3 (Sem-2) CHM M 1

2019

CHEMISTRY

(Major)

Paper : 2.1

(Physical Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) Name two gases for which the compressibility factor be never less than 1 at any temperature and pressure.
 - (b) State the principle of equipartition of energy.
 - (c) Define coefficient of viscosity.

(d) According to ____ law, relative lowering of vapour pressure is equal to mole fraction of the solute in solution.

(Fill in the blank)

(e) What is meant by abnormal colligative properties?

- (f) At 298 K, the conductivity of 0·1 M KCl solution is 1·286×10⁻³ S cm⁻¹ and its resistance is 337·6 ohm, when conductivity is measured with a cell. Calculate the cell constant.
- (g) Define buffer action.
- 2. Answer the following questions:

2×4=8

- (a) Write the causes of deviations from ideal behaviour by the real gases.
- (b) Define vapour pressure of a liquid. What are the highest and lowest limits of the variation of vapour pressure with temperature?
- (c) State Henry's law. Give one limitation of the law.
- (d) What is corrosion? Give two preventive measures of corrosion of metals.

3. Answer any three of the following questions:

5×3=15

- (a) Explain how molar heat capacities at constant pressure and at constant volume of an ideal gas can be calculated using the principle of equipartition of energy.
- (b) Give a general discussion on the structure of liquid water and ice.
- (c) Using the concept of chemical potential, show that the elevation of boiling point of a dilute solution containing a nonvolatile non-electrolyte solute is directly proportional to the molal concentration of the solute.
- (d) What is battery? What are primary and secondary batteries? Give one example of each.
- 4. (a) Answer either [(i) and (ii)] or [(iii), (iv) and (v)]:
 - (i) Derive van der Waals' equation of state for n moles of a gas. Explain how van der Waals' equation explains the behaviour of real gases.
 4+2=6

A9/**756**

(Turn Over)

- (ii) The van der Waals' constants for HCl(g) are a=371.843 kPa dm⁶ mol⁻² and $b=4.08\times10^{-2}$ dm³ mol⁻¹. Find the critical constants for HCl(g).
- (iii) Explain what is meant by distribution of molecular speed.

 Deduce the expression for the root-mean-square speed of gas molecules from Maxwell distribution expression.

 2+3=5
- (iv) For $O_2(g)$ molecules, the root-meansquare velocity at temperature T_1 , the average velocity at temperature T_2 and most probable velocity at T_3 are all equal to 1.5×10^3 m s⁻¹. Find T_1 , T_2 and T_3 .
 - (v) For a gas, the van der Waals' constants are a=0 and b=0. Explain whether the gas can be liquidified or not.
- (b) Answer *either* [(i), (ii) and (iii)] or [(iv) and (v)]:
 - (i) Write the virial equation of state of 1 mole of a gas. Explain the terms involved in it.

(ii) Deduce the expressions for critical constants P_c , V_c and T_c in terms of the van der Waals' constants.

(iii) Using principle of equipartition of energy, calculate the energy of 1 mol CO₂(g) at 298 K.

(iv) On the basis of kinetic theory, obtain an expression for coefficient of viscosity of a gas.

- (v) Define vapour pressure of a liquid.

 Explain a method of determination of vapour pressure of a liquid. 1+4=5
- (c) Answer either [(i), (ii) and (iii)] or [(iv) and (v)]:
 - (i) Define mobility of ions in solution.
 Explain why mobility of H⁺ ion is highest in aqueous solution. 1+2=3
 - (ii) A moving boundary experiment was carried out with 20 mol m⁻³ NaCl solution in water. In the experiment,

(Turn Over)

4

4

5

1

2

a current of 1.60×10^{-3} A moved the boundary through a distance 0.06 m in 34 minutes and 30 seconds. Calculate the transport number of Na⁺ ion, if the radius of the tube used in the experiment is 1.88×10^{-3} m.

3

(iii) Explain the terms 'asymmetric effect' and 'electrophoretic effect' of the ions of strong electrolyte in solution.

(iv) Write Nernst equations for the potentials of Zn-electrode and Cu-electrode in the Daniell cell. Hence find an expression for the e.m.f. of the Daniell cell at any given temperature.

(v) For the reaction $Fe^{3+} + 3e^{-} \rightleftharpoons Fe$, standard electrode potential is -0.036 V and the standard electrode potential for the reaction $Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$ is 0.771 V.

Calculate the standard electrode potential for the reaction $Fe^{2+} + 2e^{-} \rightleftharpoons Fe$. Predict whether the reaction $Fe + 2Fe^{3+} \rightleftharpoons 3Fe^{2+}$ is spontaneous or not. 4+2=6
