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Abstract: In this study, we investigate the infection system of the novel coronavirus (2019-nCoV) with
a nonlocal operator defined in the Caputo sense. With the help of the fractional natural decomposition
method (FNDM), which is based on the Adomian decomposition and natural transform methods,
numerical results were obtained to better understand the dynamical structures of the physical behavior
of 2019-nCoV. Such behaviors observe the general properties of the mathematical model of 2019-nCoV.
This mathematical model is composed of data reported from the city of Wuhan, China.

Keywords: coronavirus 2019-nCoV; Caputo fractional derivative; fractional natural decomposition
method; RNA; numerical behavior

1. Introduction

The world has been affected by a novel coronavirus pandemic, known as the 2019 novel coronavirus
(2019-nCoV), which reportedly originated in Wuhan, central China [1]. It has been proposed that
2019-nCoV originated in the transmission from animal to human, as many of the initial infected
patients claimed that they had been to a local fish and wild animal market in Wuhan in November [2].
Researchers soon confirmed that the disease is also transmitted from person to person [3]. According
to data reported by the World Health Organization (WHO), by 21 March, 2020, there were more than
292,142 reported laboratory-confirmed human infections in 187 countries and territories around the
world, including 12,784 cases resulting in death [4]. The death rate was also high in countries such as
Italy and Spain. This confirms the severity and high infectivity of 2019-nCoV. Most people infected with
2019-nCoV experience mild to moderate respiratory illness, such as breathing difficulties, low fever,
nausea, coughing and other symptoms. Some cases are asymptomatic. However, other symptoms,
such as gastroenteritis and neurological diseases of varying severity, have also been reported [5].
2019-nCoV is transmitted mainly through droplets from the nose when an infected person coughs
or sneezes. Therefore, the best method to prevent the virus is to avoid meeting and touching other
people. For this purpose, the Chinese government implemented a lockdown of the city of Wuhan
and cut or limited transportation throughout China, including airplanes, trains, buses, and private
cars, to limit the movement of the population. People were required to stay at home and to have their
body temperatures taken each day, and were advised to wear masks or respirators if it was necessary
for them to leave their homes. With the outbreak and transmission of 2019-nCoV around the world,
other governments implemented similar measures, banning or imposing regulations on international
travel, as well as closing schools, shopping malls, and companies. The 2019-nCoV pandemic has led to
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serious economic damage throughout the world, and has placed a strain on the administrative abilities
of countries and their populations.

Many doctors and researchers have committed their expertise to the study of the virus. The novel
coronavirus has been examined from various points of view, in many fields of study, including virology;
infectious disease studies; microbiology; public, environmental and occupational health; veterinary
science; sociology; media studies; politics and economics. In response to early outbreaks of the virus,
China, USA, and Korea emerged as the leading countries in 2019-nCoV research.

Several researchers have studied the origins of 2019-nCoV. Initially, it was proposed that bats
were the origin of 2019-nCoV, as was the case with Severe Acute Respiratory Syndrome (SARS), which
caused epidemics in China and other regions of the world in 2003 [6,7]. Researchers have compared
the 2019-nCoV outbreak with SARS and the Middle East Respiratory Syndrome (MERS) outbreak that
occurred in 2012, with the goal of learning lessons from the two previous pandemics. According to Lu
et al. [8], 2019-nCoV, like the viruses that cause SARS and MERS, belongs to the genus Betacoronavirus.
According to Zhou, previous research indicates that 2019-nCoV displays a high level of similarity
to the SARS coronavirus (SARS-CoV) based on full-length genome phylogenetic analysis, as well as
the viruses’ putatively similar cell entry mechanisms and human cell receptor usage [9]. Xia et al.,
considering the high identity of receptor-binding domain (RBD) in 2019-nCoV and SARS-CoV, raised
the idea that a SARS-CoV-specific human monoclonal antibody (CR3022) could bind potently with
the RBD of 2019-nCoV (KD of 6.3 nM). This indicates that the difference in the RBD of SARS-CoV
and 2019-nCoV has a crucial influence on the cross-reactivity of neutralizing antibodies, and that
it is still necessary to develop novel monoclonal antibodies that could bind specifically to the RBD
of 2019-nCoV [10]. Building on previous studies of the immunological system and structures of
SARS-CoV, Syed et al. analyzed available, experimentally-determined, SARS-CoV-derived B-and
T-cell epitopes and found that they are completely identical and comprise no mutation in the available
2019-nCoV sequence. This was a significant step in narrowing the search for potent targets for an
effective vaccine against 2019-nCoV [11].

