared the
“winner.” For the winning neuron, the weight vector is adjusted to more closely
resemble the input signal. The neurons surrounding the winner are also adjusted,
but to a lesser degree. This process, when completed, causes similar input signals
to respond to neurons that are near each other. In other words, the neural network
is able to learn and display the topology of the data.

The procedure for implementing the Kohonen neural network is as follows. First,
all of the weight vectors in the network are initialized, that is, their components are
assigned random numbers. Next, the random weight vectors and the sample vectors
in the data set are normalized to unit length. Training is performed by presenting
the data one pattern at a time to the network. The Euclidean distance is computed
between the pattern vector and each weight vector in the network. Because compet-
itive learning is used, the sample is assigned to the neuron whose weight vector is
closest. The weight vector of the winning neuron and its neighbors are then adjusted
to more closely resemble the sample using the Kohonen learning rule:

(9.3)
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 is the sample vector currently passed to the network.
The comparison of all sample data vectors to all weight vectors in the network and
the modification of those weights occurs during a single iteration. After the learning
rule has been applied, the weights are renormalized to unit length.

The learning rate is a positive real number less than 1, which is chosen by the
user. It is a function of time and usually decreases during the training of the network.
The neighborhood function determines the magnitude of the weight adjustment based
on 

 

d

 

ic

 

, which is the link distance in the grid between the central neuron and the
neuron currently being adjusted. The magnitude of the adjustment is inversely
proportional to the distance between the neuron in question and the central neuron.
The neighborhood function can also decrease linearly with the number of iterations,
reducing the number of neurons around the winner being adjusted.

In the initial iterations, when 

 

η

 

 is relatively large and 

 

α

 

 is wide in scope, the
neurons order themselves globally in relation to each other in the data. As these
parameters decrease in value, the passing of each sample to the network results in
a relatively small change of only a few neurons. Over multiple iterations, the neurons
converge to an approximation of the probability distribution of the data. A large
number of iterations is required for the weight vectors to converge toward a good
approximation of the more numerous sample vectors.

Using this algorithm, the network is able to map the data so that similar data
vectors excite neurons that are very near each other, thereby preserving the topology
of the original sample vectors. Visual inspection of the map allows the user to identify
outliers and recognize areas where groups of similar samples have clustered.
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An advantage of self-organizing maps is that outliers, observations that have
a very large or very small value for some or all of the original measurement
variables, affect only one map unit and its neighborhood, while the rest of the
display is available for investigating the remaining data. In all likelihood, a single
outlier has little effect on the ending weights, since the neurons are more likely
to represent areas of largest sample density. By comparison, outliers can have a
drastic and disproportionate effect on principal component plots because of the
least-squares property of principal components. A sample far from the other data
points can pull the principal components toward it—away from the direction of
“true” maximum variance—thus compressing the remaining data points into a
very small region of the map. Removing the outlier does not always solve the
problem, for as soon as the worst outliers are deleted, other data points may
appear in this role.

One disadvantage of self-organizing maps is that distance is not preserved in
the mapping. Outliers do not distort the map, but identifying them is more
difficult, since an investigation of the neuron weights is necessary. Another
disadvantage is the massive number of computations often needed to reach a
stable network configuration, which limits the size of the network. It can also
lead to a dilemma. Using too few neurons results in clusters overlapping in the
map, with information about class structure lost. If too many neurons are used,
then training becomes prohibitive. In such a network, most of the neurons would
probably be unoccupied. Our own experience, as well as that of other workers,
has shown that a network composed of 20 

 

×

 

 20 units, which can be trained in a
reasonable period of time, often possesses the necessary resolution to delineate
class structure in multivariate data.

Principal component analysis and Kohonen self-organizing maps allow multi-
variate data to be displayed as a graph for direct viewing, thereby extending the
ability of human pattern recognition to uncover obscure relationships in complex
data sets. This enables the scientist or engineer to play an even more interactive role
in the data analysis. Clearly, these two techniques can be very useful when an
investigator believes that distinct class differences exist in a collection of samples
but is not sure about the nature of the classes.

 

9.4 CLUSTERING

 

Exploratory data analysis techniques are often quite helpful in elucidating the com-
plex nature of multivariate relationships. In the preceding section, the importance
of using mapping and display techniques for understanding the structure of complex
multivariate data sets was emphasized. In this section, some additional techniques
are discussed that give insight into the structure of a data set. These methods attempt
to find sample groupings or clusters within data using criteria developed from the
data itself: hence the term “cluster analysis.”

no measure of cluster validity that can serve as a reliable indicator of the quality of a
proposed partitioning of the data. Clusters are defined intuitively, depending on the context
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of the problem, and not mathematically, which limits their utility. Therefore, prior knowl-
edge about the problem is essential when using these methods. Because the threshold
value for similarity is developed directly from the data, criteria for similarity are often
subjective and depend to a large degree on the nature of the problem investigated, the
goals of the study, the number of clusters in the data sought, and previous experience.

Cluster analysis is based on the principle that distances between pairs of points
(i.e., samples) in the measurement space are inversely related to their degree of
similarity. Although several different types of clustering algorithms exist, e.g.,
K-means [43], FCV [44], and Patrick Jarvis [45], by far the most popular is hierar-
chical clustering [46–48], which is the focus here. The starting point for a hierarchical
clustering experiment is the similarity matrix, which is formed by first computing
the distances between all pairs of points in the data set. Each distance is then
converted into a similarity value

(9.4)

where 
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 is the Euclidean
distance between samples 
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 is the distance between the two most
dissimilar samples, which is also the largest distance in the data set.

These similarity values, which vary from 0 to 1, are organized in the form of a
table or square symmetric matrix. The similarity matrix is scanned for the largest
value, which corresponds to the most similar point pair, and the two samples (com-
prising the point pair) are combined to form a new point located midway between
the two original data points. After the rows and columns corresponding to the original

 

FIGURE 9.4

 

Are there two or four clusters in the data? (Adapted from Brereton, R.G., Ed.,

 

Multivariate Pattern Recognition in Chemometrics

 

, Elsevier Science Publishers, Amsterdam,
1992. With permission.)
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two data points are removed, the symmetry matrix is then updated to include
information about the similarity between the new point and every other point in the
data set. The matrix is again scanned, the new nearest-point pair is identified and
combined to form a single point, the rows and columns of the two data points that
were combined are removed, and the matrix is recomputed. This process is repeated
until all points have been linked. The result of this procedure is a diagram called a
dendogram, which is a visual representation of the relationships between samples
in the data set (see Figure 9.5). Interpretation of the results is intuitive, which is the
major reason for the popularity of these methods. For example, the dendogram shown
in Figure 9.5 suggests that gas chromatograms from the Marmoset monkey data set
can be divided into two groups (cluster 1 

 

=

 

 samples 18, 15, 25, 12, 14, 13, 16, 17,
21, 22, 23, 20, 24; cluster 2 

 

=

 

 samples 9, 11, 6, 10, 3, 19, 4, 1, 2, 5) or four groups
(cluster 1 

 

=

 

 samples 18, 15, 25, 12, 14, 13, 16, 17; cluster 2 

 

=

 

 samples 21, 22, 23,
20, 24; cluster 3 

 

=

 

 samples 9, 11, 6, 10; cluster 4 

 

=

 

 samples 3, 19, 4, 1, 2, 5). Samples
7 and 8 are judged to be outliers by the dendogram.

The Euclidean distance is the best choice for a distance metric in hierarchical
clustering because interpoint distances between the samples can be computed directly

which arises from inadvertent weighting of the variables in the analysis that occurs

 

FIGURE 9.5

 

Dendogram using the single-linkage method developed from the gas chromato-
grams of the scent marks of Marmoset monkeys. There are four different types of samples
in this data set: redhead females (sample nos. 1–5), redhead males (sample nos. 6–11),
blackhead females (sample nos. 12–19), and blackhead males (sample nos. 20–24). (From
Haswell, S.J., Ed., 

 

Practical Guide to Chemometrics

 

, 1st ed., Marcel Dekker, New York,
1992. With permission.)
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because of differences in magnitude among the measurement variables. Inadvertent
weighting of the variables arising from differences in scale can be eliminated by
autoscaling the data. For cluster analysis, it is best to autoscale the data. Autoscaling
ensures that all features contribute equally to the distance calculation.

There are a variety of ways to compute distances between data points and clusters
in hierarchical clustering. A few are shown in Figure 9.7. The single-linkage method

 

FIGURE 9.6

 

Euclidean distance between two data points in a two-dimensional measurement
space defined by the measurement variables 

 

x

 

1

 

 and x2. (Adapted from Massart, D.L. and
Kaufman, L., The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis,
John Wiley & Sons, New York, 1983. With permission.)

FIGURE 9.7 Computation for the distance between a data cluster and a point using (a) single
linkage, (b) complete linkage, and (c) average linkage. (From Haswell, S.J., Ed., Practical
Guide to Chemometrics, 1st ed., Marcel Dekker, New York, 1992. With permission.)

0

x2

x1

l

k

Dkl

Dkl =
j= 1

n
∑ (xkj − xij)2 

2 
1 3 

4 

4 

2 

2 

1 

5 

5 

5 

Distance = d15 

Distance = d35 

Complete linkage 

Average linkage 

Single linkage 

(b)

(c)

(a)

4 

3 

3 
1 

Distance =  
d15 + d25 + d35 +d45 

4 

DK4712_C009.fm  Page 350  Thursday, March 2, 2006  9:51 AM

© 2006 by Taylor & Francis Group, LLC



Classification and Pattern Recognition 351

assesses the similarity between a data point and a cluster by measuring the distance
to the nearest point in the cluster. The complete-linkage method assesses similarity
by computing the distance to the farthest point in the cluster. Average linkage assesses
similarity by computing the distance between all pairs of points where a member
of each pair belongs to the cluster, with the average of these distances being a
measure of similarity between a cluster and a data point.

All hierarchical clustering procedures yield the same results for data sets with
well-separated clusters. However, the results differ when the clusters overlap because
of space distorting effects. Single linkage favors the formation of large linear clusters
instead of the usual elliptical or spherical clusters. As a result, poorly separated clusters
are often chained together. Complete linkage, on the other hand, favors the formation
of small spherical clusters. That is why it is a good idea to use at least two different
clustering algorithms when studying a data set. If the dendograms are in agreement,
then a strong case can be made for partitioning the data into distinct groups. If the
cluster memberships differ, the data should be further investigated using principal
component analysis or other mapping and display techniques. As a general rule, it is
recommended that hierarchical methods be used in tandem with principal component
or self-organizing maps to detect clusters in multivariate data. Hierarchical methods
are exploratory tools: the absolute validity of a dendogram is less important than
insights and suggestions gained by the user about the data structure.

9.5 CLASSIFICATION

So far, only exploratory data analysis techniques, e.g., cluster and principal component
analysis, have been discussed. These techniques attempt to analyze multivariate data
without directly using the information about the class assignment of the samples to
develop projections of the data. Although mapping and display techniques and cluster
analysis are powerful methods for uncovering relationships in large multivariate data
sets, they are often not sufficient for developing a classification rule. However, the
overall goal of a pattern-recognition study is the development of a classification rule
that can accurately predict the class membership of an unknown sample.

This section discusses classification methods. The focus is on k-nearest neighbor
(K-NN), partial least squares (PLS), and soft independent modeling by class analogy
(SIMCA). Multilayered feed-forward neural networks [49, 50] and support vector
machines [51, 52] are not discussed in this section. Each method attempts to divide
a data space into different regions. In the simplest case, that of a binary classifier,
the data space is divided into two regions. Samples that share a common property
are found on one side of the decision surface, whereas those samples composing
the other category are found on the other side. The decision surface is developed
using a training procedure in which the internal structure of the network or machine
is adjusted empirically to obtain a best match between the output and the desired
result for a set of input data that serves as the training set. Although neural networks
and support vector machines can discern subtle patterns in noisy and nonlinear data,
overtraining is a problem. Spurious or chance classification is another issue that is
of concern. To successfully exploit the inherent advantages of neural networks and
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support vector machines, it is necessary to use a training set with a large sample
point density and the appropriate point distribution in the data space. Because of
the difficulty in generating such data sets, similarity-based classifiers, e.g., K-NN
and SIMCA, may be preferred in many applications.

9.5.1 K-NEAREST NEIGHBOR

K-NN [53, 54] is a powerful classification technique. A sample is classified according
to the majority vote of its k-nearest neighbors, where k is an odd number, e.g.,
1, 3, or 5. For a given sample, the Euclidean distance is computed from the sample
to every other point in the data set. These distances are arranged from smallest to
largest to define the sample’s k-nearest neighbors. Based on the class label of the
majority of the sample’s k-nearest neighbors, the sample is assigned to a class in
the data set. If the assigned class and the actual class label of the sample match, the
test is considered to be a success. The overall classification success rate, calculated
over the entire set of points, is a measure of the degree of sample clustering on the
basis of class in the data set. Because the data is usually autoscaled for K-NN, a
majority vote of the k-nearest neighbors can only occur if the majority of the
measurement variables concur.

K-NN cannot furnish a statement about the reliability of a particular classifica-
tion. However, for training sets that have a large number of samples in each class,
the 1-nearest neighbor rule has an error rate that is twice as large as the Bayes
classifier, which is the optimum classifier for any set of data [55]. To implement a
Bayes classifier, one must have knowledge of the underlying probability distribution
functions of each class in the data set. Usually, this knowledge is not available.
Clearly, any other classification method, no matter how sophisticated, can at best
only improve on the performance of K-NN by a factor of 2. For this reason, K-NN
is often used as a benchmark against which to measure other methods.

9.5.2 PARTIAL LEAST SQUARES

Soft modeling in latent variables is central to many of the more popular data analysis
methods in pattern recognition. For example, a modeling method called partial least
squares (PLS) is routinely used for classification because of the quality of the models
produced and the ease of their implementation due to the availability of PLS soft-
ware. Examples of PLS applications include detection of food oil adulteration [56],
analyte discrimination by sensor arrays [57], fingerprinting soil microbial commu-
nities [58], classifying wastewater samples [59], and typing coffee beans [60], to
name a few. Only a summary of the PLS method is provided here. For a detailed

PLS is a regression method originally developed by Herman Wold [66] as an
alternative to classical least squares for mining collinear data. Motivation for the
development of PLS was simple enough: approximate the design space of the
original measurement variables with one of lower dimension. The latent variables
in PLS are determined iteratively using both the response (target) variable and the
measurement variables. Each PLS component is a linear combination of the original
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measurement variables. These latent variables are rotated to ensure a better corre-
lation with the target variable. The goal of PLS is to seek a weight vector that maps
each sample to a desired target value. Because of the rotation, which attempts to
find an appropriate compromise between explaining the measurement variables and
predicting the response variable, confounding of the desired signal by interference
is usually less of a problem than in other soft-modeling methods.

For classification of multivariate data, PLS is implemented in the usual way
except that a variable, which records the class membership of each sample, is used
as the target variable. The results of the PLS regression are usually presented as
pairwise plots of the PLS components, allowing visual assessment of class separation
(akin to principal component analysis). If class separation in the PLS plot is pro-
nounced, an unknown sample can be categorized by projecting it onto the plot and
assigning the sample to the class whose center is closest. PLS enhances differences
between the sample classes and is used when information about class differences
does not appear in the largest principal components of the data. A formal explanation
as to why PLS is so successful in locating and emphasizing group structure has
recently been proposed. According to Rayens [67], PLS is related to linear discrim-
inant analysis when PLS is used for classification, which is why PLS can be expected
to perform reasonably well in this role. The performance of PLS tracks very closely
that of linear discriminant analysis [68].

9.5.3 SIMCA

Principal component analysis is central to many of the more popular multivariate data
analysis methods in chemistry. For example, a classification method based on principal
component analysis called SIMCA [69, 70] is by the far the most popular method for
describing the class structure of a data set. In SIMCA (soft independent modeling by
class analogy), a separate principal component analysis is performed on each class in
the data set, and a sufficient number of principal components are retained to account
for most of the variation within each class. The number of principal components
retained for each class is usually determined directly from the data by a method called
cross validation [71] and is often different for each class model.

The variation in the data not explained by the principal component model is called
the residual variance. Classification in SIMCA is made by comparing the residual
variance of a sample with the average residual variance of those samples that make
up the class. This comparison provides a direct measure of the similarity of a sample
to a particular class and can be considered as a measure of the goodness of fit of a
sample for a particular class model. To provide a quantitative basis for this comparison,
an F-statistic is used to compare the residual variance of the sample with the mean
residual variance of the class [72]. The F-statistic can also be used to compute an
upper limit for the residual variance of those samples that belong to the class, with
the final result being a set of probabilities of class membership for each sample.

There are several advantages in using SIMCA to classify data. First, an unknown
sample is only assigned to the class for which it has a high probability. If the sample’s
residual variance exceeds the upper limit for every class in the training set, the
sample would not be assigned to any of these classes because it is either an outlier
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or is from a class not represented in the training set. Secondly, some of the classes
in the data set may not be well separated. Hence, a future sample might be assigned
to two or more groups by SIMCA, which would make sense given the degree of
overlap between theses classes. By comparison, K-NN and many other classification
methods would forcibly assign the sample to a single class, which would be a mistake
in this particular situation. Thirdly, SIMCA is sensitive to the quality of the data
used to generate the principal component models for each class in the training set.
There are diagnostics to assess the quality of the data as a result of using principal
component analysis, including (a) modeling power [73], which describes how well
a variable helps each principal component to model variation in the data, and (b)
discriminatory power [74], which describes how well a variable helps each principal
component model to classify samples. Variables with low modeling power and low
discriminatory power usually can be deleted from the analysis, since they contribute
only noise to the principal component models.

Friedman and Frank [75] have shown that SIMCA is similar in form to quadratic
discriminant analysis. The maximum-likelihood estimate of the inverse of the cova-
riance matrix, which conveys information about the size, shape, and orientation of
the data cloud for each class, is replaced by a principal component estimate. Because
of the success of SIMCA, statisticians have recently investigated methods other than
maximum likelihood to estimate the inverse of the covariance matrix, e.g., regular-
ized discriminant analysis [76]. For this reason, SIMCA is often viewed as the first
successful attempt by scientists to develop robust procedures for carrying out sta-
tistical discriminant analysis on data sets where maximum-likelihood estimates fail
because there are more features than samples in the data set.

9.6 PRACTICAL CONSIDERATIONS

The choice of the training set is important in any pattern-recognition study. Each class
must be well represented in the training set. Experimental variables must be controlled
or otherwise accounted for by the selection of suitable samples that take into account
all sources of variability in the data, for example, lot-to-lot variability. Experimental
artifacts such as instrumental drift or sloping baseline must be minimized. Features
containing information about differences in the source profile of each class must be
present in the data. Otherwise, the classifier is likely to discover rules that do not work
well on test samples, i.e., samples that are not part of the original data.

The choice of the classifier is also important. There are several methods available,
and the choice depends strongly on the kind of data and its intended use. Should the
underlying relationship discovered in the data be readily understandable, or is accuracy
the most important consideration? Interpretation can be assisted by using mapping and
display methods. Testing the classifier with a validation set can assess its accuracy.

Finally, feature selection is crucial to ensure a successful pattern-recognition study,
since irrelevant features can introduce so much noise that a good classification of the
data cannot be obtained. When these irrelevant features are removed, a clear and well-
separated class structure is often found. The deletion of irrelevant variables is therefore
an important goal of feature selection. For averaging techniques such as K-NN, partial
least squares, or SIMCA, feature selection is vital, since signal is averaged with noise
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over a large number of variables, with a loss of discernible signal amplitude when noisy
features are not removed from the data. With neural networks, the presence of irrelevant
measurement variables may cause the network to focus its attention on the idiosyncrasies
of individual samples due to the net’s ability to approximate a variety of complex
functions in higher-dimensional space, thereby causing it to lose sight of the broader
picture, which is essential for generalizing any relationship beyond the training set.

Feature selection is also necessary because of the sheer enormity of many
classification problems, for example, DNA microarray data, which consists of thou-
sands of descriptors per observation but only 50 or 100 observations distributed
equally between two classes. Feature selection can improve the reliability of a
classifier because noisy variables increase the chances of false classification and
decrease classification success rates on new data. It is important to identify and
delete features from the data set that contain information about experimental artifacts
or other systematic variations in the data not related to legitimate chemical differ-
ences between the classes represented in the study. For many studies, it is inevitable
that relationships among sets of conditions are used to generate the data and the
patterns that result. One must realize this in advance when approaching the task of
analyzing such data. Therefore, the problem confronting the data analyst is, “How
can the information in the data characteristic of the class profile be used without
being swamped by the large amount of qualitative and quantitative information
contained in the chromatograms or spectra due to experimental conditions?” If the
basis of classification for samples in the training set is other than legitimate group
differences, unfavorable classification results will be obtained for the prediction set,
despite a linearly separable training set. (If the samples can be categorized by a
linear classifier, the training set is said to be linearly separable.) The existence of
these complicating relationships is an inherent part of multivariate data.

Pattern recognition is about reasoning, using the available information about the
problem to uncover information contained within the data. Autoscaling, feature
selection, and classification are an integral part of this reasoning process. Each plays
a role in uncovering information contained within the data.

9.7 APPLICATIONS OF PATTERN-RECOGNITION 
TECHNIQUES

Pattern-recognition analyses are usually implemented in four distinct steps: data pre-
processing, feature selection, mapping and display or clustering, and classification.
However, the process is iterative, with the results of classification or mapping and
display often determining further preprocessing steps and reanalysis of the data. Usu-
ally, principal component analysis, self-organizing maps, or PLS is used to explore
class structure in a data set. Classification rules are then developed, with the member-
ship of each class reflecting the composition of the clusters detected in the data.

Although the procedures selected for a given problem are highly dependent upon
the nature of the problem, it is still possible to develop a general set of guidelines
for applying pattern-recognition techniques to real data sets. In this final section, a
framework for solving the class-membership problem is presented based on a review
of data from four previously published studies.
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9.7.1 ARCHAEOLOGICAL ARTIFACTS

This study involves obsidian, which is a volcanic glass used by ancient people to
construct weapons, tools, and jewelry. Because the composition of this glass is quite
homogenous, it is reasonable to assume that one could trace Indian artifacts recovered
from archaeological sites to the quarry from where the volcanic glass was originally
obtained.

To assess this hypothesis, 63 samples of volcanic glass were collected from
four quarries that correspond to the natural geological sources of obsidian in the
San Francisco Bay area. (Samples 1 to 10 are from Quarry 1; samples 11 to 19 are
from Quarry 2; samples 20 to 42 are from Quarry 3; samples 43 to 63 are from Quarry
4.) The investigators analyzed the 63 glass samples for ten elements: Fe, Ti, Ba, Ca,
K, Mn, Rb, Sr, Y, and Zn. Next, a principal component analysis was performed on
the data. Figure 9.8 shows a plot of the two largest principal components of the data.
From the principal component map, it is evident that our volcanic glass samples can
be divided into four groups, which correspond to the quarry sites from which the
volcanic glass was obtained. To confirm the presence of these four clusters in the
data, the investigators also used single linkage to analyze the data. The dendogram

similarity 0.40, samples 1 to 10 form a cluster; samples 11 to 19 form another

FIGURE 9.8 Plot of the two largest principal components of the 10 metals for the 63 obsidian
samples. The two largest principal components account for 78% of the total cumulative
variance in the data. Each volcanic glass sample is represented by its sample number in the
plot. (Samples 1–10 are from Quarry 1; samples 11–19 are from Quarry 2; samples 20–42
are from Quarry 3; samples 43–63 are from Quarry 4.)
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shown in Figure 9.9 also indicates the presence of four clusters in the data (at
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FIGURE 9.9 Single-linkage dendogram of the obsidian data: samples 1–10 are from Quarry 1, samples 11–19 are from Quarry 2, samples
20–42 are from Quarry 3, and samples 43–63 are from Quarry 4.
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cluster; samples 20 to 42 form a third cluster; and samples 43 to 63 form the
fourth cluster). This result was significant because it provided archaeologists
with an important tool to acquire information about the migration patterns and
trading routes of the Indians in this region using x-ray fluorescence data obtained
from the artifacts. Further details about the obsidian data can be found in the
literature [77].

9.7.2 FUEL SPILL IDENTIFICATION

In this study, gas chromatography and pattern-recognition techniques were used to
develop a potential method for classifying different types of weathered and unweathered
jet fuels [78]. The data for the training set consisted of 228 fuel samples representing
five different types of jet fuels: JP-4, Jet-A, JP-7, JPTS, and JP-5. The 228 neat jet
fuel samples obtained from Wright Patterson and Mulkilteo Energy Management
Laboratory were splits from regular quality control standards that were purchased
over a 3-year period to verify the authenticity of manufacturer’s claims about the
properties of these fuels.

Prior to GC analysis, the fuel samples were stored in sealed containers at
–20°C. The gas chromatograms of the neat jet fuel samples were used as the
training set (see Table 9.1). The prediction set consisted of 25 gas chromatograms

were collected from sampling wells as a neat oily phase floating on the top of
well water; 7 of the 25 fuel samples were recovered fuels extracted from the soil
near various fuel spills. The other seven fuel samples had been subjected to
weathering in the laboratory.

Each fuel sample was diluted with methylene chloride and then injected onto a
capillary column using a split-injection technique. High-speed GC profiles were
obtained using a high-efficiency fused-silica capillary column 10 m in length with
an internal diameter of 0.10 mm and coated with 0.34 mm of a bonded and cross-
linked 5% phenyl-substituted polymethylsiloxane stationary phase. The column was
temperature programmed from 60 to 270°C at 18°/min using an HP-5890 gas
chromatograph equipped with a flame-ionization detector, a split-splitless injection

TABLE 9.1
Training Set for Jet Fuel Example

Number of Samples Fuel Type

54 JP-4 (fuel used by USAF fighters)
70 Jet-A (fuel used by civilian airliners)
32 JP-7 (fuel used by SR-71 reconnaissance plane)
29 JPTS (fuel used by TR-1 and U-2 aircraft)
43 JP-5 (fuel used by navy jets)
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of weathered jet fuels (see Table 9.2). Eleven of the 25 weathered jet fuel samples
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port, and an HP-7673A autosampler. Gas chromatograms representative of the five

The first step in the pattern-recognition study was peak matching the gas chro-
matograms using a computer program [79] that correctly assigns peaks by first
computing Kovat’s retention indices [80] for compounds eluting off the column.
Because the n-alkane peaks are the most prominent features present in these gas
chromatograms, it was a simple matter to compute these indices. Using this proce-
dure was equivalent to placing the GC peaks on a retention-index scale based on
the predominant peaks in the chromatograms.

TABLE 9.2
Prediction Set for Jet Fuel Example

Sample Number   Type                 Source

PF007 JP-4 Sampling well at Tyndall a

PF008 JP-4 Sampling well at Tyndall a 

PF009 JP-4 Sampling well at Tyndall a

PF010 JP-4 Sampling well at Tyndall a

PF011 JP-4 Sampling well at Tyndall a

PF012 JP-4 Sampling well at Tyndall a

PF013 JP-4 Sampling well at Tyndall a

KSE1M2 JP-4 Soil extract near a sampling well b

KSE2M2 JP-4 Soil extract near a sampling well b

KSE3M2 JP-4 Soil extract near a sampling well b

KSE4M2 JP-4 Soil extract near a sampling well b

KSE5M2 JP-4 Soil extract near a sampling well b

KSE6M2 JP-4 Soil extract near a sampling well b

KSE7M2 JP-4 Soil extract near a sampling well b

MIX1 JP-4 Weathered fuel added to sand
MIX2 JP-4 Weathered fuel added to sand
MIX3 JP-4 Weathered fuel added to sand
MIX4 JP-4 Weathered fuel added to sand
STALE-1 JP-4 Weathered in laboratory c

STALE-2 JP-4 Weathered in laboratory c

STALE-3 JP-4 Weathered in laboratory c

PIT1UNK JP-5 Sampling pit at Key West air station d

PIT1UNK JP-5 Sampling pit at Key West air station d

PIT2UNK JP-5 Sampling pit at Key West air station d 
PIT2UNK JP-5 Sampling pit at Key West air station d

a Sampling well was near a previously functioning storage depot. Each well sample
was collected on a different day.
b Dug with a hand auger at various depths. Distance between sampling well and soil
extract was approximately 80 yards.
c Old JP-4 fuel samples that had undergone weathering in a laboratory refrigerator.
d Two pits were dug near a seawall to investigate a suspected JP-5 fuel leak.
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fuel types are shown in Figure 9.10.
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The peak-matching program analyzed the GC data by first developing a template
of peaks. Integration reports were examined and peaks were added to the template if
they did not match the retention indices of previously reported peaks. A preliminary
data vector was then produced for each gas chromatogram by matching the retention
indices of peaks in each gas chromatogram with the retention indices of the features
present in the template. A feature was assigned a value corresponding to the normalized
area of the GC peak in the chromatogram. The number of times that a particular feature
was found to have a nonzero value was calculated, and peaks below a user-specified
number of nonzero occurrences were deleted from the data set. The peak-matching
software yielded a final cumulative reference file containing 85 peaks, although not
all peaks were present in all gas chromatograms. Using the peak-matching software,
each gas chromatogram was transformed into an 85-dimensional data vector, x = (x1,
x2, x3, …, xj, …, x85) for pattern-recognition analysis, where xj is the area of the jth
peak normalized to constant sum using the total integrated peak area.

In GC data, outliers — data points lying far from the main body of the data — may
exist. Because outliers have the potential to adversely influence the performance of
many pattern-recognition techniques, outlier analysis was performed on each fuel class
in the training set using the generalized distance test [81]. Three Jet-A and four JP-7
fuel samples were found to be outliers and were removed from the database. The
remaining set of data — 221 gas chromatograms of 85 peaks each — was normalized
to 100 and autoscaled to ensure that each peak had equal weight in the analysis.

Principal component analysis was used to examine the trends present in the

of the 85 GC peaks obtained from the 221 gas chromatograms. Each chromatogram
is represented as a point in the principal component map. The JP-4, JP-7, and JPTS

FIGURE 9.10 High-speed gas chromatographic profiles of JP-4, Jet-A, JP-7, JPTS, and JP-5
fuels. (From Lavine, B.K. et al., Anal. Chem., 67, 3846–3852, 1995. With permission.)
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training-set data. Figure 9.11 shows a plot of the two largest principal components
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fuels are well separated from each other and from Jet-A and JP-5 fuels in the two-
dimensional map of the data. Evidently, there is information characteristic of fuel
type in the gas chromatograms of neat jet fuels.

The overlap of Jet-A and JP-5 fuel samples in the principal component map is not
surprising because of the similarity in the physical and chemical properties of these
two fuels [82]. An earlier study reported that gas chromatograms of Jet-A and JP-5
fuels were more difficult to classify than the gas chromatograms of other jet fuels
because of the similarity in the overall hydrocarbon composition of these two fuel
materials. Nevertheless, the investigators concluded that fingerprint patterns existed
within the gas chromatograms of Jet-A and JP-5 fuels characteristic of fuel type, which
was consistent with the plot obtained for the second- and third-largest principal com-

differences do indeed exist between the hydrocarbon profiles of Jet-A and JP-5 fuels.
To better understand the problems involved with classifying gas chromatograms

of Jet-A and JP-5 fuels, it was necessary to focus attention on these two fuels.

peaks obtained from the 110 Jet-A and JP-5 gas chromatograms. An examination
of the principal component plot revealed that Jet-A and JP-5 fuel samples lie in
different regions of the principal component map. However, the data points

FIGURE 9.11 Plot of the two largest principal components of the 85 GC peaks for the 221
neat jet fuel samples. The map explains 72.3% of the total cumulative variance of the data:
1 = JP-4, 2 = Jet-A, 3 = JP-7, 4 = JPTS, and 5 = JP-5. (From Lavine, B.K. et al., Anal. Chem.,
67, 3846–3852, 1995. With permission.)
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ponents of the training-set data (see Figure 9.12). The plot in Figure 9.12 indicates that

Figure 9.13 shows a plot of the two largest principal components of the 85 GC
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FIGURE 9.12 Plot of the second- and third-largest principal components developed from the
85 GC peaks for the 221 neat jet fuel samples. The map explains 23.1% of the total cumulative
variance of the data: 1 = JP-4, 2 = Jet-A, 3 = JP-7, 4 = JPTS, and 5 = JP-5. (From Lavine,
B.K. et al., Anal. Chem., 67, 3846–3852, 1995. With permission.)

FIGURE 9.13 Principal component map of the 110 neat Jet-A and JP-5 fuel samples devel-
oped from the 85 GC peaks. The map explains 80% of the total cumulative variance. The JP-5
fuels are divided into two distinct subgroups: fuel samples that lie close to the Jet-A fuels
and fuel samples located in a region of the map distant from Jet-A fuels: 2 = Jet-A and
5 = JP-5. (From Lavine, B.K. et al., Anal. Chem., 67, 3846–3852, 1995. With permission.)
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representing the JP-5 fuels form two distinct subgroups in the map. This clustering
can pose a problem, since an important requirement for a successful pattern-recognition
study is that each class in the data set be represented by samples that are similar in
some way. Subclustering of the JP-5 fuel samples suggests a lack of similarity among
the samples representing the JP-5 fuels. This lack of similarity might be due to the
presence of experimental artifacts in the data. Therefore, it is important that GC peaks
responsible for the subclustering of JP-5 fuels be identified and deleted.

The following procedure was used to identify GC peaks strongly correlated with
the subclustering. First, the JP-5 fuel samples were divided into two categories on
the basis of the observed subclustering. Next, peaks strongly correlated with this
subclustering were identified using the variance weight [83, 84], which is a measure
of the ability of a feature to discriminate between two different sample groups.
Variance weights were also computed for the following category pairs: JP-4 vs.
Jet-A, Jet-A vs. JP-5, JP-7 vs. JP-5, and JPTS vs. JP-5. A GC peak was retained for
further analysis only if its variance weight for the subclustering dichotomy was
lower than for any of the other category pairs. The 27 GC peaks that produced the
best individual classification results when the gas chromatograms were classified as
JP-4, Jet-A, JP-7, JPTS, or JP-8 were retained for further study. The 27 peaks selected
using this procedure spanned the entire gas chromatogram.

Figure 9.14 shows a plot of the two largest principal components of the 27 GC

results of K-NN, which was also used to analyze the data. On the basis of K-NN

FIGURE 9.14 Principal component map of the 221 neat jet fuels developed from the 27 GC peaks
and representative of 75% of the total cumulative variance: 1 = JP-4, 2 = Jet-A, 3 = JP-7, 4 = JPTS,
and 5 = JP-5. (From Lavine, B.K. et al., Anal. Chem., 67, 3846–3852, 1995. With permission.)
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peaks obtained from the 221 neat jet fuel gas chromatograms. Table 9.3 lists the
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and the principal component map, it is evident that in the 27-dimensional data space,
the five fuel classes are well separated. Furthermore, the principal component map
does not indicate the existence of subclustering within any fuel class, which suggests
that each fuel class is represented by a homogenous set of objects.

