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Abstract: Despite converging evidence on the involvement of large-scale distributed brain networks in
response to stress, the effect of stress on the components of these networks is less clear. Although some
studies identify higher regional activities in response to stress, others observe an opposite effect in the
similar regions. Studies based on synchronized activities and coactivation of these components also yield
similar differing results. However, these differences are not necessarily contradictory once we observe the
effect of stress on these functional networks in terms of the change in information processing capacity of
their components. In the present study, we investigate the utility of such a shift in the analysis of the effect
of stress on distributed cortical regions through quantification of the flow of information among them. For
this purpose, we use the self-assessed responses of 216 individuals to stress-related questionnaires and
systematically select 20 of them whose responses showed significantly higher and lower susceptibility
to stress. We then use these 20 individuals’ resting-state multi-channel electroencephalography (EEG)
recordings (both Eyes-Closed (EC) and Eyes-Open (EO) settings) and compute the distributed flow of
information among their cortical regions using transfer entropy (TE). The contribution of the present
study is three-fold. First, it identifies that the stress-susceptibility is characterized by the change in flow
of information in fronto-parietal brain network. Second, it shows that these regions are distributed
bi-hemispherically and are sufficient to significantly differentiate between the individuals with high
versus low stress-susceptibility. Third, it verifies that the high stress-susceptibility is markedly associated
with a higher parietal-to-frontal flow of information. These results provide further evidence for the
viewpoint in which the brain’s modulation of information is not necessarily accompanied by the change
in its regional activity. They further construe the effect of stress in terms of a disturbance that disrupts
the flow of information among the brain’s distributed cortical regions. These observations, in turn,
suggest that some of the differences in the previous findings perhaps reflect different aspects of impaired
distributed brain information processing in response to stress. From a broader perspective, these results
posit the use of TE as a potential diagnostic/prognostic tool in identification of the effect of stress on
distributed brain networks that are involved in stress-response.
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1. Introduction

Stress is a catalyst for many emotional disorders [1] that affect over 400 million individuals
worldwide [2]. Its effect forces the brain into a state of fearful arousal that urges the need for rapid
defense mechanisms [3-5]. It alters the brain functions by strengthening memories of stressful
experiences [6-8]. It debilitates the brain capacity for reasoning and deliberation [9-11].

The brain response to stress involves large-scale dynamically interacting brain networks [12,13].
Among such networks, three appear to play a central role: the salience network (SN), the default
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mode network (DMN), and the fronto-parietal network (FPN) [14-16]. Research suggests that the
irregularities in these three networks’ functions can lead to a wide range of (stress-related) psychiatric
disorders [16].

Despite converging evidence on the involvement of these distributed networks in brain responses
to stress [14,16,17], the effect of stress on their components is less clear [13,18]. For instance, considering
the change in the brain activation, whereas Pruessner et al. [19] and Koric et al. [20] reported an
elevated frontal activity in response to stress, Albert et al. [21] and Qin et al. [9] observed an opposite
effect in this region. In the same vein, the use of such measures of coactivation as independent
component analysis (ICA) [18,22,23] also yielded differing results. For instance, van Marle et al. [24],
Veer et al. [25], and Vaisvaser et al. [26] found increased connectivity among components of these
distributed brain networks in response to stress. On the other hand, Viard et al. [27], Zhang et al. [28],
and van Oort et al. [29] reported their reduced connectivity.

However, these findings on the change in brain (de)activation in response to stress are not
necessarily contradictory once one interprets the effect of stress on the brain in terms of its information
processing capacity. Specifically, Wutz et al. [30] found that the modulation of information does not
necessarily involve a change in local power. In other words, change in the brain’s information processing
is not necessarily accompanied with a change in brain activity. In the same vein, Reid et al. [31] noted
that associations among the brain regions in terms of correlation [27] or other measures of coactivation
such as ICA [15,27-29] can arise in a variety of ways that may not relate to the extent of the influence
among these cooccurring processes. As a result, they fall short of capturing a more comprehensive
mapping between the observed associations and their underlying neural substrates [31-33]. Study of
the effect of stress on these distributed networks in terms of information processing of their components
can shed further light on the impact of stress on their inter-regional dynamics and their capacity for
information-sharing and processing.

In this respect, the dynamical system analysis [34,35] frames the study of the brain function in
terms of the interaction between its regions. Specifically, it treats the brain as a complex system [36,37]
whose dynamics and ongoing activity [38] orchestrates its cognitive functions [39-42]. Among such
approaches, Granger causality (GA) [43-45] and transfer entropy (TE) [46—48] are two effective
measures of directed flow of information among distributed brain regions. Precisely, their strictly
non-symmetric measure of the information exchange between different components of such brain
networks helps verify whether the observed associations are indeed stemmed from causal (i.e., in its
purely statistical term [49,50]) relations among these regions. An advantage of TE in comparison to GA
is that whereas GA is based on linear vector autoregressive (VAR) [51,52] and hence linear in nature,
TE is a nonlinear directional measure of flow of information [49,50].

In the present study, we investigate the utility of TE for quantification of the effect of stress on
resting-state cortical information processing. For this purpose, we use the Max Planck Institute Leipzig
Mind-Brain-Body Dataset [53]. This dataset pertains to 227 adults who completed a comprehensive
set of neurophysiological (fMRI, EEG, cardiovascular measures, blood samples, and urine drug
tests, etc.) and psychological tests (comprising 6 cognitive tests along with 21 questionnaires pertinent
to personality traits and tendencies, eating, addictive, and emotional behaviors, etc.).

In our study, we consider the 216 subset of the total individuals who had their EEG data recorded [53].
To determine the participants’ stress-susceptibility, we use these 216 individuals’ responses to three
psychological assessment questionnaires: the big-five of personality (a.k.a five-factor-model (FFM) [54]),
the perceived stress questionnaire (PSQ) [55], and the state-trait anxiety inventory (STAI-G-X2) [56].
We then systematically identify 20 out of 216 participants who showed a significantly higher (hereafter,
HIGH stress-susceptible) and lower (hereafter, LOW stress-susceptible) stress-susceptibility. Each of
these HIGH and LOW stress-susceptible groups comprise 10 participants. Next, we use these
20 individuals’ resting-state multi-channel EEG recordings (both Eyes-Closed (EC) and Eyes-Open (EO)
settings) and compute their distributed flow of information among different cortical regions using TE.
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The contribution of the present study is three-fold. First, it identifies that the stress-susceptibility
is characterized by the change in flow of information in fronto-parietal brain network. Second,
it verifies that these distributed fronto-parietal regions that expand bi-hemispherically are sufficient
to significantly differentiate between the HIGH and LOW stress-susceptible groups. In this regard,
it also indicates that although these regions contribute differently to such distinctions, their differential
contributions are rather non-significant. Third, it shows that in the case of HIGH stress-susceptible
group, the flow of information between these distributed fronto-parietal brain regions is associated
with a higher parietal-to-frontal flow of information.

The present results provide further evidence for the viewpoint in which the brain’s modulation of
information is not necessarily accompanied by the change in its regional activity [30]. They further
construe the effect of stress in terms of a disturbance that disrupts the flow of information among the
brain’s distributed cortical regions. These observations, in turn, complement the previous research
that primarily focused on the effect of stress on the brain networks in terms of synchronized activity
among their components, thereby providing further insight towards understanding the causal relation
(i.e., directional flow of information) among these brain regions [31-33]. From a broader perspective,
these results posit the use of TE as a potential diagnostic/prognostic tool in identification of the effect of
stress on distributed brain networks that are involved in the brain responses to stress. This observation
becomes more intriguing considering the recent surge in application of machine learning and statistical
frameworks to decoding of the brain activity [57-60].

2. Methods

Mind-body-brain dataset [53] provides a detailed description of the experimental settings, types
of data collected, cognitive, personality traits, psychological questionnaires that the participants
responded and more. In what follows, we summarize the information that pertain to the resting-state
EEG recordings and the three psychological assessments that we used in this study.

2.1. Participants

Mind-body-brain dataset [53] included 227 participants in two age groups: the younger group
(153 participants, 45 females, age: mean (M) = 25.1, median (Mdn) = 24.0, standard deviation (SD) = 3.1),
and the older group (74 participants, 37 females, age: Mdn = 67.0, M = 67.6, SD = 4.7).

The resting-state EEG recordings which we used in the present study corresponded to 216 of these
participants. Starting from 54th participant, the exact location of each 62 EEG electrodes were digitized
using a Polhemus PATRIOT Motion Tracking System (Polhemus, Colchester, VT, USA) localizer and
the Brainstorm toolbox [61]. This was done based on each participant’s head position relative to
three fiducial points and the referenced electrode FCz. In the present study, we used this subset of
162 participants (i.e., 216 — 54 = 162 participants) (age: M = 38.61, Mdn = 30.0, SD = 20.14).

2.2. Resting-State EEG

2.2.1. Acquisition

Mind-body-brain dataset [53] includes sixty-two-channel resting-state EEG recordings (61 scalp
and a VEOG electrode below the right eye) from 216 human subjects. These channels were arranged
according to 10-20 extended localization system, also known as 10-10 system [62]. They were referenced
to FCz. During the recordings, EEG signals, per channel, per participant, were bandpass-filtered
between 0.015 Hz and 1 KHz. They were further digitized at 2500 Hz sampling rate. Each EEG session,
per participant, comprised 16 blocks. These blocks included two types of resting-state recordings:
Eyes-Closed (EC) and Eyes-Open (EO). EC and EO each consisted of 8 blocks of length 60-s, per block.
Every participants completed these two resting-state EEG recordings. For every participant, the EEG
recording session started with EC (Figure 1A). During the experiment, the participants were seated in
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front of a computer screen and asked to stay awake. In the case of EO, they were asked to fixate their
eyes on a black cross that was presented on the computer screen.

(A)

ECI |a| EOl |g| EC2 | ... »| EC8 |a| EOS8

(60 seconds) (60 seconds) (60 seconds) (60 seconds) (60 seconds)

Figure 1. (A) Resting-state EEG acquisition protocol in mind-body-brain dataset [53]. It comprised
16 blocks where these blocks (60-s each) were divided into two settings: Eyes-Closed (EC) and
Eyes-Open (EO). Each setting consisted of 8 blocks. These EC and EO blocks were interleaved and
the recording started with EC for all participants. In this figure, the numbers 1 through 8 refer to the
corresponding EC/EO block number. (B) Fifty-three EEG channels (circled in red) that were commonly
available in all participants’ preprocessed EEG recordings. These channels were FP2, AF7, AF3, AFZ,
AF4, AF8, C5,C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPZ, CP2, CP4, F5, F3, FZ, F1, F2, F4, F6, F8, F17,
FC5, FC3, FC1, FC2, FC4, FC6, FT8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO9, PO7, POZ, PO3, PO4, POS,
and O1, OZ, O2.

2.2.2. Preprocessing

We used the preprocessed EEG recordings that were available through mind-body-brain
dataset [53]. In this preprocessing pipeline, the raw EEG was first downsampled from 2500 Hz to
250 Hz. It was then, per channel, per participant, bandpass-filtered within 1-45 Hz using an eight-order
Butterworth filter (i.e., four-order in both directions to minimize zero-crossing distortions by low-frequency
drifts [63]). The data was then split into EC and EO, each comprising eight 60-s blocks. For each of these
blocks, the EEG channels were visually inspected and the channels that were affected by such issues
as frequent jumps/shifts in voltage and/or poor signal quality were rejected. During this step, data
intervals that contained extreme peak-to-peak deflections or large bursts of high frequency activity were
also removed (identified through visual inspection). Next, the dimensionality of the data (i.e., EEGs’
channel-dimension) was reduced by performing principal component analysis (PCA) and keeping PCs
(> 30) that explained 95.0% of the variance. This step was then followed by independent component
analysis (ICA) on temporal (i.e., EEG channels’ data points) dimension of data using the Infomax
(runica) algorithm (step size: 0.0006> annealing policy: when weight change > 0.000001,

log(number of channels)”’
learning rate was multiplied by 0.98, stopping criterion maximum number of iterations 512 or weight
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change < 0.000001). Subsequently, components that reflected eye movement, eye blink, or heartbeat
related artifacts were removed. Retained independent components for EO (M = 19.70, range = 9.0-30.0)
and EC (M = 21.40, range = 14.0-28.0) conditions were then back-projected to the sensor space for further
analysis. These analyses were performed using EEGLAB [64] (version 14.1.1b) for MATLAB (Delorme
and Makeig, 2004).

