2022

MATHEMATICS

Full Marks: 100

Pass Marks: 30

Time: Three hours

The figures in the margin indicate full marks for the questions.

	Total = 100
Q. Nos. 14-20 carry 6 marks each	6×7 = 42
Q. Nos. 2-13 carry 4 marks each	4×12 = 48
Q. No. 1 (a-j) carries 1 mark each	$1 \times 10 = 10$

1. Answer the following questions:

1×10=10

তলৰ প্ৰশ্নবোৰৰ উত্তৰ দিয়া ঃ

(a) Give an example of a column matrix which is also a row matrix.

এটা স্তম্ভ মৌলকক্ষৰ উদাহৰণ দিয়া যিটো শাৰী মৌলকক্ষও হয়।

(b) "Diagonal elements of a skew-symmetric matrix are always zero" — Why?

"বিষম-সমমিত মৌলকক্ষৰ বিকৰ্ণ মৌলবোৰ সদায় শূন্য" — কিয়?

(c) Let f(x) = [x], where [x] is a greatest integer function and g(x) = x. Find the value of $(f \circ g)(-\frac{1}{3})$.

ধৰা হ'ল f(x)=[x], য'ত [x] হ'ল গৰিষ্ঠ অখণ্ড ফলন আৰু g(x)=x. $(f\circ g)(-\frac{1}{3})$ -ৰ মান উলিওৱা।

(d) Differentiate $\sin x$ with respect to e^x .

 e^x -ৰ সাপেক্ষে $\sin x$ -ৰ অৱকলজ উলিওৱা।

(e) Write down the value of $\int_{-2}^{2} |x| dx$.

 $\int_{-2}^{2} |x| dx - 4$ মান লিখা।

(f) Find the order of the differential equation

$$\left(\frac{d^4y}{dx^4}\right)^5 + \sin(y'') = 0.$$

$$\left(\frac{d^4y}{dx^4}\right)^5 + \sin(y'') = 0$$
 অৱকল সমীকৰণটোৰ ক্ৰম নিৰ্ণয় কৰা।

(g) Find the principal value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$.

$$sin^{-1}igg(rac{1}{\sqrt{2}}igg)$$
 - ৰ মুখ্যমান উলিওৱা।

(h) Fill in the blank:

খালী ঠাই পূৰ কৰা ঃ

$$\lim_{x\to 0^-}\frac{1}{x}=\underline{\qquad}.$$

- (i) What is the direction cosine of X-axis?

 X-অক্ষৰ দিশাংক কিমান ?
- (j) Let A and B be any two given sets. If $f: A \rightarrow B$ is a onto function, then find the range of f.

ধৰা হ'ল A আৰু B যিকোনো দুটা সংহতি। যদি $f:A \to B$ এটা আচ্ছাদক ফলন হয়, তেন্তে f–ৰ পৰিসৰ উলিওৱা।

2. Define an equivalence relation. Check whether the following relation R defined on the set of integers \mathbb{Z} is an equivalence relation or not, where $R = \{(a, b) \mid a - b \text{ is an integer}\}$. 1+3=4

সমতুল্যতা সম্বন্ধৰ সংজ্ঞা দিয়া। \mathbb{Z} -ত সংজ্ঞাবদ্ধ তলৰ সম্বন্ধ R টো সমতুল্যতা সম্বন্ধ হয়নে নহয় পৰীক্ষা কৰা, য'ত $R=\{\;(a,\;b)\;|\;a-b\;\;$ এটা অখণ্ড সংখ্যা $\}$ ।

OR / অথবা

Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined as f(x) = 2x - 3 is invertible. Also find the inverse of f.

দেখুওৱা যে $f:\mathbb{R} o \mathbb{R}$ -ত সংজ্ঞাবদ্ধ f(x)=2x-3 ফলনটো প্রতিলোমনীয়। f-ৰ প্রতিলোমও উলিওৱা।

3. Show that 4 দেখুওৱা যে

$$\sin^{-1}\frac{3}{5} - \sin^{-1}\frac{8}{17} = \cos^{-1}\frac{84}{85}$$

OR / অথবা

Solve the following equation:

তলৰ সমীকৰণটো সমাধান কৰা ঃ

[4]

$$2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$$

4. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then find the value λ and μ

such that $A^2 + \lambda A + \mu I = 0$, where 0 is zero matrix of order 2.

