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Abstract: Wollastonite (CaSiO3) is an important mineral that is widely used in ceramics and polymer
industries. Defect energetics, diffusion of Ca ions and a solution of dopants are studied using
atomistic-scale simulation based on the classical pair potentials. The energetically favourable defect
process is calculated to be the Ca-Si anti-site defect cluster in which both Ca and Si swap their atomic
positions simultaneously. It is calculated that the Ca ion migrates in the ab plane with an activation
energy of 1.59 eV, inferring its slow diffusion. Favourable isovalent dopants on the Ca and Si sites
are Sr2+ and Ge4+, respectively. Subvalent doping by Al on the Si site is a favourable process to
incorporate additional Ca in the form of interstitials in CaSiO3. This engineering strategy would
increase the capacity of this material.
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1. Introduction

Wollastonite is an important naturally occurring or synthetic mineral of great interest in the
development of ceramics, plastics and paints [1–4]. This mineral is mainly found in the USA, India,
Mexico, China, Turkey and Finland [5]. In general, a relatively small amount of impurities, such
as Fe, Mg, Al and Sr, contaminate pure CaSiO3 [6]. Owing to its remarkable physical, mechanical,
electrical and thermal properties, this material has been used as a ceramic, an insulator, a filler and a
polymer [2,7–12].

Though wollastonite is mined from ores for large-scale commercial applications, there are many
experimental reports explaining the procedures of synthesising and characterising wollastonite in
laboratories [1,5,10,13,14]. Abd Rashid et al. [1] used the solid-state reaction method at low temperature
to produce wollastonite from limestone and silica sand and concluded that the resultant compound
is expected to exhibit good physical properties due to the experimental density that is close to its
theoretical value. The precipitation technique is the most common method that has been reported by
several researchers to prepare wollastonite [15–18]. The sol–gel method is another technique that has
been used to synthesise wollastonite by De La Casa-Lillo et al. [19], and the correlation between thermal
treatment and bio activity has been discussed. In the literature, a few theoretical studies are available
on wollastonite [20–23]. Edrees et al. [20] used density functional theory (DFT) simulations to analyse
the structural, mechanical, optical and electronic properties of wollastonite. Atomistic simulations
performed on the surface structures of wollastonite show that the stabilisation of the surface is due
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to the adsorption of water in a dissociated form [21]. Longo et al. [22] used quantum mechanical
simulations to show that the adsorption of CO2 on the CaSiO3 surface facilitates the formation of
CO3

2− ions due to the reaction between CO2 and surface oxygen. DFT simulations performed by
Profeta et al. [23] show that accurate 17O NMR spectra should be calculated using hybrid functions.
However, there are no experimental or theoretical studies on intrinsic defects, diffusion or dopants of
wollastonite in the literature. The presence of defects in a material is important, as they influence its
physical, mechanical and optical properties.

Atomistic simulation based on the pair-wise potentials is a powerful tool to examine the energetics
of intrinsic defects, migration pathways and solutions of dopants in ionic materials. A wide range of
oxide materials have been examined using this method to provide insight into defects, diffusion and
dopants [24–28]. The present study systematically examined the intrinsic defect processes, Ca- ion
diffusion and solution of divalent (Co, Mn, Ni, Mg, Zn, Sr and Ba), trivalent (Al, Ga In, Fe, Sc, Y, Gd
and La) and tetravalent (Ga, Ti, Sn, Zr and Ce) dopants in CaSiO3.

2. Computational Methods

A classical pair potential-based atomistic simulation, as implemented in the General Utility
Lattice Program (GULP) code [29], was used to calculate defect, diffusion and dopant properties
in CaSiO3. Interactions between ions were modelled using long-range (Coulomb) and short-range
(electron–electron repulsion and dispersive attraction) forces. Short-range forces were modelled using
Buckingham potentials (refer to Table 1). Full geometry optimisation (cell parameters and ionic
positions) was performed using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [30]. The
Mott–Littleton approach was implemented to model the defects [31]. The diffusion of Ca ions was
calculated considering two adjacent Ca vacancy sites as initial and final configurations. Seven atomic
positions were selected between two adjacent Ca vacancy sites and they were allowed to relax. The
activation energy is defined as the difference between the vacancy formation energy and the maximum
energy along the diffusion path. In the current methodology, ions were fully charged and defect
concentration was low. Nevertheless, relative energies and trends should be consistent [32].