In addjition to these steps, we also detrended (using Matlab 2016a inbuilt detrend function) these
EEG signals, per participant, per channel, per EC/EQ, prior to any further computation and analysis.

2.3. EEG Channels Inclusion

The preprocessing steps that were applied on EEG recordings’ channel-dimension (i.e., PCA
preprocessing step, Section 2.2.2) resulted in missing EEG channels in case of some of the participants.
To balance the EEG channels for all participants, we therefore checked for the EEG channels that
were common among all 20 HIGH and LOW stress-susceptible participants that were included in the
present study. We found (Figure 1B) that 53 EEG channels were commonly available in all participants
preprocessed EEG recordings which we used for our analyses. These channels were FP2, AF7, AF3, AFZ,,
AF4, AF8, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPZ, CP2, CP4, F5, F3, FZ, F1, F2, F4, F6, F8, FT7,
FC5, FC3, FC1, FC2, FC4, FCe6, FT8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO9, PO7, POZ, PO3, PO4, POS,
and O1, OZ, O2.

7

2.4. An Overview of the Participants” Selection and EEG Inclusion Process

Figure 2 illustrates the overall procedure through which participants and their respective EEG
recordings for LOW and HIGH stress-susceptible groups were selected (see Appendix A for detailed
information and results). This procedure comprised five following steps.

1.  Asafirst step (Figure 2(1)), the 95.0% confidence intervals of the participants’ responses to each
of NEO-FFI, PSQ, and STAI-G-X2 were calculated separately. Subsequently, those individuals
whose responses to all of these three questionnaires fell in lower/upper boundary of respective
confidence interval of its related questionnaire (indicated by green/red lines, respectively) were
used to form the LOW /HIGH stress-susceptible groups.

2. In the second step (Figure 2(2)), pair-wise TE values for all available 53-EEG-channels
(Figure 1B), per LOW and HIGH stress-susceptible participants, per EC and EO settings” matrices
(i.e., 8 matrices, per setting) were calculated. This resulted in 8 TE matrices of size 53 x 53
(i.e., paired EEG channels’ TE values), per EC and EO settings. These 8 TE matrices were then
averaged, per EC and EO settings, per participant, thereby yielding one averaged 53 x 53 TE
matrix, per EC and EO settings, per participant.

3. Third step (Figure 2(3)) included computing the 95.0% confidence interval for TE values,
per EC and EO settings. For this purpose, TE values from the averaged EC and EO TE
matrices of all participants in each LOW and HIGH stress-susceptible groups were separately
combined (i.e., 10 x 53 x 53 = 28090 TE values, per EC and EO settings). Next, the TE values,
per participant, per setting, that were below the upper boundary of their respective group’s
confidence interval (i.e., per EC and EO settings) were discarded (i.e., set to zero).

4. In step four (Figure 2(4)), we first counted the number of non-zero entries in each row of
the averaged TE matrices, per individual, per EC and EO settings. Next, we combined the
individuals’ counts for LOW and HIGH stress-susceptible groups separately and computed the
95.0% confidence intervals for these counts (i.e., per EC and EO settings, per stress-susceptible
groups). We then discarded those EEG channels whose number of non-zero TE entries were below
the upper boundary of their related confidence interval, per individual, per stress-susceptible
groups, and per EC and EO settings.

5. Instep five (Figure 2(5)) we separately found the union of EEG channels among individuals in
each of LOW and HIGH stress-susceptible groups, per EC and EO settings (Figure A2). In the
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case of EC, this step resulted in 18 EEG channels that were common between all participants in
HIGH stress-susceptible group. These channels were AFZ, AF4, F1, F6, FI7,CZ, C2, C6, CP5, CP3,
CP1, CP4, P7, P5, P4, P6, PO3, POZ. Similarly, there were 18 EEG channels that were common
among all participants in LOW stress-susceptible group. They were FP2, AFZ, F3, F5, FZ, CP1,
CP3, CP5, CPZ, P7, P3, P4, P2, P6, PO3, POZ, PO4, O2. We used the union of these EEG channels
(without repetition) for comparative analyses between HIGH and LOW stress-susceptible groups
in EC setting (Figure A2A). On the other hand, we found 21 EEG channels in EO setting that
survived these thresholding steps and that were common between all participants in HIGH
stress-susceptible group. Those channels were AF3, AF4, C1, C2, C6, CP3, CP4, CP5, F1, F2,
Fe6, FC5, FC6, FT7, FT8, Fp2, Fz, O1, P1, P6, PO4. The number of such EEG channels in LOW
stress-susceptible group was 17 (AF3, AF8, AFZ, C2, CP3, CPZ, F2, F4, FC5, FC6, F17, Fp2, Fz, P2,
PO7, PO8, PZ). Similar to the case of EC, we used the union of these EEG channels for comparative
analyses between HIGH and LOW stress-susceptible groups for EO setting (Figure A2B).

2.5. Analysis

We performed three series of analyses: (1) analysis of the participants’ responses to neuroticism
(NEO-FFI), worries (PSQ), tension (PSQ), and STAI trait anxiety (STAI-G-X2). (2) analysis of the
participants’ total TEs (i.e., cumulative sum of TEs from one channel (e.g., AF4) to all the other 52 EEG
channels). (3) analysis of the participants’ distributed TEs (e.g., AF4’s transferred information to each
of the 52 channels, separately). Below, we elaborate on these analyses.

2.5.1. Responses to Neuroticism (NEO-FFI), Worries (PSQ), Tension (PSQ), and STAI Trait Anxiety
(STAI-G-X2)

To ensure the adequacy of neuroticism (NEO-FFI), worries (PSQ), tension (PSQ), and STAI trait
anxiety (STAI-G-X2) for capturing the participants’ susceptibility to stress, we performed partial
Spearman correlation on their responses to these questionnaires. We chose partial correlation to regress
out any potential confounding effect that might have been present in their responses to each of these
questionnaires (particularly between the two questions included from PSQ). We reported these results
in three steps. First, we computed the partial Spearman correlations of all the 122 participants whose
responses to neuroticism (NEO-FFI), worries (PSQ), tension (PSQ), and STAI trait anxiety (STAI-G-X2)
were available. This ensured that these responses were indeed related with all the participants who
participated in this study and whose EEG recordings were also available (Section 2.1). We reported
these correlations in Appendix C.1. Second, we applied this partial Spearman correlation on the first
subsets of 26 HIGH and 14 LOW stress-susceptible groups. These subsets included both female and
male genders as well as younger and older participants. We reported these correlations in Appendix C.2.
Last, we carried out these correlations on the final selection of HIGH (10 participants) and LOW (10
participants) male younger individuals. We reported these correlations in Appendix C.3.

To further validate the use of neuroticism (NEO-FFI), worries (PSQ), tension (PSQ), and STAI
trait anxiety (STAI-G-X2) for choosing the participants in HIGH and LOW stress-susceptible groups,
we also performed Wilcoxon rank sum test between every pairs of responses in these two groups
(e.g., HIGH versus LOW responses to neuroticism). In addition, we verified these results using paired
two-sample bootstrap test of significance (10,000 simulation runs) at 99.0% (i.e., p < 0.01) confidence
interval. For the bootstrap test, we considered the null hypothesis “The difference between responses
of HIGH and LOW stress-susceptible groups to a given questionnaire was non-significant” and tested
it against the alternative hypothesis “The responses to a given questionnaire differed significantly
between HIGH and LOW stress-susceptible groups.” We reported these results in Appendix C.4.



Biology 2020, 9, 236 7 of 37

E

tress-susceptible
v
‘TE Computation for each of 8 EC and EO setting ‘ TE Computation for each of 8 EC and EO setting
Average 53 X 53 matrices Average 53 X 53 matrices
of TE values for each of TE values for each
EC and EO settings EC and EO settings
T
(3) . , e — ! ‘
TE entries of averaged EO and EC matrices below the upper TE entries of averaged EO and EC matrices below the upper
boundary of their respective 95.0% confidence intervals discarded; boundary of their respective 95.0% confidence intervals discarded
(4) ! T —
53 X 53 matrices with whose EEG channels’ non-zero entry counts! S3X53 ]-'n‘d:I’ICES with th)SE EEG channels non-zero Enlrly counts
below 95.0% confidence interval of all channels’ counts discarded below 95.0% confidence lnler\«‘a:i\)f all channels” counts discarded

Figure 2. An overview of data inclusion in the present study. The procedure comprised five steps.
(1) 95.0% confidence intervals of participants’ responses to each of NEO-FFI, PSQ, and STAI-G-X2 were
calculated separately. Subsequently, participants whose responses to each of three questionnaires fell
in lower /upper boundary of respective confidence interval of its related questionnaire (indicated by
green/red lines, respectively) were placed in LOW /HIGH stress-susceptible groups. (2) Pair-wise TE
values for all available 53-EEG-channels (Figure 1B) for each of these LOW and HIGH stress-susceptible
participants, per individual, for each of their EC and EO settings’ matrices (i.e., 8 matrices, per setting)
were calculated. This resulted in 8 TE matrices of size 53 x 53, per EC and EO settings. This was
followed by averaging 8 TE matrices for each of EC and EO settings, per participant, thereby obtaining
one averaged 53 x 53 TE matrix, per EC and EO settings, per participant. (3) 95.0% confidence interval
for TE values, per EC and EO settings, of all participants in LOW and HIGH stress-susceptible groups
were separately computed (i.e., 10 x 53 x 53 = 28090 TE values, per EC and EO settings) and TE values,
per participant, per setting, that were below the upper boundary of their respective group’s confidence
interval (i.e., per EC and EO settings) were discarded. (4) 95.0% confidence intervals for combined
individuals” number of non-zero entries in each row of the averaged TE matrices, per EC and EO
settings, per stress-susceptible group, were computed and EEG channels whose number of non-zero
TE entries were below the upper boundary of their related confidence interval were discarded, per
individual, per stress-susceptible groups, and per EC and EO settings. (5) Union of EEG channels
among individuals in each of LOW and HIGH stress-susceptible groups, per EC and EO settings, were
separately selected (i.e., two EEG channels’ arrangements at the bottom, Figure A2). In the case of EC,
we found 18 EEG channels that survived these thresholding steps and that were common between all
participants in HIGH stress-susceptible group (AFZ, AF4, F1, F6, FT7, CZ, C2, C6, CP5, CP3, CP1, CP4,
P7, P5, P4, P6, PO3, POZ). We also found 18 surviving EEG channels that were common among all
participants in LOW stress-susceptible group (FP2, AFZ, F3, F5, FZ, CP1, CP3, CP5, CPZ, P7, P3, P4, P2,
P6, PO3, POZ, PO4, O2). We used the union (without repetition) of these EEG channels for comparative
analyses between HIGH and LOW stress-susceptible groups during EC setting (Figure A2A). In the
case of EO, we found 21 EEG channels that survived these thresholding steps and that were common
between all participants in HIGH stress-susceptible group (AF3, AF4, C1, C2, C6, CP3, CP4, CP5, F1,
F2, F6, FC5, FC6, FT17, FT8, Fp2, Fz, O1, P1, P6, PO4). The number of such EEG channels in LOW
stress-susceptible group was 17 (AF3, AF8, AFZ, C2, CP3, CPZ, F2, F4, FC5, FC6, F17, Fp2, Fz, P2, PO?7,
PO8, PZ). Similar to the case of EC, we used the union of these EEG channels for comparative analyses
between HIGH and LOW stress-susceptible groups for EO setting (Figure A2B).
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2.5.2. Total TEs

For selected EEG channels of the participants in HIGH and LOW stress-susceptible groups, per EC
and EO settings (Figure A2), we first computed their total TE as

Ch,*

where total is a function that computes the sum of j* channel’s TEs to each of the other EEG channels,
chj, i # j (Figure 1B). This computation is analogous to computing the sum of TEs for each row of
53 x 53 averaged TE matrices (i.e., one matrix per participant, per EC and EO settings). For example,
total TE for channel AF4 was computed as sum of all TE values in its corresponding row entry in a
given 53 x 53 averaged TE matrix. In essence, the total TE estimated the functional strength of each
EEG channel. It is also worthy of note that since total TEs were computed by summing the row entries
of the participants’ TE matrices, they quantified each EEG channels’ functional strength in terms of
their total information transferred to every other EEG channel.