Other researchers focused on the transmission of 2019-nCoV among humans and the identification
of transmissions. It is well accepted that human-to-human transmission has led to rapid growth
in the number of infections. Rambaut claimed that after sequencing viral strains from a sample of
infected people, little genetic variation was found, implying that the strains descended from a common
ancestor [12]. Poon argued that sequences of the seven conserved viral replicase domains in the ORF1ab
region show 94.6% identity between 2019-nCoV and SARS-CoV [13]. In the view of Chaudhury et al.,
computational protein–protein docking with accurate, physics-based energy functions is able to reveal
the native-like, low-energy protein–protein complex from the unbound structures of two individual,
interacting protein components [14]. Christians studied the transmission pattern of 2019-nCoV and
found that the individual variation in the number of secondary cases provides further information
about the early outbreak dynamics and the expected number of super-spreading events [15]. Huang C
et al. have introduced held that the virus can also be spread through interspecies transmission [16].
Domenico et al. [17] built a phylogenetic tree using the 15 available whole genome sequences of
2019-nCoV and 12 highly similar sequences available in the gene bank (five from SARS, two from
MERS, and five from bat SARS-like coronavirus). They held that 2019-nCoV was likely to have
been transmitted from bats or another host, where mutations conferred upon it the ability to infect
humans [17]. Other groups of researchers focused on virus prevention and the improvement of
health care capacities, suggesting that the key to controlling virus transmission is the reduction of
social distance and human contact through school closures, the shutting down of public transport,
the suspension of common activities, etc. [18]. Others, like Koonin and Cetron, asserted that case
isolation, household quarantine, and internal travel restrictions are also necessary for virus control [19].
Therefore, many mathematical properties of real world problems including fractional or integer
order have been introduced to better understanding of deeper properties and to analyze by many
researchers [20–68].
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We aimed to understand and investigate the 2019-nCoV infection system from the perspective of
mathematics. The fractional natural decomposition method (FNDM), which is based on decomposition
and natural transformation, was employed to obtain numerical results that may help to understand
the dynamical structures of the physical behavior of 2019-nCoV. The model is defined by a system of
six equations, illustrating the outbreak of the coronavirus in the form of nonlinear ordinary differential
equations. Susceptible people are expressed as Sp(t), the exposed population is expressed as Ep(t), total
infected is Ip(t), asymptotically-infected population is Ap(t), the total number of humans recovered is
Rp(t), reservoir is M(t), and their corresponding interaction is presented as follows [20,64]:

dSp(t)
dt = np −mpSp − bpSp

(
Ip + κAp

)
− bwSpM,

dEp(t)
dt = bpSp

(
Ip + κAp

)
+ bwSpMp −

(
1− δp

)
ωpEp − δpω′pEp −mpEp,

dIp(t)
dt =

(
1− δp

)
ωpEp −

(
γp + mp

)
Ip,

dAp(t)
dt = δpω′pEp −

(
γ′p + mp

)
Ap,

dRp(t)
dt = γpIp + γ′pAp −mpRp,

dM(t)
dt = εIp + σAp − ϑM,

(1)

where np denotes the rate of birth and mp denotes the rate of death in the infected population; bp

represents the transmission coefficient; bw is the disease transmission coefficient; κ is the transmissibility
multiple; ωp and ω′p signify the incubation period; γp and γ′p are the recovery rate of Ip and Ap,
respectively; ε and σ denote the influence of the virus from Ip and Ap to M, respectively; and ϑ
represents the rate of eliminating the virus from M. For further discussion of these parameters, refer to
and the corresponding values of the parameters were taken from [20,64]. The process of estimating the
equilibrium point and the disease-free equilibrium of the considered model is important because it can
help predict the behavior and future of the model. The basic reproduction number helps to understand
future evolution and to determine what proportion of the population should be immunized through
vaccination in order to eradicate the disease.

In this manuscript, we consider the generalization of the above model with the help of fractional
calculus. The model is generalized to incorporate memory consequences and hereditary properties.
This builds upon the interesting results illustrated and confirmed by Ionescu et al. and Qureshi [62,63]
concerning the usefulness of fractional order operators in biological models. Ionescu et al. illustrated the
importance of the fractional operator in drug diffusion, neuroscience, bio-impedance, and respiratory
tissue and structure [62]. The authors in [63] showed the importance of the Caputo fractional derivative
while studying the autonomous dynamical system of measles. Many researchers have used the
fractional operator to study various epidemic models. Equation (1) may be reconsidered in the sense
of Caputo as following:

Dα
t Sp(t) = np −mpSp − bpSp

(
Ip + κAp

)
− bwSpM,

Dα
t Ep(t) = bpSp

(
Ip + κAp

)
+ bwSpMp −

(
1− δp

)
ωpEp − δpω′pEp −mpEp,

Dα
t Ip(t) =

(
1− δp

)
ωpEp −

(
γp + mp

)
Ip,

Dα
t Ap(t) = δpω′pEp −

(
γ′p + mp

)
Ap,

Dα
t Rp(t) = γpIp + γ′pAp −mpRp,

Dα
t M(t) = εIp + σAp − ϑM,

(2)

where α is in the Caputo sense.