A five-way classification study involving JP-4, Jet-A, JP-7, JPTS, and JP-5 in
the 27-dimensional data space was also undertaken using SIMCA. Principal com-
ponent models were developed from the 27 GC peaks for each of the five fuel
classes in the training set. The number of principal components retained for each
fuel class was determined by cross validation. Each gas chromatogram in the
training set was then classified on the basis of its residual or goodness of fit. The
probability of a gas chromatogram belonging to a particular class was determined
from its residual variance for the corresponding principal component model by
way of an F-test, which involves comparing the sample’s residual variance of fit
to the average residual variance for those samples that make up the class using a
variance ratio. Each sample was assigned to the class for which it had the smallest
variance ratio. If the variance ratio exceeded the critical F-value for that class, it
was not assigned to it. Results from the five-way classification study are shown

from the 27 GC peaks was very high.
A prediction set of 25 gas chromatograms was employed to test the predictive

ability of the 27 GC peaks and the class models associated with them. Because the
gas chromatograms in the prediction set were run a few months before the neat jet

the results. All of the weathered jet fuel gas chromatograms were correctly classified.
The high classification success rate obtained for the weathered fuel samples

suggests that information about fuel type is present in the gas chromatograms
of weathered jet fuels. This is a significant finding, since the changes in com-
position that occur after a jet fuel is released into the environment can be a
serious problem in fuel spill identification. These changes arise from microbial

TABLE 9.3
K-NN Classification Results for Jet Fuel Example

Class Number in Class 1-NN 3-NN 5-NN 7-NN

JP-4 54 54 54 54 54
Jet-A 67 67 67 67 67
JP-7 28 28 28 28 28
JPTS 29 29 29 29 29
JP-5 a 43 43 41 36 37
Total 221 221 219 214 215

a Misclassified JP-5 fuel samples were categorized as JET-A. This result is not
surprising because of the similarities in the hydrocarbon composition of these
two fuel materials.
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in Table 9.4. The recognition rate for the principal component models developed

fuel gas chromatograms, they constituted a true prediction set. Table 9.5 summarizes
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degradation, loss of water-soluble compounds due to dissolution, and evaporation
of lower-molecular-weight alkanes. However, the weathered jet fuel samples
used in this study were recovered from a subsurface environment. In such an
environment, evaporation is severely retarded [85], and the loss of water-soluble
compounds is not expected to be a serious problem [86]. In all likelihood, the
predominant weathering factor in subsurface fuel spills is biodegradation, which
does not appear to have a pronounced effect on the overall GC profile of the
fuels based on these results. Evidently, the weathering process for aviation
turbine fuels in subsurface environments is greatly retarded compared with
surface spills, with the subsurface spills preserving the fuel’s identity for a longer
period of time.

9.7.3 SORTING PLASTICS FOR RECYCLING

In this study, Raman spectroscopy and pattern-recognition techniques were used
to develop a potential method to differentiate common household plastics by type
[87–89], which is crucial to ensure the economic viability of recycling. The test
data consisted of 188 Raman spectra of six common household plastics: high-
density polyethylene (HDPE), low-density polyethylene (LDPE), polyethylene
terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyvinylchloride

TABLE 9.4
SIMCA Training-Set Results for Jet Fuel Example

F-Criterion a

Class
Number of Principal

Components Number in Class Number Correct Percent

JP-4 1 54 54 100%
Jet-A b 1 67 61 91.1%
JP-7 b 1 28 27 96.4%
JPTS 1 29 29 100%
JP-5 1 43 43 100%
Total — 221 214 96.8%

a Classifications were made on the basis of the variance ratio: F = [sp/s0]2[Nq − Nc − 1], where sp
2 is

the residual of sample p for class i, s0
2 is the variance of class i, Nq is the number of samples in the

class, and Nc is the number of principal components used to describe the class. A sample is assigned
to the class for which it has the lowest variance ratio. If the sample's variance ratio exceeds the critical
F-value for that class, then it is not assigned to the class. The critical F-value for each sample in the
training set is F ≤ [(M − Nc, (M − Nc)(Nq − Nc − 1)], where M is the number of measurement variables
or GC peaks used to develop the principal-component model.
b Misclassified Jet-A and JP-7 fuel samples were categorized as JP-5 by SIMCA.
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(PVC). The plastic containers used in this study were collected from residential
homes and from BFI Recycling in Pocatello, ID. Each plastic sample was cut
from collected containers. Spectra of the cut plastics were obtained with a Spex
500M (1/2) meter Raman spectrometer, which incorporated Spex Model 1489
collection optics, an Omnichrome Model 160 T/B air-cooled Ar+ laser, and a

representative of the six types of plastic. Each Raman spectrum was an average
of sixteen 1-s scans collected over the wave-number range 850 to 1800 cm−1 for
1093 points.

TABLE 9.5
Prediction-Set Results (F-Values) for Jet Fuel Example

Samples JP-4 Jet-A JP-7 JPTS JP-5

PF007 3.82 10.04 58.9 12.4 7.43
PF008 3.69   9.62 57.6 12.5 7.14
PF009 3.71   9.84 57.6 12.6 7.32
PF010 3.30 16.7 73.7 11.8 10.8
PF011 3.57   9.64 58.9 12.8 7.39
PF012 4.11   7.74 78.2 1.3.5 12.04
PF013 4.33   8.19 79.8 12.6 12.3
KSE1M2 2.83 24.4 63.9 30.4 11.21
KSE2M2 2.25 16.2 70.8 21.6 11.09
KSE3M2 2.51   9.41 71.0 17.3 10.2
KSE4M2 2.40 10.11 71.3 17.83 10.4
KSE5M2 2.33   7.76 56.4 17.9 7.61
KSE6M2 1.87 13.4 69.3 20.8 10.4
KSE7M2 2.21   9.85 67.3 18.3 9.78
MIX1 1.33 34.9 71.3 38.2 13.3
MIX2 1.33 11.93 53.3 20.9 7.37
MIX3 1.44 12.3 55.2 20.6 7.71
MIX4 1.59   9.51 48.6 19.9 6.27
STALE-1 1.72 73.7 151.9 54.7 31.5
STALE-2 0.58 28.7 123.8 30.9 22.6
STALE-3 0.541 28.7 127.3 29.9 22.6
PIT1UNK 6.62   1.19 6.11 33.02 0.504
PIT1UNK 6.57   1.15 6.03 32.9 0.496
PIT2UNK 6.51   1.14 6.14 32.8 0.479
PIT2UNK 6.51   1.14 6.27 32.7 0.471

Note: A sample is assigned to the fuel class yielding the smallest variance ratio. If the variance ratio
exceeds the critical F-value for that particular fuel class, the sample is not assigned to that class.
Critical F-values for prediction-set samples are obtained using one degree of freedom for the

q c

F-value at α0.975 is F (1,52) = 5.35, and for JP-5 it is F (1,41) = 5.47.
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liquid-nitrogen-cooled charge-coupled detector. Figure 9.15 shows Raman spectra

numerator and N  − N  − 1 degrees of freedom for the denominator (see [19]). For JP-4, the critical



Classification and Pattern Recognition 367

The spectra were boxcar averaged every 10 points to yield 218-point spectra.
The averaged spectra were baseline corrected for offsets using a linear polynomial
and then normalized to unit length to adjust for variations in the optical path

were chosen by random lot. For pattern-recognition analysis, each plastic sample
was represented by a data vector, x = (x1, x2, x3, …, xj, …, x218), where xj is the

FIGURE 9.15 Raman spectra of the plastics: (a) high-density polyethylene (HDPE), (b) low-
density polyethylene (LDPE), (c) polyethylene terephthalate (PET), (d) polypropylene (PP),
(e) polystyrene (PS), and (f) polyvinylchloride (PVC). (From Pattern Recognition, Chemometrics,
and Imaging for Optical Environmental Monitoring, Siddiqui, K. and Eastwood, D., Eds., Pro-
ceedings of SPIE, 1999, pp. 103–112. With permission.)
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length. The spectra were divided into a training set of 169 spectra (see Table 9.6)
and a prediction set of 19 spectra (see Table 9.7). Spectra in the prediction set
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Raman intensity of the jth point from the baseline-corrected normalized Raman
spectrum.

The first step in the study was to apply principal component analysis to the

components of the 218-point spectra that compose the training set. Prior to principal
component analysis, spectra were normalized to unit length and then mean centered.
Each spectrum is represented as a point in the principal component map. Clustering
of spectra by sample type is evident. When the prediction-set samples were projected
onto the principal component map, 17 of the 19 samples were found to lie in a

One HDPE sample, however, was misclassified as LDPE, and one LDPE sample
was misclassified as HDPE. This result is not surprising in view of the overlap
between these two classes (HDPE and LDPE) in the map due to the similarity of
their Raman spectra.

The next step was to use a Kohonen two-dimensional self-organizing map to
represent the spectral data in the 218-dimensional measurement space. Self-organizing
maps are, for the most part, used to visualize high-dimensional data. However,
classification and prediction of multivariate data can also be performed with these

TABLE 9.6
Training Set for Plastics Example

Number of Spectra Plastic Type

33 High-density polyethylene (HDPE)
26 Low-density polyethylene (LDPE)
35 Polyethylene terephthalate (PET)
26 Polypropylene (PP)
32 Polystyrene (PS)
17 Polyvinylchloride (PVC)

169 Total

TABLE 9.7
Prediction Set for Plastics Example

Number of Spectra Plastic Type

5 High-density polyethylene (HDPE)
2 Low-density polyethylene (LDPE)
5 Polyethylene terephthalate (PET)
2 Polypropylene (PP)
5 Polystyrene (PS)
0 Polyvinylchloride (PVC)

19 Total
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spectra in the training set. Figure 9.16 shows a plot of the two largest principal

region of the map with plastic samples that bore the same class label (see Figure 9.17).
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FIGURE 9.16 Plot of the two largest principal components of the 218-point, normalized, and
mean-centered spectra that compose the training set. Each spectrum is represented as a point
in the principal component map: 1 = HDPE, 2 = LDPE, 3 = PET, 4 = PP, 5 = PS, and 6 = PVC.

FIGURE 9.17 Prediction-set samples projected onto the principal component map developed
from the 218-point spectra composing the training set. Each spectrum is represented as a
point in the map: 1 = HDPE, 2 = LDPE, 3 = PET, 4 = PP, 5 = PS, and 6 = PVC.
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maps. For the plastic data set, the learning rate of the Kohonen self-organizing map
was varied from 0.05 to 0.001 during training. Each spectrum in the training set was
trained 50 times. The number of neurons used to study the training-set data was set
to 64 (i.e., an 8 × 8 grid).

Selection of the map’s grid size was crucial to ensure an accurate representation
of the data. From our previous experience, the number of neurons used should be
between one-third and one-half of the number of samples in the training set. Because
of the similarity among spectra in the data set, it is logical for the number of neurons
used to be less than the number of samples in the data set. Using too few neurons,
however, produces a map of the data that does not faithfully reflect the distribution
of the points in the high-dimensional measurement space, whereas using too many
neurons can generate a map of the data that is not aesthetically pleasing, since there
are many neurons that do not respond to any of the spectra, making it more difficult
to discern clustering in the data. These conclusions admittedly are subjective in
nature, since they depend on the data itself, with different workers having different
ideas on what are the best parameters.

After the weights for the neurons were trained, the distances between each sample
and the neurons were calculated. Samples were assigned to the nearest neuron, with
each neuron given a class label based on the class assignment of the samples responding
to it. In all cases, only samples with the same class label responded to a given neuron.
Figure 9.18 shows a self-organizing map generated from the training-set data, with
the prediction-set samples projected onto the map. Each data point on the map was
entered as a 1 (HDPE), 2 (LDPE), 3 (PET), 4 (PP), 5 (PS), or 6 (PVC). The self-
organizing map was developed from the training-set data, which consisted of 169
Raman spectra and 218 spectral variables. The large centered numbers in Figure 9.18

FIGURE 9.18 Self-organizing map generated from the training-set data with the prediction-
set samples projected onto the map. Each point from the training and prediction sets was
entered on the map: 1 = HDPE, 2 = LDPE, 3 = PET, 4 = PP, 5 = PS, and 6 = PVC.
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represent the class assignments of these samples. On the basis of these assignments,
clustering of the spectra by plastic type is again evident.

Prediction-set samples were then passed to the network and assigned to the

diction-set samples were assigned to neurons that had spectra with the same class
label. The validation of the self-organizing maps using these 19 prediction-set
samples implies that information is contained in the Raman spectra of the plastics
characteristic of sample type. Classification of the plastics by the self-organizing
map was as reliable as that obtained by other methods, and more importantly, the
classification was obtained without any preassumptions about the data.

Self-organizing maps in conjunction with principal component analysis consti-
tute a powerful approach for display and classification of multivariate data. However,
this does not mean that feature selection should not be used to strengthen the
classification of the data. Deletion of irrelevant features can improve the reliability
of the classification because noisy variables increase the chances of false classifica-
tion and decrease classification success rates on new data. Furthermore, feature
selection can lead to an understanding of the essential features that play an important
role in governing the behavior of the system or process under investigation. It can
identify those measurements that are informative and those measurements that are
uninformative. However, any approach used for feature selection should take into
account the existence of redundancies in the data and be multivariate in nature to
ensure identification of all relevant features.

9.7.4 TAXONOMY BASED ON CHEMICAL CONSTITUTION

This study involved the development of a potential method to differentiate Africanized
honeybees from European honeybees. The test data consisted of 164 gas chromato-
grams of cuticular hydrocarbon extracts obtained from the whole bodies of Africanized
and European honeybees. The Africanized and European honeybee samples used in
this study were from two social castes: foragers and nest bees. Africanized honeybees
from Brazil, Venezuela, Argentina, Panama, and Costa Rica were collected as return-
ing foragers or from within colonized (bait) hives. These bees were identified on site
as Africanized based on a field test for colony defense behavior. European honeybees
were collected from managed colonies in Florida and Venezuela and represented a
variety of commercially available stocks found in the U.S.

Cuticular hydrocarbons were obtained by rinsing the dried, pinned, or freshly
frozen bee specimens in hexane. The hydrocarbon fraction analyzed by gas chro-
matography was isolated from the concentrated washings by means of a silicic
acid column with hexane used as the eluant. The extracted hydrocarbons (equiv-
alent to 1/25th of a bee) were coinjected with authentic n-paraffin standards onto
a glass column (1.8 m × 2 mm) packed with 3% OV-17 on Chromosorb WAW
DMCS packing (120–140 mesh). Kovat retention indices (KI) were assigned to
compounds eluting off the GC column. These KI values were used for peak
identification.
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nearest neuron. They are represented as superscripts in Figure 9.18. All 19 pre-
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Packed GC columns afforded moderately well-resolved, reproducible profiles of
the hydrocarbon fraction. Each gas chromatogram contained 40 peaks corresponding
to a set of standardized retention time windows. Further details about the collection
of this data can be found in the literature [90].

The chromatograms were translated into data vectors by measuring the areas of
the 40 peaks. Each gas chromatogram was initially represented by a data vector
x = (x1, x2, x3, xj, …, x40) where xj is the area of the jth peak normalized to constant
sum using the total integrated peak area. However, only eight of the peaks were
considered for pattern-recognition analysis. These peaks were identified in a previous
study as being strongly correlated to subspecies. Furthermore, the compounds com-
posing these peaks were present in the wax produced by nest bees, and the concen-
tration pattern of the wax constituents is believed to convey genetic information
about the honeybee colony.

Principal component analysis was used to investigate the data. The training
set (see Table 9.8) consisted of 109 gas chromatograms of cuticular hydrocarbon
extracts obtained from Africanized and European honeybees (60 European and 49
Africanized). A principal component plot developed from the 8 GC peaks did not
show clustering of the bees on the basis of subspecies. We attributed this to the
fact that a coordinate system based on variance did not convey information about
subspecies for this data set. Therefore, PLS was used to generate a map of the
data. PLS uses variance-based axes that are rotated to ensure a better correlation
with the target variable, which is subspecies. The rotation provides an appropriate
compromise between explaining the measurement variables and predicting the
class of each sample.

the eight GC peaks and 109 training-set samples. The European honeybees are
designated as “1,” and the Africanized honeybees are “2.” Separation of the honey-
bees by class is evident in the PLS plot of the data. The fact that class discrimination
is only associated with the largest PLS component of the data is encouraging.

To assess the predictive ability of these eight GC peaks, a prediction set (see

TABLE 9.8
Training Set for Honeybee Example

Number of Samples Specimen Type

13 Africanized foragers from Central America
30 Africanized foragers from Venezuela

6 Africanized nest bees from Central America
30 European foragers from Venezuela
30 European foragers from Florida

109 Total
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Table 9.9) of 55 gas chromatograms was employed. We chose to map the 55 gas

Figure 9.19 shows a plot of the two largest PLS components developed from
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chromatograms directly onto the PLS score plot defined by the 109 chromatograms

PLS plot developed from the training-set data. Of the 55 gas chromatograms, 53 lie
in a region of the map with bee samples that carry the same class label. Evidently,
there is a direct relationship between the concentration pattern of these compounds
and the identity of the bees’ subspecies.

The results of this study demonstrate that gas chromatography and pattern-
recognition techniques can be applied successfully to the problem of identifying
Africanized honeybees. Classifiers capable of achieving very high classification
success rates within the present data were found, and these classifiers were able to
classify bees, a task that was not part of the original training set. Because of these

FIGURE 9.19 Plot of the two largest PLS components developed from the 8 GC peaks and
109 chromatograms in the training set. Each chromatogram is represented as a point in the
map: 1 = European honeybees, and 2 = Africanized honeybees.

TABLE 9.9
Prediction Set for Honeybee Example

Number of Samples Specimen Type

10 Africanized foragers from Central America
5 Africanized nest bees from Central America

10 European workers from Florida
30 European nest bees from Florida
55 Total
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and eight GC peaks. Figure 9.20 shows the prediction-set samples mapped onto the
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results, a larger study [91] was undertaken, where capillary-column GC and
pattern-recognition techniques were used to develop a method to differentiate
Africanized honeybees from European honeybees based on differences in chemical
constitution.
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10.1 INTRODUCTION

 

In any attempt at collecting data, even with the most advanced instrumentation, the
measured signal is corrupted with noise. The noise amplitude may be small, and it
may not change the observed signal shape or amplitude significantly, but often the
noise contribution is large enough to obscure the true shape and amplitude of the signal.
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This chapter is concerned with mathematical methods that are intended to
enhance data by decreasing the contribution of the noise relative to the desired signal
and by recovering the “true” signal response from one altered by instrumental or
other effects that distort the shape of the true response. Noise, it should be under-
stood, encompasses all aspects of the observed signal not related to the desired
response. This definition includes the usual high-frequency, random responses com-
monly regarded as noise in introductory treatments of signal processing, but it also
includes responses of low and mid frequency.

Data enhancement can be done in concert with data acquisition, a process known
as “filtering.” Many real-time data processing schemes begin with filtering to remove
some of the noise, and follow with some sort of decision based on the results of the
filtering. This sort of filtering for data enhancement and “on-line” decisions is useful
for process monitoring or instrument control, two areas where chemometric methods
are growing in popularity. Filtering data that are acquired at high rates demands
special care, since the speed of the data reduction step is very important. The
computational burden imposed by a potential method must be considered, because
the time spent in filtering may decrease the data throughput unacceptably.

More often the data-enhancement step is done later, to simplify the data pro-
cessing and to lower the computational burden placed on the instrumental computer.
When data are enhanced either “at-line” or “off-line,” after data acquisition is
complete, the process is called 

 

smoothing

 

. Smoothing methods are much more varied
than ones used exclusively for filtering because the time and computational con-
straints are not as demanding. It should be noted, however, that most filtering
methods can also be used for smoothing.

Efficient noise removal, by either filtering or smoothing, is a key part of any
preprocessing of the data to be subjected to most chemometric methods. There is more
to be gained from noise removal than just cosmetic improvement in the data. Even
though many chemometric methods themselves produce a degree of noise reduction,
the presence of significant amounts of noise can frustrate the application of those
mathematical methods that make use of variations in peak amplitude and shape, such
as principal component analysis and pattern classification methods. Large amounts of
noise can also degrade the results obtained from calibration methods. Thus, noise
removal by smoothing is often done prior to classification or calibration. In these cases,
the noise reduction step is part of the preprocessing of the data.

 

10.2 NOISE REMOVAL AND THE PROBLEM OF
PRIOR INFORMATION

 

noise ratio, if we can. To process these spectra, we must consider what is already
known about the data. When a chemical measurement 

 

r

 

(

 

t

 

) is obtained, we presume
that this measurement consists of a true signal 

 

s

 

(

 

t

 

) corrupted by noise 

 

n

 

(

 

t

 

). For
simplicity, the linear additivity of signal and noise is usually assumed, as depicted
by the measurement in Equation 10.1

 

r

 

(

 

t

 

) 

 

=

 

 

 

s

 

(

 

t
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+

 

 

 

n

 

(

 

t

 

) (10.1)
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In this equation, the parameters 

 

r

 

, 

 

s

 

, and 

 

n

 

 are all given as functions of time,
the independent variable, but the relation is equally true when 

 

r

 

, 

 

s

 

, and 

 

n

 

 are functions
of other independent variables that define the channels of measurement, such as
potential or wavelength, as in the example here. For the discussion here, equations
will be given in terms of time, but it is understood that other independent variables
could be substituted.

The goal of data enhancement is the extraction of the true signal 

 

s

 

(

 

t

 

), given the
measured sequence 

 

r

 

(

 

t

 

). A simple measure of the success of this effort is the increase
in the signal-to-noise ratio, S/N, where

S/N 

 

=

 

 (maximum peak height)/(root-mean-square of noise) (10.2)

Generally this ratio is maximized by attenuating the noise term 

 

n

 

(

 

t

 

) and retaining
the true signal 

 

s

 

(

 

t

 

).

 

10.2.1 S

 

IGNAL
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STIMATION
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ETECTION

 

If it happens that 

 

s

 

(

 

t

 

), the true form of the signal, is known prior to data enhancement,
the process of noise reduction is simplified greatly. In this case, a 

 

known

 

 signal is
sought from within noise. This is a problem in signal 

 

estimation

 

. The observed
quantity 

 

r

 

 can be taken as a multiple of the known signal plus noise, so that

 

r

 

(

 

t

 

) 

 

=

 

 

 

as

 

(

 

t

 

) 

 

+

 

 

 

n

 

(

 

t

 

) (10.3)

If the noise term is random, with zero mean, the multiplicative factor 

 

a

 

 is easily
found by regression of 

 

r

 

(

 

t

 

) onto the signal model given by Equation 10.3. Simple
application of least-squares regression gives

(10.4)

 

FIGURE 10.1

 

A noisy spectrum to be enhanced.
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The random noise is attenuated in the regression because of the least-squares aver-
aging process. The signal-to-noise ratio can be increased substantially without danger
of signal distortion in this case. In fact, once the multiplicative factor 

 

a

 

 is found,
the noise-free version of the observed signal 

 

r

 

(

 

t

 

) is easily generated from Equation
10.3, taking 

 

n

 

(

 

t

 

) as zero.
If, on the other hand, the signal form 

 

s

 

(

 

t

 

) is not exactly known, it must be
identified in the noise. This is an example of signal 

 

detection

 

. In this case, a suitable
model for the desired quantity is not available, and the separation of signal and noise
is not as straightforward as with estimation. In attenuating noise, there is a danger
of simultaneously altering the characteristics of the signal. Maximizing the S/N may
produce an observed signal with a shape that is significantly distorted from that of
the true signal 

 

s

 

(

 

t

 

), while an effort aimed at minimizing distortion in the observed
signal may improve the observed S/N only a little. A decision must be made as to
the relative importance of noise reduction vs. inaccuracy in the signal shape or
amplitude resulting from signal distortion. This decision is an example of the
variance-bias trade-off that is a key factor throughout the fields of data analysis.
Here, the variance reduction associated with noise attenuation must be balanced
with the bias in our results for the estimated signal that results from distortion or
corruption of the true signal in the data processing. Thus, the previous definition of
the S/N ratio as a measure of the success of data enhancement must be qualified by
the degree to which the true signal 

 

s

 

(

 

t

 

) is distorted in the enhancement process,
which might be reflected in a sum of squared error of signal estimation, for example.
The root mean squared error of estimation (RMSEE) can be used to describe the
contributions of noise variance and signal bias to the result,

RMSEE 

 

=

 

(10.5)

where there are 

 

N

 

 channels in the data and (

 

t

 

) describes the estimated signal.
The reader will note that the RMSEE is closely related to the RMSEP term used

in calibration. Martens and Naes have discussed the significance of error estimates
in depth in their book [1].

 

10.3 REEXPRESSING DATA IN ALTERNATE BASES TO 
ANALYZE STRUCTURE

 

To examine the distortion of signal and the reduction of the noise, it is necessary to
consider the “structure” — that is, the amount, location, and nature — of signal and
noise in the observed responses. Each channel used to measure the data’s response
can be regarded mathematically as an axis, and because of the channel-to channel
similarity (or correlation) in the data’s response, these axes are correlated. Thus, an
ultraviolet spectrum measured at 100 wavelength channels can be regarded as a
100-point vector or, equivalently, as a point in a 100-dimensional space. Because
our goal is to understand the signal and noise content of the spectral response, the fact
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ŝ

 

DK4712_C010.fm  Page 382  Thursday, February 2, 2006  2:38 PM

© 2006 by Taylor & Francis Group, LLC



 

Signal Processing and Digital Filtering

 

383

 

that many of the measurement axes are correlated means that we cannot look at just
a few to get at most of the signal and noise information contained in the spectral
response. It is far more useful to express the response data in another way, one in
which each of the axes expresses 

 

independent

 

 information about signal and noise.
To meet our goal that each axis express independent information, the axes we use
to reexpress our data must be independent themselves, and so we need an orthogonal
axis system to describe our response data.

The new axis system we choose for reexpression of our response data depends
on what we want to examine in the data set. For example, we could choose to focus
our attention on the way in which the data varied by decomposing the set of time-
domain data according to its component sources of variance using principal com-
ponent analysis. Or, we could examine the various frequency components contained
in the data by decomposing the data according to its component frequencies using
the Fourier transform. It is also possible to examine the data set according to localized
frequencies by using a wavelet transform. Each of these methods for reexpression
of a data set converts the original correlated set of time- (or wavelength-) axis data
into an equivalent set of data expressed in a new 

 

basis

 

, an axis system with orthogonal
axes, allowing us to express independent sources of information in each dimension
of the reexpressed data. The reexpressed data contain the same signal and noise as
in the original, time-domain representation, but present that information in a different
way because of the changed axis system. Thus, part of signal processing involves
finding a way to express the data so that the maximum separation of the signal and
noise components can be achieved, and then using mathematical tools to perform
the removal of noise while retaining signal.
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ROCESSING

 

The most common way to reexpress a data set in chemometrics makes use of
the principal components of the data. Here, the data are expressed in terms of
the components of the variance-covariance matrix of the data. To get a variance-

set of similar spectra for which the same underlying effects are operative. That
is, we must have the same true signal and the same noise effects. Neither the
exact contributions of signal nor the noise need be identical from spectrum to
spectrum, but the same basic effects should be present over the set of data if
we are to use variance-covariance matrices to discern how to retain signal and
attenuate noise.

Even though principal component analysis (PCA) of data might not normally
be considered a form of signal processing, it is, although it operates on a set of data
rather than on an individual spectrum. In PCA, a decision is made to regard the
signal component as the major source of variation in the responses, and the noise
component as a minor source. The truncation of the minor principal components of
the reexpressed data amounts to a 

 

smoothing operation

 

 carried out by projection of
the full data set into a subspace with lessened contributions from information judged
to be noise. We can evaluate the success of the smoothing operation by any of a
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number of measures, as discussed by Malinowski [2]. The smoothing in PCA is also
a data-compression step aimed at retaining information and reducing the dimension
of the data, recognizing that there will usually be far fewer scores than measurement
channels.

Simple truncation of some unimportant principal component axes describing the
data set is not the only way to alter the nature of signal and noise components in
the responses, however. Two other methods use the idea of projection to alter signal
and noise contributions in a signal.

Let us start with the simpler method. If the signal vector 

 

s

 

 is known, we can
use this knowledge to project out the signal component of the response while
removing all else (noise). It is instructive to see how that is done. Suppose that we
have a (

 

n

 

 

 

×

 

 

 

m

 

) matrix of responses 

 

R

 

 such that each row (an 

 

n

 

 

 

×

 

 1 spectrum) of 

 

R

 

is described by

 

r

 

i

 

 

 

=

 

 

 

Mc

 

i

 

 

 

+

 

 

 

n

 

(10.6)

where 

 

M

 

 is a (

 

n

 

 

 

×

 

 

 

j

 

) matrix of 

 

j

 

 spectral signatures, 

 

c

 

 is a (1 

 

×

 

 j) concentration
vector describing the amount of each component of M, and n is a (n × 1) vector of
zero-mean, white noise. Then we can rewrite Equation 10.6 as

ri = scs + Ucu + n (10.7)

where s is the signal vector, U is a (n × j−1) matrix of spectral signatures excluding
s, cu is the concentration vector corresponding to the spectral signatures in U, and
cs is the amount of component s. If we define U# as the pseudo-inverse of the
nonsquare matrix U, namely (UTU)−1UT, and I as the (n × n) identity matrix, we
can use the projection operator = (I − UU#) to remove U from the response
r, leaving

ri = scs + n (10.8)

an equation defining the detection of a known signal s in the presence of white noise n.
Equation 10.8, like Equation 10.3, is easily solved by least-squares regression using
the known signal s and the projected response P ri to obtain cs. Note that this signal-
processing method, called orthogonal subspace projection (OSP) [3], attenuates the
white-noise component and isolates the desired signal from any unspecified, but
measured, noise component in U through projection of the measured response r to
a basis where the spectral components of U have no contribution. A similar idea has
been used to extract the net analyte signal in calibration in both conventional [4]
and inverse regression modeling [5].

If our goal is to do signal processing in support of a subsequent calibration

farther, and project our response data to a space where any of the systematic
variation in the response that is unrelated to the target property is annihilated.
That is the basic idea behind the methodology known as orthogonal signal
correction (OSC) [6–9].

P⊥

P⊥ P⊥ P⊥
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(Chapter 6), we might take the idea of signal processing through projection a step
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FEARN’S ALGORITHM FOR OSC SMOOTHING [6]:

1. Obtain a matrix M containing a majority of the variation in R not asso-
ciated with the property Y.
M = 1 − RTY(YTRRTY)−1YTR

2. Premultiply M by R to yield the matrix Z, such that ZZT is symmetric.
Z = RM

3. Calculate the first principal component of ZZT and compute the normal-
ized weight vector w from the PCA loading vector p (the first eigenvector
of ZZT with eigenvalue λ).
w = (λ)−1/2MRTp

4. Calculate the score vector from R and w.
t = Rw

5. Orthogonalize t to Y and compute a new loading vector p*. This defines
a basis for the part of the response R that is orthogonal to the property Y.
t* = t − Y(YTY)−1YTt
p* = RTt* / (t*Tt*)

6. Compute the residual matrix E by subtracting the orthogonal component
defined by t* and p* from R.
E = R – t*p*T

To remove another OSC component, use E as R and repeat steps 1 to 6. New
test samples can be corrected with the regression matrix W and loading
matrix P of the OSC-corrected data.

R*test = Rtest − Rtest W(PTW)−1PT

The performance of algorithms that implement OSC varies a good deal [7, 8].
The reader will note that the Fearn algorithm uses a PCA rather than a partial
least squares (PLS) calculation to set the direction of the orthogonal components,
a difference that makes the variation removed by this version of OSC not com-
pletely orthogonal to the property. Once again, the variance-bias trade-off is at
work; this version of OSC slightly emphasizes variance removal over bias reduc-
tion. The assumption underlying the signal processing here is that most of the
variation in the response is produced by desired signal and is therefore relevant
to the property. If so, the first PCA loading will closely resemble the first PLS
loading for these data.

10.4 FREQUENCY-DOMAIN SIGNAL PROCESSING

On occasion, the set of signals needed for modeling on the basis of data variance
and covariance is not available or, perhaps, the interest is focused on a single signal,
for which covariance information is lacking. One especially convenient way of
describing the structure of a signal makes use of Fourier series. According to the
theory of Fourier series, any signal can be described in terms of a weighted sum of
sine and cosine functions of different frequencies [10]. Finding what frequencies
are present in the Fourier series description of an observation can provide information
on the signal and noise components of the noisy observations.
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10.4.1 THE FOURIER TRANSFORM

Any continuous sequence of data h(t) in the time domain can also be described as
a continuous sequence in the frequency domain, where the sequence is specified by
giving its amplitude as a function of frequency, H( f ). For a real sequence h(t) (the
case for any physical process), H( f ) is series of complex numbers. It is useful to
regard h(t) and H( f ) as two representations of the same sequence, with h(t) repre-
senting the sequence in the time domain and H( f ) representing the sequence in the
frequency domain. These two representations are called transform pairs. The fre-
quency and time domains are related through the Fourier transform equations

H( f ) = (10.9a)

h(t) = (10.9b)

The notation employed here for the Fourier transform follows the “system 1”
convention of Bracewell [10]. Equations given in this chapter will follow this con-
vention, since it requires fewer 2π factors in some equations. In some texts, Equation
10.9 is given in terms of the angular frequency ω, where ω = 2πf (the “system 2”
convention of Bracewell), so that any comparisons between equations given here
and those given elsewhere should take differences in the notational conventions into
account. The units of the transform pair also deserve comment. If h(t) is given in
seconds, H( f ) has units of seconds−1 (the usual units of frequency), but, as noted
above, h(t) may be in any other units: if h(t) is given in units of volts, H( f ) will be
in units of volts−1.

10.4.2 THE SAMPLING THEOREM AND ALIASING

The continuous, infinite Fourier transform defined in Equation 10.9, unfortunately,
is not convenient for signal detection and estimation. Most physically significant
data are recorded only at a fixed set of evenly spaced intervals in time and not
between these times. In such situations, the continuous sequence h(t) is approximated
by the discrete sequence hn

hn = h(nδ ), with n = …, −2, −1, 0, 1, 2, … (10.10)

where δ is the sampling interval. Associated with the sampling interval δ is a
frequency called the Nyquist frequency, fc, which is defined by the relation

fc = 1/2δ (10.11)

The Nyquist frequency is the maximum frequency that can be present in the
continuous sequence h(t), if h(t) is to be perfectly represented by the sampled

h t e dt( ) 2pift

− ∞

+ ∞

∫

H f e df( ) −

− ∞

+ ∞

∫ 2πift
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sequence hn. In essence, at least two samples must be taken per cycle for a sine
wave to reproduce that sine wave. A typical reconstruction is shown in Figure 10.2.

As demonstrated for a simple sine wave, if the sampling (the dotted sequence
in Figure 10.2a and Figure 10.2b) is done with at least twice the frequency of the
highest frequency present in the sampled wave, perfect reconstruction of the con-
tinuous sequence from the discrete sequence of samples (the starred points) is
possible. This remarkable fact is known as the sampling theorem.

If it happens that the continuous sequence h(t) contains only a finite number of
frequencies, that sequence is said to be bandwidth limited. This term is often

FIGURE 10.2 Reconstruction of a continuous sine-wave signal: (a) undersampled (4/10×)
continuous curve (solid line) with the aliased curve reconstructed from the samples (dotted
line); (b) adequately sampled (4×) continuous curve.
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shortened to the equivalent term “bandlimited.” The sampling theorem states that a
signal must be bandwidth limited to frequencies less than fc for all signal information
to be preserved through the sampling process. If signal information is lost, distortion
of the signal will result.

When a sequence that contains frequencies above fc is sampled at interval δ,
a phenomenon called aliasing occurs. In aliasing, the sampling process falsely
assigns all of the power from frequencies outside the frequency range −fc < f <
fc into that range. To avoid aliasing effects, it is necessary to know the natural
(true) bandwidth of a signal, prior to sampling, or to limit the signal bandwidth
to a preset value by analog filtering prior to the sampling step. The sampling must
then be carried out at a rate so that the highest frequency component of the
bandlimited signal is sampled at least twice per cycle. Thus, aliasing limits the
number of frequencies that can be examined when the time-domain signal is
transformed into the Fourier domain. The effect of aliasing is seen in the top of

response with apparent frequency of 4π t. The power from the 10π t frequency has
been falsely assigned to a lower frequency because sampling was too slow; only
frequencies less than 8π t could be properly represented. When the sampling rate
is increased to 20π t, full sampling is possible on the 10π t frequency, and the sine
wave is correctly reproduced, as shown in Figure 10.2b.