4

যদি $A=\begin{bmatrix}2&3\\1&2\end{bmatrix}$ আৰু $I=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ হয়, তেন্তে λ আৰু μ –ৰ মান উলিওৱা যাতে

 $A^2 + \lambda A + \mu I = 0$, য'ত 0 হৈছে 2 ঘাতৰ শূন্য মৌলকক্ষ।

OR / অথবা

Determine the value of a for which the system is consistent. 4 a - ৰ মান নিৰ্ণয় কৰা যাৰ বাবে প্ৰণালীটো সুসংগত হয়।

$$x+y+z=1$$
$$2x+3y+2z=2$$

$$ax + ay + 2az = 4$$

32T MATH [5] Contd.

32T MATH

5. Find the value of k so that the following function

$$f(x) = \begin{cases} \frac{\sin 100 x}{99}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$$

is continuous at x = 0.

यिम $f(x) = \begin{cases} \frac{\sin 100 x}{99}, & \text{यिम } x \neq 0 \\ k, & \text{यिम } x = 0 \end{cases}$

ফলনটো x=0 বিন্দুত অবিচ্ছিন্ন হয়, তেন্তে k ৰ মান নিৰ্ণয় কৰা।

6. Find $\frac{dy}{dx}$ if — 2+2=4

উলিওৱা $\frac{dy}{dx}$ যদিহে —

- $(i) \quad \sin^2 x + \cos^2 y = 1$
- (ii) $u = e^{\cos x}$
- 7. Prove that the greatest integer function defined by

$$f(x) = [x], 0 < x < 2$$
 is not differentiable at $x = 1$.

প্ৰমাণ কৰা যে f(x) = [x], 0 < x < 2-ৰ দ্বাৰা সংজ্ঞাবদ্ধ গৰিষ্ঠ অখণ্ড ফলনটো x = 1 বিন্দৃত অৱকলনীয় নহয়।

[6]

OR / অথবা

If (যদি)
$$e^y(x+1)=1$$
, show that (দেখুওৱা যে)

$$\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2.$$

8. Evaluate : 2+2=4

মান নিৰ্ণয় কৰা ঃ

(a)
$$\int \left(x^{3/2} + 2e^x - \frac{1}{x}\right) dx$$

(b)
$$\int \sin^3 x \cos^2 x \, dx$$

OR / অথবা

Evaluate:

মান নিৰ্ণয় কৰা ঃ

$$\int \frac{x+3}{\sqrt{5-4x-x^2}} dx$$

9. Find the equations of the tangent and normal to the curve $x^{2/3} + y^{2/3} = 2$ at (1, 1).

 $x^{2/3}+y^{2/3}=2$ বক্ৰৰ $(1,\ 1)$ বিন্দুত স্পৰ্শক আৰু অভিলম্বৰ সমীকৰণ উলিওৱা।

32T MATH

4

[7]

Contd.

Find the local maxima and local minima, if any, of the function $f(x) = x^3 - 6x^2 + 9x + 15$.

 $f(x) = x^3 - 6x^2 + 9x + 15$ ফলনটোৰ স্থানীয় গৰিষ্ঠ আৰু স্থানীয় লঘিষ্ঠ মান উলিওৱা, যদি আছে।

10. A particle moves along the curve $6y = x^3 + 2$. Find the point(s) on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.

এটা কণিকা $6y = x^3 + 2$ বক্ৰৰে চলাচল কৰে। বক্ৰটোৰ সেই বিন্দু (বোৰ) উলিওৱা য'ত x -স্থানাংক তকৈ 8 গুণ বেছি বেগত y-স্থানাংক পৰিৱৰ্তিত হয়।

OR / অথবা

Show that the function $f(x) = \cos 3x$ is neither strictly increasing nor decreasing on $(0, \frac{\pi}{2})$.

দেখুওৱা যে $f(x) = \cos 3x$ ফলনটো $(0, \frac{\pi}{2})$ -ত সতত বধর্মান বা হ্রাসমান এটাও নহয়।

4

11. Evaluate $\int_{0}^{5} (x+1) dx$ as the limit of a sum.

যোগফলৰ চৰম মান হিচাপে $\int\limits_0^5 (x+1)\,dx$ -ৰ মান নিৰ্ণয় কৰা।

OR / অথবা

Evaluate:

মান নিৰ্ণয় কৰা ঃ

$$\int_{0}^{\pi/2} \frac{\sin x}{1 + \cos^2 x} \, dx$$

12. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes OX, OY and OZ.