2. Preliminaries

In this section, we recall some fundamentals of fractional calculus.
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Definition 1. In the fractional Riemann–Liouville sense, the integral of a function f (t) ∈ Cδ(δ ≥ −1) is
presented as:

Jα f (t) = 1
Γ(µ)

∫ t
0 (t− ϑ)

µ−1 f (ϑ)dϑ,

J0 f (t) = f (t),
(3)

in which Cδ is continuous function domain.

Definition 2. The Caputo fractional derivative of f ∈ Cn
−1 is presented as:

Dα
t f (t) =


dn f (t)

dtn ,α = n ∈ N,
1

Γ(n−α)

∫ t
0 (t− ϑ)

n−α−1 f (n)(ϑ)dϑ, n− 1 < α < n, n ∈ N,
(4)

where Cn
−1 is continuousfunction domain.

Definition 3. The Mittag–Leffler type function with one-parameter is defined [21] as:

Eα(z) =
∑
∞

k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C. (5)

Definition 4. The natural transform (NT) of f (t) is symbolized by N[ f (t)] for t ∈ R and presented with the
NT variables s and W by [22]:

N[ f (t)] = R(s, W) =

∫
∞

−∞

e−st f (ωt)dt; s, W ∈ (−∞,∞).

We define the NT with the Heaviside function H(t) as

N[ f (t)H(t)] = N+[ f (t)] = R+(s, W)

=
∫
∞

0 e−st f (W, t)dt; s, W ∈ (0,∞) and t ∈ R.
(6)

For W = 1, Equation (6) is reduced to the Laplace transform and for s = 1, Equation (6) represents the
Sumudu transform.

Theorem 1. The NT Rα(s, ω) of the fractional derivative of f (t) Riemann–Liouville sense is symbolized by
Dα f (t) and defined as [22]:

N+[Dα f (t)] = Rα(s, W) =
sα

ωα
R(s, W) −

∑n−1

k=0

sk

Wα−k

[
Dα−k−1 f (t)

]
t=0

, (7)

where R(s, W) is NT of f (t), α is the order and n is any positive integer. n− 1 ≤ α < n.

Theorem 2. The natural transform Rα(s, W) of the arbitrary derivative in the Caputo sense of f (t) is
symbolized by cDα f (t) and defined as [23]:

N+[cDα f (t)] = Rc
α(s, W) =

sα

ωα
R(s, W) −

∑n−1

k=0

sα−(k+1)

Wα−k

[
Dk f (t)

]
t=0

. (8)

Remark 1. Some basic properties of the NT are defined:

(i) N+[1] = 1
s ,

(ii) N+[tα] = Γ(α+1)Wα

sα+1 ,
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(iii) N+
[

f (n)(t)
]
= sn

Wn R(s, W) −
n−1∑
k=0

sn−(k+1)

Wn−k
Γ(α+1)Wα

sα+1 .

3. Method of Solution for the Projected System

It is essential use an efficient technique to find the solution for the projected system. Recently,
many analytical and numerical schemes have been suggested for solving linear and nonlinear
differential equations. When examining the distinct class of real-world problems, many researchers
have acknowledged the limitations of well-established schemes. In this study, we used a powerful
algorithm capable of solving a nonlinear model with partial differential equations without converting
them to ordinary differential equations. This method of solution does not require any perturbation
or dissertation. It is a mixture of the Adomian decomposition technique [24] and natural
transformation [25] proposed by Rawashdeh et al. [26,27].

Here, we consider a coupled system to illustrate the basic solution procedure of the considered
algorithm with initial conditions

Dα
t u(x, t) + Ru(x, t) + Fu(x, t) = h1(x, t),

Dα
t v(x, t) + Rv(x, t) + Fv(x, t) = h2(x, t),

(9)

and
u(x, 0) = g1(x),v(x, 0) = g2(x), (10)

where Dαu(x, t) and Dαv(x, t) signify the fractional Caputo derivatives of u(x, t) and v(x, t), respectively;
h1(x, t) and h2(x, t) are the source terms; and F and R denote the nonlinear and linear differential
operators, respectively. On applying NT and with the help of Theorem 2, then Equation (9) produces:

U(x, s, W) = uα
sα

n−1∑
k=0

sα−(k+1)

Wα−k

[
Dku(x, t)

]
t=0

+ Wα

sα N
+[h1(x, t)]

−
Wα

sα N
+[Rv(x, , t) + Fu(x, t)],

V(x, s, W) = vα
sα

n−1∑
k=0

sα−(k+1)

Wα−k

[
Dkv(x, t)

]
t=0

+ Wα

sα N
+[h2(x, t)]

−
Wα

sα N
+[Ru(x, , t) + Fv(x, t)].