We then performed Wilcoxon rank sum test between each pair of selected channels for HIGH
and LOW stress-susceptible groups (e.g., AF4 in HIGH and LOW). We carried out this analysis on
EEG channels of both EC (Figure A2A) and EO (Figure A2B) settings. These tests identified several
EEG channels that showed significantly different total TEs between HIGH and LOW stress-susceptible
participants. In the case of EC, these channels (9 EEG channels in total) were in frontal (FP2, AF4, F1, F6),
centroparietal (CP3 and CP4), parietal (P2 and P3), and occipital (O2) regions. For EO (14 EEG channels
in total), they were in frontal (AF4, F1, F4), frontotemporal (FT7), central (C1 and C6), centroparietal
(CP3, CPZ, and CP4), parietal (P1 and PZ), parieto-occipital (PO7 and POS8), and occipital (O1) regions.

To realize the importance of each of these EEG channels in distinguishing between HIGH and
LOW stress-susceptible groups, we performed General Linear Model (GLM) [65,66] analysis on them.
We opted for GLM analysis using logistic regression with sigmoid function. The inputs to this model
were N X M matrices where N refers to the number of participants (i.e., 20 in our case) and M is
the number of channels whose total TEs significantly differed between HIGH and LOW groups
(i.e., 9 and 14 in the case of EC and EO, respectively). We used 1 and 0 as class labels for HIGH and
LOW stress-susceptible groups, per EC and EO settings. We then carried out ANOVA analyses on this
model’s coefficients (i.e., weights), per EC and EO settings. We used Matlab 2016a (“fitlm” and its
corresponding “anova” functions) for these analyses. We reported the results of EC analyses in the
main manuscript. We provided the results pertinent to EO setting in Appendixes B.1 and B.2.

Last, we computed the Spearman correlations between the channels with significantly different
total TEs between HIGH and LOW stress-susceptible participants and their responses to neuroticism
(NEO-FFI), worries (PSQ), tension (PSQ), and STAI trait anxiety (STAI-G-X2) questionnaires.
We reported these results in Appendix D.1 (in the case of EC) and Appendix D.2 (in the case of EO).

2.5.3. Distributed TEs

We used the EEG channels with significantly different total TEs, per EC (9 channels: FP2, AF4, F1,
F6, CP3, CP4, P2, P3, O2) and EO (14 channels: AF4, F1, F4, F17, C1, C6, CP3, CPZ, CP4, P1, PZ, PO7,
PO8, O1) and examined whether their distributed transfer of information also differed between HIGH
and LOW stress-susceptible groups. For each of these channels (e.g., AF4), we combined its separate
TEs to the remaining 52 EEG channels (i.e., the directed transfer of information to the other channels)
for all of the participants, per HIGH and LOW group. It is worthy of note that the total TE of each
of these channels (Section 2.5.2) was the cumulative sum of these separate TEs to each of the other
52 EEG channels. We then performed Wilcoxon rank sum test between each pair of these channels’
distributed TEs for HIGH and LOW stress-susceptible groups (e.g., AF4 in HIGH and LOW).

Last, we counted the number of regions that each of these channels transferred information to in
HIGH and LOW stress-susceptible groups, per EC and EO settings, and applied Wilcoxon rank sum
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test on them to determine whether there was any significant difference between them. We reported the
results pertinent to EC in the main manuscript. We provided the EO setting’s results in Appendix B.3.

2.5.4. TE Computation, Effect Sizes and Bonferroni Correction

We used the TE implementation in [67]. For Kruskal-Wallis, we reported the effect size r = \/%,
as suggested by Rosenthal and DiMatteo [68], where x? and N are the test-statistics and the sample
size, respectively. In the case of Wilcoxon test, we used r = ﬂN [69] as effect size with W denoting the
Wilcoxon statistics and N is the sample size. The effect sizes of these tests are considered [70] small
when r < 0.3, medium when 0.3 < r < 0.5, and large when r > 0.5. For ANOVA analysis of GLM’s
coefficients (i.e., model’s weights), we reported 1? effect size. In this case, the effect is considered [71]
small when 72 < 0.01, medium when 0.06 > 5%, and large when 72 > 0.14. All the results reported are
Bonferroni corrected (% = 0.025) where 2 refers to HIGH and LOW stress-susceptible groups.

3. Results

3.1. Total TEs

Channel-wise paired Wilcoxon rank sum test identified nine EEG channels (Figure 3) whose total
TEs were significantly different between HIGH and LOW stress-susceptible groups. These channels
were FP2, AF4, F1, F6, CP3, CP4, P2, P3, and O2.
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Figure 3. Eyes-Closed (EC) setting. Channel-wise paired Wilcoxon rank sum test between total TEs of
participants in HIGH and LOW stress-susceptible groups. There were significant differences between
total TEs of nine EEG channels. They were: FP2, AF4, F1, F6, CP3, CP4, P2, P3, and O2. In this figure,
the asterisks mark these significant differences (* p < 0.05, ** p < 0.01, *** p < 0.001).

Among these channels, four channels (AF4, F1, F6, and CP4) showed significantly higher total
TEs in HIGH stress-susceptible group (Table 1). On the other hand, the remaining five channels
(FP2, CP3, P2, P3, and O2) were associated with significantly higher total TEs in LOW stress-susceptible
group (Table 2). All these significant differences were associated with strong effect sizes.
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Table 1. Eyes-Closed (EC) setting. Channel-wise paired Wilcoxon rank sum test for four channels
(AF4, F1, F6, and CP4) in which significantly higher total TEs were associated with HIGH stress-susceptible
group. p, W, and r refer to p-value, test-statistics, and the effect size for Wilcoxon rank sum tests. M and SD
are the mean and standard deviation of these channels’ total TE values. The subscripts to M and SD mark
the two groups. All these significant differences were characterized by strong effect sizes, as indicated by
the “r” column entry of this table.

Channel p= Ww(18) r MHIGH SDHIGH MLOW SDLOW

AF4 0.0010 329 074 0.020 0.003 0.016 0.001
F1 0.0002 374 0.84 0.024 0.002 0.019 0.002

F6 0.0004 352 079 0.021 0.001 0.016 0.002
CP4 0.0091 2.61 0.58 0.021 0.002 0.017 0.003

Table 2. Eyes-Closed (EC) setting. Channel-wise paired Wilcoxon rank sum test for five channels
(FP2, CP3, P2, P3, and O2) in which higher total TEs were associated with LOW stress-susceptible
group. p, W, and r refer to p-value, test-statistics, and the effect size for Wilcoxon rank sum tests. M and
SD are the mean and standard deviation of these channels’ total TE values. The subscripts to M and
SD mark the two groups. All these significant differences were characterized by strong effect sizes,
as indicated by the “r” column entry of this table.

Channel p= W@8) r  Mpuigas SDHIiGH Mriow SDrow
FP2 0.0100 —247 0.55 0.016 0.002 0.0190 0.002
CP3 0.0013 —-3.21 0.72 0.020 0.002 0.024 0.002

P2 0.0003 —3.59 0.80 0.016 0.003 0.023 0.002
P3 0.0036 —291 0.65 0.017 0.002 0.021 0.002
02 0.0013 —-3.21 0.72 0.016 0.0021 0.020 0.002

3.2. GLM Analysis of the Channels with Significantly Different Total TEs

ANOVA analysis of the GLM coefficients (i.e., model’s weights) identified (Figure 4) non-significant
difference (Table 3) of the contribution of each channel individually to predict the participants’” group
membership (coefficients’ statistics: M = —0.0058, SD = 0.032, Clgs o9, = [—0.0731 0.05269]).

0.2 [ IWeights __ Average —95% Confidence Interval
. T T T T T
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Figure 4. Eyes-Closed (EC) GLM analysis using logistic regression with sigmoid function to
determine the importance of each of the significantly different channels between HIGH and LOW
stress-susceptible groups for predicting participants” group membership (i.e., HIGH versus LOW).
Channels with significantly different total TEs were FP2, AF4, F1, F6, CP3, CP4, P2, P3, and O2. ANOVA
analysis of these weights indicated non-significant difference between contribution of these channels
individually and in comparison to other channels’ contribution. Blue line in each subplot marks the
average of these coefficients, per setting. Red lines mark the 95.0% confidence interval of these weights.




Biology 2020, 9, 236 11 of 37

Table 3. Eyes-Closed (EC) setting. ANOVA analysis of GLM coefficients associated with the channels
with significant difference in their total TEs between HIGH and LOW stress-susceptible groups.
These channels were: FP2, AF4, F1, F6, CP3, CP4, P2, P3, and O2. This analysis identified a
non-significant difference between contribution of these channels individually and in comparison with
the other channels’ contribution.

Channel p= F 1>

AF4 0.6734 0.19 0.02
FP2 09813 F=0.001 0.0001
F1 0.8818 F=0.02 0.002

F6 0.6864 0.17 0.014
CP3 0.8292 0.05 0.004
CP4 0.9290 0.008 0.0007

P2 0.8000 0.07 0.006

P3 0.9893 F=0.0002 0.00002

02 0.8915 0.020 0.002

3.3. Distribution of the Information Transferred by the Channels with Significantly Different Total TEs

Similar to the case of total TEs, distributed TEs from AF4, F1, F6, and CP4 to other EEG channels
were significantly higher among HIGH stress-susceptible group (Table 4).

Table 4. Eyes-Closed (EC) setting. Channel-wise paired Wilcoxon rank sum tests for four channels
(AF4, F1, F6, and CP4) in which significantly higher distributed TEs were associated with HIGH
stress-susceptible group. p, W, and r refer to p-value, test-statistics, and the effect size for Wilcoxon rank
sum tests. M and SD are the mean and standard deviation of these channels’ distributed TE values for
HIGH and LOW stress-susceptible groups. The subscripts to M and SD mark the two groups.

Channel p= W(1058) r Mygrica SDuica Mrow SDiow

AF4 0.0003 3.61 0.11 0.020 0.018 0.016 0.018
F1 0.000001 4.50 0.15 0.024 0.018 0.019 0.018
F6 0.00003 418 0.13 0.021 0.018 0.016 0.018

CP4 0.00003 420 0.13 0.021 0.018 0.017 0.018

We also observed that the distributed TEs of the same remaining five channels in the case of
total TE values (FP2, CP3, P2, P3, and O2) were significantly higher among LOW stress-susceptible
groups (Table 5).

Table 5. Eyes-Closed (EC) setting. Channel-wise paired Wilcoxon rank sum tests for five channels
(FP2, CP3, P2, P3, and O2) in which significantly higher distributed TEs were associated with LOW
stress-susceptible group. p, W, and r refer to p-value, test-statistics, and the effect size for Wilcoxon rank
sum tests. M and SD are the mean and standard deviation of these channels’ distributed TE values for
HIGH and LOW stress-susceptible groups. The subscripts to M and SD mark the two groups.