10.4.3 THE BANDWIDTH-LIMITED, DISCRETE FOURIER TRANSFORM

The matter of sampling and limited representation of frequencies requires a second
look at the representation of data in the time and frequency domains, as well as the
transformation between those domains. Specifically, we need to consider the Fourier
transformation of bandwidth-limited, finite sequences of data so that the S/N
enhancement and signal distortion of physically significant data can be explored.
We begin with an evaluation of the effect of sampling, and the sampling theorem,
on the range of frequencies at our disposal for some set of time-domain data.

Suppose a sequence of samples is taken on some continuous sequence h(t), so
that

hk = h(tk) and tk = kδ (10.12)

where k is some integer from 0 to N − 1 and δ is the sampling interval. As we saw
above, the Nyquist criterion limits the range of frequencies available from the Fourier
transform of hk. With N time samples input, only N frequencies will be available,
namely

fn = n/(Nδ) with n = −N/2, …, 0, …, N/2 (10.13)

By convention, this range of frequencies, where n varies from −N/2 to N/2 , is
mapped to an equivalent set running from 0 to N. Because of this mapping, zero
frequency now corresponds to n = 0, positive frequencies from 0 < f < fc correspond
to values 1 ≤ n ≤ N/2 −1, and negative frequencies from −fc < f < 0 correspond to
values N/2 + 1 ≤ n ≤ N − 1 . The alert reader will note that in the Nyquist mapping
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Figure 10.2, where undersampling of the sin 10π t wave produces an aliased
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of frequencies, the value n = N/2 corresponds to both −fc and fc; in fact, sampled
sequences are cyclic, being joined at the extreme ends. This is why, no matter what
mapping is used, only N frequencies are available from N samples, and N/2 − 1 of
these frequencies will be negative frequencies.

The integral transforms given in Equation 10.9 can now be approximated by
discrete sums, so that the Fourier transform pairs now are described by the equations

Hn = (10.14a)

hk = 1/N (10.14b)

Calculation of these discrete Fourier transforms (DFT) is not at all rapid if done
directly. If, on the other hand, the data are sampled so that N is a multiple of 2, a
fast Fourier transform (FFT) algorithm can be used to perform the above transform
operations, permitting a significant savings in time. For this reason, the FFT algo-
rithm is most often used to accomplish the DFT process. A number of FFT algorithms
now exist; two popular ones are the Cooley-Tukey transform and the related Sande-
Tukey transform. The mechanistic details of these transforms are covered in many
textbooks. Good discussions of FFT algorithms are provided by Bracewell [10].

that the units of the abscissa are in wavelength−1, the units of “frequency” for this
member of the transform pair. Note also the negative frequencies, which give the
“mirror image” effect to the transform.

Many FFT algorithms store data so that the frequencies run from 0 to the largest
positive value, then from the largest negative value to the smallest negative value, as
this improves calculation speed. In these, a “mirror image” effect is noticeable when
the frequency domain data are plotted, but the plot differs from those shown in Figure
10.3: now the left half of the plots shown in Figure 10.3 is appended to the right half
so that the plot starts and ends at frequency 0. Recalling the cyclic nature of sampled
sequences will help the reader in realizing that both ways of describing the frequency
sequences are equivalent. It is also common that the mirror image of the transformed
data (the part with negative frequencies) is removed for plotting or for additional data
analysis. To keep the proper intensity information, the positive frequencies (but never
zero frequency) are multiplied by 2 when negative frequencies are deleted.

10.4.4 PROPERTIES OF THE FOURIER TRANSFORM

The interconversion of transform pairs by the Fourier transformation has several
unique properties that will be important in analyzing the structure of signals and
noise. For the transform pairs h(t) and H(f), important relations are summarized in

used to illustrate the properties of the transformation, all of the properties listed in
Table 10.1 are identical for the continuous and discrete Fourier transforms.
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Table 10.1. The reader should take note that, even though continuous functions are

Figure 10.3 shows the plot of Hn for the spectral data given in Figure 10.1. Note
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the scaling of the transform pairs. Because the transform pairs describe the same
function, the scaling described by the similarity property can refer to “time scaling,”
as given in Table 10.1, or it can describe “frequency scaling,” namely

{1/|b|} h(t/b) <> H(bf) (10.15)

Similarly, the shift property can describe “time shifting,” as given in Table 10.1,
or it can describe “frequency shifting,” where

h(t) e − 2πif0t <> H(f − f0) (10.16)
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The first property listed in Table 10.1, called the similarity property, concerns

FIGURE 10.3 Discrete, bandlimited Fourier transform of the noisy spectrum in Figure 10.1.
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Parseval’s theorem demonstrates that the total power is the same whether it is
computed in the time domain or the frequency domain. It is often of interest to
determine the power in some small interval (f + df ), as a function of the frequency.
This is called the spectrum of the signal h(t).

For the pairs of functions {x(t), y(t)} and {X(f ), Y(f )}, which are related by the
Fourier transform, other unique properties exist. These are listed in the lower half
of Table 10.1 and are briefly summarized below.

The addition property demonstrates that the sum of functions is preserved in the
transformation. This, together with the similarity property, indicates that the Fourier
transformation is a linear operation. This means that the statistical moments of the
signal (e.g., mean, variance, skewness, etc.) are preserved across the transform.

One of the most useful relations in signal processing is the convolution property.
The convolution of two discrete (sampled) functions x(t) and y(t) is defined as

x(t)* y(t) = (10.17)

where x(t)* y(t) is a function in the time domain, and where x*y = y*x. According
to the convolution property, the convolution of two functions has a transform pair
that is just the product of the individual Fourier transforms. A property related to

TABLE 10.1
Some Properties of the Fourier Transform

Property Time Domain {h(t)}
Frequency Domain 

{H(f )}

Similarity x(at) 1/ |a| X( f/a)
Translation (shift) x(t − a) e −2πiaf X(f)
Derivative x′(t) 2πif X(f)
Symmetry x(−t) X(−f ) = X(N − f )
Complex conjugate x*(t) X*(−f )

Power (Parseval’s theorem)

Linearity a[x(t)] + b[y(t)] a[X( f )] + b[Y(f )]
Convolution x(t)*y(t) X( f )Y( f )
Autocorrelation x(t)*x*(t − a) X*( f )X( f ) = |X(f )|2

Correlation x*(t)*y(t − a) X*( f )Y( f )

Note: In this table, a and b are arbitrary constants. Also, the symbol “*” used
between variables denotes a convolution operation, such that the notation a*b

. When used as a superscript, the symbol “*” denotes complex
conjugation, such that (a + ib)* = (a − ib).
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and where 
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 is called the lag. This function is related to its transform pair by the
correlation property. The cross correlation of 
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 and 
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 has a transform pair that is
just the product of the complex conjugate of the individual Fourier transform of one
function multiplied by the Fourier transform of the second function. A special case
of the correlation property arises when a function is correlated with itself, an
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As already noted, the properties of convolution and correlation are the same,

whether or not a continuous or discrete transformation is used, but because of the
cyclic nature of sampled sequences discussed previously, the mechanics of calcu-
lating correlation and convolution of functions are somewhat different. The discrete
convolution property is applied to a periodic signal 
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here) is wrapped around and is placed at the extreme right end of the convolving
sequence. To avoid an effect called “convolution leakage,” it is important to keep in
mind the requirements for convolution, namely that sequences 
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 and 
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 have the same
length and that both are treated as periodic. The latter requirement means that the
convolution operation will be cyclic, and we must take care to protect the ends of
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ding” of the sequence to be convolved avoids convolution leakage (which occurs in
the padded areas, but these are of no interest to us and can be discarded). Further
discussion of the details of discrete convolution is given in the texts by Bracewell
[10], by Press et al. [11], and by Bose [12].
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output channels j + 3, and so forth. Figure 10.4 demonstrates the convolution process.
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With a background in the mechanics and the properties of the Fourier trans-
form, we are now ready to investigate ways of enhancing signal and removing
noise while minimizing signal distortion. Two approaches are possible. We could
deal with the signal directly, in the time domain; or we could take advantage of
the simplicity of some operations in the frequency domain in processing the
signal there, after a suitable Fourier transformation. Both methods are commonly
used in processing of chemical data. Each is discussed separately in Sections 10.5
and 10.6.

FIGURE 10.4 Discrete convolution of two functions: (a) Gaussian broadening function; (b)
true signal (dotted line) and broadened result (solid line) of convolution with the Gaussian
function.
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10.5 FREQUENCY DOMAIN SMOOTHING

10.5.1 SMOOTHING

discussed below, the true signal s(t) is unknown. We would like to improve the S/N
of this signal. In the time domain, noise and signal seem to coexist, but in the
frequency domain, the signal seems to exist as a set of low frequencies, and the

we need only to decrease the amplitude of the noise-containing frequencies while
leaving the signal-containing frequencies unchanged.

Figure 10.5 shows one way to reduce noise without altering the signal signifi-
cantly. If the frequency-domain representation of the noisy signal is multiplied by
a “window” function, the resulting frequency-domain representation has zero ampli-
tude at frequencies where the window function is 0, and unchanged amplitude at
frequencies where the window function is 1. Picking the window transition point
(where the function changes from 1 to 0) to be in the region between signal fre-
quencies and noise frequencies and then multiplying the noisy frequency-domain
representation by this window function will result in an enhanced frequency-domain
representation, which can then be converted back to a time-domain representation,

contained in the original signal. This signal has been smoothed by the application
of the window function in the frequency domain. The window function is called the
transfer function of the smoother.

FIGURE 10.5 Window function (dotted line) and the real part of the Fourier transform.
The window is applied to both real and imaginary parts of the transformed data after removal
of negative frequencies and scaling by 2. The location of the window cutoff is indicated at
point 7.
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Consider again the noisy time-domain signal given in Figure 10.1. For the examples

noise as a set of high frequencies, as shown in Figure 10.3. To enhance the signal,

as shown in Figure 10.6. The enhanced signal has considerably less noise than was
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A very important consideration in this method is the location of the cutoff
frequency for the transfer function. This point is the frequency where the transfer
function changes from a value of nearly 1 to a value of nearly 0; frequencies above
the cutoff frequency are mainly attenuated, while frequencies below this point are
mainly passed through the filtering operation. In the example presented here, it was
easy to see where the cutoff frequency should be placed, because signal and noise
were well separated in the frequency domain. This convenient separation of signal
and noise in the frequency domain is not always true, however. Noise and signal
often overlap in the frequency domain as well as in the time domain.

10.5.2 SMOOTHING WITH DESIGNER TRANSFER FUNCTIONS

When significant overlap of noise and signal occurs in the frequency domain, the
successful enhancement of the data depends on the selection of a suitable smoother
transfer function. It is generally not satisfactory to zero part of the frequency domain
representation while leaving other parts intact, as was done in the previous example.
Usually, this smoothing operation will distort the signal. One reason that this smooth-
ing method fails to produce a smoothed signal close to the true signal can be seen
from the properties of the impulse response function used in the time-domain

function produces an impulse function of the form sin(x)/x. When convolved with
a noisy signal, this function produces spurious oscillations in the smoothed data.
The oscillations, or “feet” on a peak, arise from the abrupt change made in a step-
shaped transfer function [13–16].

A “designer” transfer function can be crafted to obtain a specific type of smoothing,
one that is, for example, maximally flat over a range of frequencies or with a steep
transition from the passband to the stop band. Some common “designer” transfer

FIGURE 10.6 Smoothed data after inverse Fourier transformation. The rectangular smoother
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shown in Figure 10.5 was used.

convolution. As shown in Figure 10.7, the transform pair for a step-shaped transfer
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functions are based on Chebyshev polynomials, elliptic functions, and the Butter-
worth filter equation [12, 16]. These particular transfer functions were originally
developed for use in hard-wired circuits but are now conveniently implemented
digitally. A designer transfer function can be made empirically. For example, a
trapezoidal function might be devised to smooth a noisy spectrum, as shown in
Figure 10.8. A smoother with this transfer function smoothes data in a way very

FIGURE 10.7 Impulse response function of the seven-point rectangular smoother window

sin(x)/x.

FIGURE 10.8 Smoothing in the frequency domain with a trapezoidal smoothing function.
Here a trapezoid was used with vertices at frequency points 0, 6, and 12.
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function used in Figure 10.6. Note that the Fourier transform of a step function has the form
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similar to that done by the step-shaped, rectangular transfer function, but it reduces
the slight, spurious oscillations on the peaks in the smoothed data, as demonstrated
in Figure 10.9. Although the oscillations are quite small in this example, and the
use of a trapezoidal window is not essential, often these oscillations can be much
larger, particularly when the cutoff point is selected in a region where the frequency-
domain representation has nonzero values. Altering the transfer function in this way
is sometimes called apodization, because it removes spurious “feet” from the
smoothed data [14, 15].

If the true signal shape is known before smoothing, a special designer transfer
function can be created. In this case, the transfer function can be the complex
conjugate of the frequency response of the signal itself. The result is a matched
smoother, because the transfer function is matched to the characteristics of the signal.
When the complex conjugate of the Fourier transform of the desired signal shape
is used as the transfer function, the smoother operation is equivalent to a time-domain
cross correlation of the noisy signal with the true, noise-free signal, which, at lag
0, reduces the noise without altering signal shape [17]. This smoother permits
recovery of the desired (known) signal from large amounts of white noise, just as
in the regression examples given previously. In fact, the correlation operation is
equivalent to the regression method outlined in Equation 10.3 and again in Equation
10.5. In fact, matched smoothing is a least-squares optimal result, because that
operation amounts to regressing the unknown signal onto the known signal, as

with matched smoothers. Note, however, that a convolution of the noise-free and
noisy signals would not be useful, since the convolution operation alters the shape
of the smoothed signal.
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FIGURE 10.9 Smoothed data from application of the trapezoidal smoother shown in Figure
10.8. The true, noise-free signal is shown as a dotted line. 

discussed previously. Figure 10.10 demonstrates the noise removal that is obtained
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10.6 TIME-DOMAIN FILTERING AND SMOOTHING

10.6.1 SMOOTHING

It is possible to smooth data in the time domain. Generally, when the signal shape is
known, signal smoothing is done by a regression step, where the known signal shape
is regressed on the noisy signal. This is matched smoothing, and it is generally done
in the time domain for convenience. In this case, the whole noisy signal is processed

FIGURE 10.10 The frequency response of the noisy signal and that of its corresponding,
matched smoother. The real part of the transfer function of the matched smoother for the
noisy spectrum (solid line) is shown dotted.

signal is shown dotted. The fit is good because the noisy signal is zero-mean with constant
noise variance.
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FIGURE 10.11 Results from matched smoothing of the noisy signal in Figure 10.1. The true
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in the single regression step, and any zero-mean noise effects are significantly attenuated
by the least-squares averaging. Nonzero mean effects, such as baseline and interfering,
unknown components, are not removed by simple matched smoothing. In these cases,
an alternative signal-processing method must be employed.

When the signal shape is not known in advance, or when there are interfering
components that are not of known shape, a convenient way to remove some of the
noise is to convolve a smoother function with the noisy data. Multiplication of two
functions in the Fourier domain is, in terms of theory, exactly equivalent to convolution
of their transforms in the time domain. Generally, it is far simpler to do the smoothing
step in the frequency domain, but occasionally, there is a need to have immediate
access to the smoothed, time-domain data for additional processing. Thus, rather than
using a simple multiplication of two frequency-domain representations, we will need
to convolve two time-domain representations. One time-domain representation is

time-domain representation of the smoother, which is known as the smoother impulse
response function. Here, for purpose of illustration, we might try time-domain smooth-

with the time-domain impulse response function, defined by Equation 10.20

s(t) = h(t)*x(t) (10.20)

is shown in Figure 10.12.

difference between the two theoretically equivalent approaches. They differ for two

FIGURE 10.12 Time-domain smoothing of the noisy data in Figure 10.1 with the impulse
response function of Figure 10.7, processed from left to right in this spectrum. The true signal
is shown as a dotted line. Note the significant filter lag in this example.
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simple: it is the noisy, time-domain signal, for example, the signal given in Figure
10.1. The other, according to the properties of the Fourier transform, should be the

ing with the rectangular transfer function shown in Figure 10.5. The impulse function
of this smoother is shown in Figure 10.7. The discrete convolution of the noisy signal

Comparison of Figure 10.6 and Figure 10.12 indicates that there is a significant
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reasons. First, the theory that connects convolution and multiplication presumes
continuous, infinite signals with perfect Fourier transforms, and does not consider
practical aspects of using the DFT for the transform, where round-off and other
effects can lead to changes in the transformed result as compared with the convolved
signal. Usually, however, the differences in results arising from the use of the DFT
to perform transforms are small. Second, and more important, is the fact that, in the
frequency domain, all of the signal is processed at once, but in the time domain, the
convolution operation ensures that the noisy signal is processed serially: the convo-
lution operation involved with the smoothing occurs from left to right or from right
to left. The fact that the signal processing obtained by convolution of the impulse
function and the noisy signal is not simultaneous in the time domain leads to filter
lag, which often manifests itself as a smearing of signal. An example of filter lag

domain impulse function. One way to reduce the filter lag is to convolute the data
with the smoother first in one direction, then repeat the convolution of the smoother
and the output signal, but this time in the opposite direction. This process takes time
and is generally done off-line, but it produces data with relatively little distortion
from lag effects as compared with a single filtering pass.

Because multiplication is simpler to perform than the convolution operation and
because frequency-domain smoothing avoids filter lag effects, it is easier to perform
this smoothing operation in the frequency domain. Having a fast transform between
the two domains is an important consideration, because smoothing a time-domain
signal will require two transformations: one to convert the time-domain signal to
the frequency domain, and one to convert the results of the smoothing back to the
time domain. Use of the FFT or another fast transform algorithm generally makes
this consideration unimportant, except in real-time applications, where very high
data throughput is essential. The small round-off error generated by the transforms
is usually not an important impediment to the analysis.

10.6.2 FILTERING

When very rapid enhancement of data is desired, it might be necessary to enhance
the data as they are collected. For this reason, the data-enhancement step is carried
out in the time domain, both to avoid spending the time needed for the two trans-
formation processes and to avoid any delays due to the need for complete observa-
tions in any data-enhancement method based on smoothing. As discussed previously,
the removal of noise will be done by a convolution of an impulse response function
with the noisy data, a serial process that is suited to the real-time improvement of
noisy data. Real-time enhancement of incomplete data is called filtering, and it is
always done in the time domain if the data are collected in the time domain. If the
data were analyzed in the frequency domain, complete observations would be needed
to prevent problems in representing all signal frequencies: the number of frequencies
available cannot exceed the number of time-domain data. In time-domain filtering
or smoothing, the basic operation is the cyclic convolution of the filter (or smoother)
impulse-response function with the noisy data to generate a signal with attenuated
noise characteristics. As discussed previously, the cyclic convolution operation is
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is seen in Figure 10.12. Filter lag is a common effect in filtering of data by a time-
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more commonly expressed as a discrete sum over the number of measurements
available, N, so that the kth filtered datum is determined by the relation

s(k) = (10.21)

where h(n) is the filter impulse-response function defined over the set of N points,
and where the input data are given by the sequence x(n). This difference equation
is the defining relation for a finite impulse response (FIR) filter, so named because
the filter impulse-response function has finite (meaning noninfinite) values every-
where. With FIR filters, the present response s(k) is not dependent on previous values
of s [12, 18].

To discover the way in which FIR filters enhance data, consider the simple FIR
filter given by the impulse-response equation

h(n) = 1/N (10.22)

This impulse response defines the simple moving-average filter, sometimes
known as the “boxcar averager.” As discussed previously, the convolution operation
defined by Equation 10.21 can be regarded as a moving of the impulse-response
function h(n), which operates over a predetermined “window,” through the data s(n).
Here the impulse response is a simple average of the values of the noisy signal x(n)
inside an N-point “window,” as shown in Figure 10.13.

Averaging is a least-squares process that reduces the effects of noise, if the noise
is zero-mean and fairly random [10], and the moving-average filter removes high-
frequency noise well. It is less successful at removing low-frequency noise, since
these nonzero-mean variations are less likely to be affected by the averaging. It also

FIGURE 10.13 FIR signal processing with a simple moving-average filter.
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is not able to filter the extreme “ends” of the data set, since a fixed-sized window
of data is averaged to estimate a new value for the middle point of the window.
Starting a five-point window in a spectrum means that the first two points cannot
be improved; similarly, the last two points are never reached by the moving window.
Typically, for a window of 2N + 1 points, 2N points will be left unfiltered. These
unfiltered points can be seen at the ends in Figure 10.14, where the operation of the

This fast operation, which is easily done in real time, has effectively removed the
high-frequency noise, but some of the low-frequency noise remains, and there may
be a small amount of filter lag.

The size of the filter window determines the number of points averaged by the
filter. As one might expect, the number of data averaged has a profound effect on
the noise reduction process. It also strongly affects the amount of distortion of the
enhanced data due to filter lag effects. The effect of window size on noise reduction
and on distortion is best seen through examination of the filter transfer function.

Clearly, choice of window size drastically affects the range of frequency components
that pass the filter. Larger windows pass a considerably smaller range of frequencies.
The collapse of the filter transfer function as the filter window is increased has some
disadvantages, too. A large window size may give a filter transfer function that does
not pass frequencies associated with signal. When signal frequencies are lost, dis-
tortion results. It is possible to remove the signal entirely, leaving only background,
with a large enough filter window. How large of a window can be used without
significant distortion? The window size should not be larger than the smallest peak
half-width present in the signal. This rule ensures that the narrowest peaks (with the
highest component frequencies) will not be clipped off by the moving-average filter.

FIGURE 10.14 Time-domain processing of noisy data with a ten-point, moving-average
filter. The moving-average-filtered data are indicated as a solid line. The true signal is shown
as a dotted line.
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simple ten-point, moving-average filter is demonstrated on the noisy data of Figure 10.1.

Three of these functions, for different window sizes, are shown in Figure 10.15.



Signal Processing and Digital Filtering 403

The moving-average filter can be compared with the other smoothers discussed
previously by transformation of the filter impulse function to the frequency domain,
which produces the filter transfer functions shown in Figure 10.15. The general
shape of the moving-average filter transfer function is similar to those “designer”
transfer functions discussed previously, but with some important differences. One
difference is the presence of negative regions in the moving-average filter transfer
function. These regions will produce a filtered, frequency-domain representation
with negative intensities at some frequencies after multiplication of the filter transfer
function by the frequency-domain representation of the noisy signal. These negative
intensities in the frequency domain lead to phase errors [13] in the filtered output,
so that a decrease in the number of negative regions in the transfer function is
desirable, if possible. There are also a number of humps in the transfer function,
where poorly attenuated frequencies can “leak” through to the filtered output. Again,
a decrease in the number of these positive areas is desirable, if possible.

10.6.3 POLYNOMIAL MOVING-AVERAGE (SAVITSKY-GOLAY) 
FILTERS

provide significant noise reduction. However, signal distortion also occurs, as can
be seen in Figure 10.14, where the smoothed signal obtained from application of a
moving-average filter using a ten-point window and the true signal s(t) are compared.
The distortion produced by the filtering process is apparent. To reduce this distortion
while retaining noise attenuation, simple polynomials can be fitted to data in a
manner analogous to the moving-average filter discussed previously.

FIGURE 10.15 Transfer functions for FIR filters shown as a function of window size.
Transfer functions for simple, moving-average filters with windows of 5 (…), 10 (- - -), and
25 (—) are shown.
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From Figure 10.13 and Figure 10.14, it is clear that a moving-average filter should
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Polynomial moving-average filtering involves fitting a polynomial to a set of
noisy data within a window of points, as shown in Figure 10.16. Using higher-order
polynomials should allow fitting of data that changes rapidly within the filter window.
So long as the noise continues to change more rapidly than the data, good noise
rejection will be possible. Any set of polynomials could be used to define a poly-
nomial filter [19]. Selecting the set is analogous to choosing a frequency-domain
designer transfer function. For example, Chebyshev polynomials can be used to filter
data in the time domain. One especially convenient set of filter polynomials is based
on power functions. Savitsky and Golay first introduced chemists to the use of
moving-average filtering with orthogonal polynomials based on these power func-

filtering. [20, 21–24]. As with other FIR filters, the polynomial filter function is
convolved with the noisy time-domain data to produce an enhanced representation
of the true signal. Generation of the filter polynomial from the power series is simple
[24], and many authors provide listings of the polynomials [21–23]. It is worth
noting that the matrix approach published in chemistry by Bialkowski [24] permits
filtering of the ends of the signal as well, and its implementation is considerably
easier than the direct convolution code originally published.

By selecting the order of the convolving polynomial, the user is able to alter the
filtering process. With low-order polynomials, more noise is filtered, but at the cost
of increased signal distortion. In fact, the moving-average filter is just a very low-
order (order 1) polynomial moving-average filter. Increasing the window used in the
filtering also decreases noise, as with the moving-average filter, but at the cost of
significant signal distortion [13]. Filtering with low-order polynomial functions and
large filter windows is called strong filtering, and it is used when obtaining high
S/N is more important than preserving signal shape. When filtering is done with
small filter windows and higher-order polynomials, less noise is removed because

FIGURE 10.16 Polynomial least-squares filtering. A quadratic, five-point polynomial filter
is shown.
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tions, and many texts in chemistry now refer to the method as “Savitsky-Golay”
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the higher-order polynomials will describe rapidly varying signal (and, of course,
noise) better than low-order polynomials, but less signal distortion will be caused
in filtering. Filtering with high-order polynomials is known as weak filtering, which
is mainly of use when preservation of signal shape, not S/N ratio, is most important
[25, 26]. Figure 10.17 and Figure 10.18 demonstrate the results of strong and weak

FIGURE 10.17 Strong filtering of noisy data using quadratic polynomials. Filtering was done
with a five-point smoothing window. The true signal is shown as a dotted trace.

FIGURE 10.18 Weak filtering of noisy data using quadratic polynomials. Weak filtering was
done with a 20-point smoothing window. The true signal is shown as a dotted trace.
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filtering on the noisy signal shown in Figure 10.1.
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10.7 WAVELET-BASED SIGNAL PROCESSING

The time-frequency relationships discussed previously for the removal of noise from
responses have great power for the attenuation of those components containing
specific frequencies, but they also have a serious drawback: in transforming time-
domain data to the frequency domain, the time information on the signal is lost. A
Fourier analysis cannot provide information on when a particular frequency event
occurred. There is not much need to locate events in time when the signal shape is
not changing with time (or with another independent variable) — that is, for sta-
tionary signals. However, when the observed response or the desired signal contains
nonstationary components such as drift, abrupt changes, peaks, the beginning and
ends of events, then a Fourier analysis is not well suited. In recognition of this
limitation, Gabor [27] developed what he called the short-term Fourier transform
(STFT), where only a portion of the response contained in a preset transform window
at some center point b is subjected to Fourier analysis. This approach provides both
time and frequency information by repeating the transform for different values of
the window center, but the precision of that information is limited by the size of the
transform window; and because the window is fixed, there is no ability to vary the
window size to improve the precision of the analysis of either time or frequency.

Wavelet analysis takes Gabor’s idea one step further: it defines a windowing
transform technique with variably sized window regions. The continuous wavelet
transform of the sequence h(t) is defined by Equation 10.23

H( f, b, s) = (10.23)

where b is the location of the window in time, s is the wavelet support (the finite
time-spread over which the wavelet function is nonzero and therefore has action on
the signal), and ψ is a function of location a and support s called a wavelet. Note
that this transform is related to the Fourier transform defined in Equation 10.9.

10.7.1 THE WAVELET FUNCTION

A wavelet function is a waveform of limited duration that has an average value of

can be expressed in closed-form equations. Wavelets may seem to be of arbitrary
and somewhat unsatisfying shapes, but in fact their shape derives from the properties
desired from the associated digital filter bank that implements the discrete wavelet
transform. One cannot just “create” a wavelet of arbitrary shape and expect it to
have many of the desirable properties of the conventional wavelet families, but the
details go beyond the scope of this chapter. The text by Strang and Ngyuen discusses
the somewhat complicated issue of wavelet creation and filter banks in great detail
[28], as do books by Mallat [29] and Kaiser [30]. There are also many useful Internet
tutorials encompassing a wide range of levels of sophistication [31]. As Figure 10.19
shows, the shape of a wavelet can be close to symmetric, as in the symlet or coiflet
families, or very asymmetric, like the family of Daubechies wavelets. Some wavelets
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zero, as seen in Figure 10.19. Only a very few wavelet families have shapes that
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(e.g., the db-2) may even appear “noisy,” but wavelet functions are not of uncertain
shape, nor do they contain noise.

Wavelet analysis consists of breaking any observed signal response into its
projections onto a set of shifted and scaled versions of the mother wavelet function.
The shifted and scaled versions of the mother wavelet function are known as child
wavelets, and the collection is called a wavelet family, designated by the name and
the number indicating the number of vanishing moments associated with the mother
wavelet function. Thus a db4 wavelet defines a basis set described by the
Daubechies-type wavelet with four vanishing moments. The basic db4 wavelet (the
mother) and shifted and stretched versions of the basic db4 wavelet shape (her
children) are shown in Figure 10.20. The two aspects of wavelets that are important
for a signal-processing step are vanishing moments, the symmetry, and the orthog-
onality of analysis. The vanishing moments associated with a wavelet family
determine the degree of polynomial functions that are suppressed by the wavelet;
thus, a db4 wavelet analysis would suppress quartic and lower-order polyno-
mials in any data subjected to a db4 wavelet analysis because these functions
will have db4 wavelet coefficients equal to zero. A wavelet family usually forms
an orthogonal basis in which a signal can be reexpressed, just as the set of sines

FIGURE 10.19 Some example mother wavelet functions. From left to right: a coiflet (coif),
a symlet (sym), and two Daubechies (db) wavelets. The numbers relate to the number of
vanishing moments of the wavelet.

FIGURE 10.20 A mother Daubechies wavelet and two of its shifted and scaled children
fitting a noisy signal. Note that the interval of the fit depends on the scale of the wavelet.
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and cosines do in Fourier analysis, or the set of eigenvectors do in a principal
component analysis. The projections generated by fitting the family of wavelets to
the signal provides coefficients that define the signal in the wavelet domain.

Wavelet analysis is related to Fourier analysis, and many of the properties of the
Fourier transform transfer to the wavelet transform. However, there are significant
differences between the two approaches to generating bases for reexpression of
response data. The Fourier decomposition is based on using harmonics and 90-degree
phase shifts of the sine function to yield an orthogonal basis set. In many wavelet
families, scaling and shifting of the mother wavelet function also generates a new
orthogonal basis set for reexpression of the response data. Here, scaling means com-
pressing (using a small scale) or stretching (with a large scale factor) the mother
wavelet. Shifting is done by simply delaying the start of the wavelet basis function by
a set amount. In the Fourier transform, where a response is reexpressed in terms of
its projections onto sine and cosine waves of various frequencies, the basis functions
of the reexpression are active over the entire signal response because the sine function
is global rather than local in influence. In a wavelet analysis, however, the reexpressions
of the response are local, because the region of influence of the mother and children
wavelets defining the basis are also local. Thus, there is a localization of the projection
of the signal onto a wavelet in both scale (the fit to a particular child wavelet) and
location, so the wavelet decomposition expresses a signal in terms of the projections

Fourier and wavelet transforms and the relationship of frequency and scale.

10.7.2 TIME AND FREQUENCY LOCALIZATIONS OF WAVELET 
FUNCTIONS

A critical difference between the Fourier transform defined in Equation 10.9 and
the wavelet transform defined in Equation 10.22 is the fact that the latter permits
localization in both frequency and time; that is, we can use the equation to determine
what frequencies are active at a specific time interval in a sequence. However, we
cannot get exact frequency information and exact time information simultaneously
because of the Heisenberg uncertainty principle, a theorem that says that for a given
signal, the variance of the signal in the time domain σ 2

t and the variance of the
signal in the frequency (e.g., Fourier) domain σ 2

F are related

σ 2
t σ 2

F  ≥ 1/2 (10.24)

In the limiting case of the sinusoid (the Fourier transform), σ 2
F is zero and σ 2

t

is infinite. Using the Heisenberg principle as a guide, we can see that because
wavelets operate on a sequence over a finite range of time (the time-spread function,

function is not representative of a single frequency nor even of a finite range of
frequencies. As we scale the wavelet function by a factor of 2, the time spread goes
down by a factor of 2 and the frequency range goes up by a factor of 2. Thus, the
frequency resolution of a wavelet is dependent on the scaling used. Because the
wavelet basis set is based on the scaling of the mother wavelet, the wavelet transform
is a time-scale transform.
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onto a set scale as a function of time. Figure 10.21 demonstrates the similarity of the

which depends on the wavelet scale, as shown in Figure 10.20), a particular wavelet
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10.7.3 THE DISCRETE WAVELET TRANSFORM

Just as the discrete Fourier transform generates discrete frequencies from sampled data,
the discrete wavelet transform (often abbreviated as DWT) uses a discrete sequence of
scales a j for j < 0 with a = 21/v, where v is an integer, called the number of voices in the
octave. The wavelet support — where the wavelet function is nonzero — is assumed to
be [−K/2, K/2]. For a signal of size N and 1 ≤ a j ≤ N/K, a discrete wavelet ψ is defined
by sampling the scale at aj and time (for scale 1) at its integer values, that is

(10.25)

FIGURE 10.21 Wavelet and sine basis functions for orthogonal transforms.
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Both the signal and wavelet are N-periodized. Then, the discrete wavelet trans-
form of t, Wt[n, a j], is defined by the relation

Wt[n, a j] = (10.26)

which is a circular convolution between the signal t and ψ1[n] = ψ[−n]. These circular
convolutions are computed with an FFT operation. The Mallat pyramid algorithm
[32] is generally used to perform the discrete wavelet transform.

Decomposition of a response by the discrete wavelet transform is generally
represented by a filter bank combining a low-pass filter and a high-pass filter that,
together, may be considered to implement a discrete wavelet transform for a specific
family of wavelets. The low-pass filter generates a representation with low frequen-
cies, or high scales, called the approximation. The high-pass filter generates a
representation with high frequencies, or low scales, called the detail. We can itera-
tively apply the filter bank to decompose any approximation representation into a
new approximation and detail. This set of nested approximation and detail repre-
sentations is the usual output of the DWT. The iterative decomposition process is
often represented in a tree structure, as shown in Figure 10.22.

FIGURE 10.22 The tree of wavelet components that results from an input signal vector s
using a filter-bank implementation of the discrete wavelet transform calculated for six scales.
Here a is an approximation component vector (obtained from low-pass filtering), and d is a
detail component vector (from high-pass filtering) from the filter bank. Reconstruction of the
signal from the wavelet coefficients occurs by retracing the tree from level 6 up to s.
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The representation of data in scales permits us to examine the time occurrence
of rapidly changing aspects of the response (at low scales) and slowly changing
aspects (at high scales) by simply examining different scale plots. Figure 10.23
shows a wavelet decomposition of the noisy signal in Figure 10.1 done according
to the wavelet decomposition tree of Figure 10.22.

Figure 10.23 demonstrates one aspect of discrete wavelet transforms that shows
similarity to discrete Fourier transforms. Typically, for an N-point observed signal,
the points available to decomposition to approximation and detail representations
decrease by (about) a factor of 2 for each increase in scale. As the scale increases,
the number of points in the wavelet approximation component decreases until, at
very high scales, there is a single point. Also, like a Fourier transform, it is possible
to reconstruct the observed signal by performing an inverse wavelet transform,

FIGURE 10.23 The cascade of wavelet coefficient vectors output from the wavelet tree filter
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banks defining the discrete wavelet transform in Figure 10.22. A db-7 mother wavelet was
used for the decomposition of the noisy signal in Figure 10.1.
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known as reconstruction, on the set of wavelet representations of the data. Unlike
the inverse Fourier transform, however, not all wavelet families have a reconstruction
operation defined for the set of filter banks that implement their DWT. A signal
transformed using one of these wavelet families cannot be inverse transformed from
its set of wavelet representations. The wavelet functions used most often, including
Daubechies, coiflet, and symlet wavelet families, all have inverse transforms. Per-
forming an inverse wavelet transform for these wavelets amounts to traversing up
the wavelet decomposition tree.