(11)

On employing inverse NT on Equation (11), we obtain:

u(x, t) = G(x, t) −N−1
[

Wα

sα N
+[Rv(x, t) + Fu(x, t)]

]
,

v(x, t) = H(x, t) −N−1
[

Wα

sα N
+[Ru(x, t) + Fv(x, t)]

]
.

(12)

From given initial conditions, non-homogeneous terms G(x, t) and H(x, t) exist. The infinite series
solution is presented as:

u(x, t) =
∞∑

n=0
un(x, t), Fu(x, t) =

∞∑
n=0

An,

v(x, t) =
∞∑

n=0
vn(x, t), Fv(x, t) =

∞∑
n=0

Bn,
(13)

where the An and Bn indicate the nonlinear terms of Fu(x, t) and Fv(x, t), respectively. Using Equations
(12) and (13), we obtain

∞∑
n=0

un(x, t) = G(x, t) −N−1
[

Wα

sα N
+

[
R
∞∑

n=0
vn(x, t)

]
+
∞∑

n=0
An

]
,

∞∑
n=0

vn(x, t) = H(x, t) −N−1
[

Wα

sα N
+

[
R
∞∑

n=0
un(x, t)

]
+
∞∑

n=0
Bn

]
.

(14)
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By comparing both sides of Equation (14), we obtain:
u0(x, t) = G(x, t),

u1(x, t) = −N−1
[

Wα

sα N
+[Rv0(x, t)] + A0

]
,

u2(x, t) = −N−1
[

Wα

sα N
+[Rv1(x, t)] + A1

]
,

...
v0(x, t) = H(x, t),

v1(x, t) = −N−1
[

Wα

sα N
+[Ru0(x, t)] + B0

]
,

v2(x, t) = −N−1
[

Wα

sα N
+[Ru1(x, t)] + B1

]
,

...
Similarly, we can obtain the recursive relation in general form for n ≥ 1 and defined as:

un+1(x, t) = −N−1
[

Wα

sα N
+[Rvn(x, t)] + An

]
,

vn+1(x, t) = −N−1
[

Wα

sα N
+[Run(x, t)] + Bn

]
.

(15)

Lastly, the approximate solutions are defined as follows:
u(x, t) =

∑
∞

n=0 un(x, t), v(x, t) =
∑
∞

n=0 vn(x, t).

4. FNDM Solution for the Projected System

Here, we consider the 2019-nCoV system of equations, presented in Equation (2), and find the
solution using the projected solution procedure. Then,

Dα
t Sp(t) = np −mpSp − bpSp

(
Ip + κAp

)
− bwSpM,

Dα
t Ep(t) = bpSp

(
Ip + κAp

)
+ bwSpMp −

(
1− δp

)
ωpEp − δpω′pEp −mpEp,

Dα
t Ip(t) =

(
1− δp

)
ωpEp −

(
γp + mp

)
Ip,

Dα
t Ap(t) = δpω′pEp −

(
γ′p + mp

)
Ap,

Dα
t Rp(t) = γpIp + γ′pAp −mpRp,
Dα

t M(t) = εIp + σAp − ϑM,

0 < α 6 1 (16)

associated to initial conditions produces

S(0) = S0, E(0) = E0, I(0) = I0, A(0) = A0, R(0) = R0, M(0) = M0. (17)

With the assistance of NT on Equation (16), we obtain:

N+
[
Dα

t Sp(t)
]
= N+

[
np −mpSp − bpSp

(
Ip + κAp

)
− bwSpM

]
,

N+
[
Dα

t Ep(t)
]
= N+

[
bpSp

(
Ip + κAp

)
+ bwSpMp −

(
1− δp

)
ωpEp − δpω′pEp −mpEp

]
,

N+
[
Dα

t Ip(t)
]
= N+

[(
1− δp

)
ωpEp −

(
γp + mp

)
Ip
]
,

N+
[
Dα

t Ap(t)
]
= N+

[
δpω′pEp −

(
γ′p + mp

)
Ap

]
,

N+
[
Dα

t Rp(t)
]
= N+

[
γpIp + γ′pAp −mpRp

]
,

N+
[
Dα

t M(t)
]
= N+

[
εIp + σAp − ϑM

]
.