(দখুওৱা যে $\hat{i}+\hat{j}+\hat{k}$ ভেক্টৰটো OX, OY আৰু OZ অক্ষৰ লগত সমভাৱে হেলনীয়া হয়।

OR / অথবা

State the triangle inequality for any two vectors and prove it.
1+3=4
থিকোনো দুটা ভেক্টৰৰ বাবে ত্ৰিভুজ অসমিকাটো লিখি প্ৰমাণ কৰা।

- 13. Probability of solving a specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that 2+2=4
 - (i) the problem is solved
 - (ii) exactly one of them solves the problem.

A আৰু B য়ে এটা বিশেষ সমস্যা স্বতন্ত্ৰভাৱে সমাধান কৰাৰ সম্ভাৱিতা ক্ৰমে $\frac{1}{2}$ আৰু $\frac{1}{3}$ । যদি সমস্যাটো সমাধানৰ বাবে উভয়ে স্বতন্ত্ৰভাৱে চেষ্টা কৰে, তেন্তে সম্ভাৱিতা নিৰ্ণয় কৰা যাতে —

(i) সমস্যাটো সমাধান হয়

32T MATH

(ii) তেওঁলোকৰ ঠিক এজনে সমস্যাটোৰ সমাধান আগবঢ়ায়।

Contd.

OR / অথবা

Let X denote the number of hours Rita studies during a randomly selected school day. The probability that X can take the values x, has the following form:

$$P(X=x) = \begin{cases} 0.1, & \text{if } x=0\\ kx, & \text{if } x=1 \text{ or } 2\\ k(5-x), & \text{if } x=3 \text{ or } 4\\ 0, & \text{otherwise} \end{cases}$$

where k is an unknown constant.

- (a) Find the value of k.
- (b) What is the probability that Rita studies at least two hours, exactly two hours and at most two hours? 1+1+1+1=4

যাদৃচ্ছিকভাৱে নিৰ্বাচন কৰা স্কুলীয়া দিনত কোনোবা এদিন ৰীতাৰ অধ্যয়ন কৰা মুঠ ঘণ্টাৰ সংখ্যাটো X ৰে বুজোৱা হ'ল। X—ৰ মান x হোৱাৰ সম্ভাৱিতাক নিম্নোক্ত ৰূপত প্ৰকাশ কৰা হৈছে ঃ

$$P(X=x)= \left\{ egin{array}{ll} 0.1\,, & {
m aff} & x=0 \ & kx\,, & {
m aff} & x=1 \ {
m al} & 2 \ & k(5-x)\,, & {
m aff} & x=3 \ {
m al} & 4 \ & 0\,, & {
m onject} \end{array}
ight.$$

য'ত k এটা অজ্ঞাত ধ্ৰুৱক।

(a) k-ৰ মান নিৰ্ণয় কৰা।

32T MATH

(b) ৰীতাই কমপক্ষে দুই ঘণ্টা, সঠিক দুই ঘণ্টা আৰু সৰ্বোচ্চ দুই ঘণ্টা অধ্যয়ন কৰাৰ সম্ভাৱিতাবোৰ কিমান ?

[10]

14. Find the minors and cofactors of the elements of the determinant 3+3=6

$$\begin{bmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{bmatrix}$$

OR / অথবা

Find A^{-1} by using elementary transformation, where — 6
মৌলিক ৰূপান্তৰ প্ৰক্ৰিয়া প্ৰয়োগ কৰি A^{-1} উলিওৱা য'ত —

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

15. Define homogeneous function of degree n. Solve the differential equation 1+5=6

$$(x^2+xy)dy = (x^2+y^2)dx$$

n মাত্ৰাৰ সমমাত্ৰিক ফলনৰ সংজ্ঞা দিয়া।

 $\left(x^2+xy\right)dy=\left(x^2+y^2\right)dx$ অৱকল সমীকৰণটোৰ সমাধান উলিওৱা।

OR / অথবা

(i) Solve the differential equation:

অৱকল সমীকৰণটোৰ সমাধান উলিওৱা ঃ

$$x\frac{dy}{dx} + (2x+1)y = xe^{-2x}$$

(ii) Form the differential equation of the family of circles touching the X-axis at origin.