Table 1. Buckingham potential parameters [33,34] used in the classical simulations of CaSiO3. Two-body
[Φij (rij) = Aij exp (− rij/ρij) − Cij/rij

6], where A, ρ and C are parameters which were selected carefully
to reproduce the experimental data. The values of Y and K represent the shell charges and spring
constants. A very large spring constant means there is no shell charge and atom is treated as core.

Interaction A/eV ρ/Å C/eV·Å6 Y/e K/eV·Å−2

Ca2+–O2− 1090.40 0.3372 0.00 1.260 34.0

Si4+–O2− 1283.91 0.32052 10.66 4.000 99999.0

O2−–O2− 22764.30 0.1490 27.89 −2.86 74.92

3. Results

3.1. Crystal Structure of CaSiO3 and Validation of Potentials

The crystal structure of CaSiO3 is monoclinic [space group P21/a (no: 14)] with the experimental
lattice parameters a = 15.41 Å, b = 7.32 Å, c = 7.06 Å, α = γ = 90◦ and β = 95.3◦ [35]. Ca ions
form a distorted octahedral structure and Si atoms form tetrahedral units. SiO4 tetrahedral units are
inter-connected by corner sharing (refer to Figure 1). Geometry optimisation was performed under
constant pressure to get equilibrium lattice constants and compare them with experimental values to
validate the potentials used in this study. Calculated lattice parameters are reported in Table 2. There
was a good agreement between calculated and experimental values.
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Figure 1. Crystal structure of CaSiO3. 

Table 2. Calculated and experimental structural parameters of CaSiO3. Percentage difference between 
the calculated and the experimental value (∆) is also provided. 

Parameter Calculated Experiment [35] |∆|(%) 
a (Å) 15.23 15.41 1.17 
b (Å) 7.30  7.32 0.24 
c (Å) 7.01 7.06 0.76 
α (°) 90.0 90.0 0.00 
β (°)  91.5 95.3 3.96 
γ (°) 90.0 90.0 0.00 

V (Å3) 779.39 793.47 1.77 

3.2. Defect Energetics 

In this section, we discuss the energetics of key defect processes in CaSiO3. Point defect 
(vacancies and interstitials) energies were first calculated and then they were combined to calculate 
Schottky and Frenkel energies. Anti-site defects in which Ca and Si swap their atomic positions were 
also calculated in the form of isolated and cluster. The following equations in Kröger–Vink notation 
[36] describe the Schottky, Frenkel and anti-site defect process. Ca Frenkel: Caେୟଡ଼  →  େܸୟᇱᇱ + Ca୧•• (1) Si Frenkel: ୗܸ୧ଡ଼  →  ୗܸ୧ᇱᇱᇱᇱ +  Si୧•••• (2) O Frenkel: Oଡ଼  →  ܸ•• + O୧ᇱᇱ (3) Schottky: Caେୟଡ଼ + Siୗ୧ଡ଼ + 3 Oଡ଼ →  େܸୟᇱᇱ +  ୗܸ୧ᇱᇱᇱᇱ + 3 ܸ•• + CaSiOଷ (4) CaO Schottky: Caେୟଡ଼ + Oଡ଼ →  େܸୟᇱᇱ + ܸ•• +  CaO (5) SiOଶ Schottky: Siୗ୧ଡ଼ +  2 Oଡ଼ →  ୗܸ୧ᇱᇱᇱᇱ + 2 ܸ•• +  SiOଶ (6) Ca/Si antisite (isolated): Caେୟଡ଼ + Siୗ୧ଡ଼ → Caୗ୧ᇱᇱ + Siେୟ••  (7) Ca/Si antisite (cluster): Caେୟଡ଼ +  Siୗ୧ଡ଼ → {Caୗ୧ᇱᇱ : Siେୟ•• }X (8) 

Figure 2 reports the defect reaction energies. The Frenkel energies are important, as they 
influence the diffusion properties of the material. Furthermore, a low Frenkel energy is associated 
with the high concentration of point defects, leading to the loss of the crystal structure. The oxygen 
Frenkel energy is the lowest energy (2.33 eV) process among the other Frenkel energies. The Si 
Frenkel energy (8.95 eV) is significantly higher than the Ca Frenkel energy (3.46 eV). This is due to 
the introduction of highly charged defects ( ୗܸ୧ᇱᇱᇱᇱand Si୧••••) in the lattice. The formation of Schottky 

Figure 1. Crystal structure of CaSiO3.