(18)
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The nonlinear operator is defined as:

sα
WαN+

[
Sp(t)

]
−

n−1∑
k=0

sα−(k+1)

Wα−k

[
DkSp

]
t=0

= N+
[
np −mpSp − bpSp

(
Ip + κAp

)
− bwSpMp

]
,

sα
WαN+

[
Ep(t)

]
−

n−1∑
k=0

sα−(k+1)

Wα−k

[
DkEp

]
t=0

= N+[bpSp
(
Ip + κAp

)
+ bwSpM

−

(
1− δp

)
ωpEp − δpω′pEp −mpEp],

sα
WαN+

[
Ip(t)

]
−

n−1∑
k=0

sα−(k+1)

Wα−k

[
DkIp

]
t=0

= N+
[(

1− δp
)
ωpEp −

(
γp + mp

)
Ip
]
,

sα
WαN+

[
Ap(t)

]
−

n−1∑
k=0

sα−(k+1)

Wα−k

[
DkAp

]
t=0

= N+
[
δpω′pEp −

(
γ′p + mp

)
Ap

]
,

sα
WαN+

[
Rp(t)

]
−

n−1∑
k=0

sα−(k+1)

Wα−k

[
DkRp

]
t=0

= N+
[
γpIp + γ′pAp −mpRp

]
,

sα
WαN+[M(t)] −

n−1∑
k=0

sα−(k+1)

Wα−k

[
DkM

]
t=0

= N+
[
εIp + σAp − ϑM

]
.

(19)

By the above equation, we obtain:

N+
[
Sp(t)

]
= 1

s [S0] +
Wα

sα N
+
[
np −mpSp − bpSp

(
Ip + κAp

)
− bwSpM

]
,

N+
[
Ep(t)

]
= 1

s [E0] +
Wα

sα N
+
[
bpSp

(
Ip + κAp

)
+ bwSpMp −

(
1− δp

)
ωpEp − δpω′pEp −mpEp

]
,

N+
[
Ip(t)

]
= 1

s [I0] +
Wα

sα N
+
[(

1− δp
)
ωpEp −

(
γp + mp

)
Ip
]
,

N+
[
Ap(t)

]
= 1

s [A0] +
Wα

sα N
+
[
δpω′pEp −

(
γ′p + mp

)
Ap

]
,

N+
[
Rp(t)

]
= 1

s [R0] +
Wα

sα N
+
[
γpIp + γ′pAp −mpRp

]
,

N+[M(t)] = 1
s [M0] +

Wα

sα N
+
[
εIp + σAp − ϑM

]
.

(20)

On employing inverse NT on Equation (20), we obtain:

Sp(t) = S0 +N−1
[

Wα

sα N
+
[
np −mpSp − bpSp

(
Ip + κAp

)
− bwSpM

]]
,

Ep(t) = E0 +N−1
[

Wα

sα N
+
[
bpSp

(
Ip + κAp

)
+ bwSpMp −

(
1− δp

)
ωpEp − δpω′pEp −mpEp

]]
,

Ip(t) = I0 +N−1
[

Wα

sα N
+
[(

1− δp
)
ωpEp −

(
γp + mp

)
Ip
]]

,

Ap(t) = A0 +N−1
[

Wα

sα N
+
[
δpω′pEp −

(
γ′p + mp

)
Ap

]]
,

Rp(t) = R0 +N−1
[

Wα

sα N
+
[
γpIp + γ′pAp −mpRp

]]
,

M(t) = M0 +N−1
[

Wα

sα N
+
[
εIp + σAp − ϑM

]]
.

(21)

Let us consider the series solution for Sp(t), Ep(t), Ip(t), Ap(t), Rp(t), and M(t) respectively
as follows:

Sp(t) =
∞∑

n=0
Spn(t), E(t) =

∞∑
n=0

Epn(t),

I(t) =
∞∑

n=0
Ipn(t), A(t) =

∞∑
n=0

Apn(t),

R(t) =
∞∑

n=0
Rpn(t), M(t) =

∞∑
n=0

M(t).

Note that SpIp =
∑
∞

n=0 P1,n, SpAp =
∑
∞

n=0 P2,n, and SpM =
∑
∞

n=0 P3,n represent the nonlinear terms
and are known as the Adomian polynomials. With the help of these terms, Equation (21) becomes:
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∞∑
n=0

Spn(t) = S0 +N−1
[

Wα

sα N+

[
np −mpSpn − bp

∞∑
n=0

P1,n − κbp
∞∑

n=0
P2,n − bw

∞∑
n=0

P3,n

]]
,

∞∑
n=0

Epn(t) = E0 +N−1
[

Wα

sα N+

[
bp
∞∑

n=0
P1,n + κbp

∞∑
n=0

P2,n + bw
∞∑

n=0
P3,n −

((
1− δp

)
ωp + δpω′p + mp

)
Epn

]]
,

∞∑
n=0

Ipn(t) = I0 +N−1
[

Wα

sα N+
[(

1− δp
)
ωpEpn −

(
γp + mp

)
Ipn

]]
,

∞∑
n=0

Apn(t) = A0 +N−1
[

Wα

sα N+
[
δpω′pEpn −

(
γ′p + mp

)
Apn

]]
,

∞∑
n=0

Rpn(t) = R0 +N−1
[

Wα

sα N+
[
γpIpn + γ′pApn −mpRpn

]]
,

∞∑
n=0

Mn(t) = M0 +N−1
[

Wα

sα N+
[
εIpn + σApn − ϑMn

]]
.

