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Abstract: It is rather difficult to understand biological systems from a physics point of view,
and understanding systems such as cancer is even more challenging. There are many factors affecting
the dynamics of a cancer cell, and they can be understood approximately. We can apply the principles
of non-equilibrium statistical mechanics and thermodynamics to have a greater understanding of
such systems. Very much like other systems, living systems also transform energy and matter during
metabolism, and according to the First Law of Thermodynamics, this could be described as a capacity
to transform energy in a controlled way. The properties of cancer cells are different from regular
cells. Cancer is a name used for a set of malignant cells that lost control over normal growth. Cancer
can be described as an open, complex, dynamic, and self-organizing system. Cancer is considered
as a non-linear dynamic system, which can be explained to a good degree using techniques from
non-equilibrium statistical mechanics and thermodynamics. We will also look at such a system
through its entropy due to to the interaction with the environment and within the system itself. Here,
we have studied the entropy generation versus the entropy production approach, and have calculated
the entropy of growth of cancer cells using Fokker-Planck equations.
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1. Introduction

The Physics of Living Systems Community has collectively become excited by the possibility
of gaining a better understanding of and better treatment options for cancer [1]. There has been a
considerable rise in the number of studies in which the principles of physics and related fields can
be applied to understand cancer and seek detection methods and better treatment scenarios. This
interdisciplinary field has been very active in the last decade or so, and the scientific community has
contributed considerably towards this goal. The question which arises is, “How does physics apply
to biological systems”? One of the many answers to this question is that the fundamentals of cancer
are the fundamentals of growth [2]. Physics offers tools and techniques to understand and attack the
process of disease from a very fundamental level. One such tool in physics used in biological systems
is the application of non-equilibrium physics. If we consider systems which are small, we cannot
apply standard equilibrium physics techniques. In such systems, statistical fluctuations become very
significant, and recent advances have shown that these fluctuations satisfy their own laws [3]. This is
where non-equilibrium physics can explain the phenomena. There have been numerous studies which
suggest that the growth of cancer cells are not linear with time, and follow a very complex mechanism.
This means that the growth of cancer cells cannot be explained without taking into account the aspects
of non-equilibrium statistical physics, in addition to the study of fluctuations in complex systems [4].
In this context, the Fokker-Planck equation is a good tool, as it represents the probability density for
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the position or velocity of a particle of which the motion is described by a corresponding Langevin
equation [5]. Since the entropy of a system always increases, the Fokker-Planck equation can be used
to calculate the entropy of the growth of cancer cells. This paper discusses the entropy generation and
entropy production approach to calculating the entropy of the non-equilibrium growth of cancer cells.

2. Non-Equilibrium Fokker-Planck Equations

Consider a set of n interacting particles. Let the particles evolve with time through the Langevin
equations given by

dxi
dt

= fi(x) + ri(t), (1)

where xi is the position of the ith particle, x = {xi}, fi(x) is the force acting on the ith particle, and ri is
the noise that is mathematically considered to be a stochastic variable, such that

〈ri(t)〉 = 0 (2)

〈ri(t)rj(t′)〉 = 2Diδijδ(t− t′) (3)

with Di ≥ 0, different constants for each particle. The associated Fokker-Planck equations describe
how the probability distribution, P(x, t) evolves with time [6]. This can be written as

∂P(x, t)
∂t

= −∑
∂

∂xi
[ fi(x)P(x, t)] + ∑ Di

∂2

∂x2
i

P(x, t). (4)

We can write down the Fokker-Planck equation in a more convenient way as a continuity equation,

∂P(x, t)
∂t

= −∑
∂

∂xi
Ji(x, t) (5)

Ji(x, t) = [ fi(x)− Di
∂

∂xi
]P(x, t), (6)

where Ji is the ith component of the current of probability. The condition of irreversibility can be
expressed as

Di 6= Dj, i 6= j,

or

Di = Dj = D, i 6= j,

but

∂ f j

∂xi
6= ∂ fi

∂xj
. (7)

The Fokker-Planck equation has to be solved inside a given region of the space spanned by
the set of variables xi subject to a prescribed boundary condition which governs the behavior of
P(x, t) and Ji(x, t). In the thermodynamic equilibrium case, the Langevin equation and the associated
Fokker-Planck equations describe a system where

∂ f j

∂xi
=

∂ fi
∂xj
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for any pair, i and j, and

Di = Dj. (8)

3. Entropy Production and Fokker-Planck Equations

Cancer cell growth can be considered as an irreversible system, and there is a continuous
production of entropy in such systems. The rate of change of the entropy S of a system can be
written as [7]

dS
dt

= ς−Ω, (9)

where ς is the entropy production due to irreversible processes in the system and Ω is the entropy flux
from the system to the environment. In an equilibrium system, entropy is a well-defined quantity,
but in non-equilibrium systems, the entropy, as well as the production of entropy, is not well-defined.
Since a non-equilibrium system is defined by the Fokker-Planck equations, we have hence attempted
to calculate the production of entropy in such systems. The Gibbs entropy of a system at any time, t, is
given by [6,8–10].