Channel p= W(1058) r MHIGH SDHIGH MLOW SDLOW

FP2 0.0052 —-2.79 0.09 0.016 0.018 0.019 0.019
CP3 0.0002 —-3.71 0.11 0.020 0.019 0.024 0.018
P2 0.0000 5.46 0.17 0.016 0.018 0.023 0.018
P3 0.0014 -3.19 0.10 0.017 0.019 0.021 0.018
02 0.0009 —3.33 0.10 0.016 0.019 0.020 0.019
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On the other hand, contribution of these channels” distributed TEs to other channels differed
substantially between HIGH and LOW stress-susceptible groups. Figure 5 illustrates the distributed
contribution of TEs from AF4, FP2, F1, F6, CP3, CP4, P2, P3, and O2 to the other channels whose
significant differences were presented in Tables 4 and 5. This figure indicates that whereas transfer
of information from these channels primarily contributed to the frontal regions in the case of
HIGH stress-susceptible group (Figure 5A), their contribution was more globally distributed among
fronto-parietal in the case of LOW stress-susceptible group (Figure 5B).

Figures 6 and 7 visualize the cortical regions which each of these channels with significantly
different distributed TEs transferred information to. More specifically, these figures show the directed
transfer of information (i.e., TE) from (i.e., out-degree) AF4, FP2, F1, F6, CP3, CP4, P2, P3, and O2 to the
other cortical regions in the case of HIGH and LOW stress-susceptible groups. A comparison between
these figures clarifies the substantially frontal-oriented distributed TE among HIGH stress-susceptible
group (Figure 6) and its more distributed nature among fronto-parietal regions in the case of LOW
stress-susceptible individuals (Figure 7). The more dense networks of TEs in the case of LOW versus
HIGH stress-susceptible groups is apparent in these two figures. Wilcoxon rank sum test identified
that the number of regions that each of these channels transferred information to was significantly
higher in the case of LOW versus HIGH stress-susceptible participants (p = 0.000, W(16) = —3.59,
r=0.85 Myigy = 13.11, SDy 16 = 1.36, My ow = 33.78, SD; ow = 1.09). This difference was associated
with a strong effect size.

(A)

CP3 CP4
/\ /\

AF4 FP2 F6 P3
/\ A /\

0.0 0.006 0011 0017 0022 0028  0.034  0.039
Transfer Entropy (TE)

CP3 CP4 P2
A A A

0.0 0.006 0012 0.018 0.024 0030  0.036 0042
Transfer Entropy (TE)

Figure 5. Eyes-Closed (EC) setting. Global distribution of TEs of channels whose total TE values
significantly differed between HIGH and LOW stress-susceptible groups. These channels were FP2,
AF4, F1, F6, CP3, CP4, P2, P3, and O2. (A) HIGH stress-susceptible group (B) LOW stress-susceptible
group. This figure indicates that distributed TEs from these channels were primarily contributed to the
frontal regions in the case of HIGH stress-susceptible group. On the other hand, their contribution was
more globally distributed among fronto-parietal in the case of LOW stress-susceptible group.
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Figure 6. Eyes-Closed (EC) setting. Transfer of information from FP2, AF4, F1, F6, CP3, CP4, P2, P3,
and O2 to the other cortical regions in the case of HIGH stress-susceptible group. In each subplot,
the source of information transfer (e.g., AF4, FP2, etc.) is the one from which all connections are
originated. They are labeled at the top of each subplot. The recipients of information (i.e., channels on
the other cortical regions) are the ones at the other end of these outreaching arches.

Figure 7. Eyes-Closed (EC) setting. Transfer of information from (i.e., out-degree) FP2, AF4, F1, F6, CP3,
CP4, P2, P3, and O2 to the other cortical regions in the case of LOW stress-susceptible group. In each
subplot, the source of information transfer (e.g., FP2, AF4, etc.) is the one from which all connections are
originated. They are labeled at the top of each subplot. The recipients of information (i.e., channels on
the other cortical regions) are the ones at the other end of these outreaching arches.
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4. Discussion

In the present study, we investigated the potential effect of stress on cortical flow of information
using transfer entropy (TE) [46-48]. Our results identified a distributed cortical network that expanded
bilaterally. This was in line with the previous findings that indicated the involvement of large-scale
dynamically interacting brain regions in response to stress [12,14]. The use of TE also extended the
previous research that primarily focused on the synchronized activity among components of such
networks [15,17,27-29]. Precisely, TE’s strictly non-symmetric measure of information exchange
facilitated the quantification of the dynamics of the information-sharing among different brain regions.

Van Oort et al. [13] observed that the use of different types of experimentally induced psychological
and physical stressors by most of previous studies could potentially yield differential impacts on the
brain response to stress [15,20,72]. To realize the common stress-induced effects on the brain distributed
networks [14], they further asserted that such variations must be dissociated from more (potentially)
general patterns. Some investigators indeed addressed this issue by using the resting-state brain activity
that was collected before and after administration of such psychological and physical stressors [24—
26,28]. Our study extended these previous attempts for attenuation of the effect of stressors on the
observed changes in the brain networks by considering the resting-state that was not associated with any
physical or psychological stressors. Specifically, the participants in the present study only completed the
multidimensional mood state (MDBF) questionnaire [73] prior to their resting-state EEG recordings in
which they ranked their moods (5-point Likert scale, from 1 (not at all) to 5 (very much) [53]). In this
regard, it was interesting to note that the subtle difference in participants’ resting with their eyes closed or
open (Appendix B.3) resulted in an apparent change in the pattern of cortical flow of information. This
observation further highlighted the potential (confounding) impact that the experimental setting (i.e.,
in addition to the effect of different stressors [13]) can exert on the induced pattern of brain activity.

We observed that the regions with significantly higher total TEs were associated with the brain’s
fronto-parietal network [29] bilaterally. Furthermore, the distribution of these regions appeared
to highlight the cortical components of default mode network (DMN) [74-76]. This observation
was in line with the previous findings that indicated the involvement of this network in brain’s
stress-response [13,27-29]. These results extended the previous analyses that identified that the brain’s
distributed emotion-specific activity may provide maps of internal states that correspond to specific
subjectively experienced emotions [77-79]. Interestingly, although these regions contributed differently to
such distinctions, their differential contributions were rather non-significant. This was in accord with
Watson and Tellegen [80] that showed the joint activity from multiple regions best discriminated between
different internal states. In this regard, Zhang et al. [81] also presented a high classification accuracy of
pre- versus post-stress using the resting-state functional connectivity of healthy individuals. Our findings
extended their results in two ways. First, our results provided evidence for the significant effect of stress
on brain functional connectivity in the absence of any explicit stressor. Second, our results indicated
that the effect of stress resulted in a change in brain’s distributed network whose flow of information
substantially differed between individuals with low versus high stress-susceptibility.

In the case of HIGH stress-susceptible group, we observed that the information from these
fronto-parietal regions flew to a substantially smaller number of other cortical regions. This observation
was in accord with van Oort et al. [29] report on a reduced connectivity in fronto-parietal network in
response to stress. It was also in line with Sheline et al. [82] and Kaiser et al. [83] who considered such
a reduced connectivity to reflect an impaired ability to suppress attention to internal emotional states.
our results further complemented these previous findings by extending them from synchrony between
these regions to the case in which the change in transfer of information between different regions
could be more evidently apprehended. It also (at least partially) addressed the issues concerning the
insufficiency of the regional synchronization for a more comprehensive understanding of their level of
associations [31-33].

The brain fronto-parietal network appears to act as a domain-general network [84,85]. It plays
a pivotal role in a variety of brain functions [86,87] that range from self-referential processing [88],
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autobiographical memory [89], and emotion [90] to social cognition and theory of mind [91], decision
making [92], and working memory [93]. In view of these observations, it is plausible to construe the
observed reduction of the flow of information among the components of this network among HIGH
stress-susceptible individuals to highlight the potential impact of stress on their overall brain cognitive
ability for handling various personal and social life events [1,94]. This interpretation finds further
evidence in the stress-induced dampening of higher-level cognitive functions [14,16].

We also observed that the fronto-parietal flow of information was predominantly projected onto
the frontal cortex in the case of HIGH stress-susceptible individuals. This observation resonated with
Cohen and D’Esposito [95] that reported an increase connectivity between frontal and parietal regions
as a function of task difficulty. In this respect, our result might suggest the taxing effect of stress on the
brain frontal regions of these HIGH stress-susceptible individuals to maintain its overall cognitive and
behavioral control. This interpretation becomes more plausible considering the interfering effect of
stress on prefrontal cortex that is necessary for the flexible control of behavior [11,96]. It may also reflect
the self-criticism by these individuals whose impact is most pronounced in the frontal regions [97].
In this respect, the long-range flow of information from parietal-to-frontal regions could be explained in
terms of the selective role of parietal cortex in cognitive processes that support individuals” emotional
distancing [98].

Our results suggest that some of the differences in the previous findings perhaps reflect different
aspects of impaired distributed brain information processing in response to stress. For instance,
in the case of increased [19,20] versus decreased [9,21] brain activity in response to stress, our results
identified that the higher/lower flow of information within the same cortical lobe (e.g., frontal cortex)
was not a distinct characteristic of HIGH or LOW stress-susceptible groups. Although a higher
flow of information in one subset of the same cortical lobe’s regions was associated with HIGH
stress-susceptible group, its other subset exhibited such a higher flow of information in the case of LOW
stress-susceptible group. In the same vein, our results indicated that whereas LOW stress-susceptible
group was characterized with a flow of information that was substantially more distributed, the HIGH
stress-susceptible group exhibited the flow of information that was evidently focused on the frontal
cortical regions. Such a variation in cortical information integration may lead to differing findings on
increased [25,26] or decreased [27-29] brain regional synchronization if the direction of such influences
were not accounted for [31-33]. This observation is evident in desynchronization effect of stress on
various frontocortical regions that results in impaired ability to shift attention [99,100].

From a broader perspective, our results posit the potential use of TE as a diagnostic marker of the
stress. For instance, TE can help identify the individuals that are at higher risk of stress-related
neuropsychological disorders. Subsequently, it may also prove useful for tracking the effect of
stress-related treatments on these patients through quantification of the changes in the pattern of
information-sharing among their distributed cortical regions in comparison with healthy individuals
with lower stress susceptibility.

5. Limitations and Future Direction

Recent studies [13] underlined three essential networks that are particularly involved in
stress-response: the default mode network (DMN), the salience network (SN), and the central executive
network (CEN) [16]. Although our results hinted at the fronto-parietal cortical components of such
networks, the use of EEG in the present study did not allow for identification of the subcortical
structures that are involved in these brain networks [14,15,101]. In this respect, the 162 subset of
participants from Babayan et al. [53] that were included in our study had localized EEG channels.
In addition, Babayan et al. [53] also provided the fMRI recordings of the individuals who participated in
their study. This provides the future research with the opportunity to further our results by extending
the use of TE to the case of fMRI recordings of these participants. This, in turn, allows for realization
of the involvement of subcortical regions in the observed changes in the pattern of cortical flow of
information. The importance of the study of the effect of stress on the flow of information between
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these cortico-subcortical regions becomes apparent, considering the crucial role of these subcortical
regions as the root of emotional responses [5].

While selecting the participants for the present study, the limited number of female participants
in the final HIGH and LOW stress-susceptible groups left us with no choice but to exclude them from
our further analyses. On the other hand, Lighthall et al. [102] and Seo et al. [72] showed the differential
effect of participants” gender on the brain response to stress. This necessitates further investigation of
our findings in settings in which both male and female (as well as more gender-diverse individuals) are
included. Similarly, the limited number of older adults (i.e., one individual in each of LOW and HIGH
stress-susceptible groups) required us to exclude them from further analyses since their limited sample
would have not allowed us to verify whether the observed results were due to stress or the effect of
ageing on reduced complexity and information processing capacity of the brain [103-107]. As a result,
it is crucial to consider the sample population that comprise older people as well as adolescent [10,27]
for drawing more informed conclusion on the change in cortical information processing in response
to stress.

