2019

STATISTICS

(Major)

Paper: 4.2

(Descriptive Statistics—II and Probability—II)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Answer the following as directed: $1 \times 7 = 7$
 - (a) If X is a random variable having probability function f(x), then the function $\sum e^{itx} f(x)$, for i be an imaginary unit, is known as
 - (i) moment generating function
 - (ii) probability distribution function
 - (iii) characteristic function
 - (iv) None of the above
 (Choose the correct option)

- (b) The standard error of difference of two sample means, i.e., $(\bar{x}_1 \bar{x}_2)$ is ____. (Fill in the blank)
- (c) State the 95% confidence limits for the population mean for large sample.
- (d) Characteristic function of a random variable always exists.

(Write True or False)

(e) If X is a continuous random variable with mean μ and variance σ^2 , then for any positive number k

$$P\{|X-\mu| \ge k\sigma\} \le \frac{1}{k^2}$$

is known as

- (i) Liapounoff's inequality
- (ii) Markov's inequality
- (iii) Chebyshev's inequality
- (iv) None of the above (Choose the correct option)

(f) Families of random variables which are functions of, say, time, are known as _____.

(Fill in the blank)

- (g) Define null hypothesis.
- 2. Answer the following questions in short: 2×4=8
 - (a) State the conditions to be satisfied for weak law of large numbers to hold by a sequence of random variables $\{X_i\}$.
 - (b) Does there exist a variate X for which $P\{\mu_x 2\sigma \le X \le \mu_x + 2\sigma\} = 0.6?$
 - (c) Define Markov chain and give an example.
 - (d) Define sampling distribution and standard error.

(Continued)

- **3.** Answer any *three* of the following questions: 5×3=15
 - (a) Let $\{X_i\}$ be a sequence of independent random variables such that X_i assumes the values $\frac{1}{n}$ and $\frac{n+1}{n}$ with respective probabilities $\frac{1}{2n}$ and $\frac{2n-1}{2n}$. Examine whether the weak law of large numbers holds good.
 - (b) How large a sample must be taken in order that the probability will be at least 0.95 that \overline{X}_n will be within 0.5 of μ (μ is unknown and $\sigma = 1$)?
 - (c) Suppose that the probability of a dry day (state 0) following a rainy day (state 1) is $\frac{1}{3}$ and that the probability of a rainy day following a dry day is $\frac{1}{2}$. State the corresponding transition probability matrix. Given that May 1 is a dry day, what is the probability that May 4 is a dry day?

- (d) Describe the procedure to test the significance of difference between two proportions.
- (e) Find the standard error of a linear function of a number of variables.
- 4. Answer the following questions: 10×3=30
 - (a) (i) Obtain unbiased estimate of population mean μ and variance σ².
 Also find the estimate of population variance for large sample. 3+4+3=10

Or

(ii) Find the expression for standard error of sample variance. Also show that

$$cov(\overline{X}, S^2) = \frac{\mu_3}{n}$$

notations having usual meaning. 7+3=10

(b) (i) If

$$X_i = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{with probability } q \end{cases}$$

then prove that the distribution of the random variable

$$S_n = X_1 + X_2 + \dots + X_n,$$

where X_i 's are independent, is asymptotically normal as $n \to \infty$. 10

Or

(ii) Let \overline{X}_n be the sample mean of a random sample of size n from rectangular distribution on [0, 1]. Let

$$U_n = \sqrt{n} \left(\overline{X}_n - \frac{1}{2} \right)$$

then show that

$$F(\mu) = \lim_{n \to \infty} P(U_n \le \mu)$$

exists and determine it.

10

- (c) (i) (1) Describe applications of stochastic processes in various fields other than mathematical application.
 - (2) Prove that the matrix given below is a transition probability matrix of an irreducible Markov chain:

$$\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1/2 & 1/2 & 0
\end{pmatrix}$$
5+5=10

Or

- (ii) (1) Write an explanatory note on the specification of stochastic processes.
 - (2) Let $\{X_n, n \ge 0\}$ be a Markov chain with three states 0, 1 and 2 with transition matrix

$$P = \begin{pmatrix} 1/3 & 2/3 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 1/2 & 1/2 \end{pmatrix}$$

Represent the above transition probability matrix with the help of a digraph. 6+4=10

**