10.7.4 SMOOTHING AND DENOISING WITH WAVELETS

to improve the signal-to-noise ratio of the noisy signal by simply removing one
or more detail components used to represent the signal, especially the detail
component at high scales. Truncation of this sort is exactly analogous to that done
in PCA: we delete one or more basis vectors from the reexpression of the response
because we believe that they mainly describe a noise component of our data. In
doing so, we reduce the variance of the response data at a cost of some increase
in bias, because we distort the signal through the truncation step. A strong trun-
cation, where many wavelet components are truncated, can also be used to com-
press a signal, in this case because we may be able to convey most of the
information from a response with many variables in far fewer wavelet components,
which can be considered as a projection of the original signal into a subspace of
much smaller dimension. Truncated wavelet reexpressions can be used as inputs

transform at six levels of decomposition with reconstruction. The resulting signal recon-
structed from wavelet coefficients from levels 6 to 2 is shown, along with the true signal
(dotted line). Note that the smoothing is obtained by not including wavelet coefficients from
detail levels d1 and d2 in the reconstruction.
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The wavelet representation shown in Figure 10.23 suggests that we might be able

FIGURE 10.24 Smoothing of the noisy signal in Figure 10.1 by using the db-7 wavelet
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to other chemometric methods in a way similar to truncated PCA reexpressions
of data.

The truncation process can also be regarded as smoothing with wavelets because
we have selected a scale corresponding to a range of frequency components as
describing noise, and we have attenuated (zeroed) it. The effect of an aggressive
smoothing of the noisy data in Figure 10.1 with wavelet analysis is shown in

degree of separation of signal and noise, but here what matters is separation of signal
and noise in time and scale.

an entropy threshold and db-7 wavelets. Thresholds for the decomposition are shown as dashed
lines. Wavelet coefficients contained inside the thresholds are set to zero in this form of
denoising.
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FIGURE 10.25 Denoising of the wavelet components of the noisy signal in Figure 10.1 using

Figure 10.24. As in Fourier analysis, the effectiveness of smoothing depends on the
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With wavelet analysis, there is another way to reduce noise in a signal without
truncation of the set of wavelet coefficients. Suppose that we put a threshold on each

remain inside of the threshold values could be reduced as just noise on a real value
of zero, and all the scales could be retained in the reconstruction step to reduce bias.
In this way, only some few wavelet coefficient amplitudes are attenuated, and these
are not attenuated to zero but to some limiting value. This process, called denoising,
reduces noise but retains signal shape. Its effectiveness is determined in the ability
of the analyst to set those threshold values, a process that, not surprisingly, has
received a lot of attention in the wavelet literature. Often, the entropy of the signal
is used as a way to establish thresholds for denoising, but the reader is referred to
the literature for more on this subject [33–39]. Figure 10.26 shows the result of one

this chapter.
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11.1 INTRODUCTION: GENERAL CONCEPT, 
AMBIGUITIES, RESOLUTION THEOREMS

 

The resolution of a multicomponent system involves the description of the variation of
measurements as an additive model of the contributions of their pure constituents [1–10].
To do so, relevant and sufficiently informative experimental data are needed. These data
can be obtained by analyzing a sample with a hyphenated technique (e.g., HPLC-DAD
[diode array detection], high-performance liquid chromatography–DAD) or by monitor-
ing a process in a multivariate fashion. In these and similar examples, all of the mea-
surements performed can be organized in a table or data matrix where one direction (the
elution or the process direction) is related to the compositional variation of the system,
and the other direction refers to the variation in the response collected. The existence of
these two directions of variation helps to differentiate among components (Figure 11.1).

In this context, it is important to broadly define the concept of a component as
any entity giving a distinct and real, pure response. This includes examples as diverse
as a chemical compound, a conformational state [11–12], or a pollution source
[13–16] whose response could be a profile that includes the relative apportionment
of its different pollutants.

 

FIGURE 11.1

 

Examples of data sets coming from multicomponent systems: (a) HPLC-DAD
chromatographic run and (b) spectroscopic monitoring of a kinetic process [10].
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In the resolution of any multicomponent system, the main goal is to transform
the raw experimental measurements into useful information. By doing so, we aim
to obtain a clear description of the contribution of each of the components present
in the mixture or the process from the overall measured variation in our chemical
data. Despite the diverse nature of multicomponent systems, the variation in their
related experimental measurements can, in many cases, be expressed as a simple
composition-weighted linear additive model of pure responses, with a single term
per component contribution. Although such a model is often known to be followed
because of the nature of the instrumental responses measured (e.g., in the case of
spectroscopic measurements), the information related to the individual contributions
involved cannot be derived in a straightforward way from the raw measurements.
The common purpose of all multivariate resolution methods is to fill in this gap and
provide a linear model of individual component contributions using solely the raw
experimental measurements. Resolution methods are powerful approaches that do
not require a lot of prior information because neither the number nor the nature of
the pure components in a system need to be known beforehand. Any information
available about the system may be used, but it is not required. Actually, the only
mandatory prerequisite is the inner linear structure of the data set. The mild require-
ments needed have promoted the use of resolution methods to tackle many chemical
problems that could not be solved otherwise.

All resolution methods mathematically decompose a global instrumental
response of mixtures into the contributions linked to each of the pure components
in the system [1–10]. This global response is organized into a matrix 

 

D

 

 containing
raw measurements about all of the components present in the data set. Resolution
methods allow for the decomposition of the initial mixture data matrix 

 

D

 

 into the
product of two data matrices 

 

C 

 

and 

 

S

 

T

 

, each of them containing the pure response
profiles of the 

 

n

 

 mixture or process components associated with the row and the

notation, the expression for all resolution methods is:

 

D

 

 = 

 

CS

 

T

 

 + 

 

E (

 

11.1)

where 

 

D

 

 (

 

r

 

 

 

×

 

 

 

c

 

) is the original data matrix, 
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) and 
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c

 

) are the matrices
containing the pure-component profiles related to the data variation in the row
direction and in the column direction, respectively, and 

 

E

 

 (

 

r

 

 

 

×

 

 

 

c

 

) is the error matrix,
i.e., the residual variation of the data set that is not related to any chemical contri-
bution. The variables 

 

r

 

 and 

 

c

 

 represent the number of rows and the number of
columns of the original data matrix, respectively, and 

 

n

 

 is the number of chemical
components in the mixture or process. 

 

C

 

 and 

 

S

 

T

 

 often refer to concentration profiles
and spectra (hence their abbreviations and the denomination we will adopt often in
this chapter), although resolution methods are proven to work in many other diverse
problems [13–20].

From the early days in resolution research, the mathematical decomposition of
a single data matrix, no matter the method used, has been known to be subject to
ambiguities [1, 2]. This means that many pairs of 

 

C

 

- and 

 

S

 

T

 

-type matrices can be
found that reproduce the original data set with the same fit quality. In plain words,
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the correct reproduction of the original data matrix can be achieved by using com-
ponent profiles differing in shape (rotational ambiguity) or in magnitude (intensity
ambiguity) from the sought (true) ones [21].

These two kinds of ambiguities can be easily explained. The basic equation
associated with resolution methods, 

 

D

 

 = 

 

CS

 

T

 

, can be transformed as follows:
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where 
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 = 

 

CT

 

 and 
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T

 

 = (
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−
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) describe the 

 

D

 

 matrix as correctly as the true

 

C

 

 and 

 

S

 

T

 

 matrices do, though 

 

C¢

 

 and 

 

S¢

 

T

 

 are not the sought solutions. As a result
of the rotational ambiguity problem, a resolution method can potentially provide as
many solutions as 

 

T

 

 matrices can exist. Often this may represent an infinite set of
solutions, unless 

 

C

 

 and 

 

S

 

 are forced to obey certain conditions. In a hypothetical
case with no rotational ambiguity, that is, in the case where the shapes of the profiles
in 

 

C

 

 and 

 

S

 

 are correctly recovered, the basic resolution model could still be subject
to intensity ambiguity, as shown in Equation 11.5

(11.5)

 

FIGURE 11.2

 

Resolution of a multicomponent chromatographic HPLC-DAD run (

 

D

 

 matrix)
into their pure concentration profiles (

 

C

 

 matrix, chromatograms) and responses (

 

S

 

T

 

 matrix,
spectra) [10].
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where 

 

k

 

i

 

 are scalars and 

 

n

 

 refers to the number of components. Each concentration
profile of the new 

 

C¢

 

 matrix (Equation 11.4) would have the same shape as the
real one, but it would be 

 

k

 

i

 

 times smaller, whereas the related spectra of the new

 

S¢

 

T

 

 matrix (Equation 11.4) would be equal in shape to the real spectra, though 

 

k

 

i

 

times more intense.
The correct performance of any curve-resolution (CR) method depends strongly

on the complexity of the multicomponent system. In particular, the ability to correctly
recover dyads of pure profiles and spectra for each of the components in the system
depends on the degree of overlap among the pure profiles of the different components
and the specific way in which the regions of existence of these profiles (the so-called
concentration or spectral windows) are distributed along the row and column direc-
tions of the data set. Manne stated the necessary conditions for correct resolution
of the concentration profile and spectrum of a component in the 2 following
theorems [22]:

1. The true concentration profile of a compound can be recovered when all
of the compounds inside its concentration window are also present outside.

2. The true spectrum of a compound can be recovered if its concentration
window is not completely embedded inside the concentration window of
a different compound.

According to Figure 11.3, the pure concentration profile of component B can
be recovered because A is inside and outside B's concentration window; however,
B's pure spectrum cannot be recovered because its concentration profile is totally
embedded under the major compound, A. Analogously, the pure spectrum of A can
be obtained, but not the pure concentration profile because B is present inside its
concentration window, but not outside.

The same formulation of these two theorems holds when, instead of looking at
the concentration windows in rows, the “spectral” windows in columns are consid-
ered. In this context, the theorems show that the goodness of the resolution results
depends more strongly on the features of the data set than on the mathematical
background of the CR method selected. Therefore, a good knowledge of the prop-
erties of the data sets before carrying out a resolution calculation provides a clear
idea about the quality of the results that can be expected.

 

FIGURE 11.3

 

Concentration profiles for a two-component system (see comments in text
related to resolution).
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11.2 HISTORICAL BACKGROUND

 

The field of curve resolution was born in response to the need for a tool to analyze
multivariate experimental data from multicomponent dynamic systems. The common
goal of all curve-resolution methods is to mathematically decompose the global
instrumental response into the pure-component profiles of each of the components
in the system. The use of these methods has become a valuable aid for resolving
complex systems, especially when obtaining selective signals for individual species
is not experimentally possible, too complex, or too time consuming.

Two pioneering papers on curve resolution were published by Lawton and Sylves-
tre early in the 1970s [1, 2]. In particular, a mixture analysis resolution problem was
described in mathematical terms for the case of a simple two-component spectral
mixture. Interestingly, several concepts introduced in these early papers were the
precursors of the ideas underlying most of the curve-resolution methods developed
afterward. For instance, the concept of pure-component solutions as a linear com-
bination of the measured spectra and vice versa was presented; the concept of a
subspace spanned by “true” solutions in relation to the subspace spanned by PCA
(principal component analysis) solutions was presented; and the concept of a range
or band of feasible solutions, and how to reduce the width of this band by means
of constraints, such as nonnegativity and closure (mass balance) equations, was
presented. Later on, these ideas were reformulated more precisely using the concepts
of rotational and intensity ambiguities [23], which are found ubiquitously in all
factor-analysis matrix bilinear decomposition methods.

The extension of Lawton and Sylvestre’s curve resolution from two- to three-
component systems was presented by Borgen et al., [3, 4] focusing on the opti-
mization of ranges of feasible solutions. At the same time, the first edition of
Malinowski's book [24] 

 

Factor Analysis in Chemistry

 

 appeared [25], which presented
a review of updated concepts and applications. In a way, Malinowski’s book could be
considered for many researchers in this field as the consolidation of the incipient subject
of chemometrics, at a time when this term was still not widely accepted.

The main goal of factor analysis, i.e., the recovery of the underlying “true”
factors causing the observed variance in the data, is identical to the main goal of
curve-resolution methods. In factor analysis, “abstract” factors are clearly distin-
guished from “true” factors, and the key operation is to find a transformation from
abstract factors to the true factors using rotation methods. Two types of rotations
are usually used, orthogonal rotations and oblique rotations. Principal component
analysis, PCA, (or principal factor analysis, PFA) produces an orthogonal bilinear
matrix decomposition, where components or factors are obtained in a sequential

Using these constraints plus normalization during the bilinear matrix decomposition,
PCA produces unique solutions. These “abstract” unique and orthogonal (indepen-
dent) solutions are very helpful in deducing the number of different sources of
variation present in the data. However, these solutions are “abstract” solutions in
the sense that they are not the “true” underlying factors causing the data variation,
but orthogonal linear combinations of them. On the other hand, in curve-resolution
methods, the goal is to unravel the “true” underlying sources of data variation. It is
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not only a question of how many different sources are present and how they can be
interpreted, but to find out how they are in reality. The price to pay is that unique
solutions are not usually obtained by means of curve-resolution methods unless
external information is provided during the matrix decomposition.

Different approaches have been proposed during recent years to improve the
solutions obtained by curve-resolution methods, and some of them are summarized
in the next sections. The field is already mature and, as it has been recently pointed
out [26], multivariate curve resolution can be considered as a “sleeping giant of
chemometrics,” with a slow but persistent growth.

Whenever the goals of curve resolution are achieved, the understanding of a
chemical system is dramatically increased and facilitated, avoiding the use of
enhanced and much more costly experimental techniques. Through multivariate-
resolution methods, the ubiquitous mixture analysis problem in chemistry (and other
scientific fields) is solved directly by mathematical and software tools instead of
using costly analytical chemistry and instrumental tools, for example, as in sophis-
ticated “hyphenated” mass spectrometry-chromatographic methods.

 

11.3 LOCAL RANK AND RESOLUTION: EVOLVING 
FACTOR ANALYSIS AND RELATED TECHNIQUES

 

Manne’s resolution theorems clearly stated how the distribution of the concentration
and spectral windows of the different components in a data set could affect the
quality of the pure profiles recovered after data analysis [22]. The correct knowledge
of these windows is the cornerstone of some resolution methods, and in others where
it is not essential, information derived from this knowledge can be introduced to
generally improve the results obtained.

Setting the boundaries of windows of the different components can only be done
if we are able to know how the number and nature of the components change in the
data set. Obtaining this information is the main goal of local-rank analysis methods,
which are used to locate and describe the evolution of each component in a system.
This is accomplished by combining the information obtained from multiple rank
analyses performed locally on limited zones (row or column windows) of the data set.

Some of the local-rank analysis methods, such as evolving-factor analysis (EFA)
[27–29], are more process oriented and rely on the sequential evolution of the
components as a function of time or any other variable in the data set, while others,
such as fixed-size moving-window–evolving-factor analysis (FSMW-EFA) [30, 31],
can be applied to processes and mixtures. EFA and FSMW-EFA are the two
pioneering local-rank analysis methods and can still be considered the most repre-
sentative and widely used.

Evolving-factor analysis was born as the chemometric way to monitor chemical-
evolving processes, such as HPLC diode-array data, batch reactions, or titration data
[27–28]. The evolution of a chemical system is gradually measured by recording a
new response vector at each stage of the process under study. Mimicking the exper-
imental protocol, EFA performs principal component analyses on submatrices of
gradually increasing size in the process direction, enlarged by adding a row
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(response), one at a time. This procedure is performed from top to bottom of the
data set (forward EFA) and from bottom to top (backward EFA) to investigate the

displays the information provided by EFA for an HPLC-DAD example and how to
interpret the results.

Each time a new row is added to the expanding submatrix (Figure 11.4b), a
PCA model is computed and the corresponding singular values or eigenvalues are
saved. The forward EFA curves (thin solid lines) are produced by plotting the saved
singular values or log (eigenvalues) obtained from PCA analyses of the submatrix
expanding in the forward direction. The backward EFA curves (thin dashed lines)
are produced by plotting the singular values or log (eigenvalues) obtained from the
PCA analysis of the submatrix expanding in the backward direction. The lines
connecting corresponding singular values (s.v.), i.e., all of the first s.v., the second
s.v., the 

 

i

 

th s.v., indicate the evolution of the singular values along the process and,
as a consequence, the variation of the process components. Emergence of a new
singular value above the noise level delineated by the pool of nonsignificant singular
values indicates the emergence of a new component (forward EFA) or the disap-
pearance of a component (backward EFA) in the process.

Figure 11.4b also shows how to build initial estimates of concentration profiles
from the overlapped forward and backward EFA curves as long as the process evolves
in a sequential way (see the thick lines in Figure 11.4b). For a system with 

 

n

 

significant components, the profile of the first component is obtained combining the
curve representing the first s.v. of the forward EFA plot and the curve representing
the 

 

n

 

th s.v. of the backward EFA plot. Note that the 

 

n

 

th s.v. in the backward EFA
plot is related to the disappearance of the first component in the forward EFA plot.
The profile of the second component is obtained by splicing the curve representing the
second s.v. in the forward EFA plot to the curve representing (

 

n

 

 

 

−

 

 1)th s.v. from the
backward EFA plot, and so forth. Combining the two profiles into one profile is easily
accomplished in a computer program by selecting the minimum value from the two
s.v. lines to be combined. It can be seen that the resulting four elution profiles
obtained by EFA are good approximations of the real profiles shown in Figure 11.4a.

The information provided by the EFA plots can be used for the detection and
location of the emergence and decay of the compounds in an evolving process.
As a consequence, the concentration window and the zero-concentration region
for each component in the system are easily determined for any process that evolves
such that the emergence and decay of each component occurs sequentially. For
example, the concentration window of the first component to elute is shown as a
shadowed zone in Figure 11.4b. Uses of this type of information have given rise
to most of the noniterative resolution methods, explained in Section 11.4 [32–39].
Iterative resolution methods, explained in Section 11.5, use the EFA-derived esti-
mates of the concentration profiles as a starting point in an iterative optimization
[40, 41]. The location of selective zones and zones with a number of compounds
smaller than the total rank can also be introduced as additional information to
minimize the ambiguity in the resolved profiles [21, 41, 42].

As mentioned earlier, FSMW-EFA is not restricted in its applicability to evolving
processes, although the interpretation of the final results is richer for this kind of problem.
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emergence and the decay of the process contributions, respectively. Figure 11.4b
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FIGURE 11.4

 

(a) Concentration profiles of an HPLC-DAD data set. (b) Information derived from
the data set in Figure 11.4a by EFA: scheme of PCA runs performed. Combined plot of forward EFA
(solid black lines) and backward EFA (dashed black lines). The thick lines with different line styles
are the derived concentration profiles. The shaded zone marks the concentration window for the first
eluting compound. The rest of the elution range is the zero-concentration window. (c) Information
derived from the data set in Figure 11.4a by FSMW-EFA: scheme of the PCA runs performed. The
straight lines and associated numbers mark the different windows along the data set as a function of
their local rank (number). The shaded zones mark the selective concentration windows (rank 1).
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FSMW-EFA does not focus on a description of the evolution of the different compo-
nents in a system as EFA does; rather, it focuses on the local rank of windows in the
concentration domain (rows) or the local rank of windows in the spectral response
domain (columns).

FSMW-EFA is carried out by conducting a series of PCA analyses on subma-
trices obtained by moving a window of a fixed size through the data set, starting at
the top of the matrix and moving downward, one row at a time. The singular values
or eigenvalues from the repeated analyses are saved, and a plot is constructed by
connecting the corresponding singular values as done in EFA. Visual examination
of these plots gives a local-rank map of the data set, i.e., a representation of how
many components are simultaneously present in the different zones of the data set

the noise level threshold is used to determine the local rank. The local-rank map
helps to identify selective zones in the data set (e.g., zones where the local rank is 1)
and to know the degree of compound overlap in the data set. The unambiguous
determination of the number of compounds present and their identities is only
possible in processes where components evolve sequentially or when more external
information is available. The window size is a parameter that has an effect on the
information obtained (e.g., local-rank maps). Wider windows increase the sensitivity
for detecting minor components, including components completely embedded under
major compounds. Narrower windows can provide more accurate resolution of
boundaries between zones of different rank.

New algorithms based on EFA and FSMW-EFA have refined the performance
of the parent methods [43, 44] and have widened their applicability to the study of
systems with concurrent processes [45] or complex spatial structure, such as spec-
troscopic images [46].

 

11.4 NONITERATIVE RESOLUTION METHODS

 

Resolution methods are often divided in iterative and noniterative methods. Most
noniterative methods are one-step calculation algorithms that focus on the one-at-
a-time recovery of either the concentration or the response profile of each component.
Once all of the concentration (

 

C

 

) or response (

 

S

 

) profiles are recovered, the other
member of the matrix pair, 

 

C

 

 and 

 

S, is obtained by least-squares according to the
general CR model, D = CST [32–38].

Noniterative methods use information from local-rank maps or concentration
windows in a characteristic way. In mathematical terms, these windows define
subspaces where the different compounds are present or absent. The subspaces can
be combined in clever ways through projections or by extraction of common vectors
(profiles) to obtain the profiles sought.

As mentioned in Section 11.3, the cornerstone of these procedures is the correct
location of concentration windows of the compounds of interest. Limitations of these
methods are linked to this point. Thus, data sets where the compositional evolution
of the compounds does not follow any clear pattern, such as in a series of mixtures
or image pixels, cannot be resolved by these methods because it is practically impos-
sible to determine the concentration windows of components. Evolving processes are
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(Figure 11.4c). For each window analyzed, the number of singular values exceeding
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the most suitable systems to be analyzed but, again, attention should be paid to
situations where the pattern by which components emerge and decay is not sequen-
tially ordered. Some examples that violate this requirement are nonunimodal concen-
tration profiles or small embedded peaks under major peaks. In cases such as these,
specialized EFA derivations [39] should be used to avoid incorrect assignment of
component windows. Other problems associated with locating window boundaries
are due to the presence of noise that can blur the extremes of the concentration
windows. Errors from this source can also affect the quality of the final results.

Noniterative methods are fast, but they have clear limitations in their applicability
because of the difficulties associated with correct definition of concentration windows
and local rank. Their use is practically restricted to processes with sequentially
evolving components like chromatography, the components of which fulfill the con-
ditions required by Manne’s theorems, to ensure a correct component resolution [22].

11.4.1 WINDOW FACTOR ANALYSIS (WFA)

Window factor analysis (WFA) was described by Malinowski and is likely the most
representative and widely used noniterative resolution method [34, 35]. WFA recov-
ers the concentration profiles of all components in the data set one at a time. To do
so, WFA uses the information in the complete original data set and in the subspace
where the component to be resolved is absent, i.e., all rows outside of the concen-
tration window. The original data set is projected into the subspace spanned by where
the component of interest is absent, thus producing a vector that represents the
spectral variation of the component of interest that is uncorrelated to all other
components. This specific spectral information, combined appropriately with the
original data set, yields the concentration profile of the related component. To ensure
the specificity of this spectral information, all other components in the data set should
be present outside of the concentration window of the component to be resolved.
This means, in practice, that component peaks with embedded peak profiles under
them cannot be adequately resolved.

the WFA method are listed below, followed by a description clarifying their meaning.

1. A PCA model of the original data matrix, D, is computed.
2. The concentration windows of each component in the data set are

determined.

For each component:

3. A PCA model of a submatrix, Do, is computed where the rows related to
the concentration window of the nth component to be resolved have been
removed.

4. The vector, pn
oT, is computed, which is the part of the spectrum of the

nth component orthogonal to the spectra of all other components in the
original matrix.

5. The true concentration profile of the nth component is recovered using
pn

oT and D.
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Figure 11.5 illustrates the scheme followed in the WFA resolution. The steps of
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As a general last step after obtaining the concentration profiles of all components:

6. The pure-spectrum data matrix ST is estimated by least squares using D
and C.

WFA starts with the PCA decomposition of the D matrix, giving the product of
scores and loadings, TPT. In general, the D matrix will have n components, i.e., rank
n. The determination of the location of concentration windows for each component is

of the WFA method and should be performed as many times as compounds are present
in matrix D to recover the concentration profiles of the C matrix, one at a time.

FIGURE 11.5 Recovery of the concentration profile of the nth compound by window factor
analysis. (a) PCA of the raw data matrix and determination of the concentration window, D
(steps 1 and 2); (b) PCA of the matrix formed by suppression of the concentration window of
the nth component, D� (step 3); (c) recovery of the part of the spectrum of the nth component
orthogonal to all the spectra in D�, pn

To (step 4); and (d) recovery of the concentration profile
of the nth component (step 5).
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carried out using EFA (see Figure 11.4b) or other methods. Steps 3 to 5 are the core
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For each component, a Do submatrix is constructed by removing the rows related
to its concentration window. Then, a PCA model is computed and the product ToPoT

is obtained. Note that Do has rank n − 1 because the variation due to the component
of interest disappears when its corresponding window (rows) in the data matrix D
is deleted. The loading matrices, PT and PoT, describe the space of the n pure spectra
in D and the (n − 1) pure spectra in Do, respectively. The rows in these loading
matrices are actually “abstract spectra,” and the real spectra can be expressed as a
linear combination of them. Using these two loading matrices, PT and PoT, it is
possible to calculate a vector pn

oT that is orthogonal to the (n − 1) pi
oT vectors and

that belongs to the space defined by PT. This vector completes the set of vectors in
PoT and contains the part of the spectra of the removed component uncorrelated to
the spectra of the other (n − 1) components in the data matrix. Using this vector
with information exclusively related to the removed component, the true concentra-
tion profile of this compound can be calculated as follows:

Dpn
o = cn (11.6)

The complete C matrix is then formed by appending row-wise the column
concentration profiles found for each component in the D matrix. The matrix of
spectra, ST, is obtained by least squares using the D and C matrices and the basic
equation of CR methods, D = CST:

ST = (CTC)−1CTD (11.7)

Recent modifications of the WFA method attempt to solve some of the problems
caused by poorly defined boundaries for concentration windows [35].

11.4.2 OTHER TECHNIQUES: SUBWINDOW FACTOR ANALYSIS 
(SFA) AND HEURISTIC EVOLVING LATENT PROJECTIONS 
(HELP)

Following the idea of using concentration windows and the subspaces that can be
derived, other noniterative methods are focused on the recovery of the response
profiles (spectra). This is the case of subwindow factor analysis (SFA), proposed by
Manne [38], and other derivations of this method, like parallel vector analysis (PVA)
[39]. Unlike WFA, SFA recovers the pure response profile of each component. The
individual row response profiles are appended in a columnwise fashion, until the
complete ST matrix is built. The C matrix is easily derived by least-squares according
to the CR model, D = CST, as follows:

C = DS(STS)−1 (11.8)

In SFA, the knowledge of the concentration windows is used in such a way
that each pure spectrum is calculated as the intersection of two subspaces that
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have only the compound to be resolved in common. Figure 11.6 illustrates the
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idea behind SFA for a three-component HPLC-DAD system (A, B, and C). Once
the concentration windows of the three components are known, one subwindow
can be constructed with rows including only A and B and another one with rows
where only B and C are present. The intersection of the two planes derived from
these subspaces must necessarily give the pure spectrum of B as an answer. The
same strategy would be applied to recover the spectra of the rest of the compounds
in a general example.

of the two subwindows yields a basis of orthogonal vectors spanning the (A,B)
subspace, called {ei}, and another basis for the (B,C) subspace, called {fi}. The
spectrum of B, sB, can be obtained from these two sets of basis vectors as shown in
Equation 11.9,

(11.9)

FIGURE 11.6 Application of subwindow factor analysis (SFA) for resolution. (a) Concen-
tration profiles of A, B, and C and subwindows used for the resolution of component B (first
containing A and B compounds and second containing B and C compounds). (b) The A,B
plane is defined by the pure spectra of A and B (sA, sB) and the plane B,C by the pure spectra
of B and C (sB, sC). The intersection of both planes must be necessarily the pure spectrum of B.
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To conduct SFA in practice, the singular-value decomposition (SVD, see Chapter 4)
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The SFA algorithm computes the ai and bi values that minimize Equation 11.10,

(11.10)

after which sB can be obtained by using any of the resulting linear combina-
tions, or .

The spectra of C and A can be obtained in a straightforward fashion, since these
components have selective zones in their elution profiles.

The HELP method is another pioneering noniterative method using local-rank
information [36, 37] and based on the local-rank analysis of the data set and
focuses on finding selective concentration or response windows. When these
selective zones exist, the resolution of the system is clear. Thus, for an HPLC-
DAD data set, a row related to a selective elution time directly provides the shape
of the spectrum of the only component present at that stage of the chromatographic
elution. In a similar manner, a column related to a selective wavelength directly
provides the chromatographic peak of the only absorbing compound at that
wavelength.

HELP works by exploring both the concentration and spectral response spaces
with a powerful graphical tool (the so-called datascope) to visually detect potential
selective zones in the scores and then loading plots of the data matrix, which are
seen as points (representing rows or columns of the original data set) lying on straight
lines centered near the origin. A statistical method to confirm the presence of
selectivity in the concentration or spectral windows is based on the use of an F-test
to compare the magnitude of eigenvalues related to potential selective zones of the
data set with eigenvalues related to noise zones of the data matrix, i.e., those regions
where no chemical components are supposed to be present. The confirmation of a
selective zone in the data set, which is actually a rank-one window in the data matrix,
will then be obtained when no significant differences are found between the first
eigenvalue of a noise-related zone of the data matrix and the second eigenvalue of
the potential selective zone. Components with selective concentration and response
zones are straightforwardly resolved. Subtraction of the cisi

T contribution of the
resolved components from the raw data set can facilitate the resolution from com-
ponents originally lacking selectivity.

11.5 ITERATIVE METHODS

Iterative resolution methods obtain the resolved concentration and response matrices
through the one-at-a-time refinement or simultaneous refinement of the profiles in
C, in ST, or in both matrices at each cycle of the optimization process. The profiles
in C or ST are “tailored” according to the chemical properties and the mathematical
features of each particular data set. The iterative process stops when a convergence
criterion (e.g., a preset number of iterative cycles is exceeded or the lack of fit goes
below a certain value) is fulfilled [21, 42, 47–50].

min
,a b i i i i

iii i

a e b f− ∑∑
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Iterative resolution methods are in general more versatile than noniterative
methods. They can be applied to more diverse problems, e.g., data sets with partial
or incomplete selectivity in the concentration or spectral domains, and to data sets
with concentration profiles that evolve sequentially or nonsequentially. Prior knowl-
edge about the data set (chemical or related to mathematical features) can be used
in the optimization process, but it is not strictly necessary. The main complaint about
iterative resolution methods has often been the longer calculation times required to
obtain optimal results; however, improved fast algorithms and more powerful PCs
have overcome this historical limitation.

The next subsection deals first with aspects common to all resolution methods.
These include (1) issues related to the initial estimates, i.e., how to obtain the profiles
used as the starting point in the iterative optimization, and (2) issues related to the
use of mathematical and chemical information available about the data set in the
form of so-called constraints. The last part of this section describes two of the most
widely used iterative methods: iterative target transformation factor analysis (ITTFA)
and multivariate curve resolution–alternating least squares (MCR-ALS).

11.5.1 GENERATION OF INITIAL ESTIMATES

Starting the iterative optimization of the profiles in C or ST requires a matrix or a
set of profiles sized as C or as ST with rough approximations of the concentration
profiles or spectra that will be obtained as the final results. This matrix contains the
initial estimates of the resolution process. In general, the use of nonrandom estimates
helps shorten the iterative optimization process and helps to avoid convergence to
local optima different from the desired solution. It is sensible to use chemically
meaningful estimates if we have a way of obtaining them or if the necessary
information is available. Whether the initial estimates are either a C-type or an ST-
type matrix can depend on which type of profiles are less overlapped, on which
direction of the matrix (rows or columns) has more information, or simply on the
will of the chemist.

There are many chemometric methods to build initial estimates: some are par-
ticularly suitable when the data consists of the evolutionary profiles of a process,

whereas some others mathematically select the purest rows or the purest columns
of the data matrix as initial profiles. Of the latter approach, key-set factor analysis
(KSFA) [52] works in the FA abstract domain, and other procedures, such as the
simple-to-use interactive self-modeling analysis (SIMPLISMA) [53] and the orthog-
onal projection approach (OPA) [54], work with the real variables in the data set to
select rows of “purest” variables or columns of “purest” spectra, that are most
dissimilar to each other. In these latter two methods, the profiles are selected sequen-
tially so that any new profile included in the estimate is the most uncorrelated to all
of the previously selected ones.

Apart from using chemometric methods, a matrix of initial estimates can always
be formed with the rows or columns of the data set that the researcher considers most
representative because of chemical reasons, and it can also include external informa-
tion, such as some reference spectra or concentration profiles, when available.
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such as evolving factor analysis (see Figure 11.4b in Section 11.3) [27, 28, 51],
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11.5.2 CONSTRAINTS, DEFINITION, CLASSIFICATION: EQUALITY 
AND INEQUALITY CONSTRAINTS BASED ON CHEMICAL

OR MATHEMATICAL PROPERTIES

Although resolution does not require previous information about the chemical system
under study, additional knowledge, when it exists, can be used to tailor the sought
pure profiles according to certain known features and, as a consequence, to minimize
the ambiguity in the data decomposition and in the results obtained.

The introduction of this information is carried out through the implementation
of constraints. A constraint can be defined as any mathematical or chemical property
systematically fulfilled by the whole system or by some of its pure contributions
[55]. Constraints are translated into mathematical language and force the iterative
optimization to model the profiles while respecting the conditions desired.

The application of constraints should always be prudent and soundly grounded,
and constraints should only be set when there is an absolute certainty about the
validity of the constraint. Even a potentially useful constraint can play a negative
role in the resolution process when factors like experimental noise or instrumental
problems distort the related profile or when the profile is modified so roughly that
the convergence of the optimization process is seriously damaged. When well imple-
mented and fulfilled by the data set, constraints can be seen as the driving forces of
the iterative process to the right solution and, often, they are found not to be active
in the last part of the optimization process.

The efficient and reliable use of constraints has improved significantly with
the development of methods and software that allow them to be easily used in
flexible ways. This increase in flexibility allows complete freedom in the way
combinations of constraints can be used for profiles linked in the different con-
centration and spectral domains. This increase in flexibility also makes it possible
to apply a certain constraint with variable degrees of tolerance to cope with noisy
real data. For example, the implementation of constraints often allows for small
deviations from ideal behavior before correcting a profile [7, 21, 55]. Methods for
correcting the profile to be constrained have evolved into smoother methodologies,
which modify the poorly behaving profile so that the global shape is retained as
much as possible and the convergence of the iterative optimization is minimally
upset [56–61].

There are several ways to classify constraints: the main ones relate either to the
nature of the constraints or to the way they are implemented. In terms of their nature,
constraints can be based on either chemical or mathematical features of the data set.
In terms of implementation, we can distinguish between equality constraints or
inequality constraints [56]. An equality constraint sets the elements in a profile to
be equal to a certain value, whereas an inequality constraint forces the elements in
a profile to be unequal (higher or lower) than a certain value. The most widely used
types of constraints will be described using the classification scheme based on the
constraint nature. In some of the descriptions that follow, comments on the imple-
mentation (as equality or inequality constraints) will be added to illustrate this

of a profile.
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concept. Figure 11.7 shows the effects of some of these constraints on the correction
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11.5.2.1 Nonnegativity

The nonnegativity constraint is applied when it can be assumed that the measured
values in an experiment will always be positive. For example, it can be applied to
all concentration profiles and to many experimental responses, such as UV (ultra-
violet) absorbances and fluorescence intensities [42, 47, 48, 56, 59]. This constraint
forces the values in a profile to be equal to or greater than zero. It is an example of
an inequality constraint (see Figure 11.7).

