2018

MATHEMATICS

(General)

(Abstract Algebra and Matrices)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer either in English or in Assamese

PART-I

(Marks: 7)

- 1. Answer the following questions : 1×7=7
 তলৰ প্ৰশ্ৰবোৰৰ উত্তৰ দিয়া :
 - (a) Find the order of i and -i in the multiplicative group $G = \{1, -1, i, -i\}$, where $i = \sqrt{-1}$.

 গুণাধীনৰ সংঘ $G = \{1, -1, i, -i\}$ ত i আৰু -iৰ মৌলাংক নিৰ্ণয় কৰা, য'ত $i = \sqrt{-1}$.
 - (b) What is the order of the permutation group A_n the alternating group? বিন্যাস সংঘ A_n (alternating group)ৰ মাত্ৰা কিমান?

- (c) Cyclic groups are abelian. Is it true? চক্ৰীয় সংঘবোৰ এবেলীয়। ই সত্যনে ?
- (d) Give an example of a commutative ring without unity.

 এটা একক মৌলবিহীন ক্রমবিনিমেয় বলয়ৰ উদাহৰণ দিয়া।
- (e) Define a homomorphism from a group to another group.
 এটা সংঘৰ পৰা আন এটা সংঘলৈ অনুবাপতাৰ সংজ্ঞা
- (f) Can the following two matrices be added? Justify your answer.
 তলৰ মৌলকক্ষ দুটা যোগ কৰিব পাৰিনে? তোমাৰ উত্তৰৰ যুক্তিযুক্ততা দিয়া।

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 9 & 8 \end{pmatrix}, B = \begin{pmatrix} 6 & 4 \\ 4 & 7 \\ 3 & 3 \end{pmatrix}$$

(g) If A is a symmetric matrix, then show that kA is also symmetric, where k is a scalar.
यদি A এটা সম্মিত মৌলকক্ষ হয়, তেন্তে দেখুওয়া য়ে kAও সম্মিত, য়'ত k এটা অদিশ বাশি।

PART—II (Marks: 8)

- 2. Answer the following questions : 2×4=8 তলৰ প্ৰশ্নবোৰৰ উত্তৰ দিয়া :
 - (a) Give an example to show that the union of two subgroups is not a subgroup. এটা উদাহৰণৰ সহায়ত দেখুওৱা যে দুটা উপসংঘৰ মিলন আন এটা উপসংঘ নহয়।
 - (b) Define cyclic group and give an example of it.

 চক্ৰীয় সংঘৰ সংজ্ঞা দিয়া আৰু ইয়াৰ এটা উদাহৰণ দিয়া।
 - (c) Find the order of the following permutation:

তলৰ বিন্যাসটোৰ মাত্ৰা উলিওৱা:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 6 & 1 & 7 & 3 & 5 \end{pmatrix}$$

(d) If f: G → G' is a homomorphism, then show that f(e) = e', where e and e' are the identities of G and G' respectively.
যদি f: G → G' এটা অনুকাপতা হয়, তেন্তে দেখুওৱা
যে f(e) = e', য'ত e আৰু e' ক্রমে G আৰু G'ৰ একক মৌল।

PART---III

(Marks: 15)

- 3. Answer any three of the following questions:

 5×3=15
 তলত দিয়া প্ৰশ্নবোৰৰ যি কোনো তিনিটাৰ উত্তৰ দিয়া:
 - (a) Define group. Prove that in a group G
 - (i) $(a^{-1})^{-1} = a$, $\forall a \in G$, where a^{-1} stands for inverse of a;
 - (ii) $(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in G.$

সংঘৰ সংজ্ঞা দিয়া। এটা সংঘ Gত প্ৰমাণ কৰা যে

- (i) $(a^{-1})^{-1} = a$, $\forall a \in G$, য'ত a^{-1} হ'ল aৰ প্ৰতিলোম:
- (ii) $(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in G.$
- (b) Define centre of a group. Prove that centre of a group G is a subgroup of G.

 1+4=5

এটা সংঘৰ কেন্দ্ৰৰ সংজ্ঞা দিয়া। এটা সংঘ Gৰ কেন্দ্ৰ উপসংঘ বুলি প্ৰমাণ কৰা।

- (c) Define the following : তলত দিয়াবোৰৰ সংজ্ঞা দিয়া :
 - (i) A commutative ring এটা ক্রমবিনিমেয় বলয়
 - (ii) A ring with unity এটা একক-যুক্ত বলয়

- (iii) A ring with zero divisors এটা শূন্য-ভাজক বলয়
- (iv) An integral domain এটা পূৰ্ণাংকীয় বাষ্ট্ৰ
- (v) A field এটা ক্ষেত্র
- (d) Define orthogonal matrix. Prove that—
 - (i) an orthogonal matrix is nonsingular;
 - (ii) the inverse of an orthogonal matrix is orthogonal.