S(t) = −
∫

P(x, t) ln[P(x, t)] dx (10)

where dx = dx1dx2 · · · dxn. Using Equation (5), we can express the derivative of the entropy as

d
dt

S(t) = −
∫
[lnP(x, t) + 1]∑

∂

∂xi
Ji(x, t) dx. (11)

Integrating it, we get

d
dt

S(t) = −
∫

∑ Ji(x, t)
∂

∂xi
lnP(x, t) dx, (12)

and using Equation (6), we can write

d
dt

S(t) = −
∫

∑
1

Di
Ji(x, t) fi(x) dx +

∫
∑

[Ji(x, t)]2

DiP(x, t)
dx. (13)

Comparing this with Equation (9), we see that

Ω =
∫

∑
1

Di
Ji(x, t) fi(x) dx (14)

and

ς =
∫

∑
[Ji(x, t)]2

DiP(x, t)
dx. (15)

Using Equation (6), we can write Equation (14) as

Ω =
∫

∑
{

1
Di

[ fi(x)]2 + fii(x)
}

P(x, t) dx, (16)
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where fii(x) =
∂ fi(x)

∂xi
. This can be expressed as an average over the probability distribution.

Ω = 〈∑
{

1
Di

[ fi(x)]2 + fii(x)
}
〉 (17)

There is another study of the total entropy production [11,12]. The authors clearly mentioned that
the the total entropy production (EP) Ṡtot is the sum of two constitutive parts—namely, the so-called
adiabatic Ṡa and non-adiabatic Ṡna contribution. Each of these entropies cannot be less than zero.

4. Entropy Generation and Fokker-Planck Equations

It has been discussed by Jaynes that Gibbs’ formalism for statistical physics of systems under
an equilibrium can be understood as a generalized form in a statistical inference theory for
non-equilibrium systems [13]. Jaynes developed non-equilibrium statistical physics for the stationary
state constraint on the basis of maximum entropy, and his approach consisted of maximizing the path.
The Shannon information entropy for the path can be written as

S = −∑
γ

pγln(pγ), (18)

with respect to pγ of the path γ. According to Shannon, the information entropy can be written as the
logarithm of the number of outcomes i with non-negligible probability pi, while in non-equilibrium
statistical physics, it is given as the logarithm of the number of microscopic phase-space paths γ having
non-negligible probability pγ [5,13]. Following this approach, we know that the information entropy
for open systems is related to their entropy generation by [14–16]:

Sg = κBS = −κB

∫
Pγ(x, t)ln[Pγ(x, t)]dx (19)

with pγ = Pγ(x, t). This relation is the statistical definition of entropy generation. This can also be
explained as the missing information which is necessary for predicting which path a system of the
ensemble takes during the transition from one state to another. The Guoy-Stodola theorem [5] gives

W̄ = T0Sg, (20)

where W̄ is work lost due to internal irreversibility in a system. By definition, entropy generation can
be related to the power lost, where P is due to irreversibility,

Sg =
1
T0

∫ τ

0
Pdt (21)

and T0 is the environmental temperature—considered constant—and τ is the time duration of a
physical process. The power lost by definition is given as:

P = 〈∑ fi(x)
dxi
dt
〉. (22)

Using the Langevin equation, we can write this as

P = 〈∑ fi(x)[ fi(x) + ri(t)]〉, (23)

and so Sg can be written as

Sg =
τ

T0
〈∑([ fi(x)]2 + Di fii(x))〉, (24)
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where fii =
∂ fi
∂xi

. Considering the mean value, we can finally write this as

Sg =
τ

T0

∫
∑([ fi(x)]2 + Di fii(x))Pγ(x, t)dx, (25)

and hence,

Sg =
τ

T0

∫
∑ fi(x)Ji(x, t) dx, (26)

where the last term is related to the Fokker-Planck equation.