11.5.2.2 Unimodality

The unimodality constraint allows the presence of only one maximum per profile
(see Figure 11.7) [42, 55, 60]. This condition is fulfilled by many peak-shaped
concentration profiles, like chromatograms or some types of reaction profiles, and
by some instrumental signals, like certain voltammetric responses. It is important
to note that this constraint does not only apply to peaks, but to profiles that have a
constant maximum (plateau) or a decreasing tendency. This is the case for many
monotonic reaction profiles that show only the decay or the emergence of a com-
pound [47, 48, 51, 61], such as the most protonated and deprotonated species in an
acid-base titration, respectively.

11.5.2.3 Closure

The closure constraint is applied to closed reaction systems, where the principle of
mass balance is fulfilled. With this constraint, the sum of the concentrations of all of
the species involved in the reaction (the suitable elements in each row of the C matrix)
is forced to be equal to a constant value (the total concentration) at each stage in the
reaction [27, 41, 42]. The closure constraint is an example of an equality constraint.

FIGURE 11.7 Effects of some constraints on the shape of resolved profiles. The thin and
the thick lines represent the profiles before and after being constrained, respectively. Con-
straints shown are (a) nonnegativity, (b) unimodality, and (c) closure.
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11.5.2.4 Known Profiles

Partial chemical information in the form of known pure response profiles, such as
pure-component reference spectra or pure-component concentration profiles for one
or more species, can also be introduced in the optimization problem as additional
equality constraints [5, 42, 62, 63, 64]. The known profiles can be set to be invariant
along the iterative process. The known profile does not need to be complete to be
used. When only selected regions of profiles are known, they can also be set to be
invariant, whereas the unknown parts can be left loose. This opens up the possibility
of using resolution methods for quantitative purposes, for instance. Thus, data sets
analogous to those used in multivariate calibration problems, formed by signals
recorded from a series of calibration and unknown samples, can be analyzed.
Quantitative information is obtained by resolving the system by fixing the known
concentration values of the analyte(s) in the calibration samples in the related
concentration profile(s) [65].

11.5.2.5 Hard-Modeling Constraints: Physicochemical Models

The most recent progress in chemical constraints refers to the implementation of a
physicochemical model into the resolution process [64, 66–73]. In this manner, the
concentration profiles of compounds involved in a kinetic or a thermodynamic

detailed description of methods for fitting kinetic models to multivariate data is

Such a strategy has been used to reconcile the separate worlds of hard- and soft-
modeling and has enabled the mathematical resolution of chemical systems that
could not be successfully tackled by either of these two pure methodologies alone.
The strictness of the hard-model constraints dramatically decreases the ambiguity
of the constrained profiles and provides fitted parameters of physicochemical and
analytical interest [64, 66–73], such as equilibrium constants, rate constants, and
total analyte concentrations. The soft part of the algorithm allows for modeling of
complex systems, where the central reaction system evolves in the presence of
absorbing interferents [69, 73].

11.5.2.6 Local-Rank Constraints, Selectivity,
and Zero-Concentration Windows

Local-rank constraints are related to mathematical properties of a data set and can be
applied to all data sets, regardless of their chemical nature. These types of constraints
are associated with the concept of local rank, which describes how the number and
distribution of components varies locally along the data set. The key constraint within
this family is selectivity. Selectivity constraints can be used in concentration and
spectral windows where only one component is present to completely suppress the
ambiguity linked to the complementary profiles in the system. Selective concentration
windows provide unique spectra of the associated components, and vice versa. The
powerful effect of these type of constraints and their direct link with the corresponding
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process are shaped according to the suitable chemical law (see Figure 11.8). A

provided in Chapter 7.
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FIGURE 11.8 Effect of the hard-modeling constraint on a set of concentration profiles representing a protonation process in the presence
of an interference (left profiles, unconstrained; right profiles, constrained). Only the compounds involved in the protonation are
constrained according to the physicochemical law.
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concept of chemical selectivity explain their early and wide application in resolution
problems [1, 2, 21, 42, 74]. Not so common, but equally recommended is the use of
other local-rank constraints in iterative resolution methods [21, 42, 74]. These types
of constraints can be used to describe which components are absent in data set windows
by setting the number of components inside the windows lower than the total rank.
This approach always improves the resolution of profiles and minimizes ambiguity in
the final results. Of general applicability, local-rank constraints can be particularly
helpful in multicomponent systems like spectroscopic images or mixtures, where more
process-related constraints (unimodality, closure, etc.) cannot be used. These rank-
related constraints can be set as equality or inequality constraints. Thus, in selective
or small rank windows, the profile elements of absent compounds can be set equal to
zero (equality constraint). In practice, given the noise of real data, these constraints
are more effective if the values of absent species are forced to be lower than a very
small threshold value that represents the noise level. This latter implementation cor-
responds to an inequality constraint.

11.5.3 ITERATIVE TARGET TRANSFORMATION FACTOR

ANALYSIS (ITTFA)

As the name suggests, ITTFA is based on target factor analysis (TFA). In TFA, some
target vectors with chemical meaning and perfectly characterized, e.g., reference spec-
tra, can be tested to see whether they lie in the space spanned by the data set. If they
are found to lie within the space, they can be identified as real sources of variation.
In a resolution problem, the appropriate targets should be either prospective concen-
tration profiles or instrumental responses (spectra). However, in practice, the user
seldom knows these real profiles or, if he does, the knowledge applies only to some
of the components in the system. Therefore, the straightforward application of TFA
to resolve a real problem completely is not possible. ITTFA borrows two main ideas
from TFA: (1) the space spanned by either the concentration profiles or the spectra
can be perfectly known, and (2) the use of an initial target can be used to obtain a true
profile of the C or the ST matrix. Essentially, what ITTFA does is to modify a target
vector by applying appropriate constraints until it lies within the space spanned by the
pure concentration profiles or spectra. This process of testing individual target vectors
is repeated with as many target vectors as components in the data set [47, 48].

ITTFA works by optimizing, one at a time, the profiles in either the C matrix
or the ST matrix. The direction of optimization can depend on the information
available or on the potential ease of resolution. The following explanation holds for
a data set where ITTFA is applied to obtain the profiles in the C matrix. Transposing
the original data matrix, the same process would be appropriate for obtaining the
profiles in ST. ITTFA calculates each concentration profile according to the following
steps:

1. The score matrix of the data set is calculated by PCA.
2. Estimated concentration profiles are used as initial target vectors.
3. The initial target vectors are projected into the space spanned by the

scores.
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4. Constraints are applied to the projected target vector.
5. The constrained target vector is projected into the space spanned by the

scores.
6. Steps 4 and 5 are repeated until convergence is achieved.

ITTFA starts calculating a PCA model of the original data matrix, D. There is
a formal analogy between the PCA decomposition, i.e., D = TPT, and the CR
decomposition, i.e., D = CST, of a data matrix. The scores matrix, T, and the loadings
matrix, PT, span the same data space as the C and the ST matrices; thus, their profiles
can be described as abstract concentration profiles and abstract spectra, respectively.
This means that any real concentration profile of C belongs to the score space and
can be described as a linear combination of the abstract concentration profiles in
the T matrix.

The next step is to choose approximate concentration profiles as targets. There
are many ways to select these initial vectors, and any method used to provide initial
CR estimates can be useful for this purpose. Historically, the vectors obtained after
performing VARIMAX rotation onto the scores were used [47] and also the needle
targets (i.e., vectors with only one non-null element equal to 1), which are the
simplest representation of a peak-shaped profile [48, 75].

The next step is the projection of the initial target (x1in) onto the space spanned
by the scores. The projected target (x1out) belongs to the space of the real concen-
tration profiles and, from a purely mathematical point of view, gives an acceptable
description of the data set. However, when this profile is plotted, the chemist may
not like some of the features that are present (e.g., negative parts, secondary

FIGURE 11.9 (a) Geometrical representation of the optimization of a chromatographic profile
by ITTFA from an initial needle target. The example represents a two-compound data set. Thick
lines represent targets out of the score plane; single lines are targets on the score plane.
(b) Evolution in the shape of the chromatographic profile through the ITTFA process.
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maxima, etc.). When this happens, the projected target x1out is modified by using
the appropriate constraints. The application of constraints satisfies the chemical
features required of the profile but, as a consequence of the modification, pushes
the target out of the score plane. The constrained target, x2in, is projected again
into the space spanned by the scores, and the newly projected target, x2out, is
modified by use of appropriate constraints if necessary. The process goes on until
the projected target makes sense from both mathematical and chemical points of
view, i.e., until the constrained profile belongs to the score space or until it is very

for a system with two compounds.
The above process of selecting a target vector and modifying it to match con-

straints is repeated for each component in the system. Once all of the concentration
profiles obtained are appended to form the C matrix, the ST matrix can be calculated
by least squares from D and C.

11.5.4 MULTIVARIATE CURVE RESOLUTION-ALTERNATING LEAST 
SQUARES (MCR-ALS)

Multivariate curve resolution–alternating least squares (MCR-ALS) uses an alterna-
tive approach to iteratively find the matrices of concentration profiles and instru-
mental responses. In this method, neither the C nor the ST matrix have priority over
each other, and both are optimized at each iterative cycle [7, 21, 42]. The general
operating procedure of MCR-ALS includes the following steps:

1. Determine the number of compounds in D.
2. Calculate initial estimates (e.g., C-type matrix).
3. Using the estimate of C, calculate the ST matrix under appropriately

chosen constraints.
4. Using the estimate of ST, calculate the C matrix under appropriately

chosen constraints.
5. From the product of C and ST found in the above steps of an iterative

cycle, calculate an estimate of the original data matrix, D.
6. Repeat steps 3, 4, and 5 until convergence is achieved.

The number of compounds in D can be determined using PCA or can be known
beforehand. In any case, the number obtained must not be considered a fixed
parameter, and resolution of the system considering different numbers of components
is a usual and recommended practice. In contrast to ITTFA, MCR-ALS uses com-
plete C- or ST-type matrices during the ALS optimization instead of optimizing the
profiles one at a time. The core of the method consists of solving the following two
least-squares problems under appropriately chosen constraints:

(11.11)

(11.12)

min ˆ ˆ ˆ
Ĉ PCA

TD CS−

min ˆ ˆ ˆ
Ŝ

PCA
T

T
D CS−
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In these two equations, the norm of the residuals between the PCA-reproduced
data, , using the selected number of components, and the ALS-reproduced data
using the least-squares estimates of C and ST matrices,  and , is alternatively
minimized by keeping constant  (Equation 11.11) or (Equation 11.12). The
least-squares solution of Equation 11.11 is:

(11.13)

where is the pseudoinverse of the concentration matrix, which for a full-rank
matrix gives:

(11.14)

and the least-squares solution of Equation 11.12 is:

(11.15)

where is the pseudoinverse of the spectra matrix, which for a full-rank matrix
gives:

(11.16)

Equation 11.11 and Equation 11.12 are solved sequentially, i.e., in each iterative
cycle, the concentration matrix C is calculated and used to get the spectral matrix
ST. Both C and ST are solved under constraints, which can be implemented within
the least-squares step [57, 58, 60] or external to the least-squares step. In current
software implementations of the MCR-ALS method, different constraints can be
applied to the C or the ST matrix and, within each of these matrices, all or some of
the profiles can be constrained.

The convergence criterion in the alternating least-squares optimization is based on
the comparison of the fit obtained in two consecutive iterations. When the relative
difference in fit is below a threshold value, the optimization is finished. Sometimes a
maximum number of iterative cycles is used as the stop criterion. This method is very
flexible and can be adapted to very diverse real examples, as shown in Section 11.7.

11.6 EXTENSION OF SELF-MODELING CURVE 
RESOLUTION TO MULTIWAY DATA: MCR-ALS 
SIMULTANEOUS ANALYSIS OF MULTIPLE 
CORRELATED DATA MATRICES

The methods presented in previous sections are suitable for use with a data matrix
from a single experiment and give results related to the two different directions of
the data matrix, i.e., profiles related to the variation along the rows and profiles

D̂
PCA

Ĉ ŜT

Ĉ ŜT

ˆ ˆS C DT
PCA

= +

Ĉ+

ˆ ( ˆ ˆ) ˆS C C C DT T T
PCA

= −1

ˆ ( ˆ )C D S
PCA

T= +

( ˆ )ST +

ˆ ˆ( ˆ ˆ)C D S S S
PCA

T= −1
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related to the variation along the columns of the data matrix. This is also the reason
why a data matrix is called a two-way data set. A data matrix is not the most complex
data set that can be found in chemistry. Let us consider a chemical process monitored
fluorimetrically. At each reaction time, a series of emission spectra recorded at
different excitation wavelengths are obtained. This means that we collect a data
matrix at each stage of the reaction. Because the goal is to obtain a picture of the
global process, the matrices should be considered altogether. The information about
the whole chemical process could be organized into a cube of data (tensor) with
three informative directions, i.e., in a three-way data set. Another usual example is
coupling data matrices from different HPLC-DAD runs that share all or some of
their compounds. In this case, the third direction of the data set accounts for the
quantitative differences among runs. Specialized methods have been developed by
chemometricians to treat these kinds of problems, and these are covered in greater

curve resolution is provided here.
Though there is a clear gain in the quality and quantity of information when

going from two- to three-way data sets, the mathematical complexity associated with
the treatment of three-way data sets can seem, at first sight, a drawback. To avoid
this problem, most of the three-way data analysis methods transform the original
cube of data into a stack of matrices, where simpler mathematical methods can be
applied. This process is often known as unfolding (see Figure 11.10).

A cube of data sized (m × n × p) can be unfolded in three different directions:
along the row space, along the column space, and along the third direction of the
cube, also called the tube space. The three unfolding procedures give a row-wise

FIGURE 11.10 Three-way data array (cube) unfolding or matricization. Two-way data matrix
augmentation.
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augmented matrix Dr (m × np), a columnwise augmented matrix Dc (n × mp), or a

t

analysis of the three augmented matrices is carried out, the number of components
obtained for the three different directions (modes) of the data set may be the same
or not. When Dr, Dc, and Dt have the same rank, the three-way data set is said to
be trilinear, and when their ranks are different from each other, the data set is
nontrilinear. (Please note that this definition holds for by far most of the chemical
data sets, except those for which phenomena of rank deficiency or rank overlap are
present [76].) The resolution of a three-way data set into the matrices X, Y, and Z,
which contain the pure profiles related to each of the directions of the three-way
data set, changes for trilinear and nontrilinear systems. For trilinear systems, X, Y,
and Z have the same number of profiles (nc), and the three-way core, C, is an identity
cube (nc × nc × nc) whose unity elements are found on the superdiagonal. In this
case, the three-way core is often omitted because it does not modify numerically
the reproduction of the original tensor. Each element in the original three-way data
set can be reproduced as follows:

(11.17)

Equation 11.17 is the fundamental expression of the PARAFAC (parallel factor
analysis) model [77], which is used to describe the decomposition of trilinear data
sets. For nontrilinear systems, the core C is no longer a regular cube (ncr × ncc ×
nct), and the non-null elements are spread out in different manners, depending on
each particular data set. The variables ncr, ncc, and nct represent the rank in the
row-wise, columnwise, and tubewise augmented data matrices, respectively. Each
element in the original data set can now be obtained as shown in Equation 11.18:

(11.18)

Equation 11.18 defines the decomposition of nontrilinear data sets and is the under-
lying expression of the Tucker3 model [78]. Detailed descriptions of the PARAFAC

Decompositions of three-way arrays into these two different models require
different data analysis methods; therefore, finding out if the internal structure of a
three-way data set is trilinear or nontrilinear is essential to ensure the selection of
a suitable chemometric method. In the previous paragraphs, the concept of trilinearity
was tackled as an exclusively mathematical problem. However, the chemical infor-
mation is often enough to determine whether a three-way data set presents this
feature. How to link chemical knowledge with the mathematical structure of a three-
way data set can be easily illustrated with a real example.

Let us consider a three-way data set formed by several HPLC-DAD runs. If the
data set is trilinear, X, Y, and Z will have as many profiles as chemical compounds
in the original data set, and this number will be equal to the rank of the data set.
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tubewise augmented matrix D  (p × mn), respectively (see Figure 11.10). When rank

and Tucker3 models are given in Chapter 12, Section 12.4.
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For each chemical compound, there will be only one profile in X, in Y, and in Z
common to all of the appended matrices in the original data set. In the case of
different HPLC-DAD data runs analyzed simultaneously, the decomposition of the
three-way array gives an X matrix with chromatographic profiles, a Y matrix with
pure spectra, and a Z matrix with the quantitative information about the amount of
each compound in the different chromatographic runs. In this case, a trilinear struc-
ture would imply that the shape of the pure spectrum and the pure chromatogram
of a compound remain invariant in the different chromatographic runs. If the exper-
imental conditions in the different runs are similar enough, the UV spectrum of a
pure compound should not change; however, small run-to-run differences in peak
shape and position are commonly found in practice. Assuming that the elution
process of the same compound in different runs always yields an identically shaped
chromatographic profile does not make sense from a chemical point of view and,
therefore, the data set should be considered nontrilinear. In the example related to
the fluorimetric monitoring of a kinetic process, the decomposition of the original
data set gives a matrix X with pure excitation spectra, a matrix Y with pure emission
spectra, and a matrix Z with the kinetic profiles of the process. A trilinear structure
would indicate that the shapes of the excitation and emission spectra of a compound
do not change at the different reaction times of the kinetic process. This invariability
of the spectra is an acceptable statement if the experimental conditions during the
process are not modified. Therefore, this data set can be considered trilinear.

In practice, however, most of the systems are nontrilinear, due to either the
underlying chemical process (e.g., UV-reaction-monitoring coupling experiments
with different reagent ratios) or to the instrumental lack of reproducibility in the
response profiles (e.g., chromatographic profiles in different HPLC-DAD runs).
Therefore, multivariate curve-resolution methods are mainly focused on the study
of real examples lacking the trilinear structure. Despite the higher abundance of
nontrilinear data sets, many of the algorithms proposed to study three-way arrays
rely on the assumption of trilinear structure. This is the case with the generalized
rank annihilation method (GRAM) [79], designed to work with two matrices, or its
natural extension, direct trilinear decomposition (DTD) [80], which can handle larger
data sets with more appended matrices. Both GRAM and DTD are noniterative
methods and use latent variables to resolve the profiles in X, Y, and Z. When these
methods are applied to nontrilinear data sets, the profiles obtained often contain

in three-way data, and the scheme followed in their application is the same as for
a single data matrix, i.e., determination of number of components, use of initial
estimates, application of constraints, and iterative optimization until convergence.
Most of the iterative algorithms are based on least-squares calculations. As for two-
way data sets, three-way iterative methods are more flexible in how constraints can
be applied and can deal with data sets that are more diverse.

We have noted that three-way resolution methods generally work with the unfolded
matrices. Depending on the algorithm used, all three types of unfolded matrices may
be used, or only some of them. In the PARAFAC decomposition of a trilinear data set,
all three types of unfolded data matrices are used, whereas in the resolution of a
nontrilinear data set by the MCR-ALS method, only one type of unfolded matrix is used.
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imaginary numbers (see Chapter 12, Section 12.6). Iterative methods are also used
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Three-way data sets have been presented as cubes of data formed by appending
several matrices together. This means implicitly that all of the data matrices in a
tensor should be equally sized; otherwise, the cube cannot be constructed. Addition-
ally, the information in the rows, in the columns, and in the third direction of the
array must be synchronized for each of the layers of the cube. For example, in the
HPLC-DAD example, if the columns are wavelengths, all of the runs should span
the same wavelength range, and if the rows are retention times, the elution time
range should also coincide. In experimental measurements, it may not be easy or
convenient to fulfill these two requirements. Synchronization can be difficult when
the parameter that changes in one of the directions of the array cannot be controlled
in a simple manner. Obtaining equally sized matrices may also be inconvenient if
synchronization forces the inclusion of irrelevant information in some of the two-
way appended arrays. An example of difficult synchronization is the combination
of experiments in which a pH-dependent process is monitored by UV spectroscopy.
In this case, the pH variations may not be easily reproducible among the experiments.
The inconvenience of appending equally sized two-way arrays is also evident when
several HPLC-DAD runs of a mixture and matrices of its single standards are treated
together. If the standard runs cover the same elution time range as the mixture runs,
then most of the information in the standard matrices will be formed by baseline
spectra that are not relevant for the resolution of the mixture.

When building a typical three-way data set is not possible, there is no need to give
up the simultaneous analysis of a group of matrices that have something in common.
Some methods, such as MCR-ALS, are designed to work with only one of the three
possible unfolded matrices. This operating procedure greatly relaxes the demands in
how the two-way arrays are combined. Indeed, MCR-ALS requires only one common
direction in all of the matrices to be analyzed. In both of the previous examples, the
common direction is the wavelength range of the spectra collected (see Figure 11.11).

FIGURE 11.11 Bilinear models for three-way data, unfolded PCA and unfolded MCR.
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The MCR-ALS decomposition method applied to three-way data can also
deal with nontrilinear systems [81]. Whereas the spectrum of each compound of
the columnwise augmented matrix is considered to be invariant for all of the
matrices, the unfolded C matrix allows the profile of each compound in the
concentration direction to be different for each appended data matrix. This free-
dom in the shape of the C profiles is appropriate for many problems with a
nontrilinear structure. The least-squares problems solved by MCR-ALS, when
applied to a three-way data set, are the same as those in Equation 11.11 and
Equation 11.12; the only difference is that D and C are now augmented matrices.
The operating procedure of the MCR-ALS method has already been described
in Section 11.5.4, but some particulars regarding the treatment of three-way data
sets deserve further comment.

In the resolution of a columnwise augmented data matrix, the initial estimates
can be either a single ST matrix or a columnwise augmented C matrix. The
columnwise concentration matrix is built by placing the initial C-type estimates
obtained for each data matrix in the three-way data set one on top of each other.
The appended initial estimates must be sorted into the same order as the initial
data matrices in D, and they must keep a correct correspondence of species, i.e.,
each column in the augmented C matrix must be formed by appended concentration
profiles related to the same chemical compounds. When no prior information about
the identity of the compounds in the different data matrices is available, the correct
correspondence of species can be estimated from the two-way resolution results
of each single matrix.

The same constraints used in the resolution of a two-way data matrix can be
applied to three-way data sets [21, 42]. Selectivity and nonnegativity affect the
spectrum and the augmented concentration profile of each species, whereas uni-
modality is applied separately to each of the profiles appended to form the aug-
mented concentration profile. The closure constraint operates by applying the
corresponding closure constant to each of the single matrices in the columnwise
concentration matrix. Another constraint specific of three-way data sets is the so-
called correspondence among species. In each single matrix of a three-way data
set, the concentration profiles of absent compounds are set equal to zero after each
iterative cycle.

Although MCR-ALS is especially able to cope with nontrilinear data sets formed
by matrices of varying sizes, it can also work with trilinear data sets. Because of the
inherent freedom in the modeling of the profiles of the augmented C matrix, trilinear
structure can be included in the MCR-ALS method as an optional constraint [81, 82].
The application of this constraint is performed separately on the concentration profile
of each species. To implement this type of constraint, profiles of a certain species are
placed one beside each other to form a new augmented concentration profile matrix,
and PCA is performed on it. If the system is trilinear, the score vector related to the
first PC will show the real shape of the concentration profile, and the rest of PCs must
be related to noise contributions. The loadings related to the first PC are scaling factors
accounting for the species concentration level in the different appended matrices. There-
fore, the new single profiles can be calculated as the product of the score vector by
their corresponding scaling factors. The constrained single profiles are finally appended
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to form the new augmented concentration profiles. This process is shown graphically
in Figure 11.12. In contrast to other three-way resolution methods specially designed
to work with trilinear systems, the implementation of this constraint in MCR-ALS need
not necessarily be all inclusive, i.e., some or all of the compounds can be forced to
have common profiles in the C matrix. This flexibility allows a more representative
modeling of some real situations, such as in (a) systems with trilinear profiles related
to the evolution of chemical compounds common to each experiment and (b) freely
modeled profiles related to important background contributions that differ in each
experiment.

The information in the third direction of the array, i.e., the Z matrix, is directly
extracted from the augmented matrix C in MCR-ALS. This dimension of the data
set is usually the smallest in size and represents scaling differences among the
appended matrices. Because the ST profile of each compound is common to all of
the appended data matrices, the area of the concentration profile of each compound
is scaled according to the concentration level of the species in each single data
matrix. Thus, the profile of a compound in the Z matrix accounts for the relative
concentration of a particular compound in each of the appended matrices and can
be obtained from (a) the ratio between the area of its concentration profile in a given
matrix and (b) the area related to the concentration profile of the same compound
in a matrix taken as a reference.

11.7 UNCERTAINTY IN RESOLUTION RESULTS, 
RANGE OF FEASIBLE SOLUTIONS, AND ERROR 
IN RESOLUTION

The main sources of uncertainty associated with the resolution results are the ambi-
guity of the recovered profiles and the experimental noise of the data. Providing
methodologies to quantify this uncertainty is not only a topic of interest in the current

FIGURE 11.12 Implementation of a trilinearity constraint in MCR bilinear models for three-
way data.
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literature, but a necessary requirement to enable the use of resolution methods in
standard analytical procedures.

The possible existence of ambiguity in resolution results has been known since
the earliest research in this area [1, 2, 23]. After years of experience, it has been
possible to set resolution theorems that indicate clearly the conditions needed to
recover uniquely the pure concentration and signal profiles of a compound in a data
set. These conditions depend mainly on the degree of selectivity in the column mode
or row mode of the measurements. The degree of selectivity, in turn, depends on (a)
the amount of overlap in the region of occurrence for the compound of interest with
the rest of constituents and (b) the general distribution of the different compound
windows in the data set [21, 22]. Therefore, in the same system, some profiles can
be recovered uniquely, and some others will necessarily be affected by a certain
ambiguity. When ambiguity exists, a compound is represented by a band of feasible
solutions instead of a unique profile. Calculating the boundaries of these bands is
not straightforward, and the first attempts proposed were valid only for systems with
two or three components [1–4]. More recent approaches extended their applicability
to systems with no limit in the number of contributions [83]. The most recent
methods use optimization strategies to find the minimum and maximum solution
boundaries by minimizing and maximizing objective functions subject to selected
constraints. The objective functions represent the ratio between the signal contributed
by the compound of interest and the total signal from all compounds in the data set
[84, 85]. These strategies are more powerful than previous ones and allow for an
accurate study of the effect of the different constraints in the magnitude of the bands
of feasible solutions (see Figure 11.13).

FIGURE 11.13 Effect of constraints in feasible bands. Tmax and Tmin define maximum and
minimum feasible ranges/bands (dashed and dotted lines, respectively) around the resolved
solutions (solid lines).
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Even in the absence of ambiguity, the experimental error contained in real data
propagates into the resolution results. This source of uncertainty affects the results
of all kinds of data analysis methods and, in simpler approaches, like multivariate or
univariate calibration, is easily quantified with the use of well-established and gen-
erally accepted figures of merit. Although some figures of merit have been proposed
for higher-order calibration methods [86], finding analytical expressions to assess the
error associated with resolution results is an extremely complex problem because of
the huge number of nonlinear parameters that are calculated, as many as the number
of elements in all of the pure profiles resolved. To overcome this problem and still
give a reliable approximate estimation of the error propagation in resolution, other
strategies known under the general name of resampling methods are used [87, 88].
In these strategies, an estimate of the dispersion in the resolution results is obtained
by the resolution of a huge number of replicates. To simulate these replicates, the
complete data set can be resolved multiple times after adding a certain amount of
noise on top of the experimental measurements (noise-added method), or the repli-
cates of the data set can be constructed by addition of a certain amount of noise to
a noise-free simulated or reproduced data set (Monte Carlo simulations). Finally, a
data matrix can be resolved repeatedly after removing different rows or columns, or
in the case of a three-way data set, by removing complete data matrices (jackknife).
These strategies provide an enormous number of results from the different resolution
runs to allow for an estimation of the uncertainty due to the noise in the resolved
profiles. The estimate of uncertainty in resolved profiles in turn allows for the com-
putation of the accuracy of parameters estimated from the resolved profiles, such as
rate constants or equilibrium constants [64]. Resampling and Monte Carlo simulation
methods have been recently proposed for estimating uncertainty of multivariate curve-
resolution profiles and of the parameters derived from them [89].

Although ambiguity and noise are two distinct sources of uncertainty in resolu-
tion, their effect on the resolution results cannot be considered independently. For
example, the boundaries of the compound windows can be clearly blurred due to
the effects of noise, and this can give rise to ambiguities that would be absent in
noise-free data sets. A definite advance would be the development of approaches
that can consider this combined effect in the estimation of resolution uncertainty.

11.8 APPLICATIONS

Within the variety of multicomponent systems, “processes” and “mixtures” can be
placed at the two extremes. The term “process” holds for reaction data, where the
compositional changes respond to a known physicochemical model, or for any
evolving chemical system (e.g., a chromatographic elution) whose sequential com-
positional variation is caused by physical or chemical changes and whose underlying
physicochemical model, if any, is too complex or simply unknown. “Mixtures”
would have a completely random variation along the compositional direction of the
data set. An example could be a series of spectra collected from independent mul-
ticomponent samples. Other data sets lie between these two extremes because they
lack the global continuous compositional evolution of a process, although they can
present it locally. For example, spectroscopic images can have a smooth compositional
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variation in neighboring pixels. In this respect, environmental data sets are similar,
where close geographical sampling points can be compositionally related.

The examples that are given in the following subsections show the power of
multivariate curve resolution to resolve very diverse chemical problems. Different
strategies adapted to the chemical and mathematical features of the data sets are
chosen, and resolution of two-way or three-way data sets is carried out according
to the information that has to be recovered. Because MCR-ALS has proved to be a
very versatile resolution method, able to deal with two-way and three-way data sets,
this is the method used in all of the following examples.

11.8.1 BIOCHEMICAL PROCESSES

Biochemical processes are among the most challenging and interesting reaction
systems. Due to the nature of the constituents involved, macromolecules such as
nucleic acids or proteins, the processes to be analyzed do not follow a simple
physicochemical model, and their mechanism cannot be easily predicted. For exam-
ple, well-known reactions for simple molecules, e.g., protonation equilibria, increase
in complexity for macromolecules due to the presence of polyelectrolytic effects or
conformational transitions. Because the data analysis cannot be supported in a
model-fitting procedure (hard-modeling methods), the analysis of these processes
requires soft-modeling methods that can unravel the contributions of the process
without the assumption of an a priori model.

Examples of biochemical processes successfully studied by spectroscopic mon-
itoring and multivariate resolution techniques include protonation and complexation
of nucleic acids and other events linked to these biomolecules, such as drug inter-
calation processes and salt, solvent, or temperature-induced conformational transi-
tions [90–97]. In general, any change (thermodynamic or structural) that these
biomolecules undergo is manifested through a distinct variation in an instrumental
signal (usually spectroscopic) and can be potentially analyzed by multivariate res-
olution techniques.

A relevant example in this field is the study of protein folding processes [94].
They have an intrinsic biochemical interest linked to the relationship between protein
structure and biological activity. Protein structure is organized into four hierarchical
levels, including primary structure (the sequence of amino acids in the polypeptide
chains), secondary structure (the regular spatial arrangements of the backbone of
the polypeptide chain stabilized by hydrogen bonds that give rise to helical or flat
sheet arrangements), tertiary structure (spatial arrangement of the secondary struc-
ture motifs within a polypeptide chain, responsible for the globular or fibrillar nature
of proteins), and quaternary structure (union of several polypeptide chains by weak
forces or disulfide bridges). All proteins must adopt specific three-dimensional folded
structures to acquire the so-called native conformation and be active, i.e., their
secondary and tertiary structure should be fully organized.

Protein folding can take place as a one-step process, where only the folded or
native (N) and the unfolded (U) states are detected, or as a multistep process, where
intermediate conformations occur. The so-called molten globular state has often been
reported as a well-characterized intermediate conformation that shows organized
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secondary structure motifs and unordered tertiary structure [94–96]. Indeed, protein
folding events most often follow one of the two following mechanisms: (a) one-step
process: Native (N) ↔ Unfolded (U); or (b) two-step process: Native (N) ↔ Inter-
mediate (“molten globule”) (I) ↔ Unfolded (U). The detection and characterization
of intermediate conformations is not easy because either the lifetime of these tran-
sient intermediates is frequently too short to be detected, or it is not possible to
separate and isolate them from other protein conformations simultaneously present.

The mechanism and the identity of the protein conformations involved in a
folding process can be studied by monitoring spectrometrically the changes in the
protein tertiary and secondary structures. Far-UV circular dichroism has long been
used to elucidate the secondary structure of proteins and to follow specifically
changes in this structural level. Near-UV circular dichroism is known to be sensitive
to changes in the protein tertiary structure. These two techniques were used to
monitor the thermal unfolding of bovine α-apolactalbumin, a globular protein present
in milk with major alpha helical content in the secondary structure (see Figure 11.14).

Protein folding can be studied by recording a complete spectrum at each stage
in the monitored process. The spectra recorded in a thermal-dependent protein
folding process are organized in a data matrix D, where rows represent spectra
recorded at each temperature and columns represent the melting curves (absorbance
vs. temperature profiles) at each wavelength. Recalling the general expression of
resolution methods (Equation 11.1), D = C ST + E, the columns in matrix C represent

FIGURE 11.14 Structure of α-apolactalbumin.
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the thermal-dependent concentration profiles of the detected protein conformations,
and the rows in matrix ST represent their corresponding pure spectra. Matrix E
describes the experimental error.

The results presented below were obtained by multivariate curve resolution–
alternating least squares (MCR-ALS). MCR-ALS was selected because of its flex-
ibility in the application of constraints and its ability to handle either one data matrix
(two-way data sets) or several data matrices together (three-way data sets). MCR-
ALS has been applied to the folding process monitored using only one spectroscopic
technique and to a row-wise augmented matrix, obtained by appending spectroscopic
measurements from several different techniques.

In general, MCR-ALS resolution analyses of protein folding have been per-
formed using initial estimates obtained by evolving-factor analysis (EFA), the
method most suitable to describe the evolution of the contributions present in
processes. The concentration profiles in C were constrained to be nonnegative
and unimodal with closure. Unimodality was used because the evolution of each
protein conformation can be appropriately represented by an emergence-decay
profile having a single peak maximum as long as the temperature changes during
the experiment always increase or always decrease. The condition of closure is
appropriate in these systems because the total concentration of protein remains
constant during the unfolding/folding process. Selectivity constraints were also
applied at the lowest temperatures, where only the native conformation of the
protein is supposed to be present. Circular dichroism (CD) spectra in ST are not
forced to be nonnegative because negative ellipticities can naturally occur in CD
spectra.

Different arrangements of the data from these experiments have allowed the
study of several aspects linked to protein folding, namely: (a) changes in the protein
secondary structure, (b) changes in the protein tertiary structure, and (c) global
mechanistic and structural description of the protein-folding process. The results
obtained are briefly presented in the following subsections.

11.8.1.1 Study of Changes in the Protein Secondary Structure

Changes in protein secondary structure were studied by the analysis of the
far-UV (190 to 250 nm) circular dichroism spectra from a single data matrix.

resolved CD spectrum associated with the native conformation shows the typical
spectral features associated with a major contribution of the α-helix motif in its
secondary structure, i.e., an intense negative band with two shoulders located
around 220 and 210 nm [95, 96]. The resolved spectrum for the unfolded con-
formation shows the typical spectral features associated with a random coil motif
(a sharper negative band at short wavelengths and weaker features around 220 nm).
The resolved concentration profiles show the thermal evolution of the concen-
tration of the different protein conformations in the process. The crossing point
in the plot of these concentration profiles gives the temperature at which 50%
of the native protein has acquired its native secondary structure (Tsec), which is
about 60°C.
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FIGURE 11.15 Resolution of the protein folding of α-apolactalbumin. (a) Detection of changes in protein secondary structure (far-UV circular
dichroism measurements). (b) Detection of changes in protein tertiary structure (near-UV circular dichroism measurements). (c) Complete
description of protein folding. Resolution of the row-wise data set formed by near-UV (D1) and far-UV (D2) circular dichroism measurements.
Solid line: native conformation, dash-dotted line: intermediate conformation, dotted line: unfolded conformation.
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11.8.1.2 Study of Changes in the Tertiary Structure

Changes in tertiary structure during protein folding processes have been studied

ALS resolved concentration profiles and spectra related to the different tertiary
structures present during the folding of α-apolactalbumin. The CD spectrum of the
folded protein conformation shows a very intense negative band [95], whereas the
denatured/unfolded species shows a nearly flat signal in the CD spectrum. In this
experiment, the crossing point in the plot of concentration profiles represents the
temperature at which 50% of the native protein has acquired its initial tertiary
structure (Ttert), which happens at about 40°C for α-apolactalbumin.