(22)

With the assistance of the above system with prescribed initial conditions, we find the terms of
the series solution for the projected model systematically. Then, we establish the series solutions as for
the second iterations:

Sp(t) =
∞∑

n=0
Spn(t) = S0 + Sp1(t) + Sp2(t) + · · ·

= S0 +
tα

Γ[α+1]

(
np − κA0bpS0 −mpS0 − bwM0S0 − bpI0S0

)
+ tα

Γ[2α+1] (np(Γ[1 + α]

−tακA0bp − tαbpI0) + S0(tακ2A2
0b2

p − 2Γ[α+ 1]bwM0 + tαbpbwM0I0

+tαb2
pQ2

0 −mp
(
Γ[α+ 1] − 2tαbpI0

)
+ tαbpI0γp + tακA0bp(2mp + bwM0

+2bpI0 + γp) − tαbpE0ωp + tαbpE0δpωp − tακbpE0δpω′p)) + · · · ,

Ep(t) =
∞∑

n=0
Epn(t) = E0 + Ep1(t) + Ep2(t) + · · ·

= E0 +
tα

Γ[α+1] (−mpE0 + κA0bpS0 + bwM0S0 + bpI0S0 + E0
(
−1 + δp

)
ωp

−E0δpω′p) −
t2α

Γ[1+2α] (−m2
pE0 − bpnpI0 + κ2A2

0b2
pS0 + b2

wM2
0S0 + 3bpmpI0S0

+b2
pQ2

0S0 + bpI0S0γp − 2mpE0ωp − bpE0S0ωp + bpI0S0ωp + 2mpE0δpωp

+bpE0S0δpωp − bpI0S0δpωp − E0ω2
p + 2E0δpω2

p − E0δ2
pω

2
p − 2mpE0δpω′p

−κbpE0S0δpω′p + bpI0S0δpω′p − E0δ2
pω

2z
p − 2E0δpω

1+z
p + 2E0δ2

pω
1+z
p

+bw
(
−εI0S0 + M0

(
−np + S0

(
v+ 2mp + 2bpI0 +ωp − δpωp + δpω′p

)))
+A0(−σbwS0 + 2κb2

pI0S0 − κbp(np − S0(3mp + 2bwM0 + γp +ωp − δpωp+δpω′p)))) + · · · ,

Ip(t) =
∞∑

n=0
Ipn(t) = I0 + Ip1(t) + Ip2(t) + · · ·

= I0 +
tα

Γ[α+1]

(
−I0

(
mp + γp

)
− E0

(
−1 + δp

)
ωp

)
+ t2α

Γ[1+2α] (−
(
mp + γp

)
(−I0(mp

+γp) − E0
(
−1 + δp

)
ωp) +

(
1− δp

)
ωp(−mpE0 + κA0bpS0 + bwM0S0 + bpI0S0

+E0
(
−1 + δp

)
ωp − E0δpω′p)) + · · · ,

Ap(t) =
∞∑

n=0
Apn(t) = A0 + Ap1(t) + Ap2(t) + · · ·

= A0 +
tα

Γ[α+1]

(
−A0

(
mp + γp

)
+ E0δpω′p

)
+ t2α

Γ[1+2α] (−δpω′p(2mpE0 − bwM0S0

−bpI0S0 + E0γp + E0ωp − E0δpωp + E0δpω′p) + A0(m2
p + 2mpγp + γ2

p

+κbpS0δpω′p)) + · · · ,
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Rp(t) =
∞∑

n=0
Rpn(t) = R0 + Rp1(t) + Rp2(t) + · · ·

= R0 +
tα

Γ[α+1]

(
−mpR0 + I0γp + A0γ′p

)
+ t2α

Γ[1+2α] (m
2
pR0 − I0γ2

p −A0γ
1+z
p

−2mp
(
I0γp + A0γ′p

)
+ E0γpωp − E0γpδpωp + E0γ′pδpω′p) + · · · ,

M(t) =
∞∑

n=0
Mpn(t) = M0 + M1(t) + M2(t) + · · ·

= M0 +
tα

Γ[α+1] (σA0 − ϑM0 + εI0) +
t2α

Gamma[1+2α] (ϑ
2M0 − ϑεI0 − εmpI0 − εI0γp

−σA0
(
ϑ+ mp + γp

)
+ εE0ωp − εE0δpωp + σE0δpω′p) + · · · .

