Total number of printed pages-11

3 (Sem-3 /CBCS) MAT HC 1

2022

MATHEMATICS

(Honours)

Paper: MAT-HC-3016

(Theory of Real Functions)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer any ten parts:

- $1 \times 10 = 10$
- (a) Is every point in I a limit point of $I \cap Q$?
- (b) Find $\lim_{x\to 1} \frac{x^2 x + 1}{x + 1}$.
- (c) Let f(x) = sgn(x). Write the limits $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$.

(d) Let
$$p: \mathbb{R} \to \mathbb{R}$$
 be the polynomial function
$$p(x) := a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 if $a_n > 0$, then $\lim_{x \to \infty} p(x) = ?$

(e) Let f be defined on
$$(0, \infty)$$
 to \mathbb{R} .
Then the statement

" $\lim_{x\to\infty} f(x) = L$ if and only if

 $\lim_{x\to 0^+} f\left(\frac{1}{x}\right) = 1$ " is true **or** false.

(f) Let
$$A \subseteq \mathbb{R}$$
 and let $f_1, f_2,, f_n$ be function on A to \mathbb{R} , and let c be a cluster point of A . If $\lim_{x \to c} f_k(x) = L_k$, $k = 1, 2,, n$, then $\lim_{x \to c} (f_1, f_2,, f_n) = ?$

(g) Is the function
$$f(x) = \frac{1}{x}$$
 continuous on $A = \{x \in \mathbb{R} : x > 0\}$?

(h) Write the points of continuity of the function
$$f'(x) = |x|$$
.

- (i) "A rational function is continuous at every real number for which it is defined." Is it true or false?
- If $\lim_{x\to c} f(x) = b$ and g is continuous at b, then $\lim_{x\to c} (g\cdot f)(x) = g(b)$." Write whether this statement is correct or not.
- (k) The functions f(x) = x and $g(x) = \sin x$ are uniformly continuous on \mathbb{R} . Is fg uniformly continuous on \mathbb{R} ? If not, give the reason.
- (l) A continuous periodic function on R is bounded and _____ on \mathbb{R} .

 (Fill in the blank)
- (m) "The derivative of an odd function is an even function." Write true **or** false.
- (n) Write the derivative of the function f(x)=|x| for $x \neq 0$.

(o) If f is differentiable on
$$[a, b]$$
 and g is a function defined on $[a, b]$ such that $g(x) = kx - f(x)$ for $x \in [a, b]$. If $f'(a) < k < f'(b)$, then find $g'(c)$.

$$f'(a) < k < f'(b)$$
, then find $g'(c)$.

(p) "Suppose $f: [0,2] \to \mathbb{R}$ is continuous on $[0,2]$ and differentiable on $(0,2)$, with $f(0)=0$, $f(2)=1$. If there exists $c \in (0,2)$, then $f'(c)=\frac{1}{3}$." Is it true or false?

(q) Find
$$\lim_{x\to 0} \frac{x^2 + x}{\sin 2x}$$
.
(r) "The function $f(x) = 8x^3 - 8x^2 + 1$ has two roots in $[0,1]$." Write true **or** false.

2. Answer **any five** parts:
$$2 \times 5 = 10$$
(a) Use the definition of limit to show that $\lim_{x \to 2} (x^2 + 4x) = 12$.

(b) Find
$$\lim_{x\to 0} x \sin\left(\frac{1}{x^2}\right)$$
, $(x \neq 0)$.

d) Define
$$g: \mathbb{R} \to \mathbb{R}$$
 by
$$g(x) = \begin{cases} 2x & \text{for } x \in Q \\ x+3, & \text{for } x \in Q^c \end{cases}$$

Find all points at which g is continuous. (e) Show that the 'sine' function is continuous on \mathbb{R} .

(f) Show that the function
$$f(x) = \frac{1}{x}$$
 is uniformly continuous on $[a, \infty]$, where $a > 0$

(g) Using the mean value theorem, show that

$$\frac{x-1}{x} < \ln(x) < x-1 \text{ for } x > 1.$$

Contd.

(h) Show that $f(x) = x^{1/3}$, $x \in \mathbb{R}$, is not differentiable at x = 0.

3 (Sem-3 /CBCS) MAT HC 1/G

3 (Sem-3 /CBCS) MAT HC 1/G

(i) Let
$$f(x) = \frac{\ln(\sin x)}{\ln(x)}$$

Find $\lim_{x\to 0^+} f(x)$.