11.8.1.3 Global Description of the Protein Folding Process

To check for the presence of an intermediate in a protein folding process, the
temperatures at which the secondary structure (Tsec) and the tertiary structure (Ttert)
of the folded conformation are half-formed can be compared. If both coincide,
the protein loses the tertiary and the secondary structures simultaneously, and only
a native conformation with secondary and tertiary structures ordered or an unfolded
conformation with both structural levels unordered describe the process. If signif-
icant differences are observed in the crossing temperatures of concentration pro-
files, a new, intermediate third species with the secondary structure ordered and
the tertiary unordered may be needed to explain the shift in the appearance of the
tertiary and secondary structures. The difference of almost 20°C found between
Tsec and Ttert in the above two experiments seems to guarantee the presence of an
intermediate conformation in the folding of α-apolactalbumin, but only the mul-
tivariate resolution analysis of the suitable measurements (far-UV and near-UV
CD spectra) together can confirm this hypothesis and model the appearance of the
intermediate conformation.

Figure 11.15c shows the resolved concentration profiles and spectra coming from
the row-wise appended matrix containing data from the three techniques mentioned
previously. The need for one additional intermediate conformation has been proven to
be necessary to explain the protein folding process of α-apolactalbumin. Additionally,
the thermal range of occurrence and the evolution of this intermediate can now be
known. The resolved spectrum obtained for the α-apolactalbumin intermediate
shows that it has an ordered secondary structure similar to the native folded protein
and an unordered tertiary structure similar to the unfolded protein at high tempera-
tures. These spectral features match the spectral description attributed to the molten
globular state and provide additional evidence to confirm the presence of this species
as a real intermediate conformation.

As has been shown, complex protein folding processes involving the presence
of intermediate conformations can be successfully described combining multispec-
troscopic monitoring and multivariate curve resolution. The detection and modeling
of intermediate species that cannot be isolated either by physical or chemical means
is fully achieved. The fate of the intermediate during the process, i.e., when it is
present and in what amount, is unraveled from the original raw measurements.
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The spectral information obtained by using appropriate deconvolution approaches,
particularly the resolved pure CD spectrum of the intermediate, is the essential
starting point, unobtainable by other methods, for deducing the secondary structure
of the intermediate.

11.8.2 ENVIRONMENTAL DATA

Principal component analysis and multivariate curve resolution are powerful tools
for the investigation and modeling of large multivariate environmental data arrays
measured over long periods of time in environmental monitoring programs [98].
The goals of these studies are the computation, resolution, modeling, screening, and
graphical display of patterns in large environmental data sets, looking for possible
data groupings and sources of environmental pollution, as well as for their temporal
and geographical distribution. The fundamental assumption in these studies is that
variance in the measured concentrations of contaminants (or properties) can be
attributed to a small number of contamination sources of different origin (industrial,
agricultural, etc.) and that they can be modeled by profiles describing their chemical
composition, their geographical distribution, and their temporal distribution. Large
environmental analytical data arrays containing concentration information of mul-
tiple chemical compounds collected at different sampling sites and at different
sampling periods are arranged in large data tables or matrices, or in more complex
data arrays according to different dimensions, ways, modes, orders, or directions of
experimental measurement. In the chemometrics literature, these complex ordered
data arrays are commonly called multiway data arrays or higher-order tensor data.

the multivariate data analysis methods more frequently used in exploratory analysis
and modeling of two-way data arrays (data tables or data matrices). PCA allows the
transformation and visualization of complex data sets into a new perspective in
which the most relevant information is made more obvious. In environmental studies,
by use of PCA, main contamination sources can be identified, and their geographical
and temporal distributions can be interpreted and further investigated. Multivariate
curve resolution using alternating least squares (MCR-ALS) has also been proposed
to achieve similar goals [15, 16, 98, 100, 101]. Although this method is traditionally
used for curve-resolution purposes, i.e., to resolve spectra and concentration profiles
having a smooth curved shape, there is no fundamental reason why this method
cannot also be used for resolution and modeling of noncurved and nonsmooth types
of profiles, including those describing geographical and temporal pollution patterns
observed in environmental data studies.

Both PCA and MCR-ALS can be easily extended to complex data arrays ordered
in more than two ways or modes, giving three-way data arrays (data cubes or
parallelepipeds) or multiway data arrays. In PCA and MCR-ALS, the multiway data
set is unfolded prior to data analysis to give an augmented two-way data matrix.
After analysis is complete, the resolved two-way profiles can be regrouped to recover
the profiles in the three modes. The current state of the art in multiway data analysis
includes, however, other methods where the structure of the multiway data array is
explicitly built into the model and fixed during the resolution process. Among these
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methods, those based in parallel factor analysis (PARAFAC) and Tucker multiway
models have been developed in recent years [77, 78] and have been used for the
analysis of environmental data sets [102, 103]. A complete description of these

In the example described here, multiway principal component analysis and
multivariate curve resolution are compared in the analysis of a data set obtained in
an exhaustive and systematic monitoring program in Portugal [16]. The study
included measurements of 19 priority semivolatile organic compounds (SVOC) in
a total of 644 surface-water samples distributed among 46 different geographical
sites during a period of 14 months. These data arrays were organized into 14
data matrices, each one corresponding to one month of the sampling campaign
(Figure 11.16). The resulting data set was arranged as one single columnwise
augmented large concentration data matrix of dimensions 644 × 19. In the columnwise
augmented data matrix, the individual concentration data matrices from different
months were stacked consecutively one on top of the other. Only one of the three
modes is unambiguous in the columns, the composition mode (19 SVOCs). The
other two modes (geographical and temporal) are mixed in the rows of the columnwise
data matrix.

FIGURE 11.16 Data matrix augmentation arrangement and bilinear model for PCA or MCR-
ALS decompositions. Resolved loadings, VT, provide the identification of the main sources
of data variance (contamination sources). Resolved scores, Uaug, provide the identification of
the temporal and geographical distribution of these sources after appropriate refolding: Ugeo

geographical distribution scores and Utemp temporal distribution scores. For each component,
a scores matrix is obtained by refolding its resolved long augmented score vector. Taking
averages of the rows or columns of this score matrix, temporal and geographical distributions
are obtained for this component.
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SVOC concentration values below the limit of detection and nondetected values
were set to half the detection limit value [104]. Missing values were estimated by PCA
using the PLS Toolbox “missing” function (Eigenvector Research, Inc., Manson, WA)
for MATLAB. Different data pretreatment methods were tested and compared. They
included column mean centering, column autoscaling, and log transformation and they
were performed on the columns of the columnwise augmented data matrix. Column
mean centering removed constant background contributions, which usually were of
no interest for data variance interpretation. However, in this particular case, mean
centering caused little changes in the results, since most of the values of the different
variables (SVOC) were so low that their averages were also low and close to zero.
Column scaling to unit variance increased the weight of variables that initially had
lower variances. In some cases, this effect may distort significantly the results, making
interpretation more difficult, especially for those noisy variables having only very few
values higher than the detection limit. Log transformation of experimental data is
another procedure that has been frequently recommended in the literature for skewed
data sets, like those in environmental studies where the majority of the values are low
values with a minor contribution of high values. With log data pretreatment, a more
symmetrical distribution of experimental data is expected. To remove large negative
values, a constant value equal to 1 was added to all of the variable entries. In this way,
log values were always nonnegative [105].

Principal component analysis (PCA) and multivariate curve resolution–alternating
least squares (MCR-ALS) were applied to the augmented columnwise data matrix
Daug

to explain the observed data variance using a reduced number of contamination
sources. The bilinear data matrix decomposition used in both cases can be written
by Equation 11.19:

(11.19)

In this equation, daug
ij is the concentration of SVOC j in sample i in the augmented

experimental data matrix Daug. The variable uaug
in (the score of component n on row i)

is the contribution of contamination source n in sample i. The variable vjn (the loading
of variable j on component n) is the contribution of SVOC j in contamination source
n. The residual, eij, is the variance in sample i and variable j of dij not modeled by
the N environmental contamination sources. The same equation can be written in
matrix form as:

Daug = Uaug VT + Eaug (11.20)

where Daug is the whole data array arranged in an augmented data matrix of dimen-
sions 46 × 14 rows (46 sampling sites, 14 months) and 19 columns (SVOC), as
shown in Figure 11.16.

Equation 11.20 describes the factorization of the experimental data matrix into two
factor matrices, the loadings matrix VT and the augmented scores matrix Uaug. The
loadings matrix VT identifies the nature and composition of the N main contamination
sources defined by means of their chemical composition (SVOC concentrations)

d = u v e
ij
aug

in
a g

jn
n=1

N

+
ij

u∑
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profiles. The augmented scores matrix Uaug gives the geographical and temporal
distribution of these contamination sources. This geographical and temporal infor-
mation is intermixed in the columns of the resolved augmented scores matrix Uaug,
and it is not directly available from it. A relatively easy way to recover geographical
(Ugeo) and temporal (Utemp) information is by properly rearranging columns of scores
(Uaug) into matrices having dimensions 46 × 14 (46 geographical sites × 14 months),

column averages or by computing the SVD gives the average contribution of the
resolved source profiles as a function of geographical location (46 × N) or by month
(N × 14), as shown in Figure 11.16. In this way, Ugeo, Utemp, and VT (the three mode
components) were estimated and directly compared with those resolved by three-
way model-based methods like PARAFAC and Tucker3 [77, 78]. Finally, Eaug gives
the residual part of Daug not modeled by the N contamination sources, i.e., the
unexplained variance associated with noise and minor nonmodeled environmental
contamination sources. The proper complexity of the PCA model or MCR-ALS
model, i.e., the number of components or contamination sources included in the
model, is a compromise between different goals: model simplicity (few compo-
nents), maximum variance explained by the model (more components), and model
interpretability.

Whereas PCA models provide a least-squares solution of Equations 11.19 and
11.20 under orthogonal constraints and maximum variance explained by each suc-
cessively extracted component, MCR-ALS models give a nonnegative least-squares
solution of the same equation without use of orthogonal constraints or maximum
explained variance. Also, whereas PCA orthogonal solutions of Equations 11.19 and
11.20 for a two-way data matrix are unique, MCR-ALS solutions of the same
equation are not unique, and they may be rotationally ambiguous [1, 2, 21–23].
However, MCR-ALS models provide solutions that hopefully are more similar to
the real sources of pollution than PCA solutions. MCR-ALS solutions can be seen
as oblique rotated PCA solutions fulfilling nonnegativity constraints. MCR-ALS
models provide a complementary insight to the problem under study by helping to
resolve and interpret real environmental sources of data variance. In other works,
MCR-ALS has been shown to be a powerful tool for resolving species profiles in
different chemical systems [7, 10–12, 17, 20, 21, 42, 45, 46, 51, 55, 62, 67, 68, 74,
81, 82, 90–92] and, more recently, it has also been applied for the resolution of
environmental contamination sources [15, 16, 98, 100, 101].

MCR-ALS solutions can be additionally constrained to fulfill a trilinear model
[82]. When this trilinearity constraint is applied, the profiles in the three different
modes (Ugeo, Utemp, and VT) are directly recovered and can be compared with the
profiles obtained using PARAFAC- or Tucker-based model decompositions. MCR-
ALS results have already been compared with Tucker3-ALS and PARAFAC-ALS
results in the resolution of different chemical systems [81].

data, on column autoscaled data, and on log-transformed column mean-centered data.
Using five PCs, the amount of variance explained was 84.0, 46.1, and 69.6%, respec-
tively. The results for the column mean-centered data were nearly identical to those
obtained for the nonmean-centered raw data. The reason for this is that the means of
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Table 11.1 gives the results from the application of PCA on column mean-centered

as shown in Figure 11.16. Analysis of the resulting matrices by taking the row and
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the concentrations of the different analyzed compounds are always low and very close
to zero. To avoid bias in the interpretation toward one of these treatments, the complete
study was performed using these three data pretreatments. However, to keep this
summary concise, the PCA results for the column mean-centered data are given first
and described in detail. Only the main trends are summarized for the results obtained
with other pretreatment methods. PCA results for the column mean-centered data
were selected first because they provided a simpler interpretation of the main con-
tamination sources. The PCA results (loadings and scores) for the first five compo-

these results is given in detail in a previous work [16].
When the data were autoscaled, the variance was more evenly distributed among

principal components. The variance explained by the PC1 and PC2 was relatively
lower than for mean-centered data (Table 11.1). Industrial emission point contami-
nation sources were easily perceived using autoscaled data because individual events
and point contamination sources counted much less in the final results. On the other
hand, the weighting of variables corresponding to organic compounds present at low
uncertain concentration levels increased considerably, and they gave large contribu-
tions to the loadings of the first principal component. The autoscaled PCA results
were more difficult to interpret, and they did not provide further relevant information
apart from that revealed previously using the mean-centered data. The log-transformed
mean-centered data gave PCA results very similar to those obtained using mean-
centered data. Only some differences in the order of the components explaining
small amounts of variance were observed. As indicated in Table 11.1, the percentage
of variance explained by each component in the log-transformed results was lower
than for the raw mean-centered data, but still considerably higher than for the
autoscaled data.

components, the explained data variance was 84.1%, very close to the value obtained
by PCA (84.4%) for mean-centered data. MCR-ALS was directly applied to raw
data, without any further data pretreatment apart from imputation of missing data
(PLS Toolbox missing.m function) and setting values below the detection limit to

TABLE 11.1
Explained Variances by PCA for Three Data Pretreatment Methods(%)

PC Number

Data Pretreatment Method 1 2 3 4 5

Mean-centered data 29.1 (29.1) 25.1 (54.2) 13.9 (68.1) 8.7 (76.8) 7.2 (84.0)
Autoscaled data 11.8 (11.8) 11.4 (23.2) 9.2 (32.4) 7.1 (39.6) 6.5 (46.1)
Log-transformed mean-
centered data

28.3 (28.3) 15.7 (44.0) 9.9 (53.9) 8.5 (62.4) 7.2 (69.6)

Note: Explained variances are given individually for each PC and for the total number of considered
components (in parentheses).
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nents are given in Figure 11.17 and Figure 11.18. Environmental interpretation of

Figure 11.19 shows the results obtained after applying MCR-ALS with nonne-
gativity constraints to the same SVOC data set shown in Figure 11.16. Using five
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half the detection limit value, as previously described. The components resolved
using MCR-ALS were not orthogonal and, therefore, the variances explained by
each component overlap and their sums will not be equal to the total variance
explained by all of them simultaneously. This fact might be considered to make
identification and interpretation of contamination sources more difficult; however,
on the other hand, real sources of contamination are not orthogonal and they do
overlap. MCR-ALS attempts their resolution. Environmental interpretation of these
results is given in detail in a previous publication [16].

In general, interpretation of the results obtained by MCR-ALS is similar to that
obtained by PCA. Geographical and temporal distributions were deduced from

Geographical and temporal distributions were quite similar to those observed by
PCA scores, with a similar interpretation. If trilinearity was also applied as a con-
straint during MCR-ALS resolution [82], the three mode profiles, the loadings VT,
and scores Ugeo and Utemp would be obtained directly from the data analysis. However,
due to this trilinearity constraint, the amount of variance explained for the same

FIGURE 11.17 PCA loadings for raw mean-centered augmented data matrix; from top to
bottom, first to fifth (PC1 to PC5) principal components. Compound names and abbreviations
are as follows: alachlor (ALA), atrazine (ATR), bentazone (BEN), biphenyl (BIF), 3-
chlorophenol (3-CP), 4-chlorophenol (4-CP), (2,4-dichlorophenosy)acetic acid (2,4-D),
dichloroprop (DCP), dimethoate (DIM), linuron (LIN), h-chloro-z-methyphenoxyacetic acid
(MCPA), mecoprop (MEC), 4-chloro-3-methylphenol (MEP), metholachlor (MET), pen-
tachlorophenol (PCP), simazine (SIM), (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T), tribu-
tylphosphate (TBP), 2,4,6-trichlorophenol (TCP).
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resolved scores, once they were properly rearranged and averaged (See Figure 11.16).
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number of components decreased to 62%. Loadings of the five resolved components
were rather similar to those obtained in previous analysis when the trilinearity
constraint was not applied. Larger differences were obtained for resolved geograph-
ical and temporal score profiles, Ugeo and Utemp, which were now simpler to interpret,
having a lower number of large score values. The main trends were similar to those
previously found in the results obtained without applying the trilinearity constraint.
Results obtained using the trilinearity constraint were, in fact, practically identical
to those obtained using the PARAFAC-ALS algorithm.

In summary, using either principal component analysis or multivariate curve-
resolution methods, the main contamination sources of semivolatile organic com-
pounds present in the surface waters of Portugal were identified, and their geographical

FIGURE 11.18 PCA scores for raw mean-centered augmented data matrix. Temporal (left)
and geographical (right) distribution of resolved composition profiles obtained after appro-
priate augmented scores matrix refolding. From top to bottom, first to fifth (PC1 to PC5)
principal components. Lower code numbers are for northern samples and higher code numbers
are for southern areas. Sampling time periods are numbered from 1 to 14 for each month
from April 1999 to May 2000.
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description of the chemometric and environmental interpretation of the results obtained
in this study. A similar interpretation of the contamination sources (loadings) and of
their geographical and temporal distributions (scores) was possible using these two
different methods. The proposed method for averaging unfolded PCA and MCR-ALS
scores was found to be very useful for recovering geographical and temporal information
from score profiles as an alternative to fitting three-way models like PARAFAC and
Tucker3. Similar multiway data analysis approaches are being proposed [106, 107] for
resolution and apportionment of environmental sources in air contamination studies.

11.8.3 SPECTROSCOPIC IMAGES

A spectroscopic image consists of a group of spectra collected along localized points
(pixels) spread on a sample surface [108–110]. These measurement can be displayed
as a data cube with two dimensions related to the x, y surface coordinates of the pixels

FIGURE 11.19 Composition (loading) profiles of resolved components in the MCR-ALS
analysis of raw augmented data matrix. Top components explain more variance; bottom
components explain less variance. Names for the compounds are defined in the caption to
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Figure 11.17.

and a third dimension related to the spectral wavelengths recorded (see Figure 11.20).

and temporal distributions were estimated. See Tauler et al. [16] for a more detailed
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An image data set can easily contain hundreds of thousands of measurements,
and a common concern is how to handle such a huge data set. Classical approaches
tend to work with reduced representations of the image, where only one measurement
per pixel, most commonly the cumulative intensity or, alternatively, the signal at a
particular selective wavelength, is used [111–113]. These methods, while simple,
do not take advantage of the quality and amount of information contained in the
raw measurements.

Resolution methods adapt easily to the huge size and complex spatial structure
of spectroscopic images, and they work with the complete information in the data
set [46, 114]. Most techniques in spectroscopic imaging provide signals for which
the intensity is proportional to the concentration of compounds in each pixel, fol-
lowing a relationship equivalent to the Beer-Lambert law in spectroscopy. Therefore,
the measurement variation in an image data set follows a bilinear model, where the
mixture spectra recorded at each pixel are described by the concentration-weighted
sum of the pure signals of the chemical compounds present. The pure spectra and
distribution maps for the different compounds are then resolved as in any other two-
way data set. The only additional operations required are purely formal and consist
of unfolding the original image cube into a matrix of pixel spectra and then refolding
the elements in the resolved concentration profiles according to the original spatial

The use and potential of multivariate resolution for the analysis of spectroscopic
images is illustrated using a real example from pharmaceutical quality control, where
the detection of minor impurities in a tablet or of an uneven distribution of com-
pounds are relevant issues. The measurements used are a series of Raman images
of tablets, with different active-compound to excipient-composition ratios ranging
from 0 to 80% of the active ingredient. All images were 45 × 45 pixels in size and
contained 576 readings per pixel spectrum recorded in the spectral range of 609 to
1173 cm−1.

FIGURE 11.20 Structure of a spectroscopic image.
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structure of the image to produce the distribution map (see Figure 11.21).
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Exploration of a data set before resolution is a golden rule fully applicable to
image analysis. In this context, there are two important domains of information in
the data set: the spectral domain and the spatial domain. Using a method for the
selection of pure variables like SIMPLISMA [53], we can select the pixels with the
most dissimilar spectra. As in the resolution of other types of data sets, these spectra
are good initial estimates to start the constrained optimization of matrices C and ST.
The spatial dimension of an image is what makes these types of measurement
different from other chemical data sets, since it provides local information about the
sample through pixel-to-pixel spectral variations. This local character can be
exploited with chemometric tools based on local-rank analysis, like FSMW-EFA
[30, 31], explained in Section 11.3.

Fixed-size image window–evolving-factor analysis (FSIW-EFA) [46] is a mod-
ification of FSMW-EFA and works by analyzing small windows constructed taking
the spectra of a pixel and its most immediate neighbors. PCA analysis is performed
on the areas around each of the pixels in the image. Joining all of the results obtained,
we can plot a local-rank map, which represents the number of components (image
constituents) needed to describe each of the pixel areas of the image. The local-rank
maps are displayed as two-dimensional plots with the x and y directions correspond-

presented.
The local-rank maps provide information on the local complexity of the image.

Areas with higher ranks indicate a more complex chemical composition with more

FIGURE 11.21 Resolution of a spectroscopic image.
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ing to those of the scanned surface. In Figure 11.22, the maps of several tables are
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constituents overlapping, whereas areas with low local ranks, e.g., 1, contain only
one chemical compound, i.e., a selective pixel. In this example, the presence and
location of an unexpected third compound (impurity) in the tablets containing 40,
60, and 80% of active component is detected through the occurrence and position
of some rank-3 pixels. It is important to note that detecting the presence of this
minor component would be very difficult by visual inspection of the thousands of
spectra collected or by using classical data analysis approaches.

As in other chemical problems, the data sets of all five tablet images are com-
bined to form a three-way data set to be resolved. The modeling of images with low
impurity content is improved due to the information included in images with higher
concentrations of this compound. As expected, exploiting the three-way character
of the data set significantly decreases the ambiguity of the resolved pure-compound
profiles compared to an individual analysis of each tablet image.

The information obtained in the FSIW-EFA exploratory analysis is used in the
resolution step. The total number of compounds in the three-way data set has been
found to be equal to three (active, excipient, and unknown). The iterative optimi-
zation process starts with a matrix ST containing the initial estimates found by

FIGURE 11.22 Local-rank maps of the different pill images (the percent refers to content
of active compound). Light, medium, and dark grey refer to rank 1, 2, and 3, respectively.
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SIMPLISMA. Nonnegativity constraints are applied to constrain concentration pro-
files and Raman spectra. The concentration submatrices related to each individual
image are constrained, taking into account the information available about the
presence or absence of the different compounds in the data set. This information is
expressed in a binary-coded data matrix, where 1 represents the present compounds
and 0 represents the absent compounds. The column labels A, E, and U refer to
active, excipient, and unknown, respectively, and the percentages show the abun-
dance of the active compound in the corresponding tablet.

(11.21)

The concentrations of absent components are set to zero in the corresponding
submatrices of C.

to display more clearly the distribution of the impurity. The corresponding pure-
component spectra for each of the resolved components are also shown.

The variance explained in the raw data reconstruction is 96.6%. The distribution
maps match qualitatively the expected trend of relative abundance of major com-
pounds according to the nominal content in the different pills, and they show the
heterogeneity in the compound distribution of both excipient and active compound
along the surface of the different pills. In each pill, the contribution of each com-
pound in each pixel is straightforwardly obtained from the distribution maps of the
pure compounds. The degree of overlap among compounds and, therefore, the
chemical complexity of the sample, is locally known. The resolution results confirm
the need to include a third compound to describe the composition of the pills, which
appears with a very distinct spectral shape. The modeling and location of this
impurity is successfully achieved, even for the pills where this compound is present
in a very low proportion.

11.9 SOFTWARE

Implementations of curve-resolution algorithms and methods in public domain and
commercial software remain scarce, reflecting the intrinsic difficulties of developing
robust and user-friendly methods for curve resolution. Solving curve-resolution
problems still typically requires strong user interaction and knowledge of the prob-
lem under study. There are some exceptions, including the MATLAB software that
we have been developing for years and offer as a free download at our Web page,

m-files that facilitate the exploration and resolution of two- and three-way data sets.
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Figure 11.23 shows the pure-component distribution maps, using mesh plots

http://www.ub.es/gesq/eq1_eng.htm. This software includes a set of MATLAB

http://www.ub.edu
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FIGURE 11.23 Mesh representation of the pure distribution maps for: (a) active compound, (b) excip-
ient, (c) impurity (the percent in a, b, and c always refers to content of active component; hot and cold
colors refer to high and low concentrations, respectively), and (d) pure resolved spectra (thick solid line:
active compound, thin solid line: excipient, dotted line: impurity).
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These routines come with detailed instructions of use along with data examples of
diverse application (chromatographic examples, reaction systems, etc.). Our research
group offers free support for the users of this software and appreciates suggestions
about possible improvements in the routines and in the contents of the Web page.
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12.1 INTRODUCTION

 

Three-way calibrations methods, such as the generalized rank annihilation method
(GRAM) and parallel factor analysis (PARAFAC), are becoming increasingly prev-
alent tools to solve analytical challenges. The main advantage of three-way calibra-
tion is estimation of analyte concentrations in the presence of unknown, uncalibrated
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spectral interferents. These methods also permit the extraction of analyte, and often
interferent, spectral profiles from complex and uncharacterized mixtures. In this
chapter, a theoretical and practical progression and overview of three-way calibration
methods from the simplest rank annihilation factor analysis (RAFA) to the more
flexible PARAFAC is presented. Extensions of many three-way methods are covered
to highlight the paradigm’s flexibility in solving particular analytical calibration
problems.

 

12.2 BACKGROUND

 

One challenge faced by analytical chemists interested in instrumental calibration for
estimation of analyte concentrations in unknown solutions is the resolution of highly
convolved signals returned from modern analytic instrumentation. Chromatograms
do not always have baseline separation of adjacent peaks, and molecular spectro-
scopic techniques are seldom 100% selective. For quantitative applications involving
convolved signals, it is imperative to explicitly or implicitly extract the target analyte
signature from the overlapping instrumental responses of any interfering species.
For many qualitative and exploratory applications, important trends and effects can
be better noticed if the tapestry of data can be selectively unwoven and viewed one
piece at a time by deconvolving the overlapping signals.

The advent of inexpensive microprocessors has simultaneously led to more
complicated, and powerful, analytical instruments and more powerful, and compli-
cated, methods for resolving and interpreting data gathered from such instruments.
In an abstract sense, the power and complexity of instrumentation increases with
the number of “ways” the data is collected and treated [1]. This, of course, assumes
all other factors, such as technique appropriateness and signal-to-noise ratio, are
equal.

“One-way” data consists of either one sample and multiple variables, e.g., a
single chromatogram generated over time, or multiple samples and one variable,
e.g., calibration of an ion-selective electrode. A single gas chromatogram (GC)
collected with a flame-ionization detector is considered one-way data, as the data is
only collected in one way, over time. Analyzing multiple solutions with an ion-
selective electrode is also one-way, over samples. In these applications, the mathe-
matical and statistical tools applicable to one-way data analysis limit the analyst.
For qualitative analysis, e.g., GC peak resolution, Gaussian curves or orthogonal
polynomials are often fit to the chromatogram to elicit the number of overlapping
species [2]. Quantitative applications, e.g., in electrochemistry, require the assump-
tion of complete selectivity of the detector [3]. The results derived from these
analyses are only as accurate and reliable as the assumptions made.

“Two-way” data consists of multiple samples, each represented by multiple
variables, or one sample represented by two sets of interacting variables. The type
of two-way data determines the amount of quantitative and qualitative information
that can be extracted

 

 

 

[4]. Digitized ultraviolet (UV) spectra collected for each of 

 

I

 

samples is an example of multiple samples, the first way, and multiple variables, the
second way, forming “two-way” data. Such data is usually employed for quantitative
applications where the independent variables, the spectra, are related to a property
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(e.g., concentration) of the samples, the dependent variable. A number of linear

(PCR) and partial least squares regression (PLS) [5], and nonlinear regression methods,
such as predictive alternating conditional expectations (PACE), multivariate adaptive
regression splines (MARS), and artificial neural networks (ANN) [6, 7], are
available to facilitate determination of the dependent variable’s value in an
unknown sample. However, these quantitative methods extract little to no qualitative
information.

On the other hand, data such as a single sample represented by a collection of
digitized spectra at discrete time intervals during a chromatographic run, or a collection
of digitized spectra at discrete pH values during a titration, forms two-way data that
is best suited for qualitative applications. It is important to note that the instrument
in the first way, e.g., the chromatograph, must modulate the signal from the instru-
ment in the second way, e.g., the spectrometer. For example, a liquid chromatogra-
phy-UV/Vis diode-array spectroscopy (DAS) system forms two-way data, but an
FTIR-UV/Vis DAS does not form two-way data, since the FTIR does not mod-
ulate the UV/Vis DAS signal. Spectral deconvolution methods described in

analysis (ITFA), evolving factor analysis (EFA), and their descendants — are suc-
cessfully employed to deduce the number and qualitative identity of species in a
complex mixture [8–11].

“Three-way” data, in chemical applications, is usually visualized as multiple
samples, each consisting of two sets of interacting variables. A collection of
excitation-emission matrix fluorescence spectra, or multiple diode-array absorption
spectra, collected at regular intervals during each of several chromatographic runs
fit the traditional image of three-way chemical data that has one “object” way and
two “variable” ways. Hirschfeld listed 66 “hyphenated” methods to produce three-
way data that are feasible with state-of-the-art technology [12]. Applications of one-
object–two-variable, three-way data are often quantitative in nature. The ability of
three-way data analysis to uniquely deconvolve overlapped spectral signatures is
harnessed to extract the analyte signal from an unknown and uncalibrated back-
ground prior to quantitation [3, 13]. The data structure requirements and algorithms
that permit accurate calibration with three-way data is the primary focus of this
chapter.

However, three-way data can also be formed with two object ways and one
variable way and by one sample with three variable ways. Environmental data where
several distinct locations are monitored at discrete time intervals for multiple analytes
exemplifies three-way data with two object ways and one variable way. Excitation-
emission-time decay fluorescence or gas chromatography with a tandem mass spec-
troscopic detector are instrumental methods that form three-way data with three
variable ways. These data types are employed mostly for qualitative application.
Herein, the desire of the analyst to elicit underlying factors that influence the
ecosystem or to deconvolve highly overlapped spectral profiles to deduce the number,
identity, or relaxation coefficients of constituents in a complex sample can be real-
ized. The same procedures employed for quantitation lend themselves to the extrac-
tion of qualitative information.
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In truth, there is no limit to the number of “ways” that can form a data set. The
open-ended description for data with more than three ways is “

 

N

 

-way” data. For
example, a collection of excitation-emission-time decay fluorescence spectra forms
“four-way” data. Add reaction kinetics or varying experimental conditions, and “five-
way” data, or greater, could easily be formed. Many of the techniques discussed
below, in particular the PARAFAC-based algorithms, are readily extended to 

 

N

 

-way
applications [14, 15].

 

12.3 NOMENCLATURE OF THREE-WAY DATA

 

There are two competing and equivalent nomenclature systems encountered in the
chemical literature. The description of data in terms of “ways” is derived from the
statistical literature. Here a “way” is constituted by each independent, nontrivial
factor that is manipulated with the data collection system. To continue with the
example of excitation-emission matrix fluorescence spectra, the three-way data is
constructed by manipulating the excitation-way, emission-way, and the sample-way
for multiple samples. Implicit in this definition is a fully blocked experimental design
where the collected data forms a cube with no missing values. Equivalently, hyphenated
data is often referred to in terms of “orders” as derived from the mathematical
literature. In tensor notation, a scalar is a zeroth-order tensor, a vector is first order,
a matrix is second order, a cube is third order, etc. Hence, the collection of excitation-
emission data discussed previously would form a third-order tensor. However, it
should be mentioned that the “way-based” and “order-based” nomenclature are not
directly interchangeable. By convention, “order” notation is based on the structure
of the data collected from each sample. Analysis of collected excitation-emission
fluorescence, forming a second-order tensor of data per sample, is referred to as
second-order analysis, as compared with the “three-way” analysis just described. In
this chapter, the “way-based” notation will be arbitrarily adopted to be consistent
with previous work.

Furthermore, traditional notation for scalars, vectors and variables will be
adopted. A scalar of fixed value, e.g., the number of factors in a model, is represented
by an italicized capitol, 

 

N

 

. An italicized lowercase letter, e.g., the 

 

n

 

th factor, repre-
sents a scalar of arbitrary value. All vectors are column vectors designated by
lowercase bold, e.g., 

 

x

 

. Matrices are given by uppercase bold, e.g., 

 

X

 

, and cubes
(third-order tensors by uppercase open-face letters, e.g., R

 

. Transposes of matrices
and vectors, defined by switching the row and column indices, is designated with a
superscript T, e.g., 

 

x

 

T

 

. The transpose of a cube need not be defined for this chapter.
Subscripts designate a specific element of a higher-order tensor, where the initial
order is inferred by the number of subscripts associated with the scalar.

 

12.4 THREE-WAY MODELS

 

There are six classes of three-way data, and four of these classes can be appropriately
modeled with the basic trilinear, or PARAFAC (PARAllel FACtor), model, where
the data cube is decomposed into 

 

N

 

 sets of triads, , , and  [16]. The trilinearx̂ ŷ ẑ
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model can be presented equivalently in statistical

(12.1a)

or mathematical forms

(12.1b)

Here 

 

N

 

 refers to the number of factors employed by the model to describe the

 

I 

 

×

 

 

 

J

 

 

 

×

 

 

 

K

 

 data cube, or the rank of the model.
In general, the number and form of factors in a model are not constrained to be

representative of any physical reality. With self-modeling curve resolution (SMCR)
as the two-way data model, this is referred to as the rotational ambiguity of the
factors; there is a continuum of factors that satisfy the SMCR model and equivalently
describe the data [17]. However, in problems with an underlying trilinear structure,
when the proper number of factors is chosen for a trilinear model, the factors are
accurate estimates of the true underlying factors. In other words, if a LC-UV/Vis
DAS formed R

 

, then each  would correspond to one of the true 

 

N

 

 chromatographic
profiles, each  to one of the true spectroscopic profiles, and each  to the relative
concentrations in the 

 

K

 

 samples. Therefore, in three-way analysis, when, for an
isolated chemical component (1) the true underlying factor in each of the three
modes is independent, except for scale, from the state of the other two modes; (2)
the true underlying factor in any of the three modes cannot be expressed by linear
combinations of the true underlying factors of other components in the same mode;
(3) there is linear additivity of instrumental responses among the species present
and; (4) the proper number of factors is chosen for the model, then the factors , ,
and  are unique to a scaling constant and are accurate estimates of the true under-

      

set R

 

 is, in reality, composed of 

 

N

 

 triads. If the proper number of factors 

 

N

 

 is chosen,
the estimates of the factors in each of the triads, , , and , will be accurate
estimates of the true underlying factors.