5. Results and Discussion

We captured the behavior obtained for the projected model describing the 2019-nCoV epidemic
with different fractional-order values. The considered model describes the outbreak of the coronavirus
with the exponential increase in the number of people affected as it spreads. Figure 1 is a representation
of the model, illustrating its evolution associated with each parameter. It is important to investigate the
outbreak and its behavior with different parameters to analyze and predict its evolution and spread.
The initial conditions considered for the present study, which include reported results from Wuhan,
China [20,64], are:

Sp(0) = S0 = 8, 065, 518, Ep(0) = E0 = 200000, Ip(0) = I0 = 282,

Ap(0) = A0 = 200, Rp(0) = R0 = 0 and M(0) = M0 = 50, 000.

The present investigation may help researchers to understand some interesting consequences
of the projected model. The fractional operator can also exemplify some future scenarios for the
considered model, as shown in Figure 2. As the value of α changes, the obtained solution produces
fascinating consequences, according to the fixed values of the parameters defined in the projected
model. The plots show exponential growth in all classes, which corresponds to the spread of the virus
from the beginning of 2020.
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6. Conclusions

In this study, the fractional natural decomposition method was successfully applied to the
investigation of 2019-nCoV, numerically illustrated by the spreading of some dependent variables
of the 2019-nCoV system. Because the Caputo derivative and integral are recognized as suitable
explanations of real-world problems, the present paper introduces the effectiveness of the considered
derivative. Figure 1 explains how the transfer model occurs from reservoir to human. Figure 2 presents
wave behaviors of infection and other features of the2019-nCoV outbreak. Thus, from Figures 1 and 2,
the results obtained using FNDM for 2019-nCoV are spreading shortly. We aimed to help researchers
better understand the physical behavior of the novel coronavirus. The fractional-order method allows
for more flexible investigations and deeper methods of observing2019-nCoV behaviors. The main
novelty of this paper is that the simulation changes according to different fractional-order values.
When the α value grows, the graphs notably increase. This explains 2019-nCoV spreading behaviors.
Finally, we conclude that the projected method is extremely methodical, more effective, and very
accurate, and can be applied to the analysis of many diverse classes of coupled nonlinear problems
that exist in science and technology.
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45. Yang, X.J.; Baleanu, D.; Lazarević, M.P.; Cajić, M.S. Fractal boundary value problems for integral and
differential equations with local fractional operators. Therm. Sci. 2015, 19, 959–966. [CrossRef]

46. Atangana, A.; Alkahtani, B.T. Analysis of non- homogenous heat model with new trend of derivative with
fractional order. Chaos Solitons Fractals 2016, 89, 566–571.

47. Yang, X.J. New rheological problems involving general fractional derivatives with nonsingular power-law
kernels. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2018, 19, 45–52.

48. Yang, X.J.; Gao, F.; Ju, Y.; Zhou, H.W. Fundamental solutions of the general fractional-order diffusion
equations. Math. Meth. Appl. Sci. 2018, 41, 9312–9320. [CrossRef]

49. Kumar, D.; Singh, J.; Al-Qurashi, M.; Baleanu, D. A new fractional SIRS-SI malaria disease model with
application of vaccines, anti-malarial drugs, and spraying. Adv. Diff. Equ. 2019, 2019, 278. [CrossRef]

http://dx.doi.org/10.1016/0022-247X(84)90182-3
http://dx.doi.org/10.2478/AMNS.2018.2.00038
http://dx.doi.org/10.1002/mma.4144
http://dx.doi.org/10.1002/mma.3984
http://dx.doi.org/10.1002/mma.5533
http://dx.doi.org/10.3934/math.2020054
http://dx.doi.org/10.1002/cmm4.1021
http://dx.doi.org/10.1142/S1793962320500051
http://dx.doi.org/10.3390/sym12030478
http://dx.doi.org/10.1016/j.physa.2017.10.002
http://dx.doi.org/10.1016/j.chaos.2020.109661
http://dx.doi.org/10.1016/j.aej.2017.05.028
http://dx.doi.org/10.2298/TSCI160411246Y
http://dx.doi.org/10.2298/TSCI160111018A
http://dx.doi.org/10.1515/tmj-2015-0024
http://dx.doi.org/10.1002/mma.5458
http://dx.doi.org/10.2298/TSCI170613281K
http://dx.doi.org/10.3390/e17064439
http://dx.doi.org/10.1140/epjp/i2019-12854-0
http://dx.doi.org/10.1007/s11071-017-3870-x
http://dx.doi.org/10.2298/TSCI130717103Y
http://dx.doi.org/10.1002/mma.5341
http://dx.doi.org/10.1186/s13662-019-2199-9


Biology 2020, 9, 107 14 of 14

50. Atangana, A. Fractional discretization: The African’s tortoise walk. Chaos Solitons Fractals 2020, 130, 109399.
[CrossRef]

51. Shah, K.; Khalil, H.; Khan, R.A. Analytical solutions of fractional order diffusion equations by natural
transform method. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 1479–1490. [CrossRef]

52. Shah, K.; Junaid, M.; Ali, N. Extraction of Laplace, Sumudu, Fourier and Mellin Transform from the Natural
Transform. J. Appl. Environ. Biol. Sci. 2015, 5, 108–115.