(j) State Darboux's theorem.

3. Answer any four parts:

continuous at c.

Prove that a number $c \in \mathbb{R}$ is a cluster point of a subset A of \mathbb{R} if and only if there exists a sequence (x_n) in A such

5×4=20

that $\lim_{n\to\infty} x_n = c$ and $x_n \neq c$ for all $n \in \mathbb{N}$.

(b) State and prove squeeze theorem.

- (c) Let $A \subseteq \mathbb{R}$, let f and g be functions on A to \mathbb{R} , and let f and g be continuous at a point c in \mathbb{A} . Prove that f-g and fg are
- (d) Give an example of functions f and g that are both discontinuous at a point c in \mathbb{R} such that f+g and fg are continuous at c.

- (e) If $f: A \to \mathbb{R}$ is a Lipschitz function, then prove that f is uniformly continuous on A.
- (f) Determine where the function f(x) = |x| + |x-1| from \mathbb{R} to \mathbb{R} is differentiable and find
- (g) Find $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$.

the derivative.

- (h) Determine whether or not x = 0 is a point of relative extremum of the function $f(x) = x^3 + 2$.
- 4. Answer any four parts: 10×4=40
 (a) Let f: A → R and let c be a cluster point of A. Prove that the following are equivalent:
 - (i) $\lim_{x\to c} f(x) = L$

(ii) Given any
$$\varepsilon$$
-neighbourhood $V_{\varepsilon}(L)$ of L , there exists a δ -neighbourhood $V_{\delta}(c)$ of c such that if $x \neq c$ is any point $V_{\delta}(c) \cap A$, then $f(x)$ belongs to $V_{\varepsilon}(L)$.

(b) (i) Find
$$\lim_{x\to 0} \frac{\sqrt{1+2x}-\sqrt{1+3x}}{x+2x^2}$$
, where $x>0$.

(ii) Prove that
$$\lim_{x\to 0} \cos(\frac{1}{x})$$
 does not exist but $\lim_{x\to 0} x \cos(\frac{1}{x}) = 0$.

(c) (i) Let
$$f(x) = e^{\frac{1}{x}}$$
 for $x \neq 0$. Show that $\lim_{x \to 0^+} f(x)$ does not exist in \mathbb{R} but $\lim_{x \to 0^-} f(x) = 0$.

(ii) Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be such that $f(x+y) = f(x) + f(y)$ for all x , y in \mathbb{R} . Suppose that $\lim_{x \to 0} f(x) = L$ exists. Show that $L = 0$ and then prove that f has a limit at every point c in \mathbb{R} .

(d) (i) Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be a function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$
Show that f is not continuous at any point of \mathbb{R} .

- (ii) Prove that every polynomial function is continuous on \mathbb{R} . 5
- (e) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$, and let |f| be defined by |f|(x) = |f(x)| for $x \in A$. Also let $f(x) \ge 0$ for all $x \in A$ and let \sqrt{f} be defined by $(\sqrt{f})(x) = \sqrt{f(x)}$ for $x \in A$. Prove that if f is continuous at a point c in A, then |f| and \sqrt{f} are continuous at c. 5+5=10
- (f) (i) State and prove Bolzano's intermediate value theorem.

 1+4=5
 - (ii) Let A be a closed bounded interval and let $f: A \to \mathbb{R}$ is continuous on A. Prove that f is uniformly continuous on A.

let
$$f:A\to\mathbb{R}$$
 and $g:A\to\mathbb{R}$ be functions differentiable at c . Prove that

(i) the function f + g is differentiable at c and (f + g)'(c) = f'(c) + g'(c) 5

(ii) if
$$g(c) \neq 0$$
, then the function $\frac{f}{g}$ is differentiable at c and

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c) g(c) - f(c) g'(c)}{(g(c))^2}$$
 5

- (h) State and prove Rolle's theorem. Give the geometrical interpretation of the theorem. (2+5)+3=10
- (i) (i) Use Taylor's theorem with n = 2 to approximate $\sqrt[3]{1+x}$, x > -1.
 - (ii) If $f(x) = e^x$, show that the remainder term in Taylor's theorem converges to zero as $n \to \infty$ for each fixed x_0 and x.

(i)
$$\lim_{x\to 0^+} x^{\sin x}$$

(ii)
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\sec x}$$

5+5=10