2019

MATHEMATICS

(Major)

Paper: 5.1

(Real and Complex Analysis)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

Symbols have usual meaning

1. Answer the following questions:

 $1\times7=7$

- (a) Write down a sufficient condition for the equality of f_{xy} and f_{yx} .
- (b) Give an example of a discontinuous function which in Riemann integrable.
- (c) If P^* is a refinement of a partition P of a bounded function f, then write down the relations between U(P, f), $U(P^*, f)$, L(P, f), $L(P^*, f)$.

- (d) Define pole of order n of a complex valued function f(z).
- (e) A function f(z) = u(x, y) + iv(x, y) is defined such that $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$. State whether f is analytic or not.
- (f) Let f(z) = u(x, y) + iv(x, y) be analytic in a region R. Prove that $\frac{\partial (u, v)}{\partial (x, y)} = |f'(z)|^2$.
- (g) Find the fixed points of the transformation w = z + 5.
- **2.** Answer the following questions: $2 \times 4 = 8$
 - (a) Show that

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{y \to 0} \lim_{x \to 0} f(x, y)$$

but $\lim_{(x, y)\to(0, 0)} f(x, y)$ does not exist, where

$$f(x, y) = \frac{xy}{x^2 + y^2}, (x, y) \neq (0, 0)$$
$$= 0, (x, y) = (0, 0)$$

20A/269

(Continued)

(b) Prove that the improper integral

$$\int_{a}^{b} \frac{dx}{(x-a)^{n}}$$

converges if and only if n < 1.

- (c) Let C be the curve in the xy-plane defined by $3x^2y-2y^3 = 5x^4y^2-6x^2$. Find a unit vector normal to C at (1, -1).
- (d) Show that

$$\nabla \equiv \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} = 2 \frac{\partial}{\partial \overline{z}}$$

3. Answer any three parts:

5×3=15

(a) Show that the function

$$f(x, y) = \frac{x^2 y}{x^4 + y^2}, \quad x^2 + y^2 \neq 0$$
$$= 0, \quad x = y = 0$$

possesses first partial derivatives everywhere, including the origin, but the function is discontinuous at the origin.

(b) Prove that a bounded function f is integrable on [a, b] iff for every $\varepsilon > 0$, there exists a partition P of [a, b] such that $U(P, f) - L(P, f) < \varepsilon$.

- (c) Prove that every absolutely convergent improper integral is convergent.
- (d) Given, $u = e^{-x}(x \sin y y \cos y)$, find v such that f(z) = u + iv is analytic.
- (e) Evaluate $\int_C \overline{z} dz$ from z = 0 to z = 4 + 2i along the curve C given by (i) $z = t^2 + it$ and (ii) the line from z = 0 to z = 2i and then the line from z = 2i to z = 4 + 2i.
- 4. Answer any one part :

10

5

(a) (i) Show that f(xy, z-2x) = 0, f is differentiable and $f_v \neq 0$, where v = z-2x satisfies the equation

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 2x$$

(ii) Show that the function

$$f(x, y) = y^2 + x^2y + x^4$$

has a minimum at (0, 0).

- (b) (i) Show that $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ exists if and only if m, n both are positive. 5
 - (ii) Show that the integral $\int_0^1 \frac{\sin(1/x)}{x^p} dx, \ p > 0$

is absolutely convergent for p < 1. 5

- 5. Answer any one part:
 - (a) (i) The roots of the equation in λ $(\lambda x)^3 + (\lambda y)^3 + (\lambda z)^3 = 0$ are u, v, w. Prove that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = -2\frac{(y z)(z x)(x y)}{(u v)(v w)(w u)}$ 5
 - (ii) Prove that if f and g are Riemann integrable on [a, b], then f + g, f g are also Riemann integrable on [a, b].
 - denotes the greatest integer not greater than x, is Riemann integrable in [0, 3].

5

5

- (ii) Prove that if a function f is bounded and integrable on [a, b] and there exists a function F such that F' = f on [a, b], then $\int_a^b f \, dx = F(b) F(a)$.
- 6. Answer any one part :

10

5

5

5

(Continued)

(a) (i) Prove that if

$$w = f(z) = u(x, y) + iv(x, y)$$

is analytic, then

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

- (ii) Let $u(x, y) = \alpha$ and $v(x, y) = \beta$, where u and v are the real and imaginary parts of an analytic function f(z) and α , β are the constants, represent two families of curves. Prove that if $f'(z) \neq 0$, then the families are orthogonal.
- (b). (i) Let f(z) be analytic inside and on a circle C of radius r and centre at z = a. Then prove that

$$f^{(n)}(a) \le \frac{Mn!}{r^n}$$
, $n = 0, 1, 2, ...$

where M is a constant such that |f(z)| < M on C and $f^{(n)}(a)$ represents n-th derivative of f(z) at z = a.

(ii) Let the rectangular region R in the z-plane be bounded by x = 0, y = 0, x = 2, y = 1. Determine the region R' of the w-plane into which R is mapped under the transformation

1. w = z + (1 - 2i)

2. $w = \sqrt{2}e^{i\pi/4}z$

2+3=5