53. Shah, K.; Khan, R.A. The applications of natural transform to the analytical solutions of some fractional order
ordinary differential equations. Sindh Univ. Res. J. (Sci. Ser.) 2015, 47, 683–686.

54. Shah, K.; Jarad, F.; Abdeljawad, T. On a nonlinear fractional order model of dengue fever disease under
Caputo-Fabrizio derivative. Alexandria Eng. J. 2020, 1–20. [CrossRef]

55. Al-Ghafri, K.S.; Rezazadeh, H. Solitons and other solutions of (3+1)-dimensional space–time fractional
modified KdV–Zakharov–Kuznetsov equation. Appl. Math. Nonlinear Sci. 2019, 4, 289–304. [CrossRef]

56. Shah, K.; Alqudah, M.A.; Jarad, F.; Abdeljawad, T. Semi-analytical study of Pine Wilt Disease model with
convex rate under Caputo–Fabrizio fractional order derivative. Chaos Solitons Fractals 2020, 135, 109754.
[CrossRef]

57. Khan, A.; Abdeljawad, T.; Gómez-Aguilar, J.F.; Khan, H. Dynamical study of fractional order mutualism
parasitism food web module. Chaos SolitonsFractals 2020, 134, 109685. [CrossRef]

58. Sene, N. Stability analysis of electrical RLC circuit described by the Caputo-Liouville generalized fractional
derivative. Alexandria Eng. J. 2020, 1–8. [CrossRef]

59. Yokus, A.; Gulbahar, S. Numerical solutions with linearization techniques of the fractional Harry Dym
equation. Appl. Math. Nonlinear Sci. 2019, 4, 35–42.

60. Sene, N. Second-grade fluid model with Caputo–Liouville generalized fractional derivative. Chaos Solitons
Fractals 2020, 133, 109631. [CrossRef]

61. Thiao, A.; Sene, N. Fractional optimal economic control problem described by the generalized fractional order
derivative. In Proceedings of the International Conference on Computational Mathematics and Engineering
Sciences (CMES 2019), Antalya, Turkey, 20–22 April 2019; pp. 36–48. [CrossRef]

62. Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.A.T.; Bates, J.H.T. The role of fractional calculus in modeling
biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [CrossRef]

63. Qureshi, S. Real life application of Caputo fractional derivative for measles epidemiological autonomous
dynamical system. Chaos Solitons Fractals 2020, 134, 109744. [CrossRef]

64. Khan, M.A.; Atangana, A. Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative.
Alexandria Eng. J. 2020. [CrossRef]

65. Bulut, H.; Baskonus, H.M. Regarding on the prototype solutions for the nonlinear fractional-order biological
population model. AIP Conf. Proc. 2016, 1738, 290004.

66. Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. New approach for the model describing the
deathly disease in pregnant women using Mittag-Leffler function. Chaos Solitons Fractals 2020, 134, 109696.
[CrossRef]

67. Bulut, H.; Kumar, D.; Singh, J.; Swroop, R.; Baskonus, H.M. Analytic study for a fractional model of HIV
infection of CD4+TCD4+T lymphocyte cells. Math. Nat. Sci. 2018, 2, 33–43. [CrossRef]

68. Ilhan, O.A.; Esen, A.; Bulut, H.; Baskonus, H.M. Singular Solitons in the Pseudo-parabolic Model Arising in
Nonlinear Surface Waves. Results Phys. 2019, 12, 1712–1715. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.chaos.2019.109399
http://dx.doi.org/10.1007/s40995-016-0136-2
http://dx.doi.org/10.1016/j.aej.2020.02.022
http://dx.doi.org/10.2478/AMNS.2019.2.00026
http://dx.doi.org/10.1016/j.chaos.2020.109754
http://dx.doi.org/10.1016/j.chaos.2020.109685
http://dx.doi.org/10.1016/j.aej.2020.01.008
http://dx.doi.org/10.1016/j.chaos.2020.109631
http://dx.doi.org/10.1007/978-3-030-39112-6_3
http://dx.doi.org/10.1016/j.cnsns.2017.04.001
http://dx.doi.org/10.1016/j.chaos.2020.109744
http://dx.doi.org/10.1016/j.aej.2020.02.033
http://dx.doi.org/10.1016/j.chaos.2020.109696
http://dx.doi.org/10.22436/mns.02.01.04
http://dx.doi.org/10.1016/j.rinp.2019.01.059
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	Method of Solution for the Projected System 
	FNDM Solution for the Projected System 
	Results and Discussion 
	Conclusions 
	References