It is also important to note that our findings do not readily generalize to the case of overall
brain responses to stress. This is because our approach to selecting the individuals for the present
study inevitably discarded those participants whose responses fell between the HIGH and LOW
stress-susceptible groups. As a result, we were not able to verify whether the observed changes in
the cortical flow of information was due to the significantly different mindset of HIGH versus LOW
groups (i.e., as far as their subjective responses to the questionnaires were concerned) or it rather captured
a substantial change in the brain functions whose gradual effect could be traced along the stress-effect
spectrum. Considering the findings that identified the individuals” subjective ratings to best predict
their distress across a variety of self-report measures [108], future research can broaden the scope of the
present study to the case in which individuals with broader stress responses are included. This, in turn,
can allow for more informed conclusion on generalizability of observed differences between HIGH and
LOW stress-susceptible groups to more inclusive scenario in which wider range of stress responses
are considered.

The present results suggested TE as a useful tool for the study and analysis of the effect of
stress on brain’s distributed cortical information processing. It is apparent that, compared to more
conventional correlation/coactivation-based approaches, the use of such measures of directed flow of
information as TE can provide a more comprehensive view of the brain’s regional interactivity and
information-sharing. Despite this interesting feature, TE suffers from one key criterion, i.e., its expensive
computation. Specifically, TE’s time complexity is O(R®), where R refers to its computational resolution.
In this respect, recent research presented substantial progress on addressing this limitation [109,110].
However, further analytical studies are necessary to allow for harnessing the full utility of TE for
quantification of the effect of various psychological and mental disorders on brain function. This is
in particular crucial to enable the use of TE as a useful feature for real-time data-driven approaches to
decoding of the brain activity [57-60].
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Appendix A. Detailed Participants and EEG Selection Procedure

This Appendix provides detailed information about participants and EEG selection procedure
that was summarized in Section 2.4.
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Appendix A.1. Determination of Participants” Stress-Susceptibility

To determine the participants’ stress-susceptibility, we used their responses to three psychological
assessment questionnaires: the big five of Personality (a.k.a. five-factor model (FFM) [54]), the perceived
stress questionnaire (PSQ), and the state-trait anxiety inventory (STAI-G-X2).

In the case of FFM, the mind-body-brain dataset used the German adaptation of NEO-Five-Factor
Inventory [111] to assess Costa and McCrae’s Big-Five of Personality Inventory (NEO-FFI) [112].
NEO-FFI comprises 60 items: neuroticism, extraversion, openness to experience, agreeableness,
and conscientiousness. The responses to these items are provided using a five-point Likert scale
ranging from 0 (strong denial) to 4 (strong approval).

In the case of PSQ, the mind-body-brain dataset used its short German version [113] (twenty-item
PSQ [55]). This test assesses the perception, appraisal, and processing of stressors during the last
two years. It comprises four items: Worries, Tension, Joy, and Demands. These items are rated on a
four-point Likert scale from 1 (almost never) to 4 (usually).

For STAI-G-X2, the mind-body-brain used the German version of the Trait Scale of the State-Trait
Anxiety Inventory (STAI-G-X2) [114] which is a short version of [56] for the assessment of a
situation-independent general condition of anxiety. STAI-G-X2 consists of 20 items that are rated using
a four-point Likert scale, ranging from 1 (almost never) to 4 (nearly always).

It is worthy of note that our approach to selecting the individuals based on their responses to
questionnaires was motivated by a recent study by MacDuffieet et al. [108] (1256 human subjects)
in which the authors reported that individuals” subjective ratings were the best predictors of their
distress across a variety of self-report measures. They further concluded that such measures may
represent informative indicators of individuals’ psychological function. In the same vein, the review
by Dotson et al. [115] also found evidence for such associations among 16,806 participants that took in
76 studies.

Appendix A.1.1. Participants’ Selection Based on Their Responses to NEO-FFI, PSQ, STAI-G-X2

Since we were primarily interested in assessing the effect of stress on the cortical flow of information,
we used specific items from NEO-FFI, PSQ, and STAI-G-X2. Specifically, we used neuroticism (NEO-FFI),
worries and tension (PSQ), and STAI trait anxiety (STAI-G-X2).

For the subset of 162 participants that were included in the present study (Section 2.1), we first
checked whether all their responses to neuroticism (NEO-FFI), worries and tension (PSQ), STAI trait
anxiety (STAI-G-X2) were available. We found that 40 participants missed at least one of these responses.
Therefore, we discarded these 40 participants. This brought the total number of individuals that were
included in our study to 122 (Appendix C.1 for pair-wise partial (Spearman) correlations of their
responses).

For these 122 participants, we then determined the 95.0% confidence interval of their responses to each
of these four items (Table Al). Next, we marked those participants, per item, whose responses were strictly
below the lower bound of its respective item-wise CI (i.e., p < 0.025) (NEO-FFI neuroticism = 56 participants,
PSQ worries = 51 participants, PSQ tension = 72 participants, STAI trait anxiety = 17 participants). We also
applied this step for those individuals whose responses were strictly above the upper bound of these items’
ClI (i.e., p < 0.025) (NEO-FFI neuroticism = 51 participants, PSQ worries = 51 participants, PSQ tension = 41
participants, STAI trait anxiety = 75'participants). Among these marked individuals, we then selected those
whose all responses were strictly below the lower ClIs or strictly above the upper ClIs (e.g., participants whose
all responses were below the lower bound of neuroticism, worries, tension, and STAI trait anxiety respective
CIs). We labeled these participants LOW (14 participants) and HIGH (26 participants) stress-susceptible
groups (Appendix C.2 for pair-wise partial (Spearman) correlations of their responses).
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Table A1l. Mean (M), standard deviation (SD), 95.0% confidence interval (Clys o), minimum,
and maximum score of participants’ responses to Neuroticism (NEO-FFI), Worries and Tension (PSQ),
and STAI Trait Anxiety (STAI-G-X2).

Questionnaire M SD Clgs.09% Minimum Maximum
NEO-FFI Neuroticism  1.53  0.54 [1.44 1.63] 0.17 2.92
PSQ Worries 29.18 1649 [26.39 32.30] 6.67 86.67
PSQ Tension 3148 17.8 [28.5234.81] 6.67 93.33
STAI Trait Anxiety 3148 17.80 [28.58 34.75] 6.67 93.33

Further investigation of these groups indicated that there were only one older male (age range, 60-65)
in the HIGH and one older male (age range, 70-75) in the LOW stress-susceptible groups. Additionally,
we also observed that there was only one younger female (age range, 30-35) in the LOW stress-susceptible
group. The absence of younger female participants in HIGH group (i.e., in addition to a single younger
female in LOW group) meant that we were not able determine the effect of gender on potential differences
between these two groups. This was an important issue, considering the findings [72,102] that showed the
differential effect of participants” gender on their brain response to stress. In the same vein, having only
one older male in each of LOW and HIGH groups would have not allowed for further analysis to verify
whether age played a role in our observations. This was also an important issue, given the effect of ageing
on reduced complexity and information processing capacity of the brain [103-107]. Therefore, we decided
to discard the older participants and the female participants from our further analyses. This resulted
in discarding 4 participants from LOW stress-susceptible group (one older male, one younger female,
and two older females). After this step, the total number of participants in LOW stress-susceptible group
became 10 (age range: Mdn = 20-25, M = 28-33, SD = 14.38-14.38). In the case of HIGH stress-susceptible
group, we discarded seven younger females and one older male. This brought the total number of
participants in HIGH stress-susceptible group to 18.

To balance the number of participants in HIGH and LOW stress-susceptible groups, we first
formed a 1 x 4 questionnaire-response vector, per HIGH stress-susceptible participant. The element
of these vectors were the participants’ normalized responses to neuroticism (NEO-FFI), worries
(PSQ), tension (PSQ), and STAI trait anxiety (STAI-G-X2). We then computed the pair-wise Euclidean
distances of these vectors. Last, we included the 10 HIGH stress-susceptible participants with
smallest Euclidean distance between their questionnaire-response vectors (age range: Mdn = 20-25,
M =21-26, SD =2.11-2.11). Figure Al shows the distribution of neuroticism (NEO-FFI), worries (PSQ),
tension (PSQ), and STAI trait anxiety (STAI-G-X2) for the selected 10 HIGH and 10 LOW stress-susceptible
groups (Appendix C.3 for pair-wise partial (Spearman) correlations of their responses).

NEOFFI Neuroticism 2%

PSQ Worries — | —— —
PSQ Tension — —————————= -
STAI Trait Anxiety g P ! HIGH
0 20 40 60 20 LOW
Scores

Figure Al. Distribution of neuroticism (NEO-FFI), worries (PSQ), tension (PSQ), and STAI trait
anxiety (STAI-G-X2) for the selected 10 HIGH and 10 LOW stress-susceptible groups. Clear distinction
of participants’ responses in HIGH versus LOW stress-susceptible groups is evident in this figure
(Appendix C.4 for analysis of significant differences between participants’ responses in HIGH versus
LOW stress-susceptible groups).
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Appendix A.2. Quantification of the Directed Transfer of Information between EEG Channels

We used transfer entropy (TE) [46] to quantify the participants” EEG inter-channel flow of information
during EC and EO settings. Prior to elaborating on TE computation for HIGH and LOW stress-susceptible
groups, per EC/EQO, we first present an overview of TE. We then explain how we used TE to quantify the
directed transfer of information between all pairs of selected 53 EEG Channels of participants, per EC/EO.

Appendix A.2.1. Overview of Transfer Entropy (TE)

TE aims at extracting directed flow or transfer of information [47] between interacting
processes. In essence, TE quantifies the deviation from generalized Markov property p(x;41|x:, y¢) =
p(xip1|xe), Vxi, x41 € X, y¢ € Y, where p(x|y) represents the probability of occurrence of x,
given y occurred and “t” is the time lag. TE is expressed as a specific version of Kullback-Leibler
divergence [116] i.e., the relative entropy [47]:

EQY—X)=)Y Y Y p(xit1,x,y1) log p(xee1lxe ye) AD

Xer1 Xt Yt (xt+1|xt)

where TE(Y — X)) indicates the directed flow of information from ) to X. One can also identify TE
as a conditional mutual information (MI) between two interacting processes (i.e., a causal inference on
shared information):

TE(Y — X) = MI(Ys; Xe1|Xe), VXs, xt €EX, yr €Y (A2)

If this deviation is small, then the state of ) is assumed to have minimal or no relevance on the transition
probabilities of X [47], thereby implying an absence and/or a non-significant effect of J on X. Itis
worthy of note that unlike MI that measures correlation (i.e., a measure of synchrony while taking into
account the linear and nonlinear relations), TE is explicitly and strictly non-symmetric under exchange
of the role of the interacting processes [48]. In other words, TE(Y — X) # TE(X — Y), VX, ).

Appendix A.2.2. Participants’ TE Computation

For every participant, per HIGH/LOW group, we first separated their EC and EO blocks.
This resulted in 8 blocks, per EC/EO, of length 60-s, per block. Each of these blocks formed a
53 x 15,000 matrix where 53 refers to the selected EEG channels, per participant, and 15,000 is the
length of each channel’s time series (60-s x 250 Hz sampling rate). To avoid any potential confounding
effect from the preceding to the succeeding blocks (Figure 1A), we discarded, per EC/EO, per
participant, per block, the beginning and the ending 15-s EEG recordings and only used the middle
30-s (i.e., 7500 data points, per channel). As a result, the size of each matrix, per EC/EQ, per participant,
per block, became 53 x 7500.

