3 (Sem-3/CBCS) PHY HC 3

2021 (Held in 2022)

PHYSICS

(Honours)

Paper: PHY-HC-3036

(Digital Systems and Applications)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1.	Answer	the	following	as	directed:	$1 \times 7 = 7$
----	--------	-----	-----------	----	-----------	------------------

(i)	The	active	components	of	an	IC	are
			(Fii	ll in	the	e ble	ank)

(ii)	Which of the following gates cannot be used as an inverter? (a) NOR (b) NAND (c) X-NOR (d) AND (Choose the correct option)	(vii) How many buses are connected as part of the 8085 A microprocessor? (a) 3 (b) 4 (c) 5 (d) 6 Ishmod of All Ishmoday H (c)
(iii)	The intensity of the spot in a cathode ray tube can be controlled by changing the positive potential on the control grid. (State True or False)	2. Answer the following questions is brief: 2×4=8 (i) What are linear and digital ICs? Give
(iv)	8421 code is code. (Fill in the blank)	examples of them. SA + SA (ii) Convert the following decimal numbers
(v)	A flip-flop can store —	into BCD code:
93	(a) one bit of data	(a) What is race around condition of a provided (b) (a) 2579 JK flip-flop ? How can it be cuminated?
	(b) two bits of data	(b) 29·6
	(c) three bits of data	Write down the Boolean expression for
OI old	(d) any number of bits of data (Choose the correct option)	4 to 1 multiplexer and draw the function table for it.
(vi)	Each term in the standard SOP form is called a (Fill in the blank)	(iv) What are low and high level languages? Give examples. (d)

- 3. Answer **any three** questions from the following: 5×3=15
 - (i) Convert the following as directed:
 - (a) Octal 526 to decimal
 - (b) Octal 356.52 to binary
 - (c) Hexadecimal 12A to decimal
 - (ii) Distinguish between combinational circuits and sequential circuits with examples.
 - (iii) Design a circuit that gives an output $A\overline{B} + \overline{A}B$ using discrete electronic circuits.
 - (iv) What is race around condition of a JK flip-flop? How can it be eliminated?
 - (v) State De Morgan's theorem. Apply De Morgan's theorem to the following expressions:
 - (a) $\overline{(A+\overline{B})(\overline{C}+D)}$
 - (b) $\overline{(\overline{AB} + \overline{CD})(CD + \overline{E}F)}$

- 4. Answer **any three** of the following questions:
 - (i) Draw the block diagram and truth table of a full subtractor. Design a full subtractor logic circuit by using K-map.

 5+5=10
 - (ii) (a) Use the K-map to minimise the

i.
$$X = A\overline{B} + B\overline{C} + \overline{A}C + AB$$

ii.
$$X = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}C + ABC$$

- (b) Express the Boolean function $F = BC + \overline{B}A \quad \text{in a product of}$ maxterms (POS).
- (iii) (a) Draw the logic diagram of a master-slave JK flip-flop and explain its operation with the help of a truth table.

- and a decoder. 4
- (iv) (a) Write down the function of CPU

subtractor logic circuit by using K-map.

(ii) (a) Use the K-map to minimise the

- Oled+o (b) Distinguish between dynamic RAM and static RAM.
- (c) What is a cache memory? What is its function?

4+3+3=10

(v) (a) Draw the block diagram of a

F = BC + FA in a product of

- (b) Explain the function of a program counter in a 8085 microprocessor.
- Write different flag registers of a 8085 microprocessor.

- (d) What are different types of addressing mode in 8085 microprocessor?
- (e) Give an example of a 3-byte instruction.

2+3+2+2+1=10