The trilinear model is actually a specific case of the Tucker3 model. The Tucker3

A data cube, R

 

, is decomposed into three sets of factors, , , and , as with
PARAFAC. However, the Tucker3 model differs from the PARAFAC model in three
key ways. First, the number of factors in each order of the Tucker3 model is not
constrained to be equal. Second, the Tucker3 model employs a small core cube, C

 

,
that governs the interactions among the factors. A nonzero element in the 

 

p

 

th, 

 

q

 

th, and

 

r

 

th position of the core C

 

 dictates an interaction between the 

 

p

 

th factor in the X-way,
the 

 

q

 

th factor in the Y-way, and the 

 

r

 

th factor in the Z-way. This permits modeling of
two or more factors that might have, for example, the same chromatographic profile
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lying factors, x, y, and z. This is shown graphically in Figure 12.1, where the data

model is best understood by viewing a graphical representation such as in Figure 12.2.
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but different spectral and concentration profiles [18, 19]. Third, the interactions in the
Tucker3 model make it a nonlinear model, and it is not really appropriate for problems
that possess trilinear structure unless special structure is imposed upon the core matrix,
C

 

. If there is the same number of factors in each way, and C

 

 is constrained to only
have nonzero elements on the superdiagonal, then the Tucker3 model is equivalent to
the PARAFAC model.

With the exception of the Tucker3 model, the models discussed here are intrin-
sically linear models, and a straightforward application thus assumes linear interac-
tions and behavior of the samples. While many of the systems of interest to chemists
contain nonlinearities that violate the assumptions of the models, the PARAFAC
model forms an excellent starting point from which many subsidiary methods are

 

FIGURE 12.1

 

Construction and decomposition of a three-way array via the trilinear
PARAFAC model.

 

FIGURE 12.2

 

Construction of a three-way array according to the unconstrained Tucker
model.
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constructed to incorporate nonlinear behavior into calibration models formed from
three-way data collected with hyphenated methods.

 

12.5 EXAMPLES

 

Seven simulated LC-UV/Vis DAS data matrices were constructed in MATLAB

 

® 

 

5.0
(MathWorks Inc., Natick, MA). Each sample forms a 25 

 

×

 

 50 matrix. The simulated
LC and spectral profiles are shown in Figure 12.3a and Figure 12.3b, respectively.
Spectral and chromatographic profiles are constructed to have a complete overlap
of the analyte profile by the interferents. Three of the samples represent pure
standards of unit, twice-unit, and thrice-unit concentration. These standards are
designated S1, S2, and S3, respectively. Three three-component mixtures of relative
concentrations of interferent 1: analyte: interferent 2 are 1:1.5:0.5, 2:0.5:2, and
2:2.5:1, and these are employed for all examples. These mixtures are designated
M1, M2, and M3, respectively. An additional two-component mixture, 2:2.5:0, is
employed as an example for rank annihilation factor analysis. This sample is
designated M4. In most applications, normally distributed random errors are added
to each digitized channel of every matrix. These errors are chosen to have a mean
of zero and a standard deviation of 0.14, which corresponds to 10% of the mean
response of the middle standard. In the rank annihilation factor analysis (RAFA)
examples, errors were chosen to simulate noise levels of 2.5 and 5% of the mean
response of S2. In some PARAFAC examples, the noise level was chosen to be 30%
of the mean response of the second standard.

Data analysis algorithms were also constructed in the MATLAB programming
language. These programs are included in the appendices of this chapter (Appendices
12.1, GRAM Algorithm; 12.2,

 

 

 

DTLD Algorithm, 12.3, PARAFAC Algorithm) and

 

FIGURE 12.3

 

X-way (A) and Y-way (B) profiles used to construct the data sets for each
example. Solid line represents the analyte spectra, while the dashed and dotted lines corre-
spond to the two interferents.
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contains the MATLAB script for regenerating the data employed in the examples.

 

12.6 RANK ANNIHILATION METHODS

 

Rank annihilation methods employ eigenvalue-eigenvector analyses for direct deter-
mination of analyte concentration with or without intrinsic profile determination.
With the exception of rank annihilation factor analysis, these methods obtain a direct,
noniterative solution by solving various reconstructions of the generalized
eigenvalue-eigenvector problem.

 

12.6.1 R

 

ANK
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NNIHILATION

 

 F

 

ACTOR

 

 A

 

NALYSIS

 

The original rank annihilation factor analysis (RAFA) postulates determination of
analyte concentration from the successive eigenanalysis of the equation 

 

R

 

1

 

 

 

−

 

 

 

α

 

R

 

2

 

,
where 

 

R

 

2

 

 is an 

 

I

 

 

 

×

 

 

 

J

 

 data matrix from a mixture of the analyte and other interferents,

 

R

 

1

 

 is an

 

 I

 

 

 

×

 

 

 

J

 

 matrix from a pure analyte of known concentration, and 

 

α

 

 is an
estimate of relative analyte concentration in the standard compared with the
mixture [20]. Determination of the eigenvalues of the matrix (

 

R

 

1

 

 

 

−

 

 

 

α

 

R

 

2)(R1 − αR2)T

or (R1 − αR2)T( R1 − αR2) yields N eigenvalues that correspond to “significant”
factors and I − N (or J − N if J < I) “insignificant” factors that correspond to random
noise in the samples. A plot of the calculated eigenvalues vs. α will show a minimum
in the Nth eigenvalue when l is equal to the relative analyte concentration between
the standard and the unknown. An iterative line search method is employed to find
the optimum l that yields the minimum value for the Nth eigenvalue.

Lorber [21, 22] recognized that the roots of

|(R2 − αR1)| = 0 (12.2)

as iteratively determined by RAFA, can be directly determined by reconfiguring the
RAFA equation into the form of the generalized eigenvalue-eigenvector problem
(GEP),

R1Ψ = ΛR2Ψ (12.3)

Here Λ is the diagonal matrix of eigenvalues, and the columns of Ψ are the eigen-
vectors of R1 and R2. However, Equation 12.3 cannot be solved directly as a GEP,
since R1 and R2 are not square, full rank matrices.

One method of solving Equation 12.3 is to transform it into an eigenvalue-
eigenvector problem with one square, nonsingular matrix. The solution can be derived
by first expressing R1 as the outer product of two vectors x and y where R1 = xyT.
This is equivalent to Equation 12.1b with x and/or y scaled such that z is 1 for the
standard sample. Therefore, the quantity of signal due to analyte in R2 is given by
xyT/α where α gives the concentration ratio of analyte in R1 and R2, e.g., α = C1/C2.
While x and y cannot be known without a priori information, the matrix R2 can be
decomposed via the singular-value decomposition (SVD) [23] into orthogonal rotation
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components, U and V, that span the row and column space of R2, respectively (see

2

approximated as

(12.4)

where S is the diagonal matrix of singular values of R2, and the subscript indicates
that only the N most significant orthogonal rotation components are employed in
reconstructing R2. Thus the minimum dimensional space required to represent the
information content of R2, with the assumption that R1 is contained in this N
dimensional space, is determined. Projecting R1 and R2 into the subspace defined
by Equation 12.4 gives

(12.5a)

Since UTU and S−1S are identity matrices and VTVX = X, Equation 12.5a reduces
to

(12.5b)

with being an N × N full rank matrix and any nonzero eigenvalue equal
to α. Concurrently, α may also be determined from the trace of where

(12.6)

The trace of a matrix is defined as the sum of the diagonal elements, and q is given
as the rank of R1. Please note in the above derivations, as in RAFA, that R1 must
be a rank 1 matrix representing the pure standard.

Considering the algorithmic simplicity and efficiency in this formulation, RAFA
is an attractive method of estimating analyte concentration in a complex mixture.
Compared with the other three-way methods discussed below, very few floating-
point operations (FLOPs) are required. For small values of N, abandoning the SVD
for the more efficient kernel NIPALS (nonlinear iterative partial algorithm least
squares) can further reduce the required FLOP budget. However, RAFA is limited
in applicability by two restrictions: (1) a pure standard of known concentration is
required, and (2) only one standard and one unknown sample can be simultaneously
analyzed. These two deficiencies are corrected in the generalized rank annihilation
method (GRAM) and direct trilinear decomposition (DTLD), respectively.

12.6.1.1 RAFA Application

The predictive limitations of the iterative RAFA method are evident from

values versus α for an errorless S3 and M3. The third singular value contains the
minimum, since M3 is, ideally, a rank 3 matrix. The minimum accurately occurs at
a predicted concentration of 2.500 when the concentration of the standard is
accounted. However, adding random errors of 1.667% and 3.333% of the S3 response

R USV2 ≈ T
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Figure 12.4. Figure 12.4a demonstrates the sharp minimum in the plot of the singular

Chapter 5). By considering only the N most significant orthogonal components, R  is



484 Practical Guide to Chemometrics

(2.5% and 5.0% of the mean S2) to the mixture and standard matrices broadens the
minimum in this plot (Figure 12.4b and Figure 12.4c). The minimum in Figure
12.4b, albeit broader, still accurately occurs at 2.500. However, with errors as small
as 3%, there is evidence in Figure 12.4c that RAFA becomes unreliable for this
application. Here the analyte concentration in the mixture is estimated to be 2.26,
significantly lower than the true value of 2.500. More accurate quantitation and a
sharper minimum in the plot of singular values vs. α occur when fewer factors are
required to model the mixture spectrum. Figure 12.4d is derived from RAFA on S3
and M4, with M4 being, ideally, a rank 2 matrix. Added errors have a standard
deviation of 3.333% of the S3 response. Although the minimum is sharper and the

FIGURE 12.4 Plots of log10 of singular values vs. estimated concentration for RAFA. Bold
line represents correct factor for quantitation: (a) errorless, ideal data, (b) 2.5% relative error
added to each sample, (c) 5.0% relative error added to each sample, (d) only one interferent
with 5.0% relative error added to each sample.
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level of precision and accuracy demonstrated by RAFA at this noise level would
surely not be acceptable in many applications.

12.6.2 GENERALIZED RANK ANNIHILATION METHOD

An alternative method to solving Equation 12.3 is to reduce both R1 and R2 to
square, nonsingular, nonidentity matrices by projecting each matrix independently
onto the space formed jointly by the two matrices. This permits calculation of Λ
and Ψ, via the QZ algorithm [23] and, by extension, relative concentration esti-
mates, , and estimates of the true underlying factors in the X- and Y-ways. This
is known as the generalized rank annihilation method (GRAM) [24, 25].

The first step in GRAM is projecting R1 and R2 into the joint row and column
spaces of the two matrices. Determination of the row and column spaces can be
performed with the singular value decomposition of R1 + R2 where

(12.7)

Here the N columns of define the significant factors in the joint row space of R1

and R2, and the N columns of define the joint column space. The generalized
eigenvalue problem

(12.8)

is solved by the QZ algorithm, where the estimates of the true underlying factors in
the X and Y orders are found by

(12.9a)

and

(12.9b)

The relative concentration estimates are found in the diagonal elements of Λ, e.g.,
Λkk = 0 if the kth species is absent in R2 and Λkk = ∞ if the kth species is absent in R1.

In the intervening decade since the inception of GRAM, numerous refinements
to the basic algorithm have been published. Wilson, Sanchez, and Kowalski [25]
proposed three initial improvements. Inserting R1 + R2 for R1 in Equation 12.8 solves
stability problems encountered when R2 contains components absent in R1. Here,
the diagonal matrix Λ now contains the fractional contribution, e.g., Λkk = 0 if the
kth species is absent in R2 and Λkk = 1 if the kth species is absent in R1. Second,
the significant joint row and column spaces of R1 and R2 can be more rapidly
calculated with a NIPALS-based algorithm than with the SVD. Finally, the joint row

Ẑ
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estimated mixture concentration is more accurate (2.34) than in Figure 12.4c, the
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and column spaces of R1 and R2 can alternatively be determined from the concatenated
matrices and , respectively. However, Poe and Rutan [26] have demon-
strated that determination of the joint row and column spaces from R1 + R2 yields the
most robust estimates of X, Y, and Z when model errors are introduced in the form of
spectral shifts (e.g., slight changes in retention indices) in the X- and Y-ways.

Li and Gemperline [27] solved the problem of GRAM returning X- and Y-way
estimates with imaginary components when two or more factors were collinear in
the Z-way, or concentration. Here, similarity transformations are employed to redi-
agonalize Λ and eliminate any imaginary components in Ψ that do not correspond
to a degenerate solution for Equation 12.8. The need for similarity transformations
can be circumvented by judicious choice of the QZ algorithm [28].

12.6.2.1 GRAM Application

The estimated analyte concentrations in each of the three mixtures, with added
random errors of a standard deviation equal to 10% of the mean value of S2, are
summarized in Table 12.1. The results are presented for prediction with each of the
three standards for each of the three mixtures utilizing the GRAM algorithm with
concatenated (Table 12.1a) and added (Table 12.1b) samples. Similarly, the squared
correlation coefficients between the true and estimated X-way and Y-way profiles

examples for estimating the X-way and Y-way profiles with GRAM. In the worst-
case scenario (ρ2

x = 0.9938, ρ2
y = 0.9987), there is very little discernible variation

between the true and estimated profiles. In most cases, the true and estimated profiles

TABLE 12.1A
Estimated Concentrations in Mixture Samples from GRAM
with Concatenated Matrices

Mixture M1 (Truth: 1.5) Mixture M2 (Truth: 0.5) Mixture M3 (Truth: 2.5)

Standard S1 1.412 0.533 2.256
Standard S2 1.504 0.565 2.394
Standard S3 1.514 0.565 2.384

TABLE 12.1B
Estimated Concentrations in Mixture Samples from GRAM
with Added Matrices

Mixture M1 (Truth: 1.5) Mixture M2 (Truth: 0.5) Mixture M3 (Truth: 2.5)

Standard S1 1.260 0.627 2.151
Standard S2 1.538 0.653 2.356
Standard S3 1.610 0.639 2.401

[ ]R | R
1 2

R
R

1

2
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are presented in Table 12.2. Figure 12.5 presents the best-case and worst-case
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are indistinguishable. GRAM is incapable of estimating the true profiles of the
interferents, since the two interfering spectral concentrations are collinear between
samples.

evident that GRAM is a more robust algorithm for concentration estimation than
the iterative RAFA. At its worst, GRAM yields a 30% error for prediction of mixture
M2. While this error seems superficially very large, it should be tempered with the
realization that the random noise added to each sample is equivalent to 40% of the
analyte concentration in the mixture. For a prediction with more concentrated stan-
dards and mixtures, the prediction error is closer to 4%. Second, performing GRAM

FIGURE 12.5 True (solid), best (gray), and worst (dashed) estimated (a) X-way and (b)
Y-way analyte profiles from GRAM. There is insufficient difference between the best and
true analyte profiles to discriminate them in these plots.

TABLE 12.2A
Squared Correlation Coefficient (angle cosign)
of Predicted and True Y-Way Spectra from GRAM
with Concatenated Matrices

Mixture M1 Mixture M2 Mixture M3

Standard S1 0.9993 0.9999 1.0000
Standard S2 0.9995 1.0000 1.0000
Standard S3 0.9996 1.0000 1.0000
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Two trends in the predictive performance of GRAM are apparent from Table
12.1a and Table 12.1b and from Table 12.2a through Table 12.2d. First, it is readily
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with concatenated matrices generally yields lower prediction errors than performing
GRAM by adding the two matrices to determine the reduced sample space (Equation
12.7). Although these results may seem counter to the conclusions of Poe and Rutan
[26], recall that Poe and Rutan employed correlated errors as spectral and chromato-
graphic shifts, while in these examples, uncorrelated random errors were employed.
The logical conclusion of these two observations is that, on average, GRAM with
added matrices is best employed when errors in profile reproducibility predominate,
while GRAM with concatenated matrices is best employed when random, uncorre-
lated errors predominate.

TABLE 12.2B
Squared Correlation Coefficient (angle cosign)
of Predicted and True Y-Way Spectra from GRAM
with Added Matrices

Mixture M1 Mixture M2 Mixture M3

Standard S1 0.9987 0.9994 0.9997
Standard S2 0.9988 0.9996 0.9998
Standard S3 0.9987 0.9996 0.9998

TABLE 12.2C
Squared Correlation Coefficient (angle cosign)
of Predicted and True X-Way Spectra from GRAM
with Concatenated Matrices

Mixture M1 Mixture M2 Mixture M3

Standard S1 0.9985 0.9996 0.9992
Standard S2 0.9998 0.9999 0.9998
Standard S3 0.9999 0.9999 0.9999

TABLE 12.2D
Squared Correlation Coefficient (angle cosign)
of Predicted and True X-Way Spectra from GRAM
with Added Matrices

Mixture M1 Mixture M2 Mixture M3

Standard S1 0.9939 0.9959 0.9982
Standard S2 0.9971 0.9963 0.9983
Standard S3 0.9986 0.9971 0.9986
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12.6.3 DIRECT TRILINEAR DECOMPOSITION

RAFA and GRAM are limited to simultaneous analysis of one standard and one
unknown. One way around this limitation is the direct trilinear decomposition
(DTLD) [29]. Aside from being a rapid method for solving Equation 12.1, DTLD
also provides an excellent starting solution for least-squares and iterative methods.

At the heart of DTLD lies the GRAM algorithm. DTLD functions by judiciously
combining the K samples in the data matrix into two pseudosamples, applying
GRAM, then reinflating the I × N, J × N, and K × N matrices to present the X-way
profiles, Y-way profiles, and Z-way profiles, respectively.

The first steps in DTLD are unfolding the K I × J matrices into a K × (I*J)
matrix and employing the SVD algorithm to calculate the first two vectors, u1 and
u2, of the row space in this unfolded matrix. These two vectors serve as mixing
vectors to construct the two pseudosamples, G1 and G2, from linear combinations
of the K matrices where

(12.10a)

and

(12.10b)

with Rk being the Kth sample and uik being the kth element in the ith vector of the
row space of the set of unfolded samples. Another alternative to constructing the
two pseudosamples is to add half of the sample matrices to generate G1 and add the
other half of the sample matrices to generate G2. However, potential problems can
result from arbitrary summation of samples through inducing collinearity. For example,
consider four unknown samples with concentrations [1,2], [2,1], [2,2], and [1,1]. If
the first two samples are added together and the second two samples are added together,
the two resulting pseudosamples are collinear, with apparent concentrations [3,3]
and [3,3]. Hence, the calculated model would be unstable. By choosing orthogonal
vectors that lie in the sample space of the data as mixing guidelines for constructing
the two pseudosamples, all possibility of introducing unnatural collinearity into the
system is eliminated.

As with GRAM, the matrices G1 and G2 need to be projected into the joint row
and column spaces of the K samples. This can be accomplished by augmenting the
K samples row- and columnwise prior to singular-value decomposition (SVD), or
by summing the K samples prior to SVD. Equation 12.8 is solved for Ψ with G1

and G2 replacing R1 and R2. The estimates of the true X-way and Y-way factors are
found by Equation 12.9a and Equation 12.9b. The difference from GRAM is that
the concentration estimates, or the columns of Z, are found by a least-squares fitting
of the columns of  and to Rk. The least-squares fit is performed to obtain the
N values of the kth row, .
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It is important to note that problems may arise if  and are calculated from
Y values that are obtained from solutions to

(12.11a)

and

(12.11b)

as was proposed in the original reference [30]. Instead, it is advisable to use the
most numerically stable, best-conditioned solution from Equation 12.11a and Equa-
tion 12.11b.

12.6.3.1 DTLD Application

DTLD yields even more accurate and precise results than GRAM. Table 12.3 presents
the predicted analyte concentrations for the three standards and three unknowns.
The estimated standard concentrations are accurate to less than 0.1% of the true
analyte concentration. Prediction errors for the mixture samples are, in general, a
factor of 2 to 4 less than the prediction errors realized by GRAM. The largest
prediction error, for the least concentrated sample, is only 3.25%. This is compared
with an average prediction error of 11% with the best application of GRAM.

DTLD allows estimation of the interferent X-way and Y-way profiles, as well
estimation of the analyte profiles. The squared correlation coefficients of these

the analyte, which is present in all six samples, the true and estimated profiles are
indistinguishable. The interferent profiles, which are present in only half of the
samples, are comparable in accuracy with the estimated analyte profiles from
GRAM.

TABLE 12.3
Predicted Standard and Mixture Concentrations 
from DTLD and PARAFAC

Sample True DTLD PARAFAC PARAFAC (× 3 noise)

S1 1.0 1.0006 1.0007 0.9582
S2 2.0 1.9987 1.9987 2.0279
S3 3.0 3.0006 3.0007 2.9955
M1 1.5 1.5090 1.5025 1.5440
M2 0.5 0.4838 0.4997 0.6587
M3 2.5 2.5385 2.5257 2.5782

X̂ Ŷ

U G V U G VT T
1 2

Ψ ΨΛ=

V G U V G UT T
1 2
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estimated profiles with the true, noiseless profiles are presented in Table 12.4. For
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12.7 ALTERNATING LEAST-SQUARES METHODS

Alternating least squares (ALS) methods are both slower, due to their numeric
intensity, and more flexible than eigenvalue–eigenvector problem-based methods for
solving Equation 12.1a and Equation 12.1b. The basic PARAFAC model of Equation
12.1 is expanded to include cross-terms. This designates interactions between factors
in different modes. Simultaneously, the ALS solutions to Equation 12.1 can be
constrained to be positive while, or while not, having unimodal factors in one or all
ways.

12.7.1 PARAFAC / CANDECOMP

PARAFAC refers both to the parallel factorization of the data set R by Equation
12.1a and Equation 12.1b and to an alternating least-squares algorithm for deter-
mining , , and in the two equations. The ALS algorithm is known as
PARAFAC, emanating from the work by Kroonenberg [31], and as CANDECOMP,
for canonical decomposition, based on the work of Harshman [32]. In either case,
the two basic algorithms are practically identical.

The PARAFAC/CANDECOMP algorithm begins with an initial guess of the X-
way and Y-way starting profiles. The initial Z-way profiles are determined by solving

RC = AZT (12.12)

where , and C+ is the generalized inverse of C that can be calculated from
the normal equations or singular-value decomposition of C. In Equation 12.12, RC is
an (I *J) × K matrix. The matrix is constructed by unfolding the K slices of R in the
I–J plane, where RC(j−1)I+i,k = Ri,j,k. Similarly, C is an (I *J) × N matrix formed from
the N columns of  and  where .

Updated estimates of the X-way and Y-way profiles are found by solving

RA = AXT (12.13)

TABLE 12.4
Squared Correlation Coefficient (angle cosign) 
between True and Estimated Profiles from DTLD and 
PARAFAC

DTLD PARAFAC PARAFAC (× 3 noise)

X-way (analyte) 1.000 1.000 0.999
Y-way (analyte) 1.000 1.000 0.9997
X-way (interferent 1) 0.9976 0.9998 0.9987
X-way (interferent 2) 0.9990 0.9998 0.9988
Y-way (interferent 1) 0.9996 0.9999 0.9985
Y-way (interferent 2) 0.9985 0.9998 0.9976

X̂ Ŷ Ẑ

Ẑ C R= +
C

X̂ Ŷ C X Yj I i n i n j n( ) , , ,− + =1
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and

RB = BYT (12.14)

such that , and , respectively. RA and RB are constructed
analogously to RC. Their construction requires the respective unfolding of R in the
Y–Z and X–Z planes. This forms a (J * Z) × I matrix for RA, and an (I * K) × J
matrix for RB. Similarly to C,  and . The algo-
rithm proceeds iteratively, cycling through Equation 12.12 through Equation 12.14
until the convergence criterion is satisfied. For each cycle, the most recent estimates
of X and Y are used to determine in Equation 12.12; the most recent estimates
of Y and Z are used to determine in Equation 12.13; and the most recent estimates
of X and Z are used to determine in Equation 12.14. There are, consequently,
two important factors that influence the final estimates of the X-way, Y-way, and
Z-way profiles. They are the starting guess for and , and the convergence
criterion.

The PARAFAC algorithm is sensitive to the initial guess of the solutions
for and . Inaccuracy of the initial guess may cause PARAFAC to become
trapped in local minima and, hence, not to converge to the global optimum least-
squares solution. To further the problem, the PARAFAC algorithm can become
delayed in “swamps” far from the optimum solution [33]. Consequently, the speed
of the algorithm is sensitive to the initial guess for and . The starting iteration
of and can be provided by a random number generator [34], DTLD [35], or
a priori knowledge of analyte profiles. Multiple initial guesses should be considered
when employing a random starting value, even though these efforts markedly
increase the analysis time. Although the solution for each starting value will be
different, if all, or most, of the solutions are similar, it is safe to assume that
PARAFAC has converged near the global optimal solution. The convergence time
for PARAFAC can be improved by initializing the algorithm with guesses near the
optimal solution. These guesses can come from DTLD or reference spectra of species
known, or highly suspected, to be in the data set. Care should be employed when
utilizing the DTLD solutions, since DTLD often yields significant imaginary com-
ponents in predicting X-way and Y-way factors. The problems caused by initializing
PARAFAC with imaginary components can be circumvented by applying the real
components of and generated from DTLD. Alternatively, the absolute value,
or complex modulus, of and from DTLD may be employed.

Two popular convergence criteria for the PARAFAC algorithm are based on (1)
the changes in the residuals, or unmodeled data, between successive iterations, and
(2) changes in the predicted profiles between successive iterations. In the first case,
the algorithm is terminated when the root averages of the squared residuals between
successive iterations agree to within an absolute or relative tolerance; for example,
they may be within 10−6 of one another. While such fit-based stopping criteria are
conceptually easy to visualize, a faster method for determining convergence relies on
the correlation between the predicted X-, Y-, and Z-way profiles between successive
iterations. When the product of the cosines between successive iterations in the X-, Y-,
and Z-modes approaches arbitrarily close to 1, say within 10−6, the algorithm is

X̂ A R= +
A

Ŷ B R= +
B

A Y Zk J k n j n k n( ) , , ,− + =1 B X Z
k I k n i n k n( ) , , ,− + =

1

Ẑ
X̂

Ŷ

X̂ Ŷ

X̂ Ŷ

X̂ Ŷ
X̂ Ŷ

X̂ Ŷ
X̂ Ŷ
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terminated. The cosine in the X-way is determined by unfolding the I × N matrices,
and , into the column vectors  and . The cosine θX is then defined as

(12.15)

The other two terms, cos θY and cos θZ, are defined equivalently. Convergence,
when cos θX * cos θY * cos θZ > 1 − 10−6, implies that successive iterations in all
three modes are correlated to at least 1 − 10−6. Mitchell and Burdick [32] cite, besides
speed, an additional benefit to correlation-based convergence. In cases when two
factors are highly correlated in one or more of the three ways, ALS methods may
become mired in “swamps,” where the fit of the model changes slightly but the
correlation between the predicted X-, Y-, and Z-ways changes significantly between
successive iterations. Following numerous iterations, the ALS algorithm will emerge
from the “swamp,” and the residuals and estimated profiles will then both rapidly
approach the optimum. Hence, correlation-based convergence is more resistant to
inflection points in the error response surface when optimizing the model.

12.7.1.1 Tuckals

The generalization of the PARAFAC model is the Tucker3 model. As with
PARAFAC, the Tucker3 model decomposes a data cube R into three matrices: X,
Y, and Z. In addition, it also generates a core of reduced dimensions, C, from R

of the Tucker3 model is Tuckals , or TUCK Alternating Least Squares. This iterative
Tuckals algorithm proceeds similarly to the PARAFAC/CANDECOMP algorithm.
However, instead of cycling through three sets of parameters, four sets of parameters
must be successively updated, , , , and . Furthermore, while PARAFAC
preassumes N, or the number of factors in the model, Tucker3 requires that the three
dimensions of the core array, P, Q, and R, be assumed.

12.7.1.2 Solution Constraints

ALS algorithms are more flexible than rank-annihilation-based algorithms because
constraints can be placed onto the solutions derived from ALS methods. Ideally,
constraints are not needed to achieve accurate, meaningful estimates of concentration
and spectral profile. However, the presence of slight nonlinear interactions among the
true underlying factors, of highly correlated factors, or of low SNR will often result
in profile estimates that are visually unsatisfying and that contain significant quanti-
tative errors derived from the model. These effects can often be minimized by employing
constraints to the solutions that are based on a priori knowledge or assumptions of
the data structure. Common a priori constraints include prior knowledge of sample
concentrations, spectral profiles, or analyte characteristics. ALS algorithms implicitly
constrain the estimated profiles to lie in real space as opposed to the rank annihilation
methods, which may fit factors with imaginary components to the data.

X̂
old

X̂
new

x̂
old

x̂
new

cos
( )( )

θX =
x x

x x x x
old new

old old new new

X̂ Ŷ Ẑ Ĉ
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Perhaps the most common constraint consciously placed on the PARAFAC or
Tucker3 models is nonnegativity. When one of the modes represents concentrations,
chromatographic profiles, or spectra, constraining the solutions to yield only non-
negative profile estimates often improves the quantitative and qualitative accuracy
of the models. Care should be taken when applying nonnegativity constraints to
spectra, such as absorbance and quenching in fluorescence, which can be manifested,
detected, and modeled as negative profiles. Nonnegative estimates of the three-way
profiles can be obtained by replacing the least-squares update of any given profile
with the nonnegative least squares (NNLS) solution that is well defined in the
mathematics literature [36]. The method described in [36] is readily available as a
MATLAB function. The downside of this method is that it is numerically intensive
compared with computing the regular least-squares solution for each update. Alter-
natively, nonnegativity can be more rapidly enforced by setting all negative parts of
each profile to zero, or its absolute value, prior to updating. Empirically, convergence
is achieved with fewer floating-point operations compared with calculating the true
NNLS solution. However, the relative efficacy of setting all negative values to zero
compared with NNLS is unknown.

A second constraint often applied in three-way calibration of chromatographic
data is unimodality. This constraint exploits the knowledge that chromatographic
profiles have exactly one maximum. Unlike NNLS, there is a method to calculate
the true unimodal least-squares update during each iteration. With unimodal con-
straints, a search algorithm is implemented to find the maximum of each profile and
to ensure that, from that maximum, all values are monotonically nonincreasing.
Values found to be not monotonically decreasing can be suppressed with equality
constraints.

The third common constraint is based on a priori knowledge of the three-way
profiles. In this case, the known relative concentrations of the standards, or the known
spectral profiles of one or more components, can be fixed as part of the solution. In
the Tucker3 model, it is common to restrict some of the potential interactions
between factors when they are known not to exist. Constraint values, again, lend
themselves to careful selection, as the scaling of the factors must still be taken into
account.

12.7.1.3 PARAFAC Application

and PARAFAC × 3 noise (PARAFAC with the addition of a factor of three greater

Table 12.3, except that it also presents the squared correlation coefficients between
the true and estimated X-way and Y-way profiles for all three species present in the
six samples. It is first evident that PARAFAC slightly outperforms DTLD when
applied to the same calibration problem. However, the improvement often lies in
the third or fourth decimal place and is hardly significant when compared with the
overall precision of the data. This near equivalence of DTLD and PARAFAC is
rooted in the fact that DTLD performs admirably, and there is little room for
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improvement to “refine” the DTLD solution. A direct visual comparison of the true
and estimate profiles is not shown; however, the sets of two curves are identical to
the resolution of the plots.

Increasing the magnitude of the added random errors by a factor of three has
surprisingly little effect on the accuracy of PARAFAC. The largest prediction errors
are associated with the samples that include the least-significant analyte spectra, S1
and M1. In these two samples, the standard deviations for the added errors are 60%
and 120% of the mean analyte signal, yet the associated prediction errors are only
4% and 30%, respectively. This is even more impressive when considering that the
absolute prediction errors are only 0.04 and 0.15 units over a spread of 2.5 units for
all samples.

12.8 EXTENSIONS OF THREE-WAY METHODS

GRAM is applicable in more areas than just calibration of two samples: one standard
and one unknown, where multiple measurements are collected in two interlinked
“ways.” Kubista [37] developed a three-way DATAN (DATa ANalysis) method
applied to calibration of multiple samples with fluorescence measurements, each at
two excitation wavelengths and multiple digitized emission wavelengths. In this
application, the X-way contains the concentration information and Λ contains the
relative excitation cross sections of the fluorescent species present. Many of the
limitations of this procrustean rotation-based method can be circumvented by
employing GRAM instead [38]. It is easy to see that in this application it is unnec-
essary to be limited to two excitation wavelengths and analysis by GRAM. If more
excitation wavelengths are desired, either DTLD or least-squares fitting of the
PARAFAC model is appropriate.

In special applications, GRAM or any least-squares solution to the PARAFAC
model can also be applied to qualitative analysis of one sample. Windig and Antalek
applied GRAM in the direct exponential curve-resolution algorithm (DECRA) to
facilitate signal resolution with pulsed gradient spin echo (PGSE) NMR data [39].
Here, the exponential signal decay rate in the X-way was exploited to reconstruct
the data set into two matrices, where the signal intensity in the second matrix
differed by a factor of the decay constant from the signal intensity in the first
matrix. From the original I × J matrix, R1 is constructed from the first I – 1 NMR
spectra and R2 is constructed from the last I – 1 NMR spectra. The estimated
X-way factors, scaled by ����, yield information regarding the diffusion coefficients
of the N species present, and the Y-way factors are estimates of the NMR spectra
for each species. MATLAB functions for DECRA can be found on the Chemolab

Although the PARAFAC model is a “trilinear” model that assumes linear addi-
tivity of effects between species, the model can be successfully employed when
there is a nonlinear dependence between analyte concentration and signal intensity.
Provided that the spectral profiles in the X- and Y-ways are not concentration
dependent, the resolved Z-way profiles will be a nonlinear function of analyte
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concentration. By utilizing multiple standards with DTLD or PARAFAC, the non-
linear relationship between  and analyte concentration can be determined, and the
analyte concentration can be estimated using univariate nonlinear regression of the
appropriate column of onto concentration [30].

The PARAFAC model is often applicable for calibration when a finite number
of factors cannot fully model the data set. In these traditionally termed “nonbilinear”
applications, the additional terms in the PARAFAC model successively approximate
the variance in the data set. This approximation is analogous to employing additional
factors in a PLS or PCR model [5]. Nonbilinear rank annihilation (NBRA) exploits
the property that, in many cases when the PARAFAC model is applied to a set
consisting of a pure analyte spectrum and mixture spectrum, some factors will be
unique to the analyte, some will be unique to the interferent, and some factors will
describe both analyte and interferent information [40]. Accurate calibration and
prediction can be accomplished with the factors that are unique to the analyte. If
these factors can be found by mathematically multiplying the pure spectrum by α,
then the estimated relative concentrations that decrease by 1/α are unique to the
analyte [41]. In Reference [41] the necessary conditions required to enable accurate
prediction with nonbilinear data are discussed.

As with univariate and multivariate calibration, three-way calibration assumes
linear additivity of signals. When the sample matrix influences the spectral profiles
or sensitivities, either care must be taken to match the standard matrix to those of
the unknown samples, or the method of standard additions must be employed for
calibration. Employing the standard addition method with three-way analysis is
straightforward; only standard additions of known analyte quantity are needed [42].
When the standard addition method is applied to nonbilinear data, the lowest pre-
dicted analyte concentration that is stable with respect to the leave-one-out cross-
validation method is unique to the analyte.

12.9 FIGURES OF MERIT

Analytical figures of merit, for example sensitivity, selectivity, and signal to SNR,
are useful tools for comparing different analytical techniques. The connection of
figures of merit from univariate to three-way analysis has been extensively reviewed
and critiqued [3, 43]. With two-way and three-way calibration, the figures of merit
are based on the “net analyte signal,” the NAS. The NAS is loosely defined as the
portion of the analyte signal that is employed for calibration. This is contrasted to
the full analyte signal that is used in univariate applications. With multivariate data
analysis, the NAS is the portion of the pure analyte signal that is orthogonal to all
interferents present in the data set, where

NAS = ra
T(I − RiRi

+) (12.16)

Here ra is the instrumental response of the analyte, and Ri is the collection of
instrumental responses of the interferents. The remaining figures of merit are then
derived from the NAS.