We then used these 53 x 7500 matrices and computed TE between all pairs of EEG channels,
per block, per participant, per EC/EO. While computing these TEs, we also adapted a brute-force
approach to finding the time lag (Equation (A1)). For this purpose, we used time lag O (i.e., no time
lag between the two time series) to 40 data points (i.e., % x 1000 = 160 ms lag between the two
time series). We found that time lag < 30 was sufficient to capture the maximum TE, per channel,
per participant, per EC/EO (EC and EO combined: M = 19.9806, SD = 0.12, Mdn = 19.9808,
Minimum = 19.50, Maximum = 20.44, Clgse, = [19.7417 20.2079]). For each of these paired-channel
computations, we retained their maximum TEs.

The TE computation resulted in 8 matrices of size 53 x 53, per participant, per EC/CO, per block.
For each participant, we then averaged their corresponding 8 EC and 8 EO TE matrices, thereby obtaining
two 53 x 53 TE matrices, per participant: one for their EC and the other for EO.
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Appendix A.2.3. Thresholding the Participants” TEs

For each EC and EO matrix (i.e., separately), we first obtained the TEs’ 95.0% confidence interval
for every participant. We combined the upper bound of these CIs (i.e., TE values associated with
p < 0.025) and determined their 95.0% confidence interval, per EC (Table A2) and EO (Table A3),
via bootstrapping (10,000 simulation runs). For each EC/EO matrix, per participant, we then used
the upper bound of these bootstrapped Cls as thresholds and discarded all TEs that were below
this threshold.

Table A2. EC HIGH and LOW stress-susceptible groups’ TEs. Mean (M), standard deviation (SD),
median (Mdn), and 95.0% confidence interval (Clys o9,) associated with bootstrap (10,000 simulation
runs) 95.0% confidence interval of upper bound CI of participants’ TEs (i.e., TE values associated
with p < 0.025)

Group M SD Mdn Clogs.99%

HIGH 0.0346 0.003 0.0349 [0.0303 0.0386]
LOW 0.0344 0.003 0.0341 [0.02820.0392]

Table A3. EO HIGH and LOW stress-susceptible groups’ TEs. Mean (M), standard deviation (SD),
median (Mdn), and 95.0% confidence interval (Clys o9,) associated with bootstrap (10,000 simulation
runs) 95.0% confidence interval of upper bound CI of participants’ TEs (i.e., TE values associated
with p < 0.025).

Group M SD Mdn Clys.09%

HIGH 0.0349 0.002 0.0354 [0.0297 0.0378]
LOW  0.0349 0.003 0.0353 [0.0312 0.0386]

Next, we counted the number of non-zero entries in each row of the averaged TE matrices, per
individual, per EC (Table A4) and EO (Table A5). Next, we combined the individuals’ counts for
LOW and HIGH stress-susceptible groups separately and computed the 95.0% confidence intervals
for these counts (i.e., per EC and EO settings, per stress-susceptible groups). We then discarded those
EEG channels whose number of non-zero TE entries were <upper Clos g, of their related confidence
interval, per individual, per stress-susceptible groups, and per EC and EO settings.

Table A4. Channels’ counts: EC HIGH and LOW stress-susceptible groups. Mean (M), standard
deviation (SD), median (Mdn), and 95.0% confidence interval (Clyso9,) associated with bootstrap
(10,000 simulation runs) 95.0% confidence interval for non-zero TE entries of each EEG channel.

Gl'()llp M SD CI95.0%

HIGH 26.65 8.67 [25.9027.39]
LOW 2720 9.82 [26.3628.04]

Table A5. Channels’” counts: EO HIGH and LOW stress-susceptible groups. Mean (M), standard
deviation (SD), median (Mdn), and 95.0% confidence interval (Clgs go,) associated with bootstrap
(10,000 simulation runs) 95.0% confidence interval for non-zero TE entries of each EEG channel.

Group M SD Clgs.0%

HIGHs 2749 10.12 [26.6128.36]
LOW 2723 930 [26.4528.01]

In the case of EC, we found 18 EEG channels that survived these thresholding steps and that were
common between all participants in HIGH stress-susceptible group. They were AFZ, AF4, F1, F6, FT7,
CZ, C2,Ce, CP5, CP3, CP1, CP4, P7, P5, P4, P6, PO3, POZ. We also found 18 surviving EEG channels
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that were common among all participants in LOW stress-susceptible group (FP2, AFZ, F3, F5, FZ,
CP1, CP3, CP5, CPZ, P7, P3, P4, P2, P6, PO3, POZ, PO4, O2.). We used the union (without repetition)
of these EEG channels for comparative analyses between HIGH and LOW stress-susceptible groups
during EC setting. These channels were (Figure A2A) FP2, AF4, AFZ, F5, F3, F1, Fz, F6, FI7, Cz, C2,
Ce, CP5, CP3, CP1, CPZ, CP4, P7, P5, P3, P2, P4, P6, PO3, POZ, PO4, O2.

Figure A2. (A) EC. Union of EEG channels (27 in total) between HIGH and LOW stress-susceptible
groups. These channels were FP2, AF4, AFZ, F5, F3, F1, Fz, F6, FI7, Cz, C2, C6, CP5, CP3, CP1, CPZ,
CP4, P7, P5, P3, P2, P4, P6, PO3, POZ, PO4, O2. (B) EO. Union of EEG channels (29 in total) between
HIGH and LOW stress-susceptible groups. These channels were FP2, AF3, AFZ, AF4, AF8, C1, C2, C6,
CP5, CP3, CPZ, CP4, F1,FZ, F2, F4, F6, F17, FC5, FC6, FT8, P1, PZ, P2, P6, PO7, PO4, POS, O1.

In the case of EO, we found 21 EEG channels that survived these thresholding steps and that
were common between all participants in HIGH stress-susceptible group (AF3, AF4, C1, C2, C6, CP3,
CP4, CP5, F1, F2, F6, FC5, FC6, FT7, FT8, Fp2, Fz, O1, P1, P6, PO4). The number of such EEG channels
in LOW stress-susceptible group was 17 (AF3, AF8, AFZ, C2, CP3, CPZ, F2, F4, FC5, FC6, FI7, Fp2,
Fz, P2, PO7, POS8, PZ). Similar to the case of EC, we used the union (without repetition) of these EEG
channels for comparative analyses between HIGH and LOW stress-susceptible groups for EO setting.
These channels were (Figure A2B) FP2, AF3, AFZ, AF4, AF8, C1, C2, C6, CP5, CP3, CPZ, CP4, F1, FZ,
F2, F4, Fo, FT7, FC5, FC6, FT8, P1, PZ, P2, P6, PO7, PO4, POS, OL1.

Appendix B. Eyes-Open (EO) Setting

Appendix B.1. Total TEs

Channel-wise paired Wilcoxon rank sum test identified 14 EEG channels (Figure A3) whose total
TEs were significantly different between HIGH and LOW stress-susceptible groups. These channels
were AF4, F1, F4, FT7, CP3, CP4, CPZ, C1, C6, P1, PZ, PO7, POS, and OL1.

Among these channels, eight showed significantly higher total TEs in HIGH stress-susceptible
group (Table A6). These channels were AF4, F17, F1, C1, C6, CP4, P1, and O1. On the other hand,
the remaining six channels (F4, CP3, CPZ, PZ, PO7, and PO8) were associated with significantly higher
total TEs in LOW stress-susceptible group (Table A7). All these significant differences were associated
with strong effect sizes.
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Figure A3. Eyes-Open (EO) setting. Channel-wise paired Wilcoxon rank sum test between total TEs of
participants in HIGH and LOW stress-susceptible groups. There were significant differences between total
TEs of 14 EEG channels. They were: AF4, F1, F4, FT7, CP3, CP4, CPZ, C1, C6, P1, PZ, PO7, POS8, and O1.
In this figure, the asterisks mark these significant differences (* p < 0.05, ** p < 0.01, *** p < 0.001).

Table A6. Eyes-Open (EO) setting. Channel-wise paired Wilcoxon rank sum test for eight channels
(AF4, FT7, F1, C1, C6, CP4, P1, and O1) in which significantly higher total TEs were associated with
HIGH stress-susceptible group. p, W, and r refer to p-value, test-statistics, and the effect size for
Wilcoxon rank sum tests. M and SD are the mean and standard deviation of these channels’ total
TE values. The subscripts to M and SD mark the two groups. All these significant differences were
characterized by strong effect sizes, as indicated by the “7” column entry of this table.

Channel p=  W@18 r  Mpuigy SDuicn Miow SDrow

AF4 0.0002 374 084 0.0256 0.002 0.019 0.002
F1 0.0110 246 055 0.021 0.003 0.018 0.002
FT7 0.0002 374 0.84 0.023 0.002 0.015 0.002
C1 0.0002 374 084 0.021 0.003 0.014 0.001
Cé 0.0073 268  0.60 0.021 0.002 0.018 0.002
CP4 0.0002 3.67 0.82 0.020 0.002 0.013 0.002
P1 0.0009 344 077  0.0204 0.002 0.017 0.001
01 0.0046 283 0.63 0.024 0.003 0.020 0.002

Table A7. Eyes-Open (EO) setting. Channel-wise paired Wilcoxon rank sum test for six channels
(F4, CP3, CPZ, PZ, PO7, and PO8) in which significantly higher total TEs were associated with LOW
stress-susceptible group. p, W, and r refer to p-value, test-statistics, and the effect size for Wilcoxon
rank sum tests. M and SD are the mean and standard deviation of these channels’ total TE values.
The subscripts to M and SD mark the two groups. All these significant differences were characterized

"o

by strong effect sizes, as indicated by the “” column entry of this table.

Channel p= Ww(18) r MHIGH SDHIGH MLOW SDLOW

F4 0.0046 —2.83 0.63 0.017 0.003 0.022 0.003
CP3 0.0010 -329 0.74 0.020 0.002 0.024 0.002
CPz 0.0028 —2.99 0.67 0.017 0.002 0.021 0.002

Pz 0.0036 —291 0.65 0.016 0.004 0.021 0.002
PO7 0.0120 —-246 055 0.017 0.003 0.020 0.002
PO8 0.0010 —-3.29 0.74 0.018 0.001 0.021 0.002

Appendix B.2. GLM Analysis of the Channels with Significantly Different Total TEs

ANOVA analysis of the GLM coefficients (i.e., model’s weights) identified (Figure A4) non-significant
difference (Table A8) of the contribution of each channel individually to predict the participants” group
membership (coefficients” statistics: M = —0.0213, SD = 0.032, CI = [-0.0918 0.0361]).
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Figure A4. Eyes-Open GLM analysis using logistic regression with sigmoid function to determine the
importance of each of the significantly different channels between HIGH and LOW stress-susceptible
groups for predicting participants’” group membership (i.e., HIGH versus LOW). Channels with
significantly different total TEs were AF4, F1, F4, FT7, CP3, CP4, CPZ, C1, C6, P1, PZ, PO7, PO8, and O1.
Each bar in this subplot corresponds to one GLM coefficient, per channel, per group. ANOVA analysis of
these weights indicated non-significant difference between contribution of these channels individually
and in comparison to other channels’ contribution. Blue line in each subplot marks the average of these
coefficients, per setting. Red lines mark the 95.0% confidence interval of these weights.

Table A8. Eyes-Open (EO) setting. ANOVA analysis of GLM coefficients associated with the channels
with significant difference in their total TEs between HIGH and LOW stress-susceptible groups.
These channels were: AF4, F1, F4, FT7, CP3, CP4, CPZ, C1, C6, P1, PZ, PO7, POS, and O1. This analysis
identified a non-significant difference between contribution of these channels individually and in
comparison with the other channels’ contribution.

Channel p= F 7

AF4 0.8885 0.021  0.003
F1 0.9962 0.000 0.000
F4 0.9804 0.001 0.0001

FT7 0.9872  0.000  0.000
C1 0.8604 0.033  0.005
Cé 0.9524 0.004 0.0006

CP3 09012 0.017 0.003

CPZ 0.9027 0.016 0.003

CP4 0.8872  0.022  0.004
P1 0.9037 0.016  0.003
Pz 0.9380 0.007 0.001

PO7 0.9563 0.003 0.001

PO8 0.8608 0.033  0.005
0O1 0.9597 0.003 0.0004

Appendix B.3. Distribution of the Information Transferred by the Channels with Significantly Different
Total TEs

Similar to the case of total TEs, distributed TEs from AF4, F1, FT7, C1, C6, CP4, P1, and O1 to
other EEG channels were significantly higher among HIGH stress-susceptible group (Table A9).

