2019

STATISTICS

(Major)

Paper: 4.1

(Mathematical Methods—III and OR—I)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following as directed:

 $1 \times 7 = 7$

- (a) State Cayley-Hamilton theorem.
- (b) Define basis of a vector space.
- (c) What are eigenvalues?
- (d) When a distribution has fewer than m+n-1 allocation, it is degenerate.

(Write True or False)

(e) When in a transportation problem the total availability from all origins is equal to the total demand at all the destinations, the problem is balanced.

(Write True or False)

- What is convex set?
- linear assumption of Write an programming problem.
- 2. Answer the following questions:

 $2 \times 4 = 8$

- Show that the vectors $X_1 = (1, 2, 4)$ and $X_2 = (3, 6, 12)$ are linearly dependent.
- Give the procedure for mathematical formulation of a linear programming problem.
- If A is non-singular matrix, then prove that the eigenvalues of A^{-1} are the reciprocals of the eigenvalues of A.
- Show that intersection of two convex sets is also a convex set.
- 3. Answer any three of the following questions:

5×3=15

- (a) Prove that all the extreme points are boundary points but the converse is not necessarily true.
- What is transportation problem? Show that it can be considered as an LPP.
- linear What do you mean programming problem? Explain.

- (d) Prove that the characteristic vectors corresponding to distinct characteristic linearly roots of a matrix are independent.
- (e) How can a linear programming problem be solved by graphical method?
- 4. Answer any three of the following questions: 10×3=30

Determine the characteristic vectors of

the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 10

- (i) Prove that the convex polyhedron is a convex set.
 - (ii) Prove that in E^2 , the set

$$X = \{(x, y) / x^2 + y^2 \le 4\}$$

is a convex set.

(i) Solve graphically the following LPP: 5 (c)

Maximize $Z = 2x_1 + 3x_2$ subject to

$$x_1 + x_2 \le 1 3x_1 + x_2 \le 4 x_1, x_2 \ge 0$$

5

5

(ii) Give the computational procedure for simplex method in linear programming.

5

(d) (i) Prove that a necessary and sufficient condition for the existence of a feasible solution to an $m \times n$ transportation problem is

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$

where a_i and b_j denote the availability and requirement at i-th origin and j-th destination respectively.

5

(ii) Explain North-West Corner Rule for finding an initial basic feasible solution for a transportation problem.

5

(e) (i) Prove that the non-empty subset of any linearly independent set of vectors is linearly independent.

5

(ii) Show that the characteristic roots of a triangular matrix are just the diagonal elements of the matrix.

5