Table 2. Calculated and experimental structural parameters of CaSiO3. Percentage difference between
the calculated and the experimental value (∆) is also provided.

Parameter Calculated Experiment
[35] |∆|(%)

a (Å) 15.23 15.41 1.17

b (Å) 7.30 7.32 0.24

c (Å) 7.01 7.06 0.76

α (◦) 90.0 90.0 0.00

β (◦) 91.5 95.3 3.96

γ (◦) 90.0 90.0 0.00

V (Å3) 779.39 793.47 1.77

3.2. Defect Energetics

In this section, we discuss the energetics of key defect processes in CaSiO3. Point defect (vacancies
and interstitials) energies were first calculated and then they were combined to calculate Schottky and
Frenkel energies. Anti-site defects in which Ca and Si swap their atomic positions were also calculated
in the form of isolated and cluster. The following equations in Kröger–Vink notation [36] describe the
Schottky, Frenkel and anti-site defect process.

Ca Frenkel : CaX
Ca → V′′Ca + Ca••i (1)

Si Frenkel : VX
Si → V′′′′Si + Si••••i (2)

O Frenkel : OX
O → V••O + O′′i (3)

Schottky : CaX
Ca + SiXSi + 3 OX

O → V′′Ca + V′′′′Si + 3 V••O + CaSiO3 (4)

CaO Schottky : CaX
Ca + OX

O → V′′Ca + V••O + CaO (5)

SiO2 Schottky : SiXSi + 2 OX
O → V′′′′Si + 2 V••O + SiO2 (6)

Ca/Si antisite (isolated) : CaX
Ca + SiXSi → Ca′′Si + Si••Ca (7)

Ca/Si antisite (cluster) : CaX
Ca + SiXSi →

{
Ca′′Si : Si••Ca

}X
(8)
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Figure 2 reports the defect reaction energies. The Frenkel energies are important, as they influence
the diffusion properties of the material. Furthermore, a low Frenkel energy is associated with the
high concentration of point defects, leading to the loss of the crystal structure. The oxygen Frenkel
energy is the lowest energy (2.33 eV) process among the other Frenkel energies. The Si Frenkel energy
(8.95 eV) is significantly higher than the Ca Frenkel energy (3.46 eV). This is due to the introduction of
highly charged defects (V′′′′Si and Si••••i ) in the lattice. The formation of Schottky defects is endoergic by
3.58 eV, meaning that this defect is unfavourable. The formation of CaO and SiO2 via CaO Schottky
and SiO2 Schottky processes, respectively, was also considered. Their defect energies are also highly
endothermic. Finally, the Ca/Si anti-site defect was considered. The cluster form of this defect
exhibits lower energy than its isolated form. This is because of the unstable nature of isolated defects
(Ca′′Si and Si••Ca) aggregating to form clusters with a binding energy of −2.53 eV. The anti-site defect has
been observed in many oxide materials during the cycling of as-prepared materials and synthesis at
high temperatures and pressures [37–39]. This defect has also been observed in previous theoretical
studies [40–43].
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Figure 2. Defect energies for different defect processes, as shown in the above equations. 
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Figure 2. Defect energies for different defect processes, as shown in the above equations.

3.3. Calcium Ion Diffusion

The performance of a material can be influenced by its diffusion properties, which are associated
with the activation energy and pre-exponential factor of the Arrhenius equation and energetics of
point defects. The present methodology is an appropriate tool to calculate the activation energies
of long-range diffusion pathways of Ca ions. The results presented here would be beneficial to the
experimentalist as the determination of ion pathways and activation energies can be challenging
experimentally. In previous modelling studies with this classical approach, many oxides have been
examined and diffusion properties reported [27,44–46]. For example, the diffusion pathway calculated
in LiFePO4 by Fisher et al. [47] is in excellent agreement with the neutron diffraction study reported by
Nishimura et al. [48].

In general, Ca ion diffusion in Ca-bearing oxide materials is expected to be sluggish due to its ions
with double positive charge. In previous theoretical simulations based on the DFT and classical pair
potentials, it was shown that activation energies of Ca ion diffusion in Ca-based minerals are high,
confirming the slow diffusion [49–52].