লাম্বিক মৌলকক্ষৰ সংজ্ঞা দিয়া। প্ৰমাণ কৰা যে—

- (i) এটা লাম্বিক মৌলকক্ষ অক্ষীয়মান:
- (ii) এটা লাম্বিক মৌলকক্ষৰ প্ৰতিলোম এটা লাম্বিক মৌলকক্ষ।
- (e) Find the inverse of the following matrix:

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$$

তলৰ মৌলকক্ষটোৰ বিপৰীত মৌলকক্ষ নিৰ্ণয় কৰা :

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$$

PART-IV

(Marks: 30)

Answer either (a) and (b) or (c) and (d) from each of the following questions:

10×3=30
তলত দিয়া প্ৰশ্নসমূহৰ পৰা (a) আৰু (b) অথবা (c) আৰু (d) ৰ উত্তৰ
দিয়া:

- 4. (a) Show that a non-empty subset H of a group G is a subgroup of G, if and only if ab⁻¹ ∈ H, ∀ a, b ∈ H.
 দেখুওবা যে G সংঘৰ অবিক্ত উপসংহতি H, Gৰ এটা উপসংঘ হ'ব, যদি আৰু যদিহে ab⁻¹ ∈ H. ∀ a, b ∈ H.
 - (b) Prove that a subgroup H of a group G is a normal subgroup of G, if and only if xHx⁻¹ = H, ∀ x ∈ G.
 প্রমাণ কৰা যে এটা সংঘ Gৰ উপসংঘ H নিশ্বৰ উপসংঘ হ'ব, যদি আৰু যদিহে xHx⁻¹ = H, ∀ x ∈ G.
 - (c) If H is a subgroup of the group G, then aH and bH are two cosets, then either aH = bH or aH ∩ bH = ф.
 বদি H, G সংঘৰ এটা উপসংঘ, তেন্তে aH আৰু bH সহসংহতি দুটা হয় সমান, নহয় সিহঁতৰ অসংযুক্ত অর্থাৎ aH = bH বা aH ∩ bH = ф.

- (d) Define Kernel of a homomorphism $\phi: G \to G'$, where G and G' are two groups. Prove that Kernel of ϕ is a normal subgroup of G.

 1+4=5
 G আৰু G' দুটা সংঘ হ'লে $\phi: G \to G'$ অনুৰূপতাব মূল্যাংশৰ সংজ্ঞা দিয়া। প্ৰমাণ কৰা যে ϕ ৰ মূল্যাংশ G সংঘৰ নিশ্বৰ উপসংঘ।
- 5. (a) Prove that a ring R is commutative, if and only if $(a+b)^2 = a^2 + 2ab + b^2$, $\forall a, b \in R$.
 প্রমাণ কৰা যে R এটা ক্রমবিনিমেয় বলয় হ'ব, যদি আৰু যদিহে $(a+b)^2 = a^2 + 2ab + b^2$, $\forall a, b \in R$.
 - (b) In any ring R, prove that
 যি কোনো এটা বলয় Rত, প্রমাণ কৰা যে
 (i) a0 = 0 = 0a, ∀ a ∈ R
 (ii) a(-b) = (-a) b = -ab, ∀ a, b ∈ R
 (iii) (b-c) · a = b · a c · a, ∀ a, b, c ∈ R
 2+2+2=6
 - (c) Prove that every field is an integral domain. Is the converse true? Justify your answer. 3+1+1=5
 প্রমাণ কৰা যে প্রতিটো ক্ষেত্রই এটা পূর্ণাংকীয় ৰাষ্ট্র।
 ইয়াব বিপৰীতটো সতানে? তোমাৰ উত্তৰৰ যুক্তিযুক্ততা প্রতিপন্ন কৰা।
 - d) Prove that a ring R is without zero divisors, if and only if cancellation laws hold in it. 5
 এটা বলয় R অশূন্য ভাজক হ'ব, যদি আৰু যদিহে বলয় Rত cancellation law সিদ্ধ হয়।

8A/**693**

(Turn Over)

5

5

5

6. (a) For the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{pmatrix}$$

verify that $A \text{ (adj } A) = \text{(adj } A)A = |A| I_3$.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{pmatrix}$$
 মৌলকক্ষটোৰ বাবে সত্যাপন

কবা। যে A (adj A) = (adj A)A = |A| I3.

- (b) If A is non-singular matrix, then show that adj·adj $A = |A|^{n-2} \cdot A$.

 যদি A এটা অক্ষীয়মান মৌলকক্ষ হয়, তেন্তে দেখুওৱা যে adj·adj $A = |A|^{n-2} \cdot A$.
- (c) Define the rank of a matrix. Find the rank of the matrix

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{pmatrix}$$

2+3=5

5

6

4

এটা মৌলকক্ষৰ কোটিৰ সংজ্ঞা দিয়া। মৌলকক্ষ

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{pmatrix}$$
 ব কোটি নির্ণয় কবা।

(d) Solve by matrix method :
মৌলকক্ষ পদ্ধতিৰ সহায়ত সমাধান কৰা :

$$x+y+z=4$$

$$2x - y + 3z = 1$$

$$3x + 2y - z = 1$$

* + *