Ẑ

Ẑ
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In three-way calibration, as with two-way calibration, the figures of merit are
similarly derived from the three-way NAS. Assuming that all calculations are per-
formed at unit analyte concentration, the selectivity, sensitivity, and SNR are the
magnitude of the NAS divided by the magnitude of the analyte signal, concentration,
and noise, respectively. Mathematically, these equations can be found from

SEL = ||NAS||F /||RA||F (12.17a)

SEN = ||NAS||F/c (12.17b)

S/N = ||NAS||F/||E||F (12.17c)

Here RA is the response of the analyte at unit concentration, c; E is a matrix of
expected, or estimated, errors; and || ||F is the Froebus norm, or root sum of the
squared elements, of a matrix. It should be noted that while the NAS is a matrix
quantity, selectivity (SEL), sensitivity (SEN), and signal-to-noise (S/N) are all vector
quantities. The limit of detection and the limit of quantitation can also be determined
via any accepted univariate definition by substituting ||NAS||F for the analyte signal
and ||E||F for the error value.

There is still debate over the proper manner to calculate the NAS. In the earliest
work by Ho et al. [20], the three-way NAS is calculated as the outer product of the
multivariate NAS from the resolved X-way and Y-way profiles, such that

xNAS = xa
T(I − XiXi

+) (12.18a)

and

yNAS = ya
T(I − YiYi

+) (12.18b)

Therefore,

NAS = xyT (12.18c)

Similarly, Messick et al. [44] suggested that the NAS can be found by orthogonal
projection of Equation 12.16 following unfolding each I × J sample and interferent
matrix into an IJ × 1 vector. The three-way NAS is the consequent NAS of Equation
12.16 refolded into an I × J matrix. The third alternative, propounded by Wang
et al. [41], is to construct the NAS from the outer products of the X-way and Y-way
profiles that are unique to the analyte. In this method, no projections are explicitly
calculated.

12.10 CAVEATS

There are numerous other considerations not covered in this chapter that a thorough
treatment of three-way analysis would demand. Perhaps the most important of these
is the choosing of the optimal number of factors, N, to include in the three-way
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model. In truth, there is no single, best way to decide on N and to consequently
validate and justify the choice of N. Initial estimates of N can be derived from PCA
analysis of the unfolded data matrix R where any, or all, of the statistical, empirical,
or a priori methods for deducing the optimal number of factors in a PCA model
can be employed [11]. Similarly, visual inspection of the estimated factors is often
beneficial. Inclusion of too few factors yields overly broad and featureless factors.
On the other hand, inclusion of too many factors often yields nonsensical or redun-
dant factors.

Visual inspection of the estimated factors is not to be trusted in the presence of
degenerate factors, which occur when two or more factors are collinear in one or
more of the three “ways.” When this is the case, in the concentration way or Z-way,
the PARAFAC model is still valid, but the rotational uniqueness of the X-way and
Y-way profiles of the degenerate factors is lost. This often results in estimated profiles
that are hard to interpret. If the collinearity occurs in the X-way or Y-way, the
PARAFAC model may not be appropriate, and the constrained Tucker3 model should
be used instead. Collinearity in the X-way or Y-way can be checked by successively
performing PCA on data unfolded to an I × (J*K) matrix, and then to a J × (I*K)
matrix. If there are no collinearities in the X- or Y-ways, the optimal number of
factors determined by both unfoldings will be the same.

Once the choice of N, or potential range of N, is determined, the next concern
is the choice of model and algorithm. As discussed previously, DTLD is considerably
faster than ALS algorithms for determining model parameters; however, ALS algo-
rithms are more flexible and robust to small model errors. Similarly, two alternatives
for nonnegative least-squares fitting of model parameters were discussed. Table 12.5
lists the speeds, in FLOPs, for the algorithms and data employed as examples in
this chapter. GRAM is easily the fastest algorithm, but it is incapable of handling
four, then two, samples concurrently. The FLOPs required for a complete GRAM
analysis increase geometrically when all combinations of multiple samples are to
be included in the analysis. DTLD is slower than GRAM when fewer than four or
five samples are analyzed, but for larger data sets GRAM will be considerably faster.

TABLE 12.5
Relative Speed (in GigaFLOPs) for the Discussed 
Three-Way Methods

Method G FLOPs

RAFA (mean of 6)  4.2
GRAM (mean of 18)  1.8
DTLD  8.3
PARAFAC (DTLD start)  41.9
PARAFAC (× 3 noise, DTLD start)  43.5
PARAFAC (× 3 noise, DTLD start, NNLS) 1111
PARAFAC (random start; 5 replicates) µ = 36.4; σ = 8.1
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PARAFAC is much slower than all other alternatives. Employing DTLD as an initial
guess of the X-way and Y-way profiles often reduces the computation time for
PARAFAC. This is evident in Figure 12.6. When a low convergence criterion is
employed, demonstrated as the dotted line at –6, PARAFAC with DTLD is much
faster than PARAFAC with random initial guesses. However, when a more conser-
vative stopping criterion is employed, such as cos θX * cos θY * cos θZ > 1 − 10−9

from Equation 12.15, refining the DTLD model shows no improvement in speed

PARAFAC with the DTLD start converges in 43.5 gigaFLOPs, and the means of
five replicate random starting points converge on an average of 36.4 gigaFLOPs,
with a standard deviation of 8.1 gigaFLOPs. However, it must be noted that this is
only one example, and it should be viewed as a potential trend, not a hard rule of
thumb. Finally, when constraints are placed on the PARAFAC solution, such as
nonnegative least squares, the number of FLOPs required to achieve the final solution
increases rapidly. It is a judgment call, best left up to the individual users, to decide
on what is an acceptable speed/performance trade.
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APPENDIX 12.1 GRAM ALGORITHM

function [X,Y,c_est]=gram_demo(STAN,UNKN,rank,opts)
%Generalized Rank Annihilation Method as per Wilson, Sanchez, and Kowalski.

%   

%INPUT

%    STAN: Standardized matrix of known analyte concentration.

%   UNKN: Mixture matrix of indeterminate constitution.

%    rank: Estimated rank of the concatenated STAN and UNKN matrices

%    opts: By default GRAM_WSK employs the concatenated matrices and 
   [STAN;UNKN]

%    Setting options to any non-zero value employs the additive matrix 
   [STAN+UNKN] for GRAM.

%

%Output:

%    X: Estimated, unit length, intrinsic profiles in the X order.

%    Y: Estimated, unit length, intrinsic profiles in the Y order.

%    c_est:Estimated relative constituent concentrations in UNKN.

%

% Initialization

if nargin = = 3
   opts = 0;

end

%Compute row space and column space

if opts = = 0
   [v,s,u]=svd([STAN,UNKN]',0); col_sp=u(:,1:rank);
   [u,s,v]=svd([STAN;UNKN],0);  row_sp=v(:,1:rank);

else

   [u,s,v]=svd([STAN+UNKN],0);  col_sp=u(:,1:rank);
row_sp=v:,1:rank);

end

%Reduce STAN and UNKN into square, full rank matrices and solve GEP

STAN=col_sp'*STAN*row_sp; UNKN=col_sp'*UNKN*row_sp;
[STAN_t,UNKN_t,q,z,Eig_vec]=qz(STAN,UNKN);

%Calculate X, Y, and c_est

Y=row_sp*pinv(Eig_vec)'; Y=Y./(ones(length(Y),1)*sum(Y.^2).^.5);
X=col_sp*(STAN+UNKN)*Eig_vec; X=X./(ones(length(X),1)*sum(X.^2).^.5);
c_est=diag(UNKN_t)./diag(STAN_t);
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APPENDIX 12.2 DTLD ALGORITHM

function [X,Y,Z] =dtld(DATA,nsam,npc)
%Direct Trilinear Decomposition as per Booksh, Lin, Wang, and Kowalski

%

%INPUT

%    DATA: Samples concatenated [S1;S2; ... ;Sn].

%    nsam: Number of samples in DATA.

%    rank: Number of factors to be employed in the model.

%

%OUTPUT

%    X: Estimate row intrinsic profiles.

%    Y: Estimate column intrinsic profiles.

%    Z: Estimate sample intrinsic profiles (relative concentrations).

%Initialization  

[i,j]=size(DATA); i=i/nsam; row_X=[]; tube_Z=[]; Q=[];
% UNFOLD KEEPING COLUMN SPACE INTACT

col_Y=DATA;
% UNFOLD KEEPING ROW SPACE INTACT

for r=0:nsam-1
   row_X=[row_X,DATA(i*r+1:i*(r+1),:)];

end

% UNFOLD KEEPING TUBE SPACE INTACT

for z=0:nsam-1
   DATA_temp=DATA(i*z+1:i*(z+1),:); 

     tube_Z = [tube_Z,DATA_temp(:)];
end

%COMPUTE REDUCED SPACES IN THREE ORDERS

%COMPUTES ECONOMY SIZE SVD TO SAVE SPACE

[u,s,v]=svd(col_Y,0); V=v(:,1:npc);
[u,s,v]=svd(row_X',0); U=v(:,1:npc);
[u,s,v]=svd(tube_Z,0); W=v(:,1:2);

%PROJECT DATA TO UVW BASIS SET

G1=zeros(npc); G2=zeros(npc);
for g = 1:nsam

   G2=G2+W(g,1).*U'*DATA(i*(g-1)+1:i*g,:)*V;
   G1=G1+W(g,2).*U'*DATA(i*(g-1)+1:i*g,:)*V;

end

%SOLVE QZ

[G1_t,G2_t,q,z,Eig_vec]=qz(G1,G2);

%CALCULATE X, Y, and c_est

Y=V*pinv(Eig_vec)'; Y=Y./(ones(length(Y),1)*sum(Y.^2).^.5);
X=U*(G1+G2)*Eig_vec; X=X./(ones(length(X),1)*sum(X.^2).^.5);
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%Estimate Sample Concentrations

for i=1:npc
   xy=X(:,i)*Y(:,i)';  Q=[Q;xy(:)'];

end

Z=tube_Z'*Q'*inv(Q*Q');

APPENDIX 12.3 PARAFAC ALGORITHM

function 
[X,Y,Z,stats,X_dtld,Y_dtld,Z_dtld]=als_3d(DATA,nsam,rank,in_opt,x_opt,y_op
t,z_opt);

%INPUT

%    DATA:Column augmented samples e.g. [SAMP1;SAMP2;SAMP3]

%    nsam:Number of samples in DATA.

%    rank:Number of factors to use in the model.

%    in_opt: Initialization options (1 for random X,Y vectors; default 
%     for DTLD).

%    x_opt: X profile constraint options (1 for non-negativity; 2 for 
%     unimodality; 3 for both; default for none).

%    y_opt: Y profile constraint options (1 for non-negativity; 2 for 
%     unimodality; 3 for both; default for none).

%    z_opt: Z profile constraint options (1 for non-negativity; 2 for 
%     unimodality; 3 for both; default for none).

%

%OUTPUT

%    X: Estimate of the normalized X order intrinsic profiles.

%    Y: Estimate of the normalized Y order intrinsic profiles.

%    Z: Estimate of the normalized Z order intrinsic profiles.

%    stats: correlation between [X,Y,Z,product of the 3 correlations]

%      Terminates algorithm when 1-product is less than 10e-6.

%      Initial Divide-by-0 warning is a byproduct of this step. Ignore it!

%    X_init:Initial X vector guess.

%    y_init:Initial Y vector guess.

% Initialization

if nargin < 4, in_opt = 0; end
if nargin < 5, x_opt = 0; end
if nargin < 6, y_opt = 0; end
if nargin < 7, z_opt = 0; end
UCCold = 0; UCCnew = 1e-4; Zold=ones(nsam,rank); stats=[];
[x_size,y_size]=size(DATA); x_size=x_size/nsam;
reps=0; row_X=[]; tube_Z=[]; Q=[];

%Find initial X and Y vectors

if in_opt = = 1
   x_init=rand(x_size,rank);
   y_init=rand(y_size,rank);

else

   [x_init,y_init] = dtld(DATA,nsam,rank);
end

Xold=real(x_init); Yold=real(y_init);
if x_opt= =1 | x_opt= =3, Xold=abs(Xold); end
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if y_opt= =1 | y_opt= =3, Yold=abs(Yold); end
if z_opt= =1 | z_opt= =3, Zold=abs(Zold); end

%UNFOLD KEEPING COLUMN SPACE INTACT

col_Y=DATA;
%UNFOLD KEEPING ROW SPACE INTACT

for r=0:nsam-1
   row_X=[row_X,DATA(x_size*r+1:x_size*(r+1),:)];

end

%UNFOLD KEEPING SAMPLE SPACE INTACT

for z=0:nsam-1
   DATA_temp=DATA(x_size*z+1:x_size*(z+1),:);
   tube_Z = [tube_Z,DATA_temp(:)];

end

%Major iterative loop

while UCCnew > 1e-9 & reps < 2000

   %CALCULATE NEW Z

   for i=1:rank
   xy=Xold(:,i)*Yold(:,i)'; Q=[Q;xy(:)'];

   end

   if z_opt= =1 | z_opt= =3 %Apply non-negativity constraints
  for i=1:nsam

   Znew(i,:)=nnls(Q',tube_Z(:,i))';
  end

else %UNCONSTRAINED SOLUTION

Znew=tube_Z'*Q'*inv(Q*Q');
end

Q=[ ];
if z_opt= =2 | z_opt= =3 %APPLY UNIMODALITY CONSTRAINTS

   [val,index]=max(abs(Znew));
   for i = 1:rank

    for j = index(i):-1:2
     if ((Znew(j,i)-Znew(j-1,i))*...

                        Znew(index(i),i))<0, 
                        Znew(j-1,i)=Znew(j,i); 
                   end

  end

  for j = index(i):1:nsam-1
     if ((Znew(j,i)-Znew(j+1,i))*...

                         Znew(index(i),i))<0, 
                         Znew(j+1,i)=Znew(j,i); 
                    end

   end

     end

    

% CALCULATE NEW X

for i=1:rank
   yz=Yold(:,i)*Znew(:,i)'; Q=[Q;yz(:)'];

end

if x_opt= =1 | x_opt= =3 %APPLY NON-NEGATIVITY CONSTRAINTS
  for i=1:x_size

DK4712_C012.fm  Page 505  Saturday, March 4, 2006  2:04 PM

© 2006 by Taylor & Francis Group, LLC



506 Practical Guide to Chemometrics

          Xnew(i,:)=nnls(Q',row_X(i,:)')';
  end

else %UNCONSTRAINED SOLUTION

 Xnew=row_X*Q'*inv(Q*Q');
end

Q=[ ];
if x_opt= =2 | x_opt= =3 %APPLY UNIMODALITY CONSTRAINTS

 [val,index]=max(abs(Xnew));
 for i = 1:rank

  for j = index(i):-1:2
     if ((Xnew(j,i)-Xnew(j-1,i))*...

                        Xnew(index(i),i))<0, 
                        Xnew(j-1,i)=Xnew(j,i); 
                   end

  for j = index(i):1:x_size-1
     if ((Xnew(j,i)-Xnew(j+1,i))*...

                        Xnew(index(i),i))<0, 
                        Xnew(j+1,i)=Xnew(j,i); 

     end

        end

       end

Xnew=Xnew./(ones(x_size,1)*sum(Xnew));

% CALCULATE NEW Y

for i=1:rank
   xz=Xnew(:,i)*Znew(:,i)'; Q=[Q;xz(:)'];

end

if y_opt= =1 | y_opt= =3 %Apply non-negativity constraints
for i=1:y_size

   Ynew(i,:)=nnls(Q',col_Y(:,i))';
end

else %UNCONSTRAINED SOLUTION

Ynew=col_Y'*Q'*inv(Q*Q');
end

Q=[ ];
if y_opt= =2 | y_opt= =3 %APPLY UNIMODALITY CONSTRAINTS

[val,index]=max(abs(Ynew));
        for i = 1:rank

   for j = index(i):-1:2
   if ((Ynew(j,i)-Ynew(j-1,i))*...

                Ynew(index(i),i))<0, 
                 Ynew(j-1,i)=Ynew(j,i); 
           end

end

for j = index(i):1:y_size-1
            if ((Ynew(j,i)-Ynew(j+1,i))*...
                  Ynew(index(i),i))<0, 
                  Ynew(j+1,i)=Ynew(j,i); 
             end

end

end

Ynew=Ynew./(ones(y_size,1)*sum(Ynew));;

%TEST FOR CONVERGENCE
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UCCX = (Xnew(:)'*Xold(:))/((Xnew(:)'*Xnew(:))*...           
          (Xold(:)'*Xold(:)))^.5;

UCCY = (Ynew(:)'*Yold(:))/((Ynew(:)'*Ynew(:))*...
          (Yold(:)'*Yold(:)))^.5;

UCCZ = (Znew(:)'*Zold(:))/((Znew(:)'*Znew(:))*...
          (Zold(:)'*Zold(:)))^.5;

UCCnew = 1 - (UCCX*UCCY*UCCZ);
Xold=Xnew; Yold=Ynew; Zold=Znew;
reps=reps+1;
if reps = = 1

UCCnew = 1;
end

stats = [stats;1-UCCX, 1-UCCY, 1-UCCZ, UCCnew];
end

X=Xnew; Y=Ynew; Z=Znew;

DK4712_C012.fm  Page 507  Saturday, March 4, 2006  2:04 PM

© 2006 by Taylor & Francis Group, LLC



 

509

 

13

 

Future Trends in 
Chemometrics

 

Paul J. Gemperline

 

CONTENTS

 

13.1 Historical Development of Chemometrics ................................................510
13.1.1 Chemometrics — a Maturing Discipline....................................511

13.2 Reviews of Chemometrics and Future Trends ..........................................511
13.2.1 Process Analytical Chemistry .....................................................512
13.2.2 Spectroscopy................................................................................512
13.2.3 Food and Feed Chemistry ...........................................................512
13.2.4 Other Interesting Application Areas ...........................................513

13.3 Drivers of Growth in Chemometrics.........................................................513
13.3.1 The Challenge of Large Data Sets..............................................514
13.3.2 Chemometrics at the Interface of Chemical

and Biological Sciences ..............................................................514
13.4 Concluding Remarks .................................................................................516
References..............................................................................................................516

The term “chemometrics” was coined more than 30 years ago in 1971 by Svante
Wold. Through his collaborations with Bruce Kowalski, they recognized the impor-
tance of this new field and formed the International Chemometrics Society in 1974.
Together, they are considered to be the founders of a new subdiscipline called
chemometrics. The term “chemometrics” first appeared in the chemical literature in
1975 [1, 2]. These early pioneers recognized the power of multivariate methods for
uncovering hidden relationships between variables and objects. In the beginning,
their research in the area of chemometrics focused on pattern recognition methods
and applications [3–5], principal component analysis [6], and partial least-squares
[7], among other topics. In the previous 12 chapters of this book, various authors
have covered the most important topics of chemometrics, including those listed
above, that were used by the earliest pioneers of the field. The methods described
by these early authors and the applications they addressed are just as relevant, useful,
and important today as they were 30 years ago.

Over the last 30 years, chemometrics has evolved into an interdisciplinary
subdiscipline of chemistry that combines mathematical modeling, multivariate sta-
tistics, and chemical measurements. There have been numerous definitions of the
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term “chemometrics,” and a recent paper by Workman cites no fewer than ten [8].
All ten definitions share elements in common with the above definition. The ultimate
goal of research in chemometrics is to find new and powerful ways to extract
information from chemical data. It has been exciting to participate in this field of
research during the past 25 years because advances in computer technology have
made it possible to make physical/chemical measurements more rapidly than it is
possible to process them. At the same time, advances in computer technology and
graphics have opened up new possibilities for data analysis.

 

13.1 HISTORICAL DEVELOPMENT OF CHEMOMETRICS

 

Many of the developments in chemometrics can be attributed to the successful
introduction and application of methods known for a long time and developed in
other fields. The methods of principal component analysis (PCA) and partial least
squares (PLS) are good examples. Principal component analysis was originally
developed by Pearson in 1901 [9] and independently developed later by Hotelling
in 1933 [10]. Applications of principal component analysis can be found in a work
by Rao in 1964 [11] and in a book by Gnanadesikan in 1977 [12]. The application
of principal component analysis in analytical chemistry can be found as early as
1972 in the deconvolution of two overlapped GC (gas chromatography) peaks [13],
in 1973 for estimating the distributions of different dyes in photographic mixtures
[14], and in 1974 for the detection of overlapping GC-MS (gas chromatography–
mass spectrometry) peaks [15].

Partial least squares was developed in the 1960s by Herman Wold, working
in the field of econometrics. His son, Svante Wold, introduced PLS to the field of
chemistry and further developed the method [16]. Application of these powerful
methods to interesting chemical problems produced innovative solutions to chem-
ical problems previously thought to be intractable. In many ways, the introduction
of multivariate methods of analysis into the discipline of chemistry was revolu-
tionary.

The historical development of near-infrared spectroscopy (NIR) nearly parallels
the historical development of chemometrics. In fact, the development of chemomet-
rics, especially multivariate calibration methods such as PLS, has been an important
enabling technology for the development of quantitative NIR applications. Prior to
the widespread availability of desktop computers and powerful multivariate calibra-
tion software, the NIR spectral region (700 to 3000 nm) was considered useless for
most routine analytical analysis tasks because so many chemical compounds give
broad overlapping absorption bands in this region. During the past 30 years, however,
NIR spectroscopy has rapidly replaced many time-consuming conventional methods
of analysis such as the Karl Fisher moisture titration, the Kjeldahl nitrogen titration
method for determining total protein [17], and the ASTM gasoline engine method
for determining motor octane ratings of gasoline [18]. These applications would be
impossible without chemometric methods like multivariate calibration. These
advanced calibration methods can be used to “unmix” complicated patterns of broad
overlapping absorption bands observed in the information-rich NIR spectral region.
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From its humble beginnings in the early days more than 30 years ago, chemometrics
has evolved into a mature discipline. Today, a search of 

 

Chemical Abstracts

 

 using
the term “multivariate analysis” turns up more than 16,000 citations, with more than
2000 citations in 2004 alone. A significant number of the citations for the term
“multivariate analysis” from 2004 can be attributed to work at the interface between
chemistry, biology, medicine, and the treatment of human disease, with such topics
as pharmacology, immunology, and toxicology, including the analysis of tumor
markers and other biomarkers. A search of 

 

Chemical Abstracts

 

 using the term
“principal component analysis” turns up nearly 12,000 citations, with about 1200
citations in 2004 (Figure 13.1). The application areas in which these PCA publica-
tions appear are diverse and include examples from the study of protein chemistry,
air pollution, IR spectroscopy, food analysis, mass spectrometry, environmental and
water pollution, process control, gas chromatography, soil chemistry, DNA microar-
ray technology, sensors, NMR (nuclear magnetic resonance) spectroscopy, HPLC
(high-performance liquid chromatography), and QSAR (quantitative structure–
activity relationships). The diversity of application areas and these signs of signifi-
cant growth over the past 30 years ago suggest that chemometrics is a mature field,
well accepted by the scientific community and firmly entrenched in a wide range of
interdisciplinary studies.

 

13.2 REVIEWS OF CHEMOMETRICS AND
FUTURE TRENDS

 

The chemometrics community has done an excellent job of providing frequent general
literature reviews and application-specific reviews that provide excellent sources of
information on past trends and allow one to make extrapolation to areas of future
growth. The most important regular series of reviews are the “Fundamental Reviews

 

FIGURE 13.1
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in Chemometrics,” published every 2 years in the journal, 

 

Analytical Chemistry

 

[19–30]. Topical areas in chemometrics are also frequently reviewed. Examples of
specialized methods in chemometrics have been the topic of reviews, including the
wavelet transform [31], partial least squares [32], self-modeling curve resolution [33],
genetic algorithms [34], and calibration transfer [35, 36], among others.

 

13.2.1 P

 

ROCESS

 

 A

 

NALYTICAL

 

 C

 

HEMISTRY

 

One of the major application areas of chemometrics is process analytical chemistry.
Reviews of this topic are also published every 2 years in 

 

Analytical Chemistry

 

 [37–40].
The goal of research in this field is to use measurements from chemical analyzer systems
and chemometrics to monitor, optimize, and control chemical processes. These appli-
cations are typically oriented toward increasing the yield of a process, improving product
quality, reducing waste, reducing processing time, and improving safety. Chemical
analyzers include systems based on temperature, pressure and flow sensors, gas or liquid
chromatography, flow-injection analysis, electrochemistry, x-ray spectrometry, NMR
and microwave spectroscopy, mass spectrometry, ultrasonic methods, and spectroscopic
methods including UV/Visible, near-infrared, mid-infrared, and Raman spectroscopy.
Typical chemometrics methods for process analytical applications include multivariate
calibration methods such as time-series analysis, partial least-squares (PLS), and mul-
tivariate statistical process control (MSPC).

 

13.2.2 S

 

PECTROSCOPY

 

Chemometrics finds widespread use in spectroscopy, and there are a number of
reviews that describe advances in this area. In a review by Geladi [41], some of the
main methods of chemometrics are illustrated with examples. A series of three
reviews addresses the topic of chemometrics in spectroscopy [42–44]. Part 1 has
199 references and focuses specifically on chemometric techniques applied to spec-
troscopic data [42]. Part 2 has 68 references and focuses on data-preprocessing
methods and data transformations aimed at reducing noise, removing effects of
baseline offsets, and filtering to remove noise [43]. Part 3 focuses on multiway
methods of analysis applied to spectroscopic data [44].

The application of chemometrics in near-infrared spectroscopy is finding wide-
spread use in many different industries for monitoring the identity and quality of
raw materials and finished products in the food and agricultural industry [46],
polymer, pharmaceutical, and organic chemical manufacturing industries [18, 47].

 

13.2.3 F

 

OOD

 

 

 

AND

 

 F

 

EED

 

 C

 

HEMISTRY

 

Chemometrics and multivariate methods are increasingly being used in the food and
feed chemistry industries for exploratory analysis of large data sets, for multivariate
quality assurance and quality control, for detecting adulteration, and for estimating
chemical, physical, and sensory properties of food. Multivariate approaches to these
kinds of applications are essential for constructing mathematical models of sensory
properties that are inherently multivariate. Historically, chemometrics has been an
important enabling technology in this field, and a recent review on this topic provides
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a good starting point for individuals interested in learning more about this important
application area of chemometrics [48]

 

. 

 

Rapid spectroscopic/chemometric methods
for detecting adulteration and confirming the authenticity of food products have been
reviewed [49]. Such methods are being increasingly demanded by food processors,
consumers, and regulatory bodies. Another review [50] describes the use of chemo-
metrics and low-resolution time-domain NMR measurements (relaxation profiles)
for the characterization of food products. Reviews of other application-specific
chemometrics/spectroscopic methods in the food industry cover postharvest evalu-
ation of fruit and vegetable quality [51], characterization of essential oils [52], and
the history and methods of chemometrics in the wine industry [53].

 

13.2.4 O

 

THER

 

 I

 

NTERESTING

 

 A

 

PPLICATION

 

 A

 

REAS

 

Many other important application areas of chemometrics have been the subject of
reviews and are too numerous to list here. A sampling of reviews in this category
illustrates the breadth and diversity of chemometrics application areas. A review of
applications in smart sensors [54] describes how chemometrics is an important
enabling technology for the development of smart and reliable sensor systems. A
review of environmental forensics [55] describes how numerical methods are critical
in the process of identifying the chemical fingerprints of complex contaminant
sources in environmental systems. Often, multiple sources are present at different
geographic sites. By use of appropriate chemometric methods, these mixtures of
different sources can be mathematically resolved to identify them and map their
temporal and spatial distributions.

 

13.3 DRIVERS OF GROWTH IN CHEMOMETRICS

 

Chemometrics is a child of the information age. Inexpensive computers, beginning
with minicomputers in the 1970s and microcomputers in the 1980s, fueled enormous
growth in the development of computerized scientific instrumentation. New instru-
ments are now available that were impossible to envision 20 or 30 years ago. For
example, confocal hyperspectral imaging microscopes are capable of recording
images of live microorganisms [56]. A recently described three-dimensional hyper-
spectral imaging microscope has 250-nm resolution in the 

 

x

 

–

 

y

 

-plane and 750-nm
resolution in the 

 

z

 

-direction [57, 58]. The instrument is capable of measuring a 512-
point fluorescence spectrum in the visible range at each voxel in the image at a
rate of up to 8300 spectra per second, giving a data-acquisition rate of more than
4.2 Mb/s. A recently described hyperspectral image of a 20 

 

×

 

 60-mm yeast
genome microarray slide at 10-

 

µ

 

m resolution represented more than 3 Gbyte of
data [58, 59]. The challenge with such a flood of data is to develop fast, efficient,
and effective chemometric methods aimed at extracting meaningful information from
the mountain of data produced [59]. The availability of inexpensive, powerful com-
puters capable of performing sophisticated numerical data-analysis tasks has also
helped fuel the development of chemometrics. The same drivers that pushed the
development of chemometrics forward during the past 30 years are still at work
today in many fields, including hyperspectral image analysis.
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13.3.1 T
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HALLENGE
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ETS

 

There are many challenging data analysis problems yet to be solved that will drive
the development of chemometrics in the future. One of these is the very large data
sets that will require development of specialized methods and algorithms for treating
them. Some research groups have already begun developing methods for handling
huge data sets in specialized applications [57, 60, 61]. One method for dealing with
these kinds of problems includes the use of PCA or wavelet compression. This
approach works well for data sets when huge amounts of the same kind of variables
are measured. For example, compression in the 

 

x–y

 

-plane of hyperspectral images
can dramatically reduce the size of such data arrays, with a corresponding loss of

 

x–y

 

-resolution in the image. Estimation of spectroscopically unique features can
easily be accomplished in these low-resolution images to produce pure-component
chemical images or “maps.” Once the pure-component spectra of these features are
extracted, they can easily be used to estimate a chemical composition map at full
resolution. An alternative approach to coping with huge data sets is to segment the
problem or divide the problem into smaller-sized problems. This approach can also
work well for hyperspectral images, where pure-component features are extracted
from small segments of the image and then used to estimate the chemical image at
full resolution [57].

For many types of data sets, it is not possible to use compression or segmentation.
In such cases, multiblock models [62] and hierarchical models can prove helpful
[63]. Multiblock models work by dividing variables into meaningful blocks that are
measured on similar parts of a process or system [64]. Multiblock projection methods
based on PCA and PLS can be used in situations where processes can be naturally
blocked into subsections [62, 65, 66]. The multiblock projection methods allow
establishment of monitoring charts for individual process subsections as well as for
entire processes. Computational efficiency can be dramatically improved by blocking
large-scale problems into smaller blocks. By this approach, meaningful information
can be extracted from very large historical databases [67]. Special events or faults
are also generally detected earlier using these approaches. When a special event or
fault occurs in a subsection of the process, multiblock methods can generally detect
the event earlier and reveal the subsection within which the event has occurred.
Hierarchical models typically employ blocking on two levels, an upper level, in
which the relationships between blocks are modeled, and a lower level, which shows
the details of each block. On each level, PLS or PCA scores and loadings are
available for model interpretation. For more complex problems, hierarchical models
can be extended to several hierarchical levels, thereby providing a scalable approach
to modeling very large data sets [64].

 

13.3.2 C

 

HEMOMETRICS
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Some of the most exciting opportunities for innovation and new developments in
the field of chemometrics lie at the interface between chemical and biological
sciences. These opportunities are made possible by the exciting new scientific
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advances and discoveries of the past decade that have been made possible by the
rise of “quantitative biology.” The advances made possible by the molecular biology
revolution can be attributed to collaborations between physical scientists and bio-
logical scientists, and between experimentalists and modelers.

Quantitative biology refers to recent developments in high-throughput quantita-
tive experimental methods and the application of modeling approaches to understand
relationships between (a) structure and function in molecules of biological interest,
(b) cellular biochemical processes, (c) evolutionary processes, and (d) networks of
biological molecules and populations. For example, technological advances in the
area of high-throughput technologies have made it possible to elucidate entire
genome sequences. Other technological advances, such as live-cell hyperspectral
imaging, open up the prospects for modeling biochemical networks using spectro-
scopic measurements at the cellular and organelle level. Chemometrics is already
having an impact on these fields.

A recent review of metabonomics describes how the use of chemometrics in
genomics, proteomics, and metabonomics is enabling the pharmaceutical industry to
expand drug pipelines [68]. The field of metabonomics uses multivariate methods of
analysis to extract information about toxicity or the diagnosis of disease from complex
profiles measured by spectroscopic instruments on biological systems. For example,
high-field NMR measurements of biofluids, tissues, and cell cultures produce huge
amounts of data and complex patterns that are difficulty to interpret, but that contain
useful information. Chemometrics can help in extracting this information.

Analysis of complex genomics-based data in systems biology requires multivariate
data-analysis methods to obtain useful information. The variation observed in these
data sets occurs simultaneously on different levels, such as variation between organ-
isms and variation in time. In conventional two-way methods like PCA, the different
types of variation present in these data sets is mathematically confounded. A new
method called multilevel component analysis (MCA) was recently introduced to sep-
arate these different types of variation [69]

 

. 

 

The method was recently demonstrated
using a data set containing 

 

1

 

H NMR spectra of urine collected from 10 monkeys at
29 time points during a 2-month study. In this application, MCA was used to generate
different submodels for different types of variation that are easier to interpret.

Multiway methods such as Tucker3 models and N-way PLS are especially useful
for identifying and separating different sources of variation in different modes that
would otherwise be masked by high levels of variability naturally found in biological
populations. By use of multiway methods, it becomes easier to identify chemically
meaningful information and find interesting correlations from huge tables of unin-
teresting measurements. Metabolomic profiling experiments often contain underly-
ing structure, such as time 

 

×

 

 dose, that cannot be exploited by current biostatistical
methods. Multiway chemometrics methods can appropriately incorporate the struc-
ture of these data sets into multiway models that allow for easier interpretation of
the variation induced by the different factors of the design [70]. For example, a
recent study applied a Tucker3 model to a one-dimensional high-field 

 

1

 

H NMR
spectrum measured from rat urine samples after the animals were exposed to a toxic
substance [71]. The three-way data array consisted of NMR spectra of urine 

 

×

 

 time

 

×

 

 rats. Three groups of rats were studied: a control group, a low-dose group, and a
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high-dose group [71]. The use of Tucker3 analysis on this data set permitted the
investigators to recover variance from low-dose rats as well as earlier detection of
biochemical markers that were otherwise masked in conventional two-way multi-
variate methods of analysis. Another study used multiway PLS and PARAFAC on
two-dimensional diffusion-edited 

 

1

 

H NMR spectra to quantify lipoprotein fractions
in human plasma samples determined by ultracentrifugation [72]. PLS calibration
models were developed for the four main fractions of lipoprotein as well as 11
subfractions with high correlations (

 

R

 

 = 0.75–0.98). Further developments at the
interface between chemometrics and bioinformatics can be expected to improve our
ability to extract meaningful information from these kinds of measurements.

Another recent review describes the use of chemometrics in NIR and Raman
spectroscopy of biological materials, another active area of growth for research in
chemometrics [73]. Clinical applications of NIR spectroscopy as well as biological
and biomedical applications for Raman spectroscopy are rapidly growing areas of
research, enabled by chemometrics and multivariate methods of analysis. Also of
significant biological importance are studies of vibrational optical activity and
Raman optical activity for multicomponent qualitative and quantitative analysis.
Time-resolved step-scan methods as well as surface-enhanced methods and imaging
approaches are yielding unprecedented amounts of data about systems of biological
interest. New chemometrics techniques will be required to obtain useful information
from the flood of data provided by these new applications.

One of the emerging biological and biomedical application areas for vibrational
spectroscopy and chemometrics is the characterization and discrimination of differ-
ent types of microorganisms [74]. A recent review of various FTIR (Fourier transform
infrared spectrometry) techniques describes such chemometrics methods as hierar-
chical cluster analysis (HCA), principal component analysis (PCA), and artificial
neural networks (ANN) for use in taxonomical classification, discrimination accord-
ing to susceptibility to antibiotic agents, etc. [74].

 

13.4 CONCLUDING REMARKS

 

The future of chemometrics lies in the development of innovative solutions to inter-
esting problems. This problem-oriented approach is required because relatively few
advances can be expected in the area of new mathematical and numerical methods.
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