We also observed that (Table A10) the distributed TEs of the same remaining six channels in
the case of total TE values (F4, CP3, CPZ, PZ, PO7, and PO8) were significantly higher among LOW
stress-susceptible group.

On the other hand, contribution of these channels’ TEs to other channels differed substantially
between HIGH and LOW stress-susceptible groups. Figure A5 illustrates the distributed contribution
of TEs from AF4, F1, F4, FT7, CP3, CP4, CPZ, C1, C6, P1, PZ, PO7, POS8, and O1 to the other channels
whose significant differences were presented in Tables A9 and A10. This figure indicates that whereas
transfer of information from these channels primarily contributed to the frontal regions in the case of
HIGH stress-susceptible group (Figure A5A), their contribution was more globally distributed among
fronto-parietal in the case of LOW stress-susceptible group (Figure A5B).
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Table A9. Eyes-Open (EO) setting. Channel-wise paired Wilcoxon rank sum tests for eight channels
(AF4, F1, FT7, C1, Cé6, CP4, P1, and O1) in which significantly higher distributed TEs were associated
with HIGH stress-susceptible group. p, W, and r refer to p-value, test-statistics, and the effect size
for Wilcoxon rank sum tests. M and SD are the mean and standard deviation of these channels’
distributed TE values for HIGH and LOW stress-susceptible groups. The subscripts to M and SD mark
the two groups.

Channel p=  W(8) r Myicys SDuicH Miow SDrow

AF4 0.0000  4.13 0.13 0.026 0.017 0.019 0.019
F1 0.0066  2.72 0.08 0.021 0.018 0.017 0.018
FT7 0.0000  5.59 0.17 0.023 0.018 0.015 0.019
C1 0.0000 570 0.175 0.021 0.018 0.014 0.018
Cé6 0.0024  3.04 0.09 0.021 0.019 0.018 0.018
CP4 0.0000  5.61 0.17 0.020 0.019 0.014 0.018
P1 0.0029 298  0.091 0.020 0.018 0.017 0.018
O1 0.004 2.85  0.089 0.024 0.018 0.020 0.018

Table A10. Eyes-Open (EO) setting. Channel-wise paired Wilcoxon rank sum tests for six channels
(F4, CP3,. CPZ, PZ, PO7, and PO8) in which significantly higher distributed TEs were associated with
LOW stress-susceptible group. p, W, and r refer to p-value, test-statistics, and the effect size for Wilcoxon
rank sum tests. M and SD are the mean and standard deviation of these channels’ distributed TE values
for HIGH and LOW stress-susceptible groups. The subscripts to M and SD mark the two groups.

Channel p= W(IS) r MHIGH SDHIGH MLOW SDLOW

F4 0.0000 —4.24 0.13 0.017 0.018 0.022 0.018
CP3 0.0027 —-3.00 0.09 0.020 0.019 0.024 0.018
CPZ 0.0012 -3.23 0.10 0.017 0.018 0.021 0.018

Pz 0.0000 —4.13 0.13 0.016 0.018 0.021 0.018
PO7 0.0053 —2.79 0.09 0.017 0.018 0.020 0.018
PO8 0.0041 -2.87 0.09 0.018 0.018 0.021 0.018
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Figure A5. Eyes-Open (EO) setting. Global distribution of TEs of channels whose total TE values
significantly differed between HIGH and LOW Stress-Susceptible Groups. These channels were AF4,
F1, F4, FT7, CP3, CP4, CPZ, C1, C6, P1, PZ, PO7, POS8, and O1. (A) HIGH stress-susceptible group
(B) LOW stress-susceptible group. This figure indicates that distributed TEs from these channels were
primarily contributed to the frontal regions in the case of HIGH stress-susceptible group. On the
other hand, their contribution was more globally distributed among fronto-parietal in the case of LOW
stress-susceptible group.

Figures A6 and A7 visualize the cortical regions which each of these channels with significantly
different distributed TEs transferred information to. More specifically, these figures show the directed
transfer of information (i.e., TE) from FP2, AF4, F1, F6, CP3, CP4, P2, P3, and O2 to the other cortical
regions in the case of HIGH and LOW stress-susceptible groups, respectively. A comparison between
these figures clarifies the substantially frontal-oriented distributed TE among HIGH stress-susceptible
group (Figure A6) and its more distributed nature among fronto-parietal regions in the case of LOW
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stress-susceptible individuals (Figure A7). The more dense networks of TEs in the case of LOW versus
HIGH stress-susceptible groups is apparent in these two figures. Wilcoxon rank sum test identified that
the number of regions that each of these channels transferred information to was significantly higher
in the case of LOW versus HIGH stress-susceptible participants (p = 0.0000, W(26) = —4.70, r = —0.89,

Mpyiga =20.50, SDyigH = 0.94, M ow = 51.43, SD; ow = 1.02). This difference was associated with a
strong effect size.

Figure A6. Eyes-Open (EO) setting. Transfer of information from (i.e., out-degree) AF4, F1, F4, FT7,
CP3, CP4, CPZ, C1, C6, P1, PZ, PO7, PO8, and O1 to the other cortical regions in the case of HIGH
stress-susceptible group. In each subplot, the source of information transfer (e.g., AF4, F1, etc.) is the one
from which all connections are originated. They are labeled at the top of each subplot. The recipients
of information (i.e., channels on the other cortical regions) are the ones at the other end of these
outreaching arches.

Figure A7. Eyes-Open (EO) setting. Transfer of information from (i.e., out-degree) AF4, F1, F4, FT7,
CP3, CP4, CPZ, C1, C6, P1, PZ, PO7, POS8, and O1 to the other cortical regions in the case of LOW
stress-susceptible group. In each subplot, the source of information transfer (e.g., AF4,F1, etc.) is the one
from which all connections are originated. They are labeled at the top of each subplot. The recipients
of information (i.e., channels on the other cortical regions) are the ones at the other end of these
outreaching arches.
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Appendix C. Responses to Questionnaires

Appendix C.1. Paired Partial (Spearman) Correlations: All 122 Participants from Resting-State
EEG Recordings

Figure A8 shows the pair-wise partial (Spearman) correlations between neuroticism (NEO-FFI),
worries (PSQ), tension (PSQ), and trait anxiety (STAI-G-X2) for all 122 participants who took parts in
resting-state EEG recordings.
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Figure A8. Pair-wise partial (Spearman) correlations between neuroticism (NEO-FFI), worries (PSQ),
tension (PSQ), and trait anxiety (STAI-G-X2) for all 122 participants who took parts in resting-state
EEG recordings.

Appendix C.2. Paired Partial (Spearman) Correlations: All HIGH (26 Participants) and LOW (14 Participants)
Stress-Susceptible Participants Prior to Discarding Younger Females and Older Females and Males

Figure A9 shows the pair-wise partial (Spearman) correlations between neuroticism (NEO-FFI),
worries (PSQ), tension (PSQ), and trait anxiety (STAI-G-X2) for all 26 HIGH 14 LOW stress-susceptible
participants. These participants include the younger females and older females and males participants
that were later discarded from further analysis in our study due to their very low number in these
samples of 26 HIGH and 14 LOW stress-susceptible groups.
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Figure A9. Pair-wise partial (Spearman) correlations between neuroticism (NEO-FFI), worries (PSQ),
tension (PSQ), and trait anxiety (STAI-G-X2) for all 26 HIGH 14 LOW stress-susceptible participants.
These participants include the younger females and older females and males participants that were
later discarded from further analysis in our study due to their very low number in these samples of
26 HIGH and 14 LOW stress-susceptible groups.
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Appendix C.3. Paired Partial (Spearman) Correlations: Final HIGH (10 Participants) and LOW (10
Participants) Stress-Susceptible Participants

Figure A10 shows the pair-wise partial (Spearman) correlations of the HIGH and LOW
stress-susceptible participants’ responses to neuroticism (NEO-FFI), worries (PSQ), tension (PSQ),
and trait anxiety (STAI-G-X2).

H p=0.891 p=0908 p=0.887
z p=137 x 100”7 p=329 x 10 p=185x 107
&b
E p=0.891 »=0.861 p=0.905
o p=137 x 1007 p=109 x 107 p=4.08 x 10°
I
z p=0.908 p=0861 0= 0.900
8
S p=329 x 10® p=1.09 x 10° p=6.66 x 10°
2
< p=0.887 p=0.905 p=0.900
£ p=185x 107 p=4.08 x 10 p=6.66 x 10°
B

Big5 Neuroticism PSQ Worries PSQ Tension STAI Trait Anxiety

Figure A10. Paired partial (Spearman) correlations between participants’ responses to neuroticism
(NEO-FFI), worries (PSQ), tension (PSQ), and trait anxiety (STAI-G-X2). This figure verifies that the
participants’ responses to these questionnaires showed strong correlations which were calculated by
regressing out the potential effect of responses to other questionnaires while calculating every-pair
correlations (e.g., regressing out the neuroticism and trait anxiety while computing the correlation

between worries and tension).

Appendix C.4. Within-Questionnaire Test of Significant Difference

Figure A11 shows the results of paired Wilcoxon rank sum tests on participants with HIGH versus
LOW stress-susceptibility to each of neuroticism (Big5), worries (PSQ), tension (PSQ), and trait anxiety
(STAI) questionnaires. We observed that HIGH stress-susceptibility was associated with significantly
larger responses to neuroticism (p = 0.0002, W(18) = 3.75, r = 0.84, Myjcy = 2.19, SDyjcy = 0.49,
MLOW =0.86, SDLOW = 0.30), worries (p =0.0001, W(18) =3.80,r=0.85, MHIGH =57.33, SDHIGH =12.25,
M ow =11.33, SDrow =5.49), tension (p = 0.0002, W(18) =3.77, r = 0.84, My gy = 58.67, SDycy = 18.80,
M;ow = 16.00, SD;ow = 6.440), and trait anxiety (p = 0.0002, W(18) = 3.76, r = 0.84, Mgy = 46.70,
SDyicH = 6.70, My ow = 26.20, SD; o = 2.30).

90+
gol ~HIGH sk
70, -LOW — alolol
060, 1 | e
550 1
wn40r
30+ -
20+ '
10+ — ﬁ
o == HE Hm ®
Big5 PSQ PSQ STAI
Nueroticism  Tension Worries  Trait Anxiety

Figure A1l. Paired Wilcoxon rank sum test. For every questionnaire, HIGH stress-susceptible
participants’ responses were associated significantly larger values (with large effect sizes) than the LOW
stress-susceptible participants. In this figure, the asterisks mark these significant differences (*** p < 0.001).
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These results were further confirmed by two-sample bootstrap test (10,000 simulation runs) at
99.0% (i.e., p < 0.01) confidence interval (Figure A12). Table A1l summarizes the descriptive statistics
of these two-sample bootstrap tests.

Table A11. Results associated with paired two-sample bootstrap test of significance (10,000 simulation
runs) at 99.0% (p < 0.01) confidence interval (CI) associated with responses of participants in HIGH
versus LOW stress-susceptibility to questionnaires. M and SD refer to the mean difference and
the standard deviation of such a difference between participants” responses in HIGH versus LOW
stress-susceptible groups. CI shows the 95% confidence interval of these differences.