5. A Generalized Model for Cancer Growth

Cell adhesion is essential in all aspects of cell growth, cell migration, and cell differentiation.
Cellular adhesion molecules (CAMs) are important participants in cell–cell interactions, as well as
interactions between cells and components of the extra-cellular matrix [17,18]. We assumed that as
cancer cells start to grow and multiply, the inter-cellular force between them is strong enough to
sustain growth, and they would also exhibit a London dispersion force-like term [19]. We assumed a
London-type force because we would have liked to express the interaction between two cancer cells
to mimic a London dispersion-like force. In addition, we assume that the growth of cancer cells is
exponential. Based on this understanding, our assumption of the force term can be written as

fi(r) =
exp(−αr)
(βr6 + δ)

, (27)

where α, β, and δ are constants related to the strength of the force.
For the entropy production approach, using the force term, we can write Equation (17) as

Ω = 〈
{

1
D

exp(−2αr)
(βr6 + δ)2 −

exp(−αr)
(βr6 + δ)

[α +
6br5

(βr6 + δ)
]

}
〉. (28)

Also, Equation (6) can be written as

J(r, t) = [
exp(−αr)
(βr6 + δ)

− D
∂

∂r
]P(r, t), (29)

and we can write Equation (14) as

ς =
1
D

∫ [[
exp(−αr)
(βr6+δ)

− D ∂
∂r ]P(r, t)]2

P(r, t)
dr. (30)

Finally, we can express Equation (9) as

dS
dt

=
1
D

∫ [[
exp(−αr)
(βr6+δ)

− D ∂
∂r ]P(r, t)]2

P(r, t)
dr − 〈

{
1
D

exp(−2αr)
(βr6 + δ)2 −

exp(−αr)
(βr6 + δ)

[α +
6br5

(βr6 + δ)
]

}
〉. (31)

Similarly, for the entropy generation approach, we can express Equation (26) as

Sg =
τ

T0

∫ {exp(−2αr)
(βr6 + δ)2 − D

exp(−αr)
(βr6 + δ)

[α +
6br5

(βr6 + δ)
]

}
Pγ(r, t)dr. (32)

Since this is a model independent study of the entropy of cancer cells, in Figure 1, we plot
Equation (31) as an example. The values of the constants α, β, δ, D are taken to be one for simplicity.
∆r, which is assumed to be the separation of two cancer cells, was approximated based on the size
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of a typical cancer cell. We have taken only a small range of values to show how dS
dt progresses [20].

As expected, dS
dt increases with ∆r.

Similarly, for the entropy generation approach we can express eqn. (4.9) as

Sg =
τ

T0

∫ {
exp(−2αr)

(βr6 + δ)2
−D exp(−αr)

(βr6 + δ)
[α+

6br5

(βr6 + δ)
]

}
Pγ(r, t)dr (5.6)
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dS
dt = 3.038 ln(∆r) + 8.85

Since this is a model independent study of the entropy of cancer cells, we have shown

the plot of eqn. (5.5) as an example. The values of the constants α, β, δ,D are taken to

be one for simplicity. ∆r, which is assumed to be the separation of two cancer cells is

approximated based on the size of a typical cancer cell. We have taken only a small range

of values to show how dS
dt progresses [20]. In the plot above we have shown dS

dt as in eqn.

(5.5) vs ∆r. dS
dt increases with ∆r as is expected. The probability distribution function

has been maximized so that we can get the maximum change in entropy as time changes.

6 Conclusion

In this paper we have expressed the entropy terms of cancer cell growth by applying the

entropy production and the entropy generation approaches. The principles of statistical

physics allow a connection between the Fokker-Planck equations and both of these ap-

proaches. Based on the properties of cell to cell interaction and properties of adhesion our

approach is to understand what type of force will work towards growth of a cance cell.

This study is based on a model independent approach where we have tried to explain the

growth of cancer cells and how it can be connected to entropy calcuations.Based on this

we have made basic assumptions about what a cancer cell growth force equation may look

like. Finally, we have shown through eqns.(5.1) through (5.6) a procedure to calculate the

entropy given the probability distribution.

– 7 –

Figure 1. A display of dS
dt as in Equation (31) versus ∆r. The constants α, β, δ, D =1. The probability

distribution function has been maximized so that we can get the maximum change in entropy as
time changes.

6. Conclusions

In this paper, we have expressed the entropy terms of cancer cell growth by applying the entropy
production and entropy generation approaches. The principles of statistical physics allow a connection
between the Fokker-Planck equations and both of these approaches. Based on the properties of
cell-to-cell interaction and of adhesion, our approach was to understand what type of force would
facilitate the growth of a cancer cell. This study was based on a model independent approach where
we have tried to explain the growth of cancer cells and how it can be connected to entropy calculations.
Based on this, we have made basic assumptions about what a cancer cell growth force equation may
look like. Finally, we have shown through Equations (27) through (32) a procedure to calculate the
entropy given the probability distribution.
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