[12]

মূলবিন্দুত X- অক্ষক স্পূৰ্শ কৰা বৃত্তৰ পৰিয়াল এটাৰ অৱকল সমীকৰণটো গঠন কৰা।

16. Integrate:

অনুকলন কৰা ঃ

(a)
$$\int \frac{x-1}{\sqrt{x^2-1}} \, dx$$

(b) $\int x \sin^{-1} x \, dx$

2+4=6

3

OR / অথবা

(a)
$$\int \left(\frac{2\cos x - 3\sin x}{6\cos x + 4\sin x} \right) dx$$

(b)
$$\int \frac{x^3 + x + 1}{x^2 - 1} \, dx$$
 2+4=6

17. For any three vectors \vec{a} , \vec{b} , \vec{c} , prove that

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}.$$

যিকোনো তিনিটা ভেক্টৰ \vec{a} , \vec{b} , \vec{c} -ৰ বাবে প্ৰমাণ কৰা যে $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ ।

OR / অথবা

Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Evaluate the quantity

$$\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$$
 if $|\vec{a}| = 1$, $|\vec{b}| = 4$ and $|\vec{c}| = 2$.

 $ar{a}$, $ar{b}$ আৰু $ar{c}$ ভেক্টৰ তিনিটাই $ar{a}+ar{b}+ar{c}=ar{0}$ চৰ্ত সিদ্ধ কৰে। $\mu=ar{a}.ar{b}+ar{b}.ar{c}+ar{c}.ar{a}$ –ৰ মান নিৰ্ণয় কৰা যদিহে $\left|ar{a}\right|=1$, $\left|ar{b}\right|=4$ আৰু $\left|ar{c}\right|=2$ হয়।

32T MATH

[13]

Contd.

32T MATH

18. Find the shortest distance between the lines

$$\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k}) \text{ and}$$

$$\vec{r} = (2\hat{i} - \hat{j} - \hat{k}) + \mu (2\hat{i} + \hat{j} + 2\hat{k}).$$

$$ar{r}=\left(\hat{i}+2\hat{j}+\hat{k}
ight)+\lambda\left(\hat{i}-\hat{j}+\hat{k}
ight)$$
 আৰু $ar{r}=\left(2\hat{i}-\hat{j}-\hat{k}
ight)+\mu\left(2\hat{i}+\hat{j}+2\hat{k}
ight)$ ৰেখা দুডালৰ মাজৰ নূন্যতম দূৰত্ব উলিওৱা।

OR / অথবা

Find the equation of the plane passing through the point (-1, 3, 2) and perpendicular to each of the planes x+2y+3z=5 and 3x+3y+z=0.

(-1, 3, 2) বিন্দুৰে যোৱা আৰু x+2y+3z=5 আৰু 3x+3y+z=0 সমতল দুখনৰ প্ৰত্যেকৰে লম্বভাৱে থকা সমতলখনৰ সমীকৰণ উলিওৱা।

6

19. Minimize Z = 3x + 5y

subject to x + 3y > 3

$$x + y \ge 2$$

$$x, y \ge 0$$

 $x+3y \ge 3$

 $x + y \ge 2$

x , $y \ge 0$ সীমাবদ্ধতা সাপেক্ষে Z = 3x + 5y -ৰ সৰ্বনিম্ন মান উলিওৱা।

32T MATH

[14]

OR / অথবা

Minimise and Maximise Z = 5x + 10y subject to

$$x + 2y \le 120$$

$$x + y \ge 60$$

$$x - 2y \ge 0$$

 $x, y \ge 0$

 $x + 2y \le 120$

 $x + y \ge 60$

 $x - 2y \ge 0$

32T MATH

x, $y \ge 0$ সাপেক্ষে Z = 5x + 10y -ৰ সৰ্বোচ্চ আৰু সৰ্বনিম্ন মান উলিওৱা।

20. Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is a hostlier?

এখন মহাবিদ্যালয়ৰ 60% য়ে ছাত্ৰাবাসত আৰু 40% য়ে ছাত্ৰাবাসত নাথাকে বুলি জানিব পৰা গ'ল। আগৰ বছৰৰ ফলাফল অনুসৰি বছেৰেকীয়া পৰীক্ষাত ছাত্ৰাবাসত থকা সকলো ছাত্ৰৰ 30% য়ে আৰু ছাত্ৰাবাসত নথকা ছাত্ৰসকলৰ 20% য়ে A গ্ৰেড পাইছিল। বছৰৰ অন্তত মহাবিদ্যালয়খনৰ যাদৃচ্ছিকভাৱে বাছনি কৰা এজন ছাত্ৰই A গ্ৰেড পালে। ছাত্ৰজন ছাত্ৰাবাসৰ আবাসী হোৱাৰ সম্ভাৱিতা কিমান ?

OR / অথবা

Find the mean number of heads in three tosses of a fair coin.
এটা নিখুঁত মুদ্ৰা তিনিবাৰ টছ কৰি পোৱা মুণ্ড সংখ্যাৰ মাধ্য নিৰ্ণয় কৰা।

[15]

Contd.