Questionnaire Mdifference SDdifference 99.0% CIdifference

Neuroticism (Big5) 1.33 0.17 [0.82 1.91]
Worries (PSQ) 45.99 4.02 [35.00 61.00]
Tension (PSQ) 42.62 6.02 [26.00 63.67]

Trait Anxiety (STAI) 20.51 2.13 [13.95 28.00]
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Figure A12. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 99.0%
(i.e., p < 0.01) confidence interval (CI) associated with responses of participants in HIGH versus LOW
stress-susceptibility to questionnaires. (A) Neuroticism (Big5) (B) Worries (PSQ) (C) Tension (PSQ)
(D) Trait Anxiety (STAI). In these subplots, the x-axis shows y; — i, i # j (i.e., the difference between
the two mean) where i and j refer to HIGH and LOW stress-susceptible groups, respectively. The blue
line marks the null hypothesis HO i.e., non-significant difference between the responses of HIGH versus
LOW stress-susceptibility. The red lines are the boundaries of the 99.0% confidence interval. The yellow
line shows the location of the average of y; — i, i # j (i.e., their differences) for 10,000 simulation runs.

Appendix D. Correlation between Participants’ Responses to Questionnaires and Their TEs

Appendix D.1. Eyes-Closed (EC) Setting

Figure A13 shows the paired Spearman correlations between participants’ cumulative TEs and
their responses to questionnaires. These cumulative TEs are associated with the EEG channels whose
cumulative TE values were significantly different between HIGH and LOW stress-susceptible groups.
These channels were AF4, FP2, F1, F6, CP3, CP4, P2, P3, and O2. In this figure, the row entries associated
with each of these EEG channels are marked along the figure’s vertical axis. The questionnaires are
marked column-wise and along the horizontal axis and at the top of subplots’ columns. In each subplot,
the cumulative TEs are along the x-axis and questionnaires’ responses are along the y-axis.
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Table A12 presents the Spearman p and p-value associated with each of these subplots. Except for
CP4 versus neuroticism (Big5) and P3 versus trait anxiety (STAI) that showed non-significant
correlations, we observed significant correlations among all the other pairs. The table also indicates that
AF4, F1, F6, and CP4 were positively correlated with the participants’ responses to the questionnaires.
On the other hand, it indicates a negative correlations between FP2, CP3, P2, P3, and O2 with the

participants’ responses to the questionnaires.

Big5 Neuroticism PSQ Worries PSQ Tension STAI Trait Anxiety
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Figure A13. Eyes-Closed (EC) setting. Spearman correlation between participants’ responses to
questionnaires and their cumulative TEs. These TEs correspond to EEG channels whose cumulative TEs
were significantly different between HIGH versus LOW stress-susceptible participants. Those channels
were: AF4, FP2, F1, F6, CP3, CP4, P2, P3, and O2. They are marked along the vertical axis of each
subplot in the figure. The questionnaires are marked on the top of each subplot and along their
horizontal axis.

Table A12. Eyes-closed (EC) setting. Paired Spearman correlations between participants” cumulative
TEs and their responses to questionnaires. The cumulative TEs are associated with the EEG channels
whose cumulative TEs were significantly different between HIGH and LOW stress-susceptible groups.
These channels were AF4, FP2, F1, F6, CP3, CP4, P2, P3, and O2. The questionnaires were: neuroticism
(Bigb), worries (PSQ), tension (PSQ), and trait anxiety (STAI). In this figure, the row entries associated
with each of these EEG channels are marked along the figure’s vertical axis. The questionnaires are
marked column-wise and along the horizontal axis and at the top of subplots” columns. In each subplot,
the cumulative TEs are along the x-axis and questionnaires’ responses are along the y-axis. The p and p

represent the Spearman correlation coefficient and its corresponding p-value.

Channels Neuroticism (Big5) Worries (PSQ) Tension (PSQ) Trait Anxiety (STAI)
AF4 0 =062 p =064 0 =071 0 =059

p =0.0030 p =0.0026 p =0.0004 p =0.0059
FP2 p=—0.62 p=—056 p=—059 o =—0.62

p =0.0034 p =0.0097 p =0.0059 p =0.0039
F1 0 =068 p=075 0 =072 0 =072

p =0.0010 p =0.0001 p =0.0003 p =0.0003
F6 =059 p=073 0 =0.60 0 =0.65

p =0.0061 p =0.0002 p =0.0051 p =0.0021
CP3 p=-0.89 p=—0.74 0o=-077 p=-076

p=12x10"° p =0.0002 p =0.0001 p =0.0001
CP4 p =038 p =053 0 =046 p =050

p=0.0971 p=0.0151 p=0.0411 p =0.0245
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Table A12. Cont.

Channels Neuroticism (Big5) Worries (PSQ) Tension (PSQ) Trait Anxiety (STAI)

P2 p=-070 p=—065 p=-070 p=-072
p =0.0005 p=0.0021 p =0.0006 p =0.0003
P3 p=-063 p=—055 p=-058 p=—-043
p=0.0031 p=00125 p=0.0076 p =0.0562
02 p=—062 p=-053 p=—070 p=—062
p=0.0035 p=00161 p =0.0006 p=0.0033

Appendix D.2. Eyes-Open (EO) Setting

The paired Spearman correlations between participants’ cumulative TEs and their responses to
questionnaires are presented in Figures A14 and A15. These cumulative TEs are associated with the
EEG channels whose cumulative TE values were significantly different between HIGH and LOW
stress-susceptible groups. Figure A14 shows the first half of these channels (i.e., AF4, F1, F4, FT7, C1,
C6, CP3) and the second half of these channels (CP4, CPZ,P1, PZ, PO7, POS8, O1) are presented in
Figure A15. In both figures, the row entries associated with each of EEG channels are marked along their
respective figure’s vertical axis. The questionnaires are marked column-wise and along the horizontal
axis and at the top of subplots” columns, per figure. In each subplot, per figure, the cumulative TEs are
along the x-axis and questionnaires’ responses are along the y-axis.

Table A13 summarizes the Spearman p and p-value with each of the subplots in
Figures A14 and A15. The entries of this table indicates that F1 showed a significant correlation
worries (PSQ) and its correlations with the remainder of questionnaires were non-significant. It also
identifies that (similar to the case of EC), TEs and participants’” responses to questionnaires were
significantly correlated. Specifically, AF4, F1 and worries (PSQ), FI7, C1, C6, CP4, P1, and O1 showed
significant positive correlations with participants’ responses to questionnaires. On the other hand, F4,
CP3, CPZ, PZ, PO7, PO8 showed a significantly negative correlations with participants’ responses
to questionnaires.

Big5 Neuroticism PSQ Worries PSQ Tension STAI Trait Anxiety
4 |l.JU . o 100 P 60 o0 .
AF4: O . 50 . 50 . . 40 <.
. .
0 - 0 - 0 . 20
001 0015 002 0025 003 001 0015 002 0025 003 001 0015 002 0025 003 001 0015 002 0025 003
4 100 . 100 . 60 .o
* 4% e o o r e . ¢
F1:2 M 50 . 50 ot o 13 40 . e
e
) Ol 0 OO . e o " oo
0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03
4 100 r 100 . 60 . .
* e < *o® o ° © hd .
F4 - [ * 501 ¢ ete—e 500 ¢ ee 2 401 o %
o .
. ~e - o " % N o s 2 e oo
0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03
4 100 100 . 60 .
.
: 50 Lot
FT7 20, ) 5 . 50 - 40 ~
. g .
o "’ 0L—> L 0 % 20 o 2o
0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03
4 . 100 100 b . 60 O
.
Cl: . o 50 e 50 L n >
- <
[ 0 e 0= - 2012 -
001 0015 002 0025 003 001 0015 002 0025 003 001 0015 002 0025 003 001 0015 002 0025 003
4 100 s 100 . 60 .
o ° ° e J I > o . e
C6> M 50 s 50 )»)/'v':/ 20 - %
. - e o oo
0 - 0 o2 0 L\ 20 *
0.015 0.02 0.025 0.03 0.015 0.02 0.025 0.03 0.015 0.02 0.025 0.03 0.015 0.02 0.025 0.03
4 e 100 . 100 - 60 vy
CP3 2 ot 50 e ee, 50 . . 40 . v
0 b4 0 ° % 0 ° SeTee 20 —

0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03 0.01 0.015 0.02 0.025 0.03

Figure A14. Eyes-Open (EO) setting. Spearman correlation between participants’ responses to
questionnaires and their cumulative TEs. These TEs correspond to EEG channels whose cumulative
TEs were significantly different between HIGH versus LOW stress-susceptible participants. The figure
shows the first half of these channels: AF4, F1, F4, FT7, C1, C6, CP3. The second half of these channels
are shown in Figure A15. The channels are marked along the vertical axis of each subplot in the figure.
The questionnaires are marked on the top of each subplot and along their horizontal axis.
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Table A13. Eyes-Open (EO) setting. Paired Spearman correlations between participants” cumulative

TEs and their responses to questionnaires. The cumulative TEs are associated with the EEG channels

whose cumulative TEs were significantly different between HIGH and LOW stress-susceptible groups.
These channels were AF4, FP2, F1, F6, CP3, CP4, P2, P3, and O2. The questionnaires were neuroticism
(Big5), worries (PSQ), tension (PSQ), and trait anxiety (STAI). In this figure, the row entries associated

with each of these EEG channels are marked along the figure’s vertical axis. The questionnaires are

marked column-wise and along the horizontal axis and at the top of subplots’ columns. In each subplot,

the cumulative TEs are along the x-axis and questionnaires’ responses are along the y-axis. The p and p

represent the Spearman correlation coefficient and its corresponding p-value.

Channels Neuroticism (Big5) Worries (PSQ)  Tension (PSQ)  Trait Anxiety (STAI)
AF4 p=0.87 p=078 p=0.76 p =074

p="737 x 1077 p=421x10"° p=0.0001 p = 0.0002
F1 p =033 p =045 p=035 p =039

p = 0.1552 p = 0.0439 p = 0.1336 p = 0.0907
F4 p=—054 p=-062 p=—0.62 p=-061

p =0.0149 p = 0.0035 p = 0.0034 p = 0.0044
FT7 p=0.82 p =077 p=0.81 p=075

p=9.32x107° p=625x10"° p=185x10"> p=0.0002
C1 p=073 p=075 p=0.79 p =081

p = 0.0002 p = 0.0001 p=4.07 x 107> p=0.0001
C6 p=0.69 p=0.65 p =055 p =055

p = 0.0007 p =0.0019 p=0.0129 p=0.0123
CP3 p=-0.80 p=-0.79 p=-073 p=-071

p = 0.0002 p=3.05x10"°  p=0.0002 p = 0.0004
CPZ p=—0.65 p=-071 p=-072 p=—067

p = 0.0020 p = 0.0004 p = 0.0003 p = 0.0012
CP4 p=0.69 p =075 o =0.64 p=072

p = 0.0008 p = 0.0001 p = 0.0024 p = 0.0003
P1 p =063 p=0.65 p =0.64293 p=0.69

p = 0.0030 p =0.0018 p = 0.0022 p = 0.0008
PZ p=-056 p=-053 p=-056 p=-056

p =0.0108 p=0.0176 p = 0.0106 p = 0.0097
PO7 p=—048 p=-053 p=-048 p=—054

p =0.0331 p=0.0173 p = 0.0325 p =0.0133
PO8 p=—0.67 p=-076 p=-078 p=-072

p =0.0013 p =0.0001 p = 0.0001 p = 0.0003
o1 p=0.65 p =059 p=0.59 p =048

p =0.0019 p =0.0067 p = 0.0062 p = 0.0302
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Figure A15. Eyes-Open (EO) setting. Spearman correlation between participants’ responses to
questionnaires and their cumulative TEs. These TEs correspond to EEG channels whose cumulative
TEs were significantly different between HIGH versus LOW stress-susceptible participants. The figure
shows the second half of these channels: CP4, CPZ,P1, PZ, PO7, POS8, and O1. The first half of these
channels are shown in Figure A14. The channels are marked along the vertical axis of each subplot in
the figure. The questionnaires are marked on the top of each subplot and along their horizontal axis.
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