We identified four different local Ca hops (A, B, C and D) and their vacancy-assisted migration
pathways were calculated (refer to Figure 3). Table 3 reports the local Ca hops with their distances and
corresponding activation energies.
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Figure 3. Long-range Ca vacancy migration paths considered. Green, light blue, orange and purple 
atoms show the Ca ion movement in different local Ca hops. 

The local hop A exhibits the lowest activation energy. The activation energy calculated for the 
local hop B is slightly higher by 0.03 eV than that calculated for the local hop A. The highest activation 
energy is noted for the local hop D. In order to find the long-range diffusion pathways, local hops 
were connected. Three possible long-range diffusion pathways were identified (refer to Table 4). The 
lowest energy long-range diffusion pathway is A↔B↔C↔A↔B with an activation energy of 1.59 eV, 
inferring the slow diffusion. The movement of Ca ions is observed in the ab plane. Figure 4 shows the 
energy profile diagrams for local hops. 

Table 4. Long-range Ca ion diffusion paths and their activation energies. 
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Figure 3. Long-range Ca vacancy migration paths considered. Green, light blue, orange and purple
atoms show the Ca ion movement in different local Ca hops.

Table 3. Activation energies calculated for local Ca hops.

Hop Ca–Ca Distance (Å) Activation Energy (eV)

A 3.46 1.37

B 3.49 1.59

C 3.63 1.34

D 3.67 2.02

The local hop A exhibits the lowest activation energy. The activation energy calculated for the
local hop B is slightly higher by 0.03 eV than that calculated for the local hop A. The highest activation
energy is noted for the local hop D. In order to find the long-range diffusion pathways, local hops
were connected. Three possible long-range diffusion pathways were identified (refer to Table 4). The
lowest energy long-range diffusion pathway is A↔B↔C↔A↔B with an activation energy of 1.59 eV,
inferring the slow diffusion. The movement of Ca ions is observed in the ab plane. Figure 4 shows the
energy profile diagrams for local hops.

Table 4. Long-range Ca ion diffusion paths and their activation energies.

Long-Range Path Activation Energy (eV)

C↔D↔C↔D↔C 2.02

A↔B↔C↔A↔B 1.59

A↔B↔C↔D↔C 2.02
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Figure 4. Energy profile diagrams calculated for four different local Ca hops, as shown in Figure 3.

3.4. Solution of Dopants

Dopants play a significant role in tailoring the properties of a material. In particular, dopants
with different sizes or charges compared to the host atoms will affect the properties of the host
compound. Here, we considered a variety of isovalent and aliovalent dopants for screening and
predicting promising dopants that can be verified and further explored experimentally. Solution
energies were calculated using appropriate charge compensation defects and lattice energies. The
Supplementary Materials provide the Buckingham potentials used for dopants (refer to Table S1).

3.4.1. Divalent Dopants

First, the Ca site was considered to dope divalent dopants (M = Co, Mn, Ni, Mg, Zn, Sr and Ba).
The solution energy was calculated using the following equation.

MO + CaX
Ca →MX

Ca + CaO (9)

Exothermic solution energy (−0.03 eV) was calculated for Sr2+, suggesting that it is the most
favourable dopant on the Ca site (refer to Figure 5). A possible composition that can be prepared by
experiment is Ca1-xSrxSiO3 (0.0 < x < 1.0). The second most stable dopant is Ba2+, with a solution
energy of 0.16 eV. Other dopants exhibit high endoergic solution energies, meaning that they are
unlikely to be doped at room temperature. The high preference of Sr2+ could be due to its ionic radius
(1.18 Å), which is close to the ionic radius of Ca2+ (1.00 Å).
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3.4.2. Trivalent Dopants

The doping of trivalent cations (Al3+, Ga3+, In3+, Fe3+, Sc3+, Y3+, Gd3+ and La3+) was considered
on the Si site. In this doping process, Ca interstitials were introduced to compensate the negatively
charged lattice. This process can increase the capacity of CaSiO3 and enhance the diffusion of Ca ions.
The following equation was used to calculate the solution energy for this process.

M2O3 + 2SiXSi + CaO → 2 M′Si + Ca••i + 2 SiO2 (10)

Calculated solution enthalpies are reported in Figure 6. The most favourable dopant for this
process is Al3+, with a solution energy of 3.47 eV, though the solution is endoergic. The possible
composition that can be prepared by experiment would be Ca1+xAlxSi1−xO8 (0.0 < x< 1.0). The second
most favourable dopant is Fe3+. High solution energies (>4 eV) are calculated for the other dopants,
meaning they are unlikely to take place at room temperature.Chemistry 2020, 2, x 7 

 

 
Figure 6. Solution energy of M2O3 (M = Co, Mn, Ni, Mg, Zn, Sr and Ba) with respect to the M3+ ionic 
radius. 

3.4.3. Tetravalent Dopants 

Finally, tetravalent cations (Ge4+, Ti4+, Sn4+, Zr4+ and Ce4+) were considered on the Si site. Solution 
energy was calculated using the following reaction equation. MOଶ +  Siୗ୧ ଡ଼ → Mୗ୧ ଡ଼ + SiOଶ (11) 

Solution energies are reported in Figure 7. The promising dopant for this process is Ge4+. The 
preference of Ge4+ is due to the ionic radius of Si4+ (0.26 Å), which is close to the ionic radius of Ge4+ 
(0.39 Å). Endothermic solution energy shows that this process requires energy in the form of heat. 
This is due to the stronger Si-O bonds as compared to the Ge-O bonds. The second most favourable 
dopant is Ti4+. Its solution energy is higher only by 0.07 eV than that calculated for Ge4+. High solution 
energies are calculated for the other dopants. In particular, solution energies for ZrO2 and CeO2 are 
2.37 eV and 3.30 eV, respectively, suggesting that they are unlikely to occur at room temperature. 

 

Figure 7. Solution energy of MO2 (M = Ge, Ti, Sn, Zr and Ce) with respect to the M4+ ionic radius. 

4. Conclusions 

In this study, an atomistic simulation based on the classical potentials was applied to examine 
the intrinsic defect processes, vacancy-assisted Ca ion diffusion and solution of dopants in CaSiO3. 
The Ca-Si anti-site defect cluster was calculated to be the lowest energy process, meaning that a small 
amount of Ca on the Si site and Si on the Ca site will be present, particularly at higher temperatures. 
The long-range vacancy-assisted Ca ion migration pathway is in the ab plane with an activation 
energy of 1.59 eV, inferring slow diffusion. The promising dopant on the Si site to increase the Ca 

Figure 6. Solution energy of M2O3 (M = Co, Mn, Ni, Mg, Zn, Sr and Ba) with respect to the M3+
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3.4.3. Tetravalent Dopants

Finally, tetravalent cations (Ge4+, Ti4+, Sn4+, Zr4+ and Ce4+) were considered on the Si site.
Solution energy was calculated using the following reaction equation.

MO2 + SiXSi →MX
Si + SiO2 (11)

Solution energies are reported in Figure 7. The promising dopant for this process is Ge4+. The
preference of Ge4+ is due to the ionic radius of Si4+ (0.26 Å), which is close to the ionic radius of Ge4+

(0.39 Å). Endothermic solution energy shows that this process requires energy in the form of heat. This
is due to the stronger Si-O bonds as compared to the Ge-O bonds. The second most favourable dopant
is Ti4+. Its solution energy is higher only by 0.07 eV than that calculated for Ge4+. High solution
energies are calculated for the other dopants. In particular, solution energies for ZrO2 and CeO2 are
2.37 eV and 3.30 eV, respectively, suggesting that they are unlikely to occur at room temperature.
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4. Conclusions

In this study, an atomistic simulation based on the classical potentials was applied to examine
the intrinsic defect processes, vacancy-assisted Ca ion diffusion and solution of dopants in CaSiO3.
The Ca-Si anti-site defect cluster was calculated to be the lowest energy process, meaning that a small
amount of Ca on the Si site and Si on the Ca site will be present, particularly at higher temperatures.
The long-range vacancy-assisted Ca ion migration pathway is in the ab plane with an activation energy
of 1.59 eV, inferring slow diffusion. The promising dopant on the Si site to increase the Ca content in
CaSiO3 is Al3+. Promising isovalent dopants on the Ca and Si sites are Sr2+ and Ge4+, respectively, and
these dopants can prevent